
Programmer’s Reference
for Garmin iQue 3600

Handheld

ii Programmer’s Reference for Garmin iQue 3600 Handheld

® Copyright 2003 PalmSource and Garmin Ltd. or its subsidiaries. All Rights Reserved.
This documentation may be printed and copied solely for use in developing products for
the iQue 3600 handheld. In addition, two (2) copies of this documentation may be made
for archival and backup purposes. Except for the foregoing, no part of this documentation
may be reproduced or transmitted in any form or by any means or used to make any
derivative work (such as translation, transformation or adaptation) without express
written consent from Garmin Ltd.

Garmin Ltd. reserves the right to revise this documentation and to make changes in
content from time to time without obligation on the part of Garmin Ltd. to provide
notification of such revision or changes.

GARMIN LTD. AND ITS SUPPLIERS MAKE NO REPRESENTATIONS OR
WARRANTIES THAT THE DOCUMENTATION IS FREE OF ERRORS OR THAT
THE DOCUMENTATION IS SUITABLE FOR YOUR USE. THE
DOCUMENTATION IS PROVIDED ON AN �AS IS� BASIS. GARMIN LTD. AND
ITS SUBSIDIARIES AND SUPPLIERS MAKE NO WARRANTIES, TERMS OR
CONDITIONS, EXPRESS OR IMPLIED, EITHER IN FACT OR BY OPERATION OF
LAW, STATUTORY OR OTHERWISE, INCLUDING WARRANTIES, TERMS, OR
CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND/OR SATISFACTORY QUALITY. TO THE FULL EXTENT
ALLOWED BY LAW, GARMIN LTD. ALSO EXCLUDES FOR ITSELF, ITS
SUBSIDIARIES, AND ITS SUPPLIERS ANY LIABILITY, WHETHER BASED IN
CONTRACT OR TORT (INCLUDING NEGLIGENCE), FOR DIRECT,
INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL, OR PUNITIVE
DAMAGES OF ANY KIND, OR FOR LOSS OF REVENUE OR PROFITS, LOSS OF
BUSINESS, LOSS OF INFORMATION OR DATA, OR OTHER FINANCIAL LOSS
ARISING OUT OF OR IN CONNECTION WITH THIS DOCUMENTATION, EVEN
IF GARMIN, LTD., ITS SUBSIDIARIES, OR ITS SUPPLIERS HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Palm OS, the Palm logo, PalmSource, Graffiti 2, HotSync, Palm, Palm Powered, the
Palm Powered logo, the PalmSource logo, and the HotSync logo are trademarks of
PalmSource, Inc.

Garmin® is a registered trademark and iQue� and Que� are trademarks of Garmin Ltd.
or its subsidiaries and may not be used without the express permission of Garmin.

IF THIS DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE OTHER
SOFTWARE AND DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT
TO THE LICENSE AGREEMENT ACCOMPANYING THE COMPACT DISC.

Programmer’s Reference for Garmin iQue 3600 Handheld iii

Table of Contents
Overview 1

Purpose of This Document ... 1
Conventions Used in This Document... 1
Tools for Software Development ... 1
Garmin SDK... 2

GPS Library 3
Introduction to the GPS Library ... 3
GPS Library Data Structures .. 4
GPS Library Constants ... 9
GPS Library Functions ... 10

Pen Input Manager 15
Introduction to the Pen Input Manager... 15
Pen Input Manager Data Structures.. 17
Pen Input Manager Constants... 19
Pen Input Manager Functions... 19

Additional Hardware Buttons 23
Introduction to the Additional Buttons... 23
Button Activity Reporting .. 24
Button Constants .. 24
Responding to the Additional Buttons ... 28

iv Programmer’s Reference for Garmin iQue 3600 Handheld

Programmer’s Reference for Garmin iQue 3600 Handheld 1

1
Overview

Purpose of This Document
Programmer's Reference for Garmin iQue 3600 Handheld is a part of
the Garmin Software Development Kit. This document details the
information necessary for software development for the Garmin iQue�
3600 handheld.

Conventions Used in This Document

Throughout this document, a fixed width font is used to signify
code elements such as files, functions, structures, fields, and bitfields.

Tools for Software Development

CodeWarrior for Palm OS® Platform
This contains the Integrated Development Environment (IDE) and all
the tools required to develop Palm OS® applications. The development
of the applications for the iQue 3600 was performed using
CodeWarrior for Palm OS® Platform version 8.3. For more
information, visit the Metrowerks web site at
http://www.metrowerks.com.

Palm OS® 5.0 SDK
For basic development information for Palm OS® applications,
including the Palm OS® 5.0 SDK, visit http://www.palmos.com.

