
AN-02 Page 1 Revision 2.01

Springboard Soft Reset Protection

Application Note AN-02 Revision 2.01 Document No. 80-0118-00

Table of Contents

1. Introduction..1
2. Application Environments That Are Safe From Soft Reset..2

2.1. Safe Case 1 ...2
2.2. Safe Case 2 ...2
Application Environments That Are Vulnerable To Soft Reset ..3
2.3. Vulnerable Case 1: ...3
2.4. Vulnerable Case 2: ...7
2.5. Vulnerable Case 3: ...10

3. History ..14

1. Introduction

Applications using libraries directly or indirectly are susceptible to the system forcing a soft reset when the
module is removed while the application is running. The soft reset is caused by the system responding to an
interrupt generated by the module removal. When the module is removed, the Handspring extension system
event handler detects that the module has been removed but the library has not been properly closed by the
application. The Handspring extension system event handler forces a soft reset to prevent system instability.
This effect of resetting the system during module removal produces an unpleasant user experience due to the long
reset time. Therefore applications must protect the system from soft reset by properly closing the library during
module removal.

The problem is due to Palm OS lack of library management facilities. Palm OS does not provide any high level
logic to track which libraries were opened by which applications, and to automatically close and uninstall libraries
that were opened by an application after that application exits. The Handspring extension implements a check-
sum verification of the library environment to detect if a library was left open. If open libraries are detected upon
Springboard module removed, the system will force a soft reset. Therefore applications and libraries must be
designed to track the usage of libraries and properly close them when the module is removed.

Springboard Soft Reset Protection

AN-02 Page 2 Revision 2.01

2. Application Environments That Are Safe From Soft Reset

When the system tries to access the Springboard memory space while a module is not present, the system will
incur a bus fault. This system will examine the its operating environment to determine whether it must force soft
reset to avoid a corrupted system environment. There are two common application environments identified
below that are safe from bus fault. The two cases below represent implementation of common content-only
applications.

2.1. Safe Case 1

An application that executes in handheld memory is safe from bus error fault if (a) the application does not access
the module and (b) does not use libraries not from the module. (This is usually the case for many of the
commonly available Palm OS applications that do not access the module or any specialized hardware.) Because
no bus error fault is generated by module removal, the system does not produce a soft reset. Thus the application
and libraries are unaffected. The application and libraries are closed and removed correctly when exiting later.

2.2. Safe Case 2

An application that executes in module memory and does not use any library is safe from bus fault. (This
environment is common for content-only applications such as Handspring’s Tiger Woods game module.) When
the module is removed, a bus fault is generated when the CPU tries to fetch and execute the next instruction code
from the memory module. The bus error trap causes control to be passed to the system bus error handler. The
system does not force a soft reset because no libraries were opened by that application. If the Setup application
was installed, the system then sends a “remove” message to the Setup application to allow proper clean up. The
system then returns control to the “Launcher” application.

Springboard Soft Reset Protection

AN-02

Application Environments That Are Vulnerable To Soft Reset

2.3. Vulnerable Case 1:

Applications or Libraries Accessing The Module’s Memory Or Hardware

Application or library software that accesses the Springboard memory space should protect its accesses from bus
fault. If not protected, the bus fault will trigger the Handspring system event handler determine whether it must
force soft reset to avoid corrupted system environment due to an opened library. Thus application or library
software must be designed to protect module accesses using Handspring’s Try/Catch blocks
(HsCardErrTry/HsCardErrCatch). The Try/Catch block implementation enables the library to trap the bus
fault from the software accesses to a removed Springboard module and enables for graceful recovery allowing the
software to close the library. This clean up corrects the system library environment before the system event
handler examines the system environment. Figure 1 below summarizes the issue and the resolution.

