
AN-05 Page 1 Revision 1.01

Handspring’s Try-and-Catch APIs

Application Note AN-05 Revision 1.01 Document No. 80-0121-00

Table of Contents

1. Overview ...1
2. Usage ...2

2.1. Restrictions...2
2.2. Sample Source Code..3

3. History ..4

1. Overview
This document describes the use of Handspring’s HsCardErrTry and HsCardErrCatch APIs. The Try
block allows safe access to the module. If the module is removed during access to a Springboard module, the
system will recover safely by trapping the bus error fault and returning control to the Catch block for proper
clean up.

Prototype

HsCardErrTry

{

// Do something that accesses the removable module

}

HsCardErrCatch

{

// Recover or clean up after a failure in the above Try block.

// The code in this Catch block does not execute if

// the above Try block completes without a module removal

} HsCardErrEnd

// You must structure your code exactly as above. You cannot have a

// HsCardErrTry { } without a HsCardErrCatch { } HsCardErrEnd,

// or vice versa.

Handspring’s Try-and-Catch APIs

AN-05 Page 2 Revision 1.01

2. Usage

The HsCardErrTry/HsCardErrCatch macros should be wrapped around any section of code within an
interrupt handler, system extension, shared library, or other system code that needs to access memory or
hardware on a removable module. If the module is removed while the critical section of code is executing, control
is first passed to the HsCardErrCatch() section.

These macros can be nested. For example, you can call a subroutine from within your HsCardErrTry block that
has its own try/catch block. Every routine that has an HsCardErrTry clause, however, must have an
HsCardErrCatch.

2.1. Restrictions

HsCardErrTry and HsCardErrCatch are based on setjmp/longjmp. At the beginning of a Try block,
setjmp saves the machine registers. A module removal triggers longjmp, which restores the registers and jumps
to the beginning of the Catch block. Therefore, changes in the Try block to variables that are stored in registers
are not retained, and will be lost when entering the Catch block. For variables that are referenced in the Try
block and are referenced when the Catch block is activated, the variables must be declared as “volatile.” If the
variables are not referenced when the Catch block is activated, they do not need to be declared as “volatile”.

The HsCardErrTry or HsCardErrCatch blocks must not contain return or goto statements. When the
HsCardErrTry block fails, the HsCardErrCatch block must execute completely to the end of the
HsCardErrEnd macro to properly restore the machine registers. If the code leaves the HsCardErrTry block
prematurely, it will corrupt the HsCardErrTry/HsCardErrCatch exception list, resulting in unpredictable
system behavior.

Handspring’s Try-and-Catch APIs

AN-05 Page 3 Revision 1.01

2.2. Sample Source Code
static void

AppEventLoop(void)

{

 short err;

 EventType event;

 volatile Boolean needAbort = false;

 do

 {

 EvtGetEvent (&event, sysTicksPerSecond/4);

 HsCardErrTry

 {

 // Access card in some manner that may fail

 if (*((Byte*)0x28000000UL))

 needAbort = false;

 }

 HsCardErrCatch

 {

 // Recover or cleanup after a failure in above Try block

 // The code in this block does NOT execute if the above

 // try block completes without a card removal

 needAbort = true;

 }

 HsCardErrEnd

 if (needAbort) return;

 if (!SysHandleEvent (&event))

 if (!MenuHandleEvent (0, &event, &err))

 if (!AppHandleEvent (&event))

 FrmDispatchEvent (&event);

 } while(event.eType != appStopEvent);

}

Handspring’s Try-and-Catch APIs

AN-05 Page 4 Revision 1.01

3. History

Date Revision # Description of changes

13 Dec 00 1.01 Reformat.

3 Apr 00 1.00 Initial release.

HandspringTM, VisorTM, SpringboardTM, and the Handspring and Springboard logos are trademarks or registered
trademarks of Handspring, Inc. © 2000 Handspring, Inc.

	Overview
	Usage
	Restrictions
	Sample Source Code

	History