Palm OS® Simulator
This simulates a Palm OS® device. It allows for the testing and
debugging of applications. This may also be found at
http://www.palmos.com.

http://www.metrowerks.com/
http://www.palmos.com/
http://www.palmos.com/

Overview
Garmin SDK

2 Programmer’s Reference for Garmin iQue 3600 Handheld

Garmin SDK

Components
GarminSimulator.zip includes new PalmSim.exe and DAL.dll files, as
well as other DLL files to implement the Garmin extensions. It also
includes in the AutoLoad folder the necessary PRCs for the Garmin
extensions, as well as prebuilt PRCs for the Garmin Examples
(GPSInfo.prc and PINMgrExample.prc).

GarminExamples.zip contains the source code for the two Garmin
Examples (GPSInfo and PINMgrExample).

GarminSupport.zip contains the Garmin-specific include files.

Unpacking the SDK
1. If you have not done so already, get the Palm OS® 5.2 debug

simulator (Palm_OS_52_Simulator_Dbg.zip) from
http://www.palmos.com/dev/tools/simulator/index.html, and unzip
that onto your hard drive.

2. Copy the Palm OS® 5.2 Simulator "Debug" folder and all of its
contents to a new folder named "GarminDebug".

3. Extract GarminSimulator.zip into this new "GarminDebug" folder.

4. Extract GarminExamples.zip into a convenient folder, such as the
"(CodeWarrior Examples)" folder of your CodeWarrior
installation.

5. Extract the GarminSupport.zip file into a convenient folder, such
as the "Other SDKs" folder of your CodeWarrior installation. This
will create a "Garmin" folder under the folder it is extracted into.
Remember to add this folder to the access paths of any projects
that need to use the Garmin-specific include files.

Programmer’s Reference for Garmin iQue 3600 Handheld 3

2
GPS Library
To begin learning more about GPS, visit
http://www.garmin.com/aboutGPS.

This chapter describes the GPS Library declared in the header file
GPSLib68K.h. It discusses the following topics:

• Introduction to the GPS Library
• GPS Library Data Structures
• GPS Library Constants
• GPS Library Functions

Introduction to the GPS Library

Using the GPS Library
The GPS Library provides access to the data from the internal GPS. To
get access to the GPS Library, #include GPSLib68K.h in your
application.

Before the GPS Library can be used, it must be found or loaded, using
the standard Palm OS® paradigm:

/*---
Find the GPS library. If not found, load it.
---*/
error = SysLibFind(GPSLibName, &gGPSLibRef);

if (error != errNone)
{
error = SysLibLoad(GPSLibType,
GPSLibCreator, &gGPSLibRef);

ErrFatalDisplayIf((error != errNone), "can't
load GPS Library");

}

The GPS Library normally computes new data once a second. When
data is computed, the GPS Library broadcasts the notification
sysNotifyGPSDataEvent. Once your application has registered
for this notification, it can call the GPSGet functions when this

http://www.garmin.com/aboutGPS

GPS Library
GPS Library Data Structures

4 Programmer’s Reference for Garmin iQue 3600 Handheld

notification is received. The GPSGet functions can also be used
strictly on a polling or as needed basis.

Once your application is done using the GPS Library (normally when
the application stops), you should close and unload the library using the
standard Palm OS® paradigm:

/*---
Close the library.
---*/
err = GPSClose(gGPSLibRef);

/*---
Unload the GPS Library.
---*/
if(err != gpsErrStillOpen)
{
SysLibRemove(gGPSLibRef);
}

GPS Data and the Palm OS® Simulator
GPS data may be received when using the Palm OS® Simulator by
following these steps:

1. Connect a recent model Garmin GPS to a PC serial port.

2. Right-click in the Simulator and select
Settings|Communication|Communication ports. Select the Cradle
Communication Port and bind it to the COM port to which the
Garmin GPS is connected.

3. Turn on the Garmin GPS. All of the GPS information from the
external GPS unit will be present in the Palm OS® Simulator.

4. Simulator mode on the Garmin GPS may be used to simulate a
position and velocity, or the GPS can be operated normally if the
satellite signals are available at your PC.

GPS Library Data Structures

GPSFixT8
GPSFixT8 defines the quality of the position computation. Based on
the number of satellites being received and the availability of
differential correction (such as WAAS), the position may be known in
two dimensions (latititude and longitude) or three dimensions (latitude,
longitude, and altitude).