Springboard Module

Visor Handheld

Application:

AccessModuleAPI();

CloseLib();
CleanUp();

s module
 wrapper
I protected
atch

2. Bus error due to
removed module

3a. OS returns
control to
Catch block

Module
Removal

3b. OS returns
control to
Catch block

Application:
Try { ReadHw (); }

Catch{ CloseLib(); }
Library

AccessModuleAPI()
{
 Try
 {
 ReadHw();
 }
 Catch
 {
 SetCloseLibFlag();
 }

1. Acces
through
layer AP
by Try/C

4. Catch
Pag

Figure 1. Protecting application o

}

 block

returns notification to
the application to
close the library and
clean up
e 3 Revision 2.01

r library software that accesses the module

Springboard Soft Reset Protection

AN-02 Page 4 Revision 2.01

The Try/Catch design can implement one Try/Catch set for each API or one Try/Catch set for a group of similar
APIs. Below is some sample code that illustrates both of these approaches.

ModuleLibrary.c

AccessModuleAPI()
{
 Err error = 0;
 volatile Boolean needAbort = false;
 volatile Byte readbyte;
 volatile Byte buffer[10];

HsCardErrTry
 {
 // Read access of module h/w location
 // ex. 0x28000000 + 0x100000 + 0x5
 readbyte = (* (Byte*) (CardBaseAddr + HwOffsetAddr + Reg5))
 ReadBuffer(&buffer);
 needAbort = false;
 }

HsCardErrCatch
 {
 // Recover or clean up after a failure in above Try block
 // The code in this block does NOT execute if the above
 // Try block completes without a card removal

 needAbort = true;
 }
HsCardErrEnd

if (needAbort)
 NotifyAppCloseLib();
return error;

}

Springboard Soft Reset Protection

AN-02 Page 5 Revision 2.01

AccessModuleGroupAPI(whichAPI)
{
 Err error = 0;
 volatile Boolean needAbort = false;
 volatile Byte readbyte;
 volatile Byte buffer[10];

HsCardErrTry
 {
 // call access of module API
 switch (whichAPI)
 {
 case ReadStatusFlagAPI:
 ReadStatusFlagRegister(StatusFlagRegisterAddr);

 case ClearInterruptStatusFlagAPI:
 ClearInterruptStatusFlagRegister(InterruptStatusFlagRegisterAddr);

 default:
 }
 needAbort = false;
 }

HsCardErrCatch
 {
 // Recover or clean up after a failure in above Try block
 // The code in this block does NOT execute if the above
 // Try block completes without a card removal

 needAbort = true;
 }
HsCardErrEnd

if (needAbort)
 NotifyAppCloseLib();
return error;

}

Springboard Soft Reset Protection

AN-02 Page 6 Revision 2.01

DWord
PilotMain (Word cmd, Ptr cmdPBP, Word launchFlags)
{
 DWord err;

 HsCardErrTry
 {
 // Global protection block for all Springboard accesses.
 // PilotMainBody (cmd, cmdPBP, launchFlags);
 }

 HsCardErrCatch
 {
 // Recover or clean up after a failure in above Try block
 // The code in this block does NOT execute if the above
 // Try block completes without a card removal

 // Close the library
 CloseLib();
 }

Springboard Soft Reset Protection

AN-02 Page 7 Revision 2.01

2.4. Vulnerable Case 2:

Springboard Module Memory Resident Applications Using Libraries

Applications executing directly from the Springboard module memory must implement the Try/Catch protection
block in internal RAM so that the system can execute the block even after the Springboard module has be
removed. Caching the Try/Catch protection block can be designed using two different implementation schemes.

The first scheme places the application’s Try/Catch protection block in the Setup application. (Reminder that
the Setup application will be copied from module memory to internal RAM.) The application will call into the
Try/Catch protection hook function, and the hook function will call back into the application’s PilotMain. Thus
the entire application is protected by the Try/Catch block. This scheme requires that the application and the
Setup application are intrinsically aware of the other’s library management. This scheme would be appropriate
for applications designed to centralize all the opened libraries protection into an application controlled by the
Springboard module designer. Figure 2 below summarizes the issue and the resolution.

The second scheme places the application’s Try/Catch protection block in the application and copies the
Try/Catch protection block into dynamically allocated internal RAM. The application will call into the
Try/Catch protection hook function, and the hook function will call back into the application’s PilotMain. Thus
the entire application is protected by the Try/Catch block. This scheme would be appropriate for independent
applications designed to manage its own library environment.

