

Security and
Cryptography

Exploring Palm OS

Written by Greg Wilson
Edited by Jean Ostrem
Technical assistance from Richard Levenberg and Ricardo Lagos

Copyright © 1996–2004, PalmSource, Inc. and its affiliates. All rights reserved. This technical documentation contains
confidential and proprietary information of PalmSource, Inc. (“PalmSource”), and is provided to the licensee (“you”)
under the terms of a Nondisclosure Agreement, Product Development Kit license, Software Development Kit license
or similar agreement between you and PalmSource. You must use commercially reasonable efforts to maintain the
confidentiality of this technical documentation. You may print and copy this technical documentation solely for the
permitted uses specified in your agreement with PalmSource. In addition, you may make up to two (2) copies of this
technical documentation for archival and backup purposes. All copies of this technical documentation remain the
property of PalmSource, and you agree to return or destroy them at PalmSource’s written request. Except for the
foregoing or as authorized in your agreement with PalmSource, you may not copy or distribute any part of this
technical documentation in any form or by any means without express written consent from PalmSource, Inc., and
you may not modify this technical documentation or make any derivative work of it (such as a translation,
localization, transformation or adaptation) without express written consent from PalmSource.

PalmSource, Inc. reserves the right to revise this technical documentation from time to time, and is not obligated to
notify you of any revisions.

THIS TECHNICAL DOCUMENTATION IS PROVIDED ON AN “AS IS” BASIS. NEITHER PALMSOURCE NOR ITS
SUPPLIERS MAKES, AND EACH OF THEM EXPRESSLY EXCLUDES AND DISCLAIMS TO THE FULL EXTENT
ALLOWED BY APPLICABLE LAW, ANY REPRESENTATIONS OR WARRANTIES REGARDING THIS TECHNICAL
DOCUMENTATION, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION
ANY WARRANTIES IMPLIED BY ANY COURSE OF DEALING OR COURSE OF PERFORMANCE AND ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT,
ACCURACY, AND SATISFACTORY QUALITY. PALMSOURCE AND ITS SUPPLIERS MAKE NO
REPRESENTATIONS OR WARRANTIES THAT THIS TECHNICAL DOCUMENTATION IS FREE OF ERRORS OR IS
SUITABLE FOR YOUR USE. TO THE FULL EXTENT ALLOWED BY APPLICABLE LAW, PALMSOURCE, INC. ALSO
EXCLUDES FOR ITSELF AND ITS SUPPLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR TORT
(INCLUDING NEGLIGENCE), FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL,
EXEMPLARY OR PUNITIVE DAMAGES OF ANY KIND ARISING OUT OF OR IN ANY WAY RELATED TO THIS
TECHNICAL DOCUMENTATION, INCLUDING WITHOUT LIMITATION DAMAGES FOR LOST REVENUE OR
PROFITS, LOST BUSINESS, LOST GOODWILL, LOST INFORMATION OR DATA, BUSINESS INTERRUPTION,
SERVICES STOPPAGE, IMPAIRMENT OF OTHER GOODS, COSTS OF PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES, OR OTHER FINANCIAL LOSS, EVEN IF PALMSOURCE, INC. OR ITS SUPPLIERS HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR IF SUCH DAMAGES COULD HAVE BEEN
REASONABLY FORESEEN.

PalmSource, Palm OS, Palm Powered, HotSync, and certain other trademarks and logos are trademarks or registered
trademarks of PalmSource, Inc. or its affiliates in the United States, France, Germany, Japan, the United Kingdom, and
other countries. These marks may not be used in connection with any product or service that does not belong to
PalmSource, Inc. (except as expressly permitted by a license with PalmSource, Inc.), in any manner that is likely to
cause confusion among customers, or in any manner that disparages or discredits PalmSource, Inc., its licensor, its
subsidiaries, or affiliates. All other product and brand names may be trademarks or registered trademarks of their
respective owners.

IF THIS TECHNICAL DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE SOFTWARE AND OTHER
DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT TO THE LICENSE AGREEMENTS
ACCOMPANYING THE SOFTWARE AND OTHER DOCUMENTATION.

Exploring Palm OS: Security and Cryptography
Document Number 3113-003
November 9, 2004
For the latest version of this document, visit
http://www.palmos.com/dev/support/docs/.