GPS Library
GPS Library Constants

Programmer’s Reference for Garmin iQue 3600 Handheld 5

typedef Int8 GPSFixT8; enum
{
gpsFixUnusable = 0,
gpsFixInvalid = 1,
gpsFix2D = 2,
gpsFix3D = 3,
gpsFix2DDiff = 4,

gpsFix3DDiff = 5
};

Value Descriptions

gpsFixUnusable GPS failed integrity check.

gpsFixInvalid GPS is invalid or unavailable.

gpsFix2D Two dimensional position.

gpsFix3D Three dimensional position.

gpsFix2DDiff Two dimensional differential
position.

gpsFix3DDiff Three dimensional differential
position.

GPSModeT8
GPSModeT8 defines the modes for the GPS.

typedef Int8 GPSModeT8; enum
{
gpsModeOff = 0,
gpsModeNormal = 1,
gpsModeBatSaver = 2,
gpsModeSim = 3,
gpsModeExternal = 4
};

Value Descriptions

gpsModeOff GPS is off.

gpsModeNormal Continuous satellite tracking.

gpsModeBatSaver Periodic satellite tracking to
conserve battery power.

gpsModeSim Simulated GPS information.

GPS Library
GPS Library Data Structures

6 Programmer’s Reference for Garmin iQue 3600 Handheld

gpsModeExternal External source of GPS
information.

GPSPositionDataType
GPSPositionDataType defines the position data returned by the
GPS. The GPSPositionDataType uses integers to indicate latitude
and longitude in semicircles, where 231 semicircles are equal to 180
degrees. North latitudes and East longitudes are indicated with positive
numbers; South latitudes and West longitudes are indicated with
negative numbers. The following formulas show how to convert
between degrees and semicircles:

degrees = semicircles * (180 / 231)
semicircles = degrees * (231 / 180)

typedef struct
{
Int32 lat;
Int32 lon;
float altMSL;
float altWGS84;
} GPSPositionDataType;

Field Descriptions

lat Latitude component of the position in
semicircles.

lon Longitude component of the position in
semicircles.

altMSL Altitude above mean sea level component of
the position in meters.

altWGS84 Altitude above WGS84 ellipsoid component
of the position in meters.

GPSPVTDataType
GPSPVTDataType combines the GPS data types into one structure.

typedef struct
{
GPSStatusDataType status;
GPSPositionDataType position;
GPSVelocityDataType velocity;
GPSTimeDataType time;
} GPSPVTDataType;

GPS Library
GPS Library Constants

Programmer’s Reference for Garmin iQue 3600 Handheld 7

Field Descriptions

status GPS status.

position GPS position.

velocity GPS velocity.

time GPS time.

GPSSatDataType
GPSSatDataType defines the data for one satellite.

typedef struct
{
UInt8 svid;
UInt8 status;
Int16 snr;
float azimuth;
float elevation;
} GPSSatDataType;

Field Descriptions

svid The space vehicle identifier for the satellite.

status The status bitfield the for satellite (see
constants later).

snr The satellite signal to noise ratio * 100 (dB
Hz).

azimuth The satellite azimuth (radians).

elevation The satellite elevation (radians).

GPSStatusDataType
GPSStatusDataType defines the status data reported by the GPS.

typedef struct
{
GPSModeT8 mode;
GPSFixT8 fix;
UInt16 filler2;
float epe;
float eph;
float epv;
} GPSStatusDataType;

GPS Library
GPS Library Data Structures

8 Programmer’s Reference for Garmin iQue 3600 Handheld

Field Descriptions

mode GPS mode.

fix GPS fix.

filler2 Alignment padding.

epe The one-sigma estimated position error in
meters.

eph The one-sigma horizontal only estimated
position error in meters.

epv The one-sigma vertical only estimated
position error in meters.

GPSTimeDataType
GPSTimeDataType defines the time data returned by the GPS.

typedef struct
{
UInt32 seconds;
UInt32 fracSeconds;
} GPSTimeDataType;

Field Descriptions

seconds Seconds since midnight UTC.

fracSeconds To determine the fractional seconds, divide
the value in this field by 232.

GPSVelocityDataType
GPSVelocityDataType defines the velocity data returned by the
GPS. The individual East, North, and up components completely
describe the velocity. The track and speed fields are provided for
convenient access to the most commonly used application of GPS
velocity.

typedef struct
{
float east;
float north;
float up;
float track;
float speed;
} GPSVelocityDataType;

GPS Library
GPS Library Constants

Programmer’s Reference for Garmin iQue 3600 Handheld 9

Field Descriptions

east The East component of the velocity in
meters per second.

north The North component of the velocity in
meters per second.

up The upwards component of the velocity in
meters per second.

track The horizontal vector of the velocity in
radians.

speed The horizontal speed in meters per second.

