

AN-18 Page 1 Revision 1.00

Using the SMS Library

Application Note AN-18 Revision 1.00 Document No. 80-0156-00

Table of Contents

1. Overview.. 3

2. What is SMS?.. 3

3. Why Use the SMS Library?... 3

4. Understanding the SMS Library ... 4

4.1. Incoming Message Events .. 4
4.2. Outgoing Messages... 5
4.3. GSM Alphabet vs. Palm OS Alphabet... 5
4.4. Message Segmentation ... 5
4.5. Message Database ... 6

5. Library Reference ... 9

5.1. Data Types .. 9
5.2. Event Codes .. 10
5.3. Message Types .. 10
5.4. Message Status .. 11
5.5. Sending Options.. 12

6. SMS Library API .. 14

6.1. Registering with the Library .. 14
6.2. Controlling the VisorPhone... 14
6.3. Managing Messages .. 15
6.4. Managing Message Data... 16
6.5. Getting Message Data .. 17
6.6. Managing Addresses and Address Lists ... 18
6.7. Manipulating Characters .. 20
6.8. Handling Preferences ... 21
6.9. Accessing the Message Database.. 22

7. History ... 23

Using the SMS Library

AN-18 Page 2 Revision 1.00

List of Acronyms

GSM Groupe Spécial Mobile, or,
Global System for Mobile Communications

ISP Internet Service Provider

PPP Point-to-Point Protocol

SIM Subscriber Identity Module

SMS Short Message Service

UDH User Data Header

Using the SMS Library

AN-18 Page 3 Revision 1.00

1. Overview

This document describes how to send and receive messages using the SMS interfaces in the SMS library. The
SMS application in the VisorPhone uses the library defined in this document. Third-party developers can use
this library to create their own custom SMS applications.

Technically, the SMS library is part of the GSM library, but it is described in a different document since it is
logically a separate unit. The SMS library relies on functionality from the GSM library and uses some similar
methods.

This document describes some of the key features of the SMS library. Among those features are:

• sending messages

• receiving messages.

• encoding

• message segmentation

• message database

2. What is SMS?

The point-to-point Short Message Service (SMS) provides a means of sending short messages to and from a GSM
phone. SMS is implemented using a Service Center, which acts as a store and forward center for short messages.

Two different point-to-point services are defined in the SMS specification: mobile originated and mobile
terminated. Mobile originated messages are transported from a GSM phone to a service center. These messages
may be destined for other mobile users, or an email gateway. Mobile terminated messages are transported from
the service center to a GSM phone. These messages may have originated from another GSM phone or a variety
of other sources (e.g., email or website).

A message sent on the SMS network is limited to 160 characters. If a longer message is desired, then the message
must be segmented.

3. Why Use the SMS Library?

The SMS library allows for sending and receiving short messages from the VisorPhone to another SMS-enabled
recipient.

These messages can be sent much more quickly than when using a PPP connection with the VisorPhone. This is
because SMS does not require an initial connection to an ISP. Connecting to an ISP can take up to 30 seconds,
including modem negotiation time and user authentication.

Cost is another consideration for using SMS. A typical U.S. service provider charges 15 cents a minute for data
service, but only 10 cents for a short message.

Using the SMS Library

AN-18 Page 4 Revision 1.00

Additionally, SMS messages can be sent directly to the VisorPhone. They do not require a client application to
dial in to the network to check for new email; instead, the message is sent to the client application. The client can
even receive an SMS message while a voice or data call is in progress.

Finally, the client application can request confirmation that a message has arrived at its destination address. A
typical email system does not allow for this functionality.

4. Understanding the SMS Library

The SMS library takes care of the low-level details of communicating with the VisorPhone. All incoming
messages are indicated to the application using launch codes. A successful (or unsuccessful) transmission of a
message is also indicated using launch codes.

The SMS library handles the following functions for SMS messages.

• Sending

• Receiving

• Encoding

“Encoding” only refers to character encoding. Currently, only the GSM alphabet is supported. The GSM
alphabet is different from the Palm OS alphabet. Additionally, encryption and compression of messages is not
supported in the current version of the SMS library.

Note: The current version of the SMS library only handles text messages. All messages handled by the library
are assumed to be text, and are handled appropriately. If a client application wants to send binary data, it must
encode and decode the data properly.

4.1. Incoming Message Events

An application must register itself with the SMS library in order to receive incoming message events.