Springboard Soft Reset Protection

AN-02 Page 8

Figure 2. Protecting module-resident app

CardSetup Application:

PilotMainProtectionHook(
PilotMainCallBackFuncPtr, CleanupParamPtr, …)
{

Try
{
 PilotMainCallBackFuncPtr();
}
Catch
{
 if LibraryOpen()
 CloseLibrary();
 CleanUp(CleanupParam);
}
return;

}

Springboard Module

Visor Handheld

Main Application:
PilotMain()
{
if app executing on module
PilotMainProtectionHook(&PilotMainBody,

&CleanupParam);
else skip hook
 PilotMainBody();
}

PilotMainBody() AccessLibrary()
{ {
 AppStart(); xxLibraryAPI();
 EventLoop(); yyLibraryAPI();
 AppStop();
} }

1. Module
Removal

xxLibrary

yyLibrary

2. Instruction
Fetch

3. Bus Error
Fault

5. Bus error fault is generated
returns to Main application co
sends “remove” to CardSetup
4. Catch block
closes libraries
and cleans up
application
Revision 2.01

lications from open libraries

when control
de. System
Application.

Springboard Soft Reset Protection

AN-02 Page 9 Revision 2.01

The sample code below shows the framework for the implementing the Try/Catch protection block in the Setup
application. The code is intended only to illustrate the concept; it is not complete.

{
 Err err = 0;
 HsDrcGlobalsType* gP = 0;

 HsCardErrTry
 {
 // Protect with Try block so that the bus error fault would be caught
 // in the below Catch block

 // Call back application's PilotMain body
 procP();
 }

 HsCardErrCatch
 {
 // Recover or clean up after a failure in above Try block
 // The code in this block does NOT execute if the above
 // Try block completes without a card removal

 gP = (HsDrcGlobalsType*) CleanUpParamP;

 // Close open libraries
 // Check if the serial library has been un-installed or closed.
 if (gP && gP->serLibRefNum) // not un-installed
 if ((SysLibTblEntry (gP->serLibRefNum))->globalsP) // not closed
 err = SerClose (gP->serLibRefNum);

 }
 HsCardErrEnd

 return err;
}

Springboard Soft Reset Protection

AN-02 Page 10 Revision 2.01

2.5. Vulnerable Case 3:

Applications Using Model Dialogs

Handspring extensions version 1.00 to 1.03 in Visor Palm OS 3.1 devices contain a problem where modal dialog
processing blocks the application’s Try/Catch protection code from running when the module is being removed.
Later Handspring extension versions have corrected this issue. Thus application should check for the appropriate
Handspring extension version to implement this protection.

This scenario includes all applications since the “Find” application’s modal dialog or the “Datebook” application’s
alert modal dialog can be triggered at anytime. The problem is caused by the modal dialog’s event loop code.
When the modal dialog’s event loop executes, it displaces the code context of the previous application. This
displacement causes the modal dialog’s event handler code to execute before the application’s Try/Catch
protection code

Thus when the module is removed, the system event handler will detect the open library environment and force a
soft reset. The application’s Try/Catch protection code did not get the opportunity to close the libraries. The
resolution is to patch the system event handler to alter the execution sequence so that the either the Try/Catch
protection code or some other clean up code is executed. The system event handler patch will to close the
libraries upon detection of module removal.

System patches like the system event handler should be implemented in the Setup application (to exist in internal
RAM). The application designer must be careful to implement proper logic so that control properly passes back
to the previous system event handler and the patching is undone correctly. The un-patching should be done
immediately upon detection of module removal.

Once libraries is closed this way, the application must not make any more accesses to those libraries. The
application should un-install the library in its clean up code.

Figure 3 below shows a system event handler chain.

Springboard Soft Reset Protection

AN-02

Detect module removal,
close library, restore
chain (unpatch) and pass
control to the next node
Custom Application
System Event
Handler patch
Handspring
System Even

Setup Application

System Event
Handler patch

P

System Event
Handler Chain
Page 11 Revision 2.01

Figure 3. System Event Handler Chain

 Extension
t Handler

atching

Execution and
Unpatching

Does not reset, sends
“remove” message to
Setup

in chain

Springboard Soft Reset Protection

AN-02 Page 12 Revision 2.01

The sample code below shows the framework for the system handler event patching. The code is intended only
to illustrate the concept; it is not complete.