PalmSource, Inc.
1240 Crossman Avenue
Sunnyvale, CA 94089
USA
www.palmsource.com

http://www.palmos.com/dev/support/docs/
http://www.palmsource.com

Exploring Palm OS: Security and Cryptography

iii

Table of Contents

About This Document xix

The

Exploring Palm OS

 Series xix
Additional Resources xx
Changes to This Document xx

3113-002. . xx
3113-001. . xxi

Part I: Concepts

1 Palm OS Cobalt Security 3

Cryptographic Provider Manager (CPM) 6
Provider Information and Manipulation. 7
Key Functions . 10
Message Digest Functions 14
Encryption and Decryption Functions. 16

Authentication Manager 21
Authentication Tokens 22
Token Management Functions 23
Using the Authentication Manager 24
Creating an Authentication Manager Plug-In. 26
Manipulating Authentication Manager Plug-Ins 37

Authorization Manager 39
Certificate Manager . 41

Certificate Store Operations 42
Certificate Verification and Parsing 43
Certificate Backup and Restore 44

Security Services . 44
Current Security Setting 44
Lockout Settings . 45
Security Policies . 45

Signature Verification Library 46
Signature Verification 47

iv

 Exploring Palm OS: Security and Cryptography

Signing Code. 48
What can be Signed. 48
Signing Algorithm 49
Signing Tools . 49
Signed Code and Shared Libraries 50
Signed Code and Overlays 51

Securing Databases . 52
Synchronization and Backup of Secure Databases. 53

2 SSL Concepts 55

SSL Library Architecture. 55
Critical Extensions . 58
Attributes . 59

Always-Used Attributes. 61
Debugging and Informational Attributes 67
Advanced Protocol Attributes 75

Sample Code . 79

Part II: Reference

3 Authentication Manager 85

Authentication Manager Structures and Types 86
AmApplicationCtxType 86
AmPluginInfoType 88
AmPluginType . 89
AmTokenAttributesType 89
AmTokenInfoType 90
AmTokenPropertiesType 91
AmTokenType . 92

Authentication Manager Constants 92
Well-Known Tokens 92
Miscellaneous Authentication Manager Constants 93
Authentication Manager Error Codes 93
AmAuthenticationEnum 95

Exploring Palm OS: Security and Cryptography

v

AmTokenCacheSettings 96
AmTokenEnum . 96
AmTokenStrength 97

Authentication Manager Functions and Macros. 97
AmAuthenticateToken 97
AmCreateToken . 99
AmDestroyToken 100
AmGetPluginInfo 102
AmGetPluginReferences 102
AmGetTokenBySystemId 103
AmGetTokenExtendedInfo 104
AmGetTokenInfo. 105
AmModifyToken 106
AmRegisterPlugin 107
AmRemovePlugin 108

4 AmPlugin 111

AmPlugin Structures and Types 111
AmMemHandle . 111
AmPluginFunctionsType 112
AmPluginPrivType 117
AmTokenDataType 118
AmTokenPrivType 118

AmPlugin Constants 119
AmCallMode . 119

AmPlugin Functions and Macros 120
AmInitializeUIContext 120
AmMemHandleFree 120
AmMemHandleLock 121
AmMemHandleNew 122
AmMemHandleUnlock 122
AmReleaseUIContext 123

5 AmPluginCodePrint 125

AmPluginCodePrint Structures and Types 125
AmPluginCodePrintExtInfoType 125

vi

 Exploring Palm OS: Security and Cryptography

6 AmPluginSignedCode 127

AmPluginSignedCode Structures and Types 127
AmPluginSignedCodeExtInfoType 127

7 Authorization Manager 129

Authorization Manager Structures and Types. 130
AzmActionType . 130
AzmNotificationType 130
AzmRuleSetType 131

Authorization Manager Constants 131
Miscellaneous Authorization Manager Constants 131
Authorization Manager Error Codes 132

Authorization Manager Functions and Macros 134
AzmAddRule . 134
AzmGetSyncBypass 136
AzmNonInteractiveAuthorize 137
AzmSetSyncBypass. 138

8 Certificate Manager 141

Certificate Manager Structures and Types 142
CertMgrCertChainType 142
CertMgrCertElementEnum 142
CertMgrCertFieldEnum 143
CertMgrCertInfoType 143
CertMgrCertSearchEnum 144
CertMgrElementListType 144
CertMgrElementType 145
CertMgrVerifyResultType 145

Certificate Manager Constants 146
X509Cert Element Fields 146
RSA Element Fields 148
RDN Element Fields 148
X509Extensions Element Fields 149
Data Types . 149
Certificate Formats 150
Certificate Manager Error Codes 151

Exploring Palm OS: Security and Cryptography

vii

Certificate Verification Failure Codes 152
Miscellaneous Certificate Manager Constants 153

Certificate Manager Element Field Macros 154
apCertMgrElementFieldRDNOIDN 154
apCertMgrElementFieldRDNValueN 154
apCertMgrElementFieldX509ExBytesN 154
apCertMgrElementFieldX509ExCriticalN 155
apCertMgrElementFieldX509ExOIDN 155

Certificate Manager Functions and Macros 156
CertMgrAddCert. 156
CertMgrExportCert. 158
CertMgrFindCert. 159
CertMgrGetField 160
CertMgrImportCert 163
CertMgrReleaseCertInfo 164
CertMgrRemoveCert 165
CertMgrVerifyCert 165
CertMgrVerifyFailure 167