Each incoming message is indicated to the application by sending a kMessageInd event. A segmented message
is indicated as a new incoming message only after all of its parts have been received. If a new message was added
to the database (first part of a segmented message), the application is sent the kSegmentInd event to trigger an
update of a list that might contain this new message.

If the user requests a status report for a message, the service center sends one or more status report messages.
These messages contain binary information, rather than text. A status report contains the ID of the message the
report refers to along with a binary result code. The SMS library converts the status reports into text form. The
error code is translated into a meaningful description, and the message recipient is shown. The reference to the
original message is replaced by this message’s text. The application is notified of the incoming status report with
a kMessageInd event. The status report becomes a regular incoming message.

If a status report is requested for a message that is sent to multiple recipients, the service center will send a status
report for each recipient. The SMS library does not combine these status reports into a single report.

Using the SMS Library

AN-18 Page 5 Revision 1.00

4.2. Outgoing Messages

A message is sent by creating a new outgoing message using GSMLibNewMessage and filling in the desired
recipient and message text. More than one recipient may be specified if the message is being sent to a group.
The message text may be longer than 160 characters; in that case, the text is automatically segmented. Since
segmentation is transparent to the user of the SMS library, the library segments and reassembles the messages
automatically.

4.3. GSM Alphabet vs. Palm OS Alphabet

A special alphabet is used to encode SMS messages. The text of all incoming and outgoing messages stored in the
message database is encoded using the standard Palm OS encoding.

When a message is received, its encoding is changed from the GSM alphabet to the Palm OS alphabet. Any
missing characters are replaced by substitution strings. A message is encoded in the GSM alphabet when being
sent. Optionally, substitution strings may be converted to their character equivalents. The following table shows
the character with its corresponding substitution string.

Table 1. Substitution strings

∆ \Delta Π \Pi

Φ \Phi Ψ \Psi

Γ \Gamma Σ \Sigma

Λ \Lambda Θ \Theta

Ω \Omega Ξ \Xi

Important: The client application should not assume that a message contains 160 characters or less. Even if the
actual message is less than 160 characters, the message’s text may be longer than 160 characters because characters
that are not available on Palm OS are replaced by substitution strings.

4.4. Message Segmentation

Most mobile phones allow the user to compose messages of only 160 characters or less; however, with the SMS
library, the maximum length of a message is 38760 characters. Messages that contain more that 160 characters
are segmented.

The SMS library supports three types of segmentation schemes. Two of these methods are text-based, while the
third is binary. The binary method is preferred, since it allows for the reassembly of messages, even if they arrive
out of order.

4.4.1 Binary Segmentation

The binary segmentation scheme works by adding a UDH to each segment of a segmented message. The UDH
contains a reference number to identify the message, the segment’s index, and the total number of segments.
Because the UDH takes 8 bytes, the number of characters in a message is reduced to 152.

Using the SMS Library

AN-18 Page 6 Revision 1.00

Using the UDH, it is possible to reassemble messages from their segments, even if the segments arrive out-of-
order. The reassembly of incoming segmented messages is transparent to the client application. The client
application may retrieve a message’s text, even if all the segments have not been received. Use GSMLibGetText
to retrieve the message.

When the first segment of a segmented message is received, the client receives a kSegmentInd event after the
segment has been stored in the database. When all of the segments have been received, a kMessageInd event is
sent.

Automatic reassembly of messages works if all parts of the message are received within one week after the first
segment is received. After one week, segmentation information is deleted by the library.

4.4.2 Textual Segmentation

The SMS library supports two textual segmentation schemes. One segmentation scheme is used only for sending
segmented messages to an email gateway. The other is used for segmenting regular text messages.

The segmentation scheme used to send messages to an email gateway does not allow the reassembly of the
message if the messages arrive out of order. This scheme is a recognized GSM standard. It works by inserting
“+” signs into the message’s text. The length of an “inner” segment is reduced to 158 characters, and the length
of the first and last segments is 159 characters. A message with three parts is segmented as follows:

First segment+

+Inner segment+

+Last segment

Note: For messages sent to an email gateway, the recipient’s address will add to the message’s length.

This segmentation scheme is used exclusively to send messages to an email gateway. The SMS library does not
use this scheme to send text messages to normal subscribers.

The second scheme for segmentation adds header information to every segment. The header is of the form “i/k”,
where i is the segment’s index and k is the total number of segments. The length of the header is not constant,
and is dependent upon the values of i and k. A message with three parts is segmented as follows:

1/3 First segment

2/3 Second segment

3/3 Last segment

The library does not attempt to reassemble messages when they are sent using this segmentation scheme. The
user must reassemble the messages as needed. The reassembly is not automatically done by the library because
the header does not indicate clearly to which segmented message a segment belongs.