GPS Library Constants

GPS Library Error Codes
gpsErrNone No error.

gpsErrNotOpen The GPS Library is not open.

gpsErrStillOpen The GPS Library is still open.

gpsErrMemory Not enough memory.

gpsErrNoData No GPS data available.

Extended Notification Information
The GPS Library broadcasts a sysNotifyGPSDataEvent when the
GPS information changes. The notifyDetailsP of this notification
is a UInt32 (not a pointer to a UInt32) which contains one of the
following extended notification information values indicating the
reason for the notification.

gpsLocationChange The GPS position has changed.

gpsStatusChange The GPS status has changed.

gpsLostFix The quality of the GPS position
computation has become less than
two dimensional.

gpsSatDataChange The GPS satellite data has
changed.

gpsModeChange The GPS mode has changed.

GPS Library
GPS Library Functions

10 Programmer’s Reference for Garmin iQue 3600 Handheld

Satellite Status Bitfield Values
These define the bits in the status field of GPSSatDataType.

gpsSatEphMask Ephemeris: 0 = no ephemeris, 1 =
has ephemeris.

gpsSatDifMask Differential: 0 = no differential
correction, 1 = differential
correction.

gpsSatUsedMask Used in solution: 0 = no, 1 = yes.

gpsSatRisingMask Satellite rising: 0 = no, 1 = yes.

GPS Library Functions

GPSClose

Purpose Close the GPS Library.

Prototype Err GPSClose(const UInt16 refNum)

Parameters -> refNum Reference number for the library.

Result gpsErrNone No error.

gpsErrStillOpen Couldn't be closed because the
 library is still in use by other
 applications.

Comments Closes the GPS Library and disposes of the global data memory if
required. Called by any application or library that's been using the GPS
Library and is now finished with it.

This should not be called if GPSOpen failed.

If gpsErrStillOpen is returned, the calling app should not call
SysLibRemove.

GPSGetLibAPIVersion

Purpose Get the GPS Library API version.

Prototype UInt16 GPSGetLibAPIVersion
(const UInt16 refNum)

GPS Library
GPS Library Functions

Programmer’s Reference for Garmin iQue 3600 Handheld 11

Parameters -> refNum Reference number for the library.

Result The API version of the library.

Comments Can be called without opening the GPS Library first.

GPSGetMaxSatellites

Purpose Get the maximum number of satellites.

Prototype UInt8 GPSGetMaxSatellites
(const UInt16 refNum)

Parameters -> refNum Reference number for the library.

Result Maximum number of satellites that are currently supported.

Comments The value returned by this routine should be used in the dynamic
allocation of the array of satellites (GPSSatDataType).

GPSGetPosition

Purpose Get current position data.

Prototype Err GPSGetPosition(const UInt16 refNum,
GPSPositionDataType *position)

Parameters -> refNum Reference number for the library.

<- position Contains the latest position from the
 GPS.

Result gpsErrNone No error.

 gpsErrNotOpen The GPS Library is not open.

 gpsErrNoData No data has been received for a
 period of time.

Comments If the return value is not gpsErrNone, the data should be considered
invalid.

GPSGetPVT

Purpose Get current position, velocity, and time data.

GPS Library
GPS Library Functions

12 Programmer’s Reference for Garmin iQue 3600 Handheld

Prototype Err GPSGetPVT(const UInt16 refNum,
GPSPVTDataType *pvt)

Parameters -> refNum Reference number for the library.

<- pvt Contains the latest position, velocity,
 and time data from the GPS.

Result gpsErrNone No error.

 gpsErrNotOpen The GPS Library is not open.

 gpsErrNoData No data has been received for a
 period of time.

Comments If the return value is not gpsErrNone, the data should be considered
invalid.

If pvt->status.fix is equal to gpsFixUnusable or
gpsFixInvalid, the rest of the data in the structure should be
considered invalid.

GPSGetSatellites

Purpose Get current satellite data.

Prototype Err GPSGetSatellites(const UInt16 refNum,
GPSSatDataType *sat)

Parameters -> refNum Reference number for the library.

<- sat Contains latest satellite information
 from the GPS. See the comments
 below.

Result gpsErrNone No error.

 gpsErrNotOpen The GPS Library is not open.

 gpsErrNoData No data has been received for a
 period of time.

Comments If the return value is not gpsErrNone, the data should be considered
invalid.

The sat parameter must point to enough memory to hold the
maximum number of satellites worth of satellite data.

GPS Library
GPS Library Functions

Programmer’s Reference for Garmin iQue 3600 Handheld 13

GPSGetStatus

Purpose Get current status data.

Prototype Err GPSGetStatus(const UInt16 refNum,
GPSStatusDataType *status)

Parameters -> refNum Reference number for the library.
<- status Contains the latest status from the

GPS.