9 CPM Library ARM Interface 169

CPM Library ARM Interface Functions and Macros 169
CPMLibAddRandomSeed 169
CPMLibClose . 170
CPMLibDecrypt . 170
CPMLibDecryptFinal 172
CPMLibDecryptInit 173
CPMLibDecryptUpdate 174
CPMLibDeriveKeyData 175
CPMLibEncrypt . 177
CPMLibEncryptFinal 178
CPMLibEncryptInit. 179
CPMLibEncryptUpdate 180
CPMLibEnumerateProviders 181
CPMLibExportCipherInfo 181
CPMLibExportHashInfo 182

viii

 Exploring Palm OS: Security and Cryptography

CPMLibExportKeyInfo 183
CPMLibExportKeyPairInfo 184
CPMLibExportMACInfo 185
CPMLibExportSignInfo 186
CPMLibExportVerifyInfo 187
CPMLibGenerateKey 188
CPMLibGenerateKeyPair 189
CPMLibGenerateRandomBytes 190
CPMLibGetInfo . 190
CPMLibGetProviderInfo 191
CPMLibHash . 191
CPMLibHashFinal 192
CPMLibHashInit 193
CPMLibHashUpdate 194
CPMLibImportCipherInfo 194
CPMLibImportHashInfo 195
CPMLibImportKeyInfo 196
CPMLibImportKeyPairInfo 197
CPMLibImportMACInfo 198
CPMLibImportSignInfo 199
CPMLibImportVerifyInfo 200
CPMLibMAC . 201
CPMLibMACFinal 202
CPMLibMACInit 203
CPMLibMACUpdate 204
CPMLibOpen . 204
CPMLibReleaseCipherInfo 205
CPMLibReleaseHashInfo 206
CPMLibReleaseKeyInfo 206
CPMLibReleaseMACInfo 207
CPMLibReleaseSignInfo. 207
CPMLibReleaseVerifyInfo 207
CPMLibSetDebugLevel 208
CPMLibSetDefaultProvider 208
CPMLibSign . . 209

Exploring Palm OS: Security and Cryptography

ix

CPMLibSignFinal 210
CPMLibSignInit . 211
CPMLibSignUpdate 212
CPMLibSleep . 213
CPMLibVerify . 213
CPMLibVerifyFinal 215
CPMLibVerifyInit 216
CPMLibVerifyUpdate 217
CPMLibWake . 217

10 CPM Library Common Definitions 219

CPM Library Structures and Types 220
APCipherInfoType 220
APDerivedKeyInfoType 221
APHashInfoType 222
APKeyInfoType . 223
APMACInfoType 225
APProviderContextType 225
APProviderInfoType 226
APSignInfoType . 226
APVerifyInfoType 228
CPMInfoType . 229
VerifyResultType 229

CPM Library Constants 230
APAlgorithmEnum 230
APHashEnum . . 232
APKeyClassEnum 233
APKeyDerivationEnum 234
APKeyDerivationUsageEnum 234
APKeyUsageEnum 235
APMACEnum . . 235
APModeEnum . 236
APPaddingEnum 236
Import/Export Types 237
Cryptographic Provider Functionality Flags 238

x

 Exploring Palm OS: Security and Cryptography

Debug Output Levels 239
CPM Library Error Codes 239
Miscellaneous CPM Library Constants 241

11 CPM Library Provider 243

CPM Library Provider Structures and Types 243
CPMCallerInfoType 243

CPM Library Provider Function Argument Structures 244
APCmdPBType . 244
APDecrypt . 245
APDecryptFinal . 246
APDecryptInit . . 247
APDecryptUpdate 247
APDeriveKeyData 248
APEncrypt . 250
APEncryptFinal . 251
APEncryptInit . . 252
APEncryptUpdate 252
APExportCipherInfo 253
APExportHashInfo 254
APExportKeyInfo 255
APExportKeyPairInfo 255
APExportMacInfo 256
APExportSignInfo 256
APExportVerifyInfo 257
APGenerateKey . 258
APGenerateKeyPair 259
APGetProviderInfo 259
APHash . 260
APHashFinal . 261
APHashInit . 262
APHashUpdate . 262
APImportCipherInfo 263
APImportHashInfo 263
APImportKeyInfo 264

Exploring Palm OS: Security and Cryptography

xi

APImportKeyPairInfo 265
APImportMacInfo 265
APImportSignInfo 266
APImportVerifyInfo 267
APMac . 267
APMacFinal . . 268
APMacInit . 269
APMacUpdate . 270
APReleaseCipherInfo 270
APReleaseHashInfo 271
APReleaseKeyInfo 271
APReleaseMACInfo 271
APReleaseSignInfo 272
APReleaseVerifyInfo 272
APSign . . 273
APSignFinal . 274
APSignInit . 275
APSignUpdate . 276
APVerify . 277
APVerifyFinal . 278
APVerifyInit . 279
APVerifyUpdate 280