4.5. Message Database

All incoming and outgoing SMS messages are stored in a message database on the device. An outgoing message
stored in the database may be sent using the SMS library. Incoming messages received are also stored in this
database. The SMS library only handles messages stored in this database. If an application wants to store the
messages in a separate database, it must copy the messages from the SMS database.

Using the SMS Library

AN-18 Page 7 Revision 1.00

This section describes the fields for a single SMS message. The standard Palm OS routines for databases are used
to manage these records.

Important: A message’s internal structure is private and not simple. Client applications should modify data in an
SMS message only by using the functions provided by the SMS library.

A record in the message database has four different parts: the first part has a fixed size, and the size of the other
three parts is variable. As a result, a complete record is variable size.

• Header information (fixed size)

• Segmentation information (variable)

• Address information (variable)

• Message text (variable)

1.1.1 First part of a record

The first part is the message header information. This is a fixed size. These fields are used to store flags and
determine the size of the variable sized field. Some fields are not used for all messages. For example, field
validity is used only for outgoing messages and field segments is used only for incoming messages.

Table 2. Header information

Field Type Description

owner DWord Application owning this message

type SMSMessageType Message type (incoming or outgoing)

status SMSMessageStatus Current status of the message

date UInt32 Date of message sending or receipt

flags UInt32 Miscellaneous flags

validity UInt8 Validity period for message. This tells the service center how long
to store the message before deleting it.

segments UInt8 Total number of parts of a message

size UInt16 Size of the address information in bytes

The message database contains messages stored by different applications. The owner holds the creator of the
application that created an SMS message, or is responsible for it. An application’s four-byte unique creator is
stored along with a message. The library does not assign a default creator to new messages. Client application
should use GSMLibSetOwner to set the owner field.

Using the SMS Library

AN-18 Page 8 Revision 1.00

The date field contains the sending date for outgoing messages and the receiving date for incoming messages.
The date is in standard Palm OS date format. If the outgoing message has not been sent, this field contains the
date of the message’s creation. For an incoming message, this field contains the timestamp passed by the service
center, rather than the date when the message was received by the VisorPhone.

The flags field holds 32 bits of data. All bits not defined in this table are reserved for future use and should be
set to 0.

Table 3. Flag values

Bit Name Description

0 kGreekSymbols Set if there was an error while converting the message text (Greek symbols)

1 kMissingPart Set if some part of a message is missing (incoming only)

2 kAutoDelete Set if the message should be deleted after successful transmission

3 kNotification Set if a notification should be sent when the message has been successfully
transmitted

4 kDontEncode Set if encoding the message text should be suppressed

5 kSubstitution Set if substitution strings should be replaced by GSM characters

6 kFailed Set if there was an error while sending the message

7 kStatusReport Set if message is a status report (incoming only) or if a status report is
requested (outgoing only)

8 kFreeReply Set if reply must be sent using same service center

9 kInternetEMail Set if message is sent to an email gateway

10 kTextSegments Set if textual segmentation methods should be used

11-15 Reserved. Must be set to 0.

16 kRead Set if the message was read (incoming only)

17-31 Reserved for client applications

The segments and size fields are used to manage the variable-sized parts of the message. A segmented
message may consist of up to 255 parts. Each part contains up to 152 characters.

The segments field contains the total number of a message’s segments. For each segment, the length is stored
using two bytes. Missing parts are assigned the length of 65535 (0xFFFF). The size of the segmentation
information is therefore 2 x segments bytes. For outgoing messages, this field is set to 0; thus, the segmentation
information does not exist.

Using the SMS Library

AN-18 Page 9 Revision 1.00

The size field specifies the size of the address information (the list of recipients or the sender) in bytes.

Note: The size field is declared as an array in C. The size of segment i may be accessed by the expression
size[i]. The element with index 0 contains the length of the address information.

4.5.3 Second part of a record

The second part is segmentation information. This part is variable in size. This is accessed through the size
array. Each segment’s size is represented with 2 bytes.

4.5.4 Third part of a record

The third part is address information. This part is variable in size. The size of this address information is defined
in the size field. The address information contains the data in a GSMAddressList structure.

4.5.5 Fourth part of a record

The fourth part is the actual message’s text. This part is variable in size. The size is calculated by taking the size
of the complete message, and subtracting the sizes of the first three parts. All characters in this part are
considered to be Palm OS encoded. For outgoing messages, the characters are converted to the GSM alphabet
when the message is sent.