Result gpsErrNone No error.

gpsErrNotOpen The GPS Library is not open.

 gpsErrNoData No data has been received for a
 period of time.

Comments If the return value is not gpsErrNone, the data should be considered
invalid.

GPSGetTime

Purpose Get current time data.

Prototype Err GPSGetTime(const UInt16 refNum,
GPSTimeDataType *time)

Parameters -> refNum Reference number for the library.

<- time Contains latest time data from the
 GPS.

Result gpsErrNone No error.

 gpsErrNotOpen The GPS Library is not open.

 gpsErrNoData No data has been received for a
 period of time.

Comments If the return value is not gpsErrNone, the data should be considered
invalid.

GPSGetVelocity

GPS Library
GPS Library Functions

14 Programmer’s Reference for Garmin iQue 3600 Handheld

Purpose Get current velocity data.

Prototype Err GPSGetVelocity(const UInt16 refNum,
GPSVelocityDataType *velocity)

Parameters -> refNum Reference number for the library.

<- velocity Contains the latest velocity data from
the GPS.

Result gpsErrNone No error.

gpsErrNotOpen The GPS Library is not open.

 gpsErrNoData No data has been received for a
 period of time.

Comments If the return value is not gpsErrNone, the data should be considered
invalid.

GPSOpen

Purpose Opens the GPS Library.

Prototype Err GPSOpen(const UInt16 refNum)

Parameters -> refNum Reference number for the library.

Result gpsErrNone No error.

 gpsErrMemory Not enough memory to open the
 library.

Comments Opens the GPS Library and prepares it for use. Called by any
application or library that wants to use the services that the library
provides.

GPSOpen must be called before calling any other GPS Library
functions, with the exception of GPSGetLibAPIVersion.

Programmer’s Reference for Garmin iQue 3600 Handheld 15

3
Pen Input
Manager
This chapter describes the Pen Input Manager API declared in the
header file PenInputMgr.h. It discusses the following topics:

• Introduction to the Pen Input Manager
• Pen Input Manager Data Structures
• Pen Input Manager Constants
• Pen Input Manager Functions.

Introduction to the Pen Input Manager

Pen Input Manager
The Pen Input Manager controls the area of the screen that is
traditionally silkscreened onto the device. On the iQue 3600, this area
is controlled by software, and it is sometimes referred to as "soft
graffiti" or "collapsible graffiti". This area is comprised of two parts.
The upper part is the dynamic input area, or graffiti area; the lower part
is the status bar. The dynamic input area can be open (shown) or closed
(hidden), while the status bar is always shown.

There is a button in the status bar that allows the user to show or hide
the dynamic input area. This button is called the "input trigger". It
shows a down arrow if the dynamic input area is open, or an up arrow
if the dynamic input area is closed.

The input trigger can be enabled or disabled. If the input trigger is
enabled, the user can control the state of the dynamic input area; if the
input trigger is disabled, the input trigger is grayed out and the user
cannot control the state of the dynamic input area.

Dynamic Input Area Concepts
Normally, users are the ones who change the dynamic input area state
by tapping the input trigger button in the status bar, but applications
also have the ability to set the dynamic input area state and to disable
the trigger that allows the user to change the state.

Pen Input Manager
Introduction to the Pen Input Manager

16 Programmer’s Reference for Garmin iQue 3600 Handheld

There are two dynamic input area states, open and closed. The function
PINSetInputAreaState() changes the state of the dynamic input
area. Applications may query the dynamic input area state using
PINGetInputAreaState().

There are two input trigger states, enabled and disabled. The function
PINSetInputTriggerState() changes the state of the input
trigger. Applications may query the input trigger state using
PINGetInputTriggerState().

There are two dynamic input area policies. The default is to have the
dynamic input area open and the input trigger disabled. The second
policy allows the application and the user to control the dynamic input
area state and the input trigger state. Applications should set the form�s
dynamic input area policy by calling FrmSetDIAPolicyAttr()in
the frmLoadEvent. Each form in an application will use the default
policy if FrmSetDIAPolicyAttr()is not called by the application.

Applications should register what size they want to be in the
frmLoadEvent by calling WinSetConstraintsSize().

Pen Input Manager Feature
The Pen Input Manager registers its API version with the feature
manager. Use the following feature manager call to determine the Pen
Input Manager API version:

err = FtrGet(pinCreator, pinFtrAPIVersion,
&APIVersion);

The current Pen Input Manager API version is 1.0, and is fully
compatible with the PalmSource� Pen Input Manager API version 1.0.

If FtrGet returns ftrErrNoSuchFeature, then the Pen Input
Manager is not present and should not be used.