CPM Library Provider Constants 281
APCmdType . 281
Miscellaneous CPM Library Provider Constants 287

Application-Defined Functions 287
APDispatchProcPtr 287
CPMAddRandomSeedProcPtr 288
CPMDebugOutProcPtr 288
CPMDispatcherProcPtr 289
CPMGenerateRandomBytesProcPtr. 291

12 Encrypt 293

Encrypt Functions and Macros 293
EncDES . . 293

xii

 Exploring Palm OS: Security and Cryptography

EncDigestMD4. . 294
EncDigestMD5. . 294

13 Password 295

Password Constants. 295
Miscellaneous Password Constants 295

Password Functions and Macros 296
PwdExists . . 296
PwdRemove . . 296
PwdSet . 297
PwdVerify. . 297

14 Security Services 299

Security Services Structures and Types. 300
SecSvcsDecodeLockoutTimePtrType 300
SecSvcsEncodeLockoutTimePtrType 300
SecSvcsGetDeviceLockoutPtrType 300
SecSvcsGetDevicePoliciesPtrType 300
SecSvcsGetDeviceSettingPtrType 301
SecSvcsIsDeviceLockedPtrType 301
SecSvcsSetDeviceLockedPtrType 301
SecSvcsSetDeviceLockoutPtrType 301
SecSvcsSetDeviceSettingPtrType 302

Security Services Constants 302
Security Services Entry Points 302
Security Services Errors 302
Miscellaneous Security Services Constants 303
SecSvcsDeviceLockoutEnum 304
SecSvcsDeviceSettingEnum 304

Security Services Functions and Macros 305
SecSvcsDecodeLockoutTime 305
SecSvcsEncodeLockoutTime 306
SecSvcsGetDeviceLockout 307
SecSvcsGetDevicePolicies 307
SecSvcsGetDeviceSetting 308
SecSvcsIsDeviceLocked 309

Exploring Palm OS: Security and Cryptography

xiii

SecSvcsSetDeviceLocked 309
SecSvcsSetDeviceLockout 310
SecSvcsSetDeviceSetting 310

15 Signature Verification Library 313

Signature Verification Library Structures and Types 314
SignCertificateBlockType 314
SignCertificateIDType 314
SignSignatureBlockType 315
SignGetNumSignaturesPtrType 315
SignGetShLibCertIdListPtrType 315
SignVerifySignatureByIDPtrType 316
SignVerifySignatureByIndexPtrType 316

Signature Verification Library Constants 316
Signature Verification Library Entry Points 316
Signature Verification Library Errors 317

Signature Verification Library Functions and Macros 318
SignGetCertificateByID 318
SignGetCertificateByIndex. 320
SignGetDigest . 321
SignGetNumCertificates 322
SignGetNumSignatures 323
SignGetOverlayCertIdList 323
SignGetShLibCertIdList 324
SignGetSignatureByID 326
SignGetSignatureByIndex 327
SignVerifySignatureByID 328
SignVerifySignatureByIndex 328

16 SSL Library 331

SSL Library Structures and Types 331
SslAttribute . . 331
SslCallback . 332
SslCipherSuiteInfo 333
SslContext . 334
SslIoBuf . 335

xiv

 Exploring Palm OS: Security and Cryptography

SslLib . 336
SslSession . . 336
SslSocket . 337

SSL Library Constants 338
SSL Open Mode Flags 338
SSL Close Mode Flags 339
Mode Attribute Values 339
Protocol Versions 340
Protocol Variants 340
Compatibility Flags 342
SSL Callback Commands 342
Cipher Suite Info Constants 344
Cipher Suites . 344
Ciphers . . 345
Info Callbacks . . 345
InfoInterest Values 347
LastApi Attribute Values 347
LastIO Attribute Values 348
SSL Protocol States 349
SSL Server Alerts 350
SSL Library Errors 351
Miscellaneous SSL Library Constants 355

SSL Library Functions 355
SslClose . . 355
SslConsume . . 356
SslContextCreate 357
SslContextDestroy 357
SslContextGetLong 358
SslContextGetPtr 358
SslContextSetLong 359
SslContextSetPtr . 360
SslFlush. . 361
SslLibClose . 362
SslLibCreate . . 362
SslLibDestroy . 363

Exploring Palm OS: Security and Cryptography

xv

SslLibGetLong . . 363
SslLibGetPtr . . 364
SslLibName . 365
SslLibOpen . 365
SslLibSetLong . 365
SslLibSetPtr . 366
SslLibSleep . 367
SslLibWake . 367
SslOpen. . 368
SslPeek . 369
SslRead . . 370
SslReceive . . 370
SslSend . . 372
SslWrite . . 373