Note: The conversion of the text is done just before the message is sent. The result of the conversion is not
stored with the message. If sending a message fails, the text is converted again when the message is sent.

5. Library Reference

This section contains a detailed description of all functions supported in the SMS library. Only the functions
from the library’s public interface are documented.

The SMS library was implemented using C++; however, the header file included with the library can also be used
with C. The method used to call library routines makes this possible, since the function’s name is translated into
an index and then into a jump table.

Some routines provided by the SMS library are used for communicating with the network. These commands are
completed asynchronously. Depending on the current network load and the type of interaction with the network,
it may take some time before the request is completed.

The client application may want to show a progress dialog box while communication is in process.

5.1. Data Types

The SMS library defines a few data types for handling SMS messages. Some data types defined in the GSM
library are also used by the SMS library.

Using the SMS Library

AN-18 Page 10 Revision 1.00

5.2. Event Codes

Some data types (especially enumeration types) defined by the GSM library contain constants that are used
exclusively by the SMS library. One example is the enumeration type GSMEvent used to indicate to a client
application what event is sent by the GSM software.

Table 4. Event Codes

Event Code Description

kMessageInd This is sent to the registered application if a new message has been received. This event is
only sent for complete messages.

kSegmentInd This indicates that a new message has been added to the database. This event is only used
for segmented messages to indicate to the application that they should update the list of
incoming messages (if the user is able to view partially received messages).

kMessageStat This is sent to the message’s owner whenever the status of the message has changed. This
event may be used by an application to assign the message to a new category when its status
changes from kPending to kSent.

kMessageDel This is sent to the owner of a message if a message has been deleted from the database.
This event may be used by an application to remove a message from a currently shown list
and/or update any other data structures.

kMessageMoved This indicates that SMS messages stored on a SIM have been successfully transferred to the
message database. This happens if the user inserts a SIM with stored messages into a
VisorPhone. The SMS library will ask the user whether these messages should be stored in
the message database. If confirmed, the messages are transferred. After the transfer, this
event is passed to the client application. The client application may display a dialog after
receiving this event to indicate whether all messages were transferred without an error.

kError This event is sent to the client application whenever an error occurs.

kButton This indicates that a hardware button on the VisorPhone has been pressed. The client
application can switch to the main application as a result of this event.

Note: If there is an error in the transmission of a message, the status of the message is set to kSent and the
client application is notified of the error with the kError event. Additionally, the kFailed bit is set in the
message’s flags field.

All events are passed with a parameter that indicates the affected messages. The parameters are passed using the
SMSParams structure.

5.3. Message Types

The SMS library distinguishes between different types of messages. The type of message is important because
some functions can only be used with a certain message type. For example, the function to forward a message to
another address is only defined for incoming messages.

Using the SMS Library

AN-18 Page 11 Revision 1.00

The enumeration type SMSMessageType defines all the types of messages. The current SMS library handles
only two types of messages: kMTIncoming and kMTOutgoing. Any other value that an application may pass as
the type of a message is reserved by the SMS library for future expansion.

Table 5. Message types

Message Type Description

kMTIncoming This is an incoming message.

kMTOutgoing This is an outgoing message.

Note: The current version of the SMS library does not support cell-broadcast messages.

All messages of the SMS library are text messages encoded in the standard GSM library. The library does not
support text messages encoded in a different alphabet or binary message.

5.4. Message Status

When a message is sent or received, its status field is changed by the SMS library. When that happens, the
client application is sent the kMessageStat event. The enumeration type SMSMessageStatus defines the
possible values for the status field.

Table 6. Message Status

Status Category Notes

kNone Saved This incoming message has not yet been reported to the user, or this unsent
outgoing message has been ‘saved’ by the user.

kReceiving InBox This indicates that it is a partially received message.

kReceived InBox This is a completely received message.

kPending Pending All pending messages have this status. Even messages sent immediately briefly
have this status.

kSending Pending The message is currently being sent.

kSent Sent The message has been sent, either successfully or with an error.

An incoming message can have the status of kNone, kReceiving, and kReceived. As long as a message is
being received, its status is kReceiving. After all parts have been received, its status is changed to kReceived.

An outgoing message can have the status of kNone, kPending, kSending, or kSent. If an outgoing message
is saved in the SMS database, its status is kNone. If an application calls GSMLibSendMessage and the network
is not available for sending, the message’s status is changed to kPending. All messages with the kPending

Using the SMS Library

AN-18 Page 12 Revision 1.00

status will be sent when the network becomes available at a later time. If a message is currently being sent, the
status is changed to kSending. After all parts of a message have been sent, its status is set to kSent.