Using the Pen Input Manager
To get access to the Pen Input Manager, #include
PenInputMgr.h in your 68K application. Since the Pen Input
Manager is an extension and not a library, it is available without being
found or loaded.

To enable the input trigger and therefore give users the ability to close
the dynamic input area, you must make the following calls in the
frmLoadEvent:

/*---

Pen Input Manager
Pen Input Manager Data Structures

Programmer’s Reference for Garmin iQue 3600 Handheld 17

Set the constraints.
---*/
WinSetConstraintsSize(WinGetDisplayWindow(),
160, 160, 0x7FFF, 160, 160, 160);

/*---
Set the dynamic input area policy.
---*/
FrmSetDIAPolicyAttr(FrmGetActiveForm(),
FrmDIAPolicyCustom);

/*---
Enable the input trigger.
---*/
PINSetInputTriggerState
(pinInputTriggerEnabled);

Determining When the Dynamic Input Area
State Changes
Whenever the state of the dynamic input area changes, the Pen Input
Manager broadcasts a sysNotifyDisplayResizedEvent.
Register for this notification if your application needs to know when
the dynamic input area changes. If you register, be sure to unregister
before your application exits. If you fail to unregister, "the system will
crash when the notification is broadcast" (according to the Palm OS®

Programmer�s Companion).

Determining the Size of the Application
Display Area
WinGetDisplayExtent() returns the current size of the display
window. Typically, at initialization and upon receipt of a
sysNotifyDisplayResizedEvent notification, your application
will get the current size of the display window and adjust the locations
of the various user interface items as needed.

The supplied PINMgrExample application is provided to demonstrate
the usage of various aspects of the Pen Input Manager.

Pen Input Manager Data Structures

FrmDIAPolicyT16
FrmDIAPolicyT16 specifies the dynamic input area policy type.

Pen Input Manager
Pen Input Manager Data Structures

18 Programmer’s Reference for Garmin iQue 3600 Handheld

typedef UInt16 FrmDIAPolicyT16; enum
{
frmDIAPolicyStayOpen,
frmDIAPolicyCustom
};

Value Descriptions

frmDIAPolicyStayOpen The dynamic input area stays
open and the input trigger is
disabled. This is the default.

frmDIAPolicyCustom The dynamic input area state and
input trigger state may be
controlled by the application and
the user.

PinInputAreaStateT16
PinInputAreaStateT16 specifies the dynamic input area state.

typedef UInt16 PinInputAreaStateT16; enum
{
pinInputAreaOpen,
pinInputAreaClosed,
pinInputAreaNone
};

Value Descriptions

pinInputAreaOpen The dynamic input area is
displayed. This is the default.

pinInputAreaClosed The dynamic input area is not
being displayed.

pinInputAreaNone There is no dynamic input area.

PinInputTriggerStateT16
PinInputTriggerStateT16 specifies the input trigger state.

typedef UInt16 PinInputTriggerStateT16; enum
{
pinInputTriggerEnabled,
pinInputTriggerDisabled,
pinInputTriggerNone
};

Value Descriptions

Pen Input Manager
Pen Input Manager Constants

Programmer’s Reference for Garmin iQue 3600 Handheld 19

pinInputTriggerEnabled The status bar icon is enabled,
meaning that the user is allowed
to open and close the dynamic
input area.

pinInputTriggerDisabled The status bar icon is disabled,
meaning that the user is not
allowed to open and close the
dynamic input area. This is the
default.

pinInputTriggerNone There is no dynamic input area.

Pen Input Manager Constants

pinMaxConstraintSize Maximum size for setting
constraint sizes.

pinErrInvalidParam An invalid state parameter was
entered.

Pen Input Manager Functions

FrmGetDIAPolicyAttr

Purpose Get a form�s dynamic input area policy.

Prototype FrmDIAPolicyT16 FrmGetDIAPolicyAttr
(FormPtr formP)

Parameters -> formP Pointer to a form.

Result The form�s dynamic input area policy.

Comments This routine is used to determine a form�s dynamic input area policy.
The default dynamic input area policy is frmDIAPolicyStayOpen.

FrmSetDIAPolicyAttr

Purpose Set a form�s dynamic input area policy.

Prototype Err FrmSetDIAPolicyAttr(FomrPtr formP,
const FrmDIAPolicyT16 diaPolicy)

Pen Input Manager
Pen Input Manager Functions

20 Programmer’s Reference for Garmin iQue 3600 Handheld

Parameters -> formP Pointer to a form.

-> diaPolicy The policy to use for this form.

Result errNone No error.

pinErrInvalidParam Parameter is not valid.