Application-Defined Functions 373
SslCallbackFunc . 373

17 SSL Library Macros 385

SSL Library Macro Constants. 385
Attribute Values . 385

SSL Library Macros 388
SslContextGet_AppInt32 388
SslContextGet_AppPtr 388
SslContextGet_AutoFlush 389
SslContextGet_BufferedReuse 389
SslContextGet_CertChain 390
SslContextGet_CipherSuite 390
SslContextGet_CipherSuiteInfo 391
SslContextGet_CipherSuites 391
SslContextGet_ClientCertRequest 392
SslContextGet_Compat 392
SslContextGet_DelayReadServerFinished 393
SslContextGet_DontSendShutdown 393
SslContextGet_DontWaitForShutdown 393
SslContextGet_Error 394

xvi

 Exploring Palm OS: Security and Cryptography

SslContextGet_HelloVersion 394
SslContextGet_HsState 395
SslContextGet_InfoCallback 395
SslContextGet_InfoInterest 396
SslContextGet_IoFlags 396
SslContextGet_IoStruct 397
SslContextGet_IoTimeout 397
SslContextGet_LastAlert 398
SslContextGet_LastApi 398
SslContextGet_LastIo 398
SslContextGet_Mode 399
SslContextGet_PeerCert 399
SslContextGet_PeerCertInfoType 400
SslContextGet_PeerCommonName 400
SslContextGet_ProtocolSupport 401
SslContextGet_ProtocolVersion 402
SslContextGet_RbufSize 402
SslContextGet_ReadBufPending 402
SslContextGet_ReadOutstanding 403
SslContextGet_ReadRecPending 403
SslContextGet_ReadStreaming 404
SslContextGet_SessionReused 404
SslContextGet_Socket 405
SslContextGet_SslSession 405
SslContextGet_SslVerify 405
SslContextGet_Streaming 406
SslContextGet_VerifyCallback 407
SslContextGet_WbufSize 407
SslContextGet_WriteBufPending 408
SslContextSet_AppInt32 408
SslContextSet_AppPtr 409
SslContextSet_AutoFlush 409
SslContextSet_BufferedReuse 410
SslContextSet_CipherSuites 410
SslContextSet_Compat 411

Exploring Palm OS: Security and Cryptography

xvii

SslContextSet_DelayReadServerFinished 412
SslContextSet_DontSendShutdown 412
SslContextSet_DontWaitForShutdown 413
SslContextSet_Error 413
SslContextSet_HelloVersion 414
SslContextSet_InfoCallback 414
SslContextSet_InfoInterest 415
SslContextSet_IoFlags 415
SslContextSet_IoStruct 416
SslContextSet_IoTimeout 416
SslContextSet_LastAlert 417
SslContextSet_Mode 418
SslContextSet_ProtocolSupport 418
SslContextSet_ProtocolVersion 419
SslContextSet_RbufSize 420
SslContextSet_ReadStreaming 420
SslContextSet_Socket 421
SslContextSet_SslSession 421
SslContextSet_VerifyCallback 422
SslContextSet_WbufSize 422
SslLibGet_AppInt32 423
SslLibGet_AppPtr 423
SslLibGet_AutoFlush 424
SslLibGet_BufferedReuse 424
SslLibGet_CipherSuites 425
SslLibGet_Compat 425
SslLibGet_DelayReadServerFinished 426
SslLibGet_DontSendShutdown 426
SslLibGet_DontWaitForShutdown 427
SslLibGet_HelloVersion 427
SslLibGet_InfoCallback 427
SslLibGet_InfoInterest 428
SslLibGet_Mode 428
SslLibGet_ProtocolSupport 429
SslLibGet_ProtocolVersion 429

xviii

 Exploring Palm OS: Security and Cryptography

SslLibGet_RbufSize 430
SslLibGet_ReadStreaming 430
SslLibGet_VerifyCallback 431
SslLibGet_WbufSize 431
SslLibSet_AppInt32 432
SslLibSet_AppPtr 432
SslLibSet_AutoFlush 433
SslLibSet_BufferedReuse 433
SslLibSet_CipherSuites 434
SslLibSet_Compat 435
SslLibSet_DelayReadServerFinished 435
SslLibSet_DontSendShutdown 436
SslLibSet_DontWaitForShutdown 436
SslLibSet_HelloVersion 437
SslLibSet_InfoCallback 437
SslLibSet_InfoInterest 438
SslLibSet_Mode . 438
SslLibSet_ProtocolSupport 439
SslLibSet_ProtocolVersion 440
SslLibSet_RbufSize 440
SslLibSet_ReadStreaming 441
SslLibSet_VerifyCallback 441
SslLibSet_WbufSize 442

Index 443

Exploring Palm OS: Security and Cryptography

xix

About This

Document

This book covers the various security systems in Palm OS Cobalt. It
also documents the various cryptographic operations that Palm OS
Cobalt provides. Developers who need to work with security
certificates, passwords, and the like should read this book.