5.5. Sending Options

When an SMS message is sent to the GSM network, several options may be defined by the sending entity. The
sending options are defined in the structure SMSSendOptions.

struct SMSSendOptions {

Boolean freeReply;

Boolean statusReport;

UInt8 validity;

};

Table 7. Sending Options

Field Name Description

freeReply This indicates to the network that the sender of the message is charged with the cost of a
reply to this message.

statusReport This indicates if the network sends a report indicating whether the message was delivered to
the recipient. If a status report is requested for a segmented message, the SMS library
requests only a status report for the first part of the message. If a status report is requested
for a message sent to a group of recipients, the SMS library requests a status report for each
recipient.

validity This defines how long the network stores a message if it cannot be sent to the recipient
immediately.

The validity field contains a value specifying the time that the network should store a message before it is
discarded. This value is defined in the GSM specification.

Using the SMS Library

AN-18 Page 13 Revision 1.00

Table 8. Validity Values

Value Validity Period

0 to 143 (x + 1) x 5 minutes (i.e., 5 minute intervals up to 12 hours)

144 to 167 12 hours + (x – 143) x 30 minutes)

168 to 196 (x – 166) x 1 day

197 to 255 (x – 192) x 1 week

Using the SMS Library

AN-18 Page 14 Revision 1.00

6. SMS Library API

6.1. Registering with the Library

In order for your application to work with the SMS Library, it must register itself with the library.

Table 9. Registering

Function Description

Err

GSMLibRegister(UInt16,

 UInt32 creator,

 UInt16 services);

A client application uses this function to register with the
GSM library when it is starting up. If the registration was
successful, it returns 0. If there is no application with the
given creator, gsmErrUnknownApp is returned.

This function is also used to cancel the registration with the
library. The client application just passes 0 as services.

Err

GSMLibSetDataApplication(UInt16,

 UInt32 creator);

This function is used to set the application receiving kButton
events when the user presses the data button on the
VisorPhone. If the application is not found when the event is
to be sent, the library resets the creator to the one of the
built-in SMS application.

6.2. Controlling the VisorPhone

There are functions that allow you to check the status of the VisorPhone and turn it on or off.

Table 10. Controlling the VisorPhone

Function Description

Err

GSMLibModulePowered(UInt16);
This function returns true if the VisorPhone is currently
powered and false if it is not.

Note: A return value of true does not necessarily mean that
the VisorPhone has registered with the GSM network.

Err

GSMLibSetModulePower(UInt16,

 Boolean on);

This function may be used to turn the VisorPhone on or off.

Err

GSMLibRegistered(UInt16);
This function returns true if the VisorPhone is current
properly registered with the GSM network and false if it is
not.

Err

GSMLibRoaming(UInt16);
This function returns true if the VisorPhone is currently
registered with a foreign network. The client application
may display an indication when roaming is active.

Using the SMS Library

AN-18 Page 15 Revision 1.00

6.3. Managing Messages

The SMS library provides functions for creating, modifying, and deleting messages in the message database.
Applications should not manipulate the data of a message record stored in the database; they should use the
functions provided by the library.

Table 11. Message Management

Function Description

GSMDatabaseID

GSMLibNewMessage(UInt16,

 SMSMessageType type);

This function creates a new message of the given message type and
returns the ID of the new record in the message database. All fields
are either empty (message text) or contain default values (sending
options). This function returns either the ID of the new message
record, or GSMkUnknownID if there was not sufficient memory to
allocate a new message.

Err

GSMLibDeleteMessage(UInt16,

 GSMDatabaseID msgID,

 Boolean archive);

This function deletes the message with the given msgID from the
message database. This function returns 0 if there was no error
during the deletion of the record. If there is no message with the
given id, this function returns gsmErrUnknownID. If the parameter
archive is true, the message is deleted, but some archive
information is kept for use during the next HotSync process.

Err

GSMLibSendMessage(UInt16,

 GSMDatabaseID msgID,

 Boolean substitution);

This function sends the message to all the recipients. If there is no
message with the given ID, this function returns gsmErrUnknownID.
If the message’s status is not kNone or kPending,
gsmErrIllegalStatus is returned. If the error flag is set, it returns
errNotAllowed. If substitution is true, the substitution strings
specified in the table 1 are replaced by their equivalent GSM library
characters. If the message contains more than 160 characters, this
function automatically segments the message.