Comments This routine is used to set a form�s dynamic input area policy, which
will be used for opening and closing the dynamic input area.
Applications should call this function in response to the
frmLoadEvent. If an application does not call this function, the
policy for that application will be frmDIAPolicyStayOpen.

PINGetInputAreaState

Purpose Get the current state of the dynamic input area.

Prototype PinInputAreaStateT16 PINGetInputAreaState(void)

Parameters None

Result Current state of the dynamic input area.

Comments Call this routine to determine whether the dynamic input area is open or
closed.

PINGetInputTriggerState

Purpose Get the current state of the input trigger.

Prototype PinInputTriggerStateT16
PINGetInputTriggerState(void)

Parameters None

Result Current state of the input trigger.

Comments Call this routine to determine if the input trigger is enabled or disabled.

PINSetInputAreaState

Purpose Set the state of the dynamic input area.

Pen Input Manager
Pen Input Manager Functions

Programmer’s Reference for Garmin iQue 3600 Handheld 21

Prototype Err PINSetInputAreaState
(const PinInputTriggerStateT16 state)

Parameters -> state The desired state of the dynamic
 input area.

Result errNone No error .

pinErrInvalidParam Parameter is not valid .

Comments This routine allows the application to set the state of the dynamic input
area. Unless the appropriate constraints have been registered and the
dynamic input area policy set to custom, the only state allowed is open.

PINSetInputTriggerState

Purpose Set the state of the input trigger.

Prototype Err PINSetInputTriggerState
(const PinInputTriggerStateT16 state)

Parameters -> state The desired state of the input trigger.

Result errNone No error.

pinErrInvalidParam Parameter is not valid.

Comments This routine enables or disables the input trigger. Unless the
appropriate constraints have been registered and the dynamic input area
policy set to custom, the only state allowed is disabled.

Normally, the trigger should remain enabled, allowing the user the
choice of displaying the dynamic input area or not. In certain
circumstances, an application might want to prevent the display of the
dynamic input area or ensure the display of the dynamic input area. If
the application disables the trigger, it should enable it in response to the
appStopEvent.

WinSetConstraintSize

Purpose Register an application�s size constraints.

Prototype Err WinSetConstraintsSize(WinHandle winHandle,
const Coord minHeight, const Coord prefHeight,

Pen Input Manager
Pen Input Manager Functions

22 Programmer’s Reference for Garmin iQue 3600 Handheld

const Coord maxHeight, const Coord minWidth,
const Coord prefWidth, const Coord maxWidth)

Parameters -> winHandle Handle to a window.

-> minHeight The minimum height to which this
window can be sized.

-> prefHeight The preferred height for this
 window.

-> maxHeight The maximum height for this
 window.

-> minWidth The minimum width for this
 window.

-> prefWidth The preferred width for this window.

-> maxWidth The maximum width for this
 window.

Result errNone No error.

Comments The values are specified using the standard coordinate system, which
refers to the original screen size of 160 X 160.

Currently only the maxHeight parameter is used. If your application
desires to allow the dynamic input area to be closed, specify the
constant pinMaxConstraintSize for this parameter.

Pen Input Manager
Pen Input Manager Functions

Programmer’s Reference for Garmin iQue 3600 Handheld 23

4
Additional
Hardware Buttons
This chapter describes the additional hardware buttons on the Garmin
iQue 3600 Handheld. It discusses the following topics:

• Introduction to the Additional Buttons
• Button Activity Reporting
• Button Constants
• Responding to the Additional Buttons

Introduction to the Additional Buttons

Additional Buttons
To help provide support for one-hand applications, additional hardware
buttons have been added to the side of the Garmin iQue3600.

The additional Garmin buttons are:
- a Thumbwheel, which can be pressed up, down, or in;
- an Escape button;
- a Record button.

To access these additional hardware buttons, #include
GarminChars.h in your application.

Garmin Buttons and the Palm OS® Simulator
The Garmin buttons have been mapped to keys in the supplied Palm
OS® Simulator as follows:

Thumb Wheel Up: F6
Thumb Wheel Down: F8
Thumb Wheel In: F7
Escape Button: F9
Record Button: F11

24 Programmer’s Reference for Garmin iQue 3600 Handheld

The Escape and Record button exhibit the "momentarily pressed" and
"pressed and held" behavior described below.

Button Activity Reporting

Button activity is reported by keyDownEvents. The Escape and
Record buttons generate different data depending on whether they are
momentarily pressed or pressed and held. If they are momentarily
pressed, the keyDownEvent is sent when they are released. If they
are pressed and held, the keyDownEvent is sent after they have been
held for a period of time, even if the button has not been released.