The

Exploring Palm OS

 Series

This book is a part of the

Exploring Palm OS

 series. Together, the
books in this series document and explain how to use the APIs
exposed to third-party developers by the fully ARM-native versions
of Palm OS, beginning with Palm OS Cobalt. Each of the books in
the

Exploring Palm OS

 series explains one aspect of the Palm
operating system, and contains both conceptual and reference
documentation for the pertinent technology.

IMPORTANT:

The

Exploring Palm OS

 series is intended for
developers creating native applications for Palm OS Cobalt. If you
are interested in developing applications that work through PACE
and that also run on earlier Palm OS releases, read the latest
versions of the

Palm OS Programmer’s API Reference

 and

Palm

OS Programmer’s Companion

 instead.

As of this writing, the complete

Exploring Palm OS

 series consists of
the following titles:

•

Exploring Palm OS: Programming Basics

•

Exploring Palm OS: Memory, Databases, Files

•

Exploring Palm OS: User Interface

•

Exploring Palm OS: User Interface Guidelines

 (coming soon)

•

Exploring Palm OS: System Management

•

Exploring Palm OS: Text and Localization

•

Exploring Palm OS: Input Services

•

Exploring Palm OS: High-Level Communications

About This Document

Additional Resources

xx

 Exploring Palm OS: Security and Cryptography

•

Exploring Palm OS: Low-Level Communications

•

Exploring Palm OS: Telephony and SMS

•

Exploring Palm OS: Multimedia

•

Exploring Palm OS: Security and Cryptography

•

Exploring Palm OS: Creating a FEP

 (coming soon)

•

Exploring Palm OS: Porting Applications to Palm OS Cobalt

•

Exploring Palm OS: Palm OS File Formats

 (coming soon)

Additional Resources

• Documentation

PalmSource publishes its latest versions of this and other
documents for Palm OS developers at

http://www.palmos.com/dev/support/docs/

• Training

PalmSource and its partners host training classes for Palm OS
developers. For topics and schedules, check

http://www.palmos.com/dev/training

• Knowledge Base

The Knowledge Base is a fast, web-based database of
technical information. Search for frequently asked questions
(FAQs), sample code, white papers, and the development
documentation at

http://www.palmos.com/dev/support/kb/

Changes to This Document

This section describes the changes made in each version of this
document.

3113-002
Minor editorial corrections.

http://www.palmos.com/dev/support/docs/
http://www.palmos.com/dev/training
http://www.palmos.com/dev/support/kb/

About This Document
Changes to This Document

Exploring Palm OS: Security and Cryptography xxi

3113-001
The first release of this document for Palm OS Cobalt, version 6.0.

About This Document
Changes to This Document

xxii Exploring Palm OS: Security and Cryptography

Part I
Concepts

This part provides basic concepts for the security-related portions of
Palm OS Cobalt. The conceptual material in this part is organized
into the following chapters:

Palm OS Cobalt Security 3

SSL Concepts . 55

Exploring Palm OS: Security and Cryptography 3

1
Palm OS Cobalt
Security
Palm OS Cobalt has a robust and comprehensive security
architecture. Unlike other security solutions that are added in an
ad-hoc manner to existing operating systems, the security for Palm
OS Cobalt has been designed in from the beginning.

The basis of Palm OS Cobalt security is the secure kernel. The kernel
relies on a capabilities model for security. The capabilities model,
typically a model of least privilege, has been hybridized for Palm
OS Cobalt in order to maintain the open nature of Palm OS. At boot
time, keys are carefully distributed to various system managers that
need to communicate with each other. Only managers that have
keys enabling communication are able to communicate with other
system components. This prevents unauthorized access to
important system modules.

On top of the secure kernel are the components that make up the
basis of a secure infrastructure. Figure 1.1 illustrates how these
components interrelate.

Palm OS Cobalt Security

4 Exploring Palm OS: Security and Cryptography

Figure 1.1 Palm OS Cobalt security components

The Authorization Manager (AM) provides system managers with
the ability to protect managed resources. In the case of Data
Manager, database resources are protected via the Authorization
Manager. Other components, such as drivers, may protect other
resources such as network access through the Authorization
Manager. In conjunction with the Authorization Manager the

Applications

Cryptographic Provider Manager

SSL

Certificate Manager

Object Managers
(Data Manager, for example)

Authorization
Manager

Authentication
Manager

Protected Objects Architecture

P
as

sw
or

d

C
od

e
S

ig
ni

ng

SignVfy
Shared
Library

P
ro

vi
de

r
1

P
ro

vi
de

r
2

S
S

L
C

ry
pt

o
P

ro
vi

de
r

P
al

m
S

ou
rc

e
M

D
5/

D
E

S

(p
os

si
bl

e)
S

m
ar

t C
ar

d

Smart Card
Hardware

Driver

P
ro

vi
de

r

P
ro

vi
de

r

Palm OS Cobalt Security

Exploring Palm OS: Security and Cryptography 5

Authentication Manager (AM) provides authentication for
authorization rules and supports other authentication requirements.
The Authentication Manager employs a plug-in architecture so that
additional authentication mechanisms can be added. The
Authentication Manager supports password/pass phrase
authentication for users and both PKI and cryptographic fingerprint
for code modules. Additional authentication mechanisms, such as
biometric, can be added via the Authentication Manager plug-in
framework.