Note: If a client application wants to send a message that was already
sent successfully (i.e., status is kSent), it must set the message status
to kPending using GSMLibSetStatus.

Using the SMS Library

AN-18 Page 16 Revision 1.00

6.4. Managing Message Data

Table 12. Message Data Management

Function Name Description

Err

GSMLibSetText(UInt16,

 GSMDatabaseID msgID,

 const char* data,

 Int16 size);

This function sets the text of the message to the given text. This
function returns 0 if the text was updated successfully. If the text
contains illegal characters, it returns the error code
gsmErrIllegalChars; however, the message text is updated.

Err

GSMLibSetDate(UInt16,

 GSMDatabaseID msgID,

 UInt32 date);

This function sets the date of the given message. The date must be
given in Palm OS format.

Err

GSMLibSetOptions(UInt16,

 GSMDatabaseID msgID,

 const SMSSendOptions*
options);

This function updates the sending options for the given message.
The options can only be set for outgoing messages that have not
been sent. This function returns gsmErrNotAllowed if it is called
on either an incoming message or an outgoing message that has
already been sent.

Err

GSMLibSetAddresses(UInt16,

 GSMDatabaseID msgID,

 const GSMAddressList list);

This function updates the list of addresses with the given list of
addresses. The list of addresses may only be changed for incoming
and unset outgoing messages. This function returns
gsmErrNotAllowed if it is called for any other type of message.

Err

GSMLibSetStatus(UInt16,

 GSMDatabaseID msgID,

 SMSMessageStatus status);

This function sets the status of the given message. This function
returns gsmErrIllegalStatus if a given status is not allowed for
the message. For example, you cannot set the status to kSent for an
incoming message. This function is normally not called by
applications since the status field is used exclusively by the SMS
library.

Err

GSMLibSetFlags(UInt16,

 GSMDatabaseID msgID,

 UInt32 flags);

This function updates a message’s flags. All flags will be set by this
call, so care must be taken in order not to overwrite flags used by the
library. This function returns 0 if the flags were set without
encountering an error.

Err

GSMLibSetOwner(UInt16,

 GSMDatabaseID msgID,

 UInt32 owner);

This function updates the given message’s owner. The owner of a
message is notified when a message has been sent or deleted. For a
newly created message, the client application must use this function
to set the message’s owner. There is no default owner assigned by
the SMS library.

Note: If a message’s owner is changed, ensure that the former
owner has ‘released’ the message. The former owner should no
longer maintain a reference to this message in any data structures. A
fake kMessageDel event may be used to achieve this.

Using the SMS Library

AN-18 Page 17 Revision 1.00

6.5. Getting Message Data

Table 13. Getting Message Data

Function Name Description

Err

GSMLibGetText(UInt16,

 GSMDatabaseID msgID,

 char** data);

This function copies the text of the message into a new block of
memory that must be disposed of by the caller. This function
returns a 0 if the text was retrieved successfully. If the given
message is an incoming segmented message that has not been
received completely, the library inserts the string “[part k]” for
every missing part of the message, where k is the part’s number.

Err

GSMLibGetDate(UInt16,

 GSMDatabaseID msgID,

 UInt32* date);

This function returns the date of the given message in Palm OS
format. If there was no error while determining the date, this
function returns 0.

Err

GSMLibGetOptions(UInt16,

 GSMDatabaseID msgID,

 SMSSendOptions* options);

This function returns the sending options for the given message.
This function returns gsmErrNotAllowed if it is called on an
incoming message.

Err

GSMLibGetAddresses(UInt16,

 GSMDatabaseID msgID,

 GSMAddressList* list);

This function returns the list of addresses for the given message.
The list of addresses returned by this function must be disposed of
by the caller. The list of addresses returned is either a message’s
sender (incoming message) or recipients (outgoing message).

Err

GSMLibGetStatus(UInt16,

 GSMDatabaseID msgID,

 SMSMessageStatus* status);

This function returns the status field of the message. A client
application typically uses this status to map messages to categories.

Err

GSMLibGetFlags(UInt16,

 GSMDatabaseID msgID,

 UInt32* flags);

This function returns the message’s flags. Any flags used internally
by the SMS library should be treated with care by the client
application.

Err

GSMLibGetOwner(UInt16,

 GSMDatabaseID msgID,

 UInt32* owner);

This function returns the message’s owner. An application’s
creator is used to track the owner of a message.

Err

GSMLibGetType(UInt16,

 GSMDatabaseID msgID,

 SMSMessageType* type);

This function returns the message’s type. A client application
typically uses the type to map messages to categories.