Install()
{
 Boolean ModulePresent;
 ……

 // For SysHandleEvent, check whether we're running under the version of
Handspring
 // Extensions that needs this patch
 // Ver 1.00 needs patch
 // Ver 1.01 needs patch
 // Ver 1.02 does not exist
 // Ver 1.03 needs patch

 if (sysGetROMVerMajor(hsExtVersion) == 1
 && sysGetROMVerMinor(hsExtVersion) == 0
 && sysGetROMVerFix(hsExtVersion) < 3)
 {
 // Check to determine is module present

HsCardAttrGet (1 /*cardNo*/, hsCardAttrHwInstalled, & ModulePresent);

// If module is present, patch application’s system handler event
if (ModulePresent)

 {
 // ---
 // Install our SysHandleEvent patch so that the System Event
 // Handler can be detect card removal and close any libraries
 // ---
 err = HsCardPatchInstall (sysTrapSysHandleEvent,
(void*)PrvSysHandleEvent);
 ErrNonFatalDisplayIf (err, "patch install err");

 // Set this so PrvRemovePatches will know whether to
 // remove the patch
 gP->sysHandleEventPatched = true; // (***need to add this field
to the
 // HsDrcGlobalsType structure***)
 }
}

 ……
}
Remove(Word cardNo)
{ ……

 // Remove the "SysHandleEvent" patch if it was installed

if (gP->evtGetEventPatched)
 {
 err = HsCardPatchRemove (sysTrapSysHandleEvent);
 ErrNonFatalDisplayIf (err, "patch remove err");

 gP->sysHandleEventPatched = false;
 }

 ……
}

Springboard Soft Reset Protection

AN-02 Page 13 Revision 2.01

static Boolean PrvSysHandleEvent(EventPtr eventP)
{
 Err err = 0;
 Boolean handled;
 SysHandleEventFuncType * OldSysHandleEventPtr = 0;
 Boolean ModulePresent = false;

 CALLBACK_PROLOGUE()

 // Todo:
 // This API takes a lot of overhead. System performance will decrease
 // because SysHandleEvent() is called often. Need to optimize by caching
 // the old function pointer. (Global variables are not allowed in Patches
 // because they can be call outside of this application thus rendering the
 // globals out of context.)

 HsCardPatchPrevProc (sysTrapSysHandleEvent, &OldSysHandleEventPtr);

 // If the module is still plugged in, continue as normal; otherwise,
 // close the library and prepare to exit the application.
 HsCardAttrGet(1, hsCardAttrHwInstalled, &ModulePresent);
 if (!ModulePresent)
 {
 HsDrcGlobalsType* gP = 0;
 Word cardNo = 1;

 HsCardAttrGet (cardNo, hsCardAttrCardParam, &gP);

 // Close the library
 // Check if the serial library has been un-installed or closed.
 if (gP && gP->serLibRefNum) // not un-installed
 if ((SysLibTblEntry (gP->serLibRefNum))->globalsP) // not closed
 err = SerClose (gP->serLibRefNum);

 // Calling HsCardPatchRemove() will cause a bus error
 // which will jump to the Catch block if one is installed.
 err = HsCardPatchRemove (sysTrapSysHandleEvent);
 ErrNonFatalDisplayIf (err, "patch remove err");

 gP->sysHandleEventPatched = false;
 }

 handled = (OldSysHandleEventPtr)(eventP);

 CALLBACK_EPILOGUE()

 return handled;
}

Springboard Soft Reset Protection

AN-02 Page 14 Revision 2.01

3. History

Date Revision # Description of changes

11 Dec 00 2.01 Reformat.

7 Nov 00 2.00
Qualify problem for specific Handspring extension version.
Steamline problem description and resolution.
Added working sample code.

7 Mar 00 1.00 Initial release.

HandspringTM, VisorTM, SpringboardTM, and the Handspring and Springboard logos are trademarks or registered trademarks of
Handspring, Inc. © 2000 Handspring, Inc.

	Introduction
	Application Environments That Are Safe From Soft Reset
	Safe Case 1
	Safe Case 2
	Application Environments That Are Vulnerable To Soft Reset
	Vulnerable Case 1:
	Vulnerable Case 2:
	Vulnerable Case 3:

	History