Palm OS Cobalt also includes the Cryptographic Provider Manager
(CPM). The Cryptographic Provider Manager exposes a simple yet
robust API for performing cryptographic operations including key
generation, hashing, encryption, decryption, signing, and
verification. The Cryptographic Provider Manager includes a
FIPS–approved pseudo random number generator and a provider
architecture for cryptographic algorithms. The default provider,
developed by RSA Security, includes RC4 (128 bit), SHA-1 hashing,
and RSA public key operations (1024 bit). Additional providers can
be added, either statically by the licensee or dynamically, to the
Cryptographic Provider Manager to support other algorithms.

Palm OS Cobalt includes a Certificate Manager, developed by RSA
Security. The Certificate Manager handles X.509 standard
certificates. The Certificate Manager exposes a standard API for
applications and system modules that need certificate services.

Making use of both the Cryptographic Provider Manager and the
Certificate Manager, Palm OS Cobalt includes a Signature
Verification Library that allows applications and system modules to
easily verify signatures on code modules and resources.

Palm OS Cobalt also includes a robust and highly optimized version
of SSL for end-to-end secure communications. The Palm OS Cobalt
SSL implementation, by RSA Security, supports SSL v2, v3, and TLS
1.0.

The Palm OS Cobalt Security Services module that supports a
variety of mechanisms for specifying and controlling the security
policies of a particular device or class of devices. Security Services
supports a policy API that applications and code modules can query
to get policies for various operations or functionality. Examples
include policies for what types of patches are allowed on the system

Palm OS Cobalt Security
Cryptographic Provider Manager (CPM)

6 Exploring Palm OS: Security and Cryptography

and polices for what drivers are allowed on the system. The Security
Services also supports a set of APIs so that the user can indicate a
perceived level of security of the device (None, Medium, or High).
Various modules and applications can read the user’s security
preference and react accordingly.

PalmSource signs all shared library code modules. Code modules
easily support multiple signatures, enabling licensees and carriers
to sign code modules.

The following sections provide details on each of the Palm OS
Cobalt security components. Note that the details of SSL are covered
in Chapter 2, “SSL Concepts,” on page 55.

Cryptographic Provider Manager (CPM)
The Cryptographic Provider Manager (CPM) provides an interface
for cryptographic related functions. At its heart it contains an X 9.31
FIPS–approved pseudo random number generator. The CPM allows
you to do the following:

• RC4 encrypt/decrypt

• SHA1 digest

• RSA verify

• DES/MD5 encrypt/decrypt

The CPM also supports the SSL cryptographic package. See Chapter
2, “SSL Concepts,” on page 55 for more on SSL in Palm OS Cobalt.

Note that the CPM is export controlled. CPM providers must be
signed.

The Cryptographic Provider Manager, or CPM, provides an easy to
use, yet robust cryptographic API. Applications can use the CPM to
perform cryptographic operations for data and protocols. Under the
CPM there are one or more providers which supply the actual
cryptographic functionality via the CPM API.

The CPM supports various classes of functions, some of which are
described herein. For further information see the CPM
documentation.

Palm OS Cobalt Security
Cryptographic Provider Manager (CPM)

Exploring Palm OS: Security and Cryptography 7

The classes of functions discussed herein can be grouped as follows:

Provider Information and Manipulation 7

Key Functions 10

Message Digest Functions 14

Encryption and Decryption Functions 16

Provider Information and Manipulation
The CPM itself provides the ability to query the number of
providers present, modify the order the providers are called, and a
pseudo random number generator based on ANSI X9.31

The CPM contains a default provider which includes SHA-1
hashing, RC4 encryption and decryption, and RSA verification
(public key operations). Other providers may or may not be present.

The operation of the CPM is different from other cryptographic
providers that perform the same types of operations. Applications
that use the CPM can get default “reasonable” behavior without
specifying a great deal of information related to the cryptographic
operation requested. Examples will illustrate this.

Listing 1.1 shows how to enumerate and identify the providers the
CPM currently knows about.