Using the SMS Library

AN-18 Page 18 Revision 1.00

6.6. Managing Addresses and Address Lists

The SMS library provides functions for manipulating addresses and address lists. Applications should not
manipulate the data in the addresses directly, but instead should use the functions provided by the library.

Table 14. Address List Management

Function Name Description

GSMAddressHandle

GSMLibNewAddress(UInt16,

 const char* number,

 GSMDatabaseID id);

This function creates new address and fills in the
information given in number and id. In the case of an
address for an SMS message, the id should be set to
GSMkUnknownID. This function will return a newly
allocated handle on the heap, or 0 if there was an error
encountered.

Err

GSMLibSetField(UInt16,

 GSMAddressHandle address,

 GSMAddressField field,

 const char* data);

This function lets the specified field of address to the
given data. This function returns 0 if the field was
modified without an error.

char*

GSMLibGetField(UInt16,

 GSMAddressHandle address,

 GSMAddressField field);

This function returns the field’s value for a given address
in a newly allocated block. This function returns 0 if there
was an error while retrieving the data.

Note: The caller of this function must dispose of this
block.

GSMAddressList

GSMLibNewAddressList(UInt16);
This function returns a new address list. The list is
initially empty and must be disposed of by the caller.

Err

GSMLibAddAddress(UInt16,

 GSMAddressList list,

 const GSMAddressHandle address);

This function adds a copy of address to the end of list.
The address is not disposed of.

Err

GSMLibDisposeAddressList(UInt16,

 GSMAddressList list);

This function disposes of the memory used by the given
address list. The handle should not be used after this
function has been called.

Err

GSMLibGetNth(UInt16,

 const GSMAddressList list,

 Int16 index,

 GSMAddressHandle* address);

This function retrieves an item with the given index from
list and returns it as a new block on the heap specified by
address. The caller is responsible for disposing of the
returned block. If an illegal index is given, this function
returns gsmErrIllegalIndex and sets address to 0.

Note: Legal indices are within the range from 1 to count,
where count is the length of the list. Negative indices may

Using the SMS Library

AN-18 Page 19 Revision 1.00

be used to access items relative to the end of the list (for
example, -1 is the last item of the list).

Err

GSMLibSetNth(UInt16,

 GSMAddressList list,

 Int16 index,

 const GSMAddressHandle address);

This function replaces the data of the item with the given
index from list by the given address. If an illegal index
is given, this function returns gsmErrIllegalIndex and
does not modify the address list. If a legal index was given
and address is 0, the corresponding item is removed from
the list.

Err

GSMLibCount(UInt16,

 GSMAddressList list,

 UInt16* count);

This function returns the length of the given list. If
list is 0, this function returns gsmErrParam.

Using the SMS Library

AN-18 Page 20 Revision 1.00

6.7. Manipulating Characters

The SMS library uses the GSM alphabet. Not all characters supported by the Palm OS are supported by the
standard GSM alphabet. The SMS library provides functions to test whether a given character is available in the
GSM alphabet, and to map a Palm OS character to a GSM character.

The routines are normally used by editors and/or applications used for composing an SMS message. If an
incoming message contains GSM characters not supported by the Palm OS, the conversion is handled by the
library. The incoming messages are converted to the Palm OS alphabet and Greek characters are replaced by
their substitution strings.

Note: The client application should not assume that the number of characters in a message is 160 or less. Even if
the incoming message contains 160 characters or less, the message’s text may be longer than 160 characters
because some characters not available in the Palm OS were replaced by their substitution strings.

Table 15. Manipulating Characters

Function Name Description

Boolean

GSMLibIsLegalCharacter(UInt16,

 char c);

This function returns true if the given Palm OS character is a
legal GSM character. If this function returns false, the given
character does not exist within the GSM alphabet.

char

GSMLibMapCharacter(UInt16,

 char c);

This function maps the given Palm OS character to its equivalent
in the GSM alphabet. If there is no equivalent character within
the GSM alphabet, this function returns 0. The character code
returned is a Palm OS character code and not a GSM character
code. GSM character codes are used internally by the SMS library
only when a message is encoded for transmission. This is
transparent to the client application.

const char*

GSMLibGetSubstitution(UInt16,

 char c);

This function returns the substitution string for a given GSM
character. Character c is encoded in the GSM alphabet. If there
is no substitution string for the given character, this function
returns 0.