The Garmin virtual character codes are sent in the keyCode field of
the keyDownEvent data. The keyDownEvents also provide values
in the chr field, to allow unmodified applications to respond to the
additional buttons.

The Thumbwheel can also be held in. This action is dedicated to
marking a waypoint at the current GPS position, and is not accessible to
third-party developers.

Button Constants

The values sent in the keyCode and chr fields are defined as follows:

Button keyCode chr
Thumbwheel up vchrGarminThumbWheelUp vchrPageUp
Thumbwheel down vchrGarminThumbWheelDown vchrPageDown
Thumbwheel in vchrGarminThumbWheelIn chrCarriageReturn
Escape vchrGarminEscape vchrGarminEscape
Escape held vchrGarminEscapeHeld vchrGarminEscapeHeld
Record vchrGarminRecord vchrGarminRecord
Record held vchrGarminRecordHeld vchrGarminRecordHeld

The values returned by KeyCurrentState() for Garmin keys are
as follows:

Button Value

Thumbwheel up keyBitGarminThumbWheelUp
Thumbwheel down keyBitGarminThumbWheelDown
Thumbwheel in keyBitGarminThumbWheelIn
Escape keyBitGarminEscape
Record keyBitGarminRecord

Pen Input Manager
Pen Input Manager Functions

Programmer’s Reference for Garmin iQue 3600 Handheld 25

Responding to the Additional Buttons
Typically your application will respond to Garmin buttons by checking
for a Garmin keyDownEvent before dispatching the event to any
other handlers.

do
{
/*---------------------------------------
Get an event.
---------------------------------------*/
EvtGetEvent(&event, evtWaitForever);

/*---------------------------------------
Send to each handler in order, if not
already used.
---------------------------------------*/
if (! GarminKeyHandleEvent(&event))

{
if (! SysHandleEvent(&event))

{
if (! MenuHandleEvent(0, &event,

&error))
{
if (! AppHandleEvent(&event))
{
FrmDispatchEvent(&event);
}

}
}

}
} while (event.eType != appStopEvent);

You should not wait to handle the Garmin button event in
AppHandleEvent, since the event contains values in the chr field
and will likely be handled by the system or menu event handler.

The macro GarminKeyIsGarmin() in GarminChars.h can be
used to detect if the keyDownEvent is one of the Garmin keys. If you
process the event you should not dispatch it to the other event handlers,
since the event contains values in the chr field and will likely also be
handled by the system or menu event handler.

	Purpose of This Document
	Conventions Used in This Document
	Tools for Software Development
	CodeWarrior for Palm OS® Platform
	Palm OS® 5.0 SDK
	Palm OS® Simulator

	Garmin SDK
	Components
	Unpacking the SDK

	Introduction to the GPS Library
	Using the GPS Library
	GPS Data and the Palm OS® Simulator

	GPS Library Data Structures
	GPSFixT8
	Value Descriptions

	GPSModeT8
	Value Descriptions

	GPSPositionDataType
	Field Descriptions

	GPSPVTDataType
	Field Descriptions

	GPSSatDataType
	Field Descriptions

	GPSStatusDataType
	Field Descriptions

	GPSTimeDataType
	Field Descriptions

	GPSVelocityDataType
	Field Descriptions

	GPS Library Constants
	GPS Library Error Codes
	Extended Notification Information
	Satellite Status Bitfield Values

	GPS Library Functions
	GPSClose
	GPSGetLibAPIVersion
	GPSGetMaxSatellites
	GPSGetPosition
	GPSGetPVT
	GPSGetSatellites
	GPSGetStatus
	GPSGetTime
	GPSGetVelocity
	GPSOpen

	Introduction to the Pen Input Manager
	Pen Input Manager
	Dynamic Input Area Concepts
	Pen Input Manager Feature
	Using the Pen Input Manager
	Determining When the Dynamic Input Area State Changes
	Determining the Size of the Application Display Area

	Pen Input Manager Data Structures
	FrmDIAPolicyT16
	Value Descriptions

	PinInputAreaStateT16
	Value Descriptions

	PinInputTriggerStateT16
	Value Descriptions

	Pen Input Manager Constants
	Pen Input Manager Functions
	FrmGetDIAPolicyAttr
	FrmSetDIAPolicyAttr
	PINGetInputAreaState
	PINGetInputTriggerState
	PINSetInputAreaState
	PINSetInputTriggerState
	WinSetConstraintSize

	Introduction to the Additional Buttons
	Additional Buttons
	Garmin Buttons and the Palm OS® Simulator

	Button Activity Reporting
	Button Constants
	
	
	
	
	
	
	ButtonkeyCode chr
	ButtonValue

	Responding to the Additional Buttons