Note: The string returned by this function must not be disposed
of by the caller. The string return is part of the SMS library, and
disposing of this string may crash the system

int

GSMLibLength(UInt16,

 const char* text,

 Boolean inMessages,

 Boolean substitution);

This function returns the length of the given text in characters or
messages. If inMessages is true, then the value returned will be
the number of messages that are required to hold the text. If
segmentation is required, the binary segmentation scheme is used.
If substitution is true, then the calculation will include any
characters not in the Palm OS alphabet replaced with substitution
strings.

Using the SMS Library

AN-18 Page 21 Revision 1.00

6.8. Handling Preferences

Before a message can be sent using the SMS service, the user must set the number of the server center to be used
for sending messages. The currently used number may also be of interest, for instance, when the user is
modifying the number within a settings dialog.

Table 16. Handling Preferences

Function Name Description

Err

GSMLibSetServiceCentreAddress(UInt16,

 const GSMAddressHandle address);

This function sets the number of the service center to be
used for sending the SMS messages.

Err

GSMLibGetServiceCentreAddress(UInt16,

 GSMAddressHandle* address);

This function returns the number of the service center
currently used for sending messages in a newly allocated
address. The caller must dispose of the returned address.
The library tries to get the address stored on the SIM
using the +CSCA command. If there is no current service
center, the address is set to 0.

Using the SMS Library

AN-18 Page 22 Revision 1.00

6.9. Accessing the Message Database

The client application should use the public ID-based routing of the SMS library to access messages with the
message database. For special purposes -- like rebuilding a secondary index -- the SMS library provides two
functions to access the message database on the index level.

The usual index-based routines provided by the Palm OS may be used to access the messages in the message
database. Every call to GSMLibGetDBRef must be matched with a call to GSMLibReleaseDBRef. If
GSMLibReleaseDBRef is not called, the library cannot close the message database. The next HotSync will fail
when it tries to read or write SMS messages.

Warning: The client application must not close the database using DmCloseDatabase on the handle returned
by GSMLibGetDBRef. The library assumes that the message database is open until GSMLibReleaseDBRef is
called. If the message database is closed by some other means, it may crash the system and cause the loss of
incoming messages.

Stepping through the message database by index allows an application to “see” records owned by other
application. A message owner should be checked carefully to ensure that only messages belonging to the
application are being processed. Deleting messages belonging to another application without notifying the
application may cause a system to crash when the other application is started the next time.

Table 17. Accessing Message Database

Function Name Description

DMOpenRef

GSMLibGetDBRef(UInt16);
This function returns the database handle of the message database. If the
database could not be opened by the SMS library, this function returns 0.

Err

GSMLibReleaseDBRef(UInt16,

 DMOpenRef database);

This function releases the database handle obtained from
GSMLibGetDBRef. If the handle does not belong to the SMS library,
gsmErrParam is returned.

Using the SMS Library

AN-18 Page 23 Revision 1.00

7. History

Date Revision # Description of changes

25 Apr 2001 1.0 Initial release.

Handspring, Springboard, Visor, VisorPhone, Visor Edge and Handspring and Springboard logos are trademarks
or registered trademarks of Handspring, Inc. © 2001 Handspring, Inc.

	List of Acronyms
	Overview
	What is SMS?
	Why Use the SMS Library?
	Understanding the SMS Library
	Incoming Message Events
	Outgoing Messages
	GSM Alphabet vs. Palm OS Alphabet
	Message Segmentation
	Binary Segmentation
	Textual Segmentation

	Message Database
	First part of a record
	
	
	
	
	
	Field
	Bit

	Second part of a record
	Third part of a record
	Fourth part of a record

	Library Reference
	Data Types
	Event Codes
	
	
	
	
	
	
	Event Code

	Message Types
	
	
	
	
	
	
	Message Type

	Message Status
	
	
	
	
	
	
	Status

	Sending Options
	
	
	
	
	
	
	Field Name
	Value

	SMS Library API
	Registering with the Library
	
	
	
	
	
	
	Function

	Controlling the VisorPhone
	
	
	
	
	
	
	Function

	Managing Messages
	
	
	
	
	
	
	Function

	Managing Message Data
	
	
	
	
	
	
	Function Name

	Getting Message Data
	
	
	
	
	
	
	Function Name

	Managing Addresses and Address Lists
	
	
	
	
	
	
	Function Name

	Manipulating Characters
	
	
	
	
	
	
	Function Name

	Handling Preferences
	
	
	
	
	
	
	Function Name

	Accessing the Message Database
	
	
	
	
	
	
	Function Name

	History
	
	
	
	
	
	
	
	Description of changes