Listing 1.1 Enumerating CPM providers

uint32_t *providers;
APProviderInfoType providerInfo;
uint16_t temp = 0;
status_t err;

err = CPMLibOpen(&temp);

if (err) {
 DbgPrintf("SSFD: Error on CPMLibOpen 0x%x\n", err);
} else {
 DbgPrintf("SSFD: CPMLibOpen - 0x%x providers returned\n",
 temp providers = MemPtrNew(sizeof(uint32_t) * temp);
 err = CPMLibEnumerateProviders(providers, &temp);

 providers = MemPtrNew(sizeof(uint32_t) * temp);
 err = CPMLibEnumerateProviders(providers, &temp);

Palm OS Cobalt Security
Cryptographic Provider Manager (CPM)

8 Exploring Palm OS: Security and Cryptography

 if (err) {
 DbgPrintf("SSFD: Error on CPMLibEnumerateProviders
 0x%x\n", err);
 } else {
 DbgPrintf("SSFD: CPMLibEnumerateProviders - 0x%x
 providers returned\n", temp);
 for (i=0; i < temp; i++) {
 err = CPMLibGetProviderInfo(providers[i],
 &providerInfo);
 if (err) {
 DbgPrintf("SSFD: Error on CPMLibGetProviderInfo
 0x%x\n", err);
 } else {
 uint32_t provider provider = providers[i];

 provider = providers[i];
 DbgPrintf("SSFD: CPMLibGetProviderInfo -
 provider['%c%c%c%c']\n",
 (char)((provider >> 24) & 0x000000FF),
 (char)((provider >> 16) & 0x000000FF),
 (char)((provider >> 8) & 0x000000FF),
 (char)((provider & 0x000000FF)));
 DbgPrintf("\t%s\n", providerInfo.name);
 DbgPrintf("\t%s\n", providerInfo.other);
 DbgPrintf("\tAlgs: %d\n",
 providerInfo.numAlgorithms);
 DbgPrintf("\tHardware?: %s\n",
 providerInfo.bHardware?"yes":"no");
 }
 }
}

The order that the providers are called is arbitrary. The CPM orders
the providers as they are found and calls each one in turn until one
returns that it can handle the request. Subsequent calls on the same
context of operations will go to the same provider that handled the
first request. For example, say the first operation in an encryption
context is generating a key to use for encryption. The provider that
handles the key generation will also be used to do the encryption
unless the application explicitly changes it.

For any given initial operation, or one for which a provider has not
yet been selected, the CPM tries each provider in turn until one
returns that the operation has been handled. Subsequent providers

Palm OS Cobalt Security
Cryptographic Provider Manager (CPM)

Exploring Palm OS: Security and Cryptography 9

are not called. Due to this design, the CPM does not readily handle
providers that include similar functionality.

The application is free to select a different provider for any
operation for which the provider has already been set. The
application is also free to set the first provider that the CPM will
call, ensuring that all operations will go to a particular provider for
the initial context. To set the default provider, do something like
what is shown in Listing 1.2.

Listing 1.2 Setting the default CPM provider

status_t err;

/*
* set the default provider to the provider with id 'foop'
*/
err = CPMLibSetDefaultProvider((uint32_t) 'foop');
if (err)
 DbgPrintf("SSFD: Error on CPMLibSetDefaultProvider
 0x%x\n", err);

All CPMInfoType structures have a common structure header
which includes provider information about the provider that
handled the structure. To change the provider for a given
CPMInfoType structure, the application must copy the structure
and reset the provider information. The application is then
responsible for making sure that the original structure is passed to
the original provider for cleanup. This operation is not
recommended without specific knowledge of the operation and
functionality of the various providers utilized. See Listing 1.3 for an
illustration of how this might be done.

Listing 1.3 Changing the provider

status_t err;
APKeyInfoType keyInfo, newkeyInfo;

MemSet(&keyInfo, sizeof(APKeyInfoType), 0);

err = CPMLibGenerateKey(NULL, 0, &keyInfo);

MemSet(&newkeyInfo, sizeof(APKeyInfoType), 0);

Palm OS Cobalt Security
Cryptographic Provider Manager (CPM)

10 Exploring Palm OS: Security and Cryptography

MemMove(&newkeyInfo, &keyInfo, sizeof(APKeyInfoType));
newkeyInfo.providerContext.localContext = NULL;
newkeyInfo.providerContext.providerID = 0;

CPMLibReleaseKeyInfo(&keyInfo);
/* now go on to use newkeyInfo as you please */

Key Functions
The CPM provides several ways of introducing keys to the
cryptographic functions. The CPM has concepts of either generating
a brand new key, deriving a key from some initial data, or importing
a previously generated key.

Generating a new key implies that every time a request for a new
key to be generated is made, a brand new key is generated. If this
brand new key is utilized for any cryptographic operations, it must
be exported and saved in order to be used again. It is statistically
improbable that a generated key could be regenerated.

Deriving a key means that given the same input data, the same key
is derived from the data. This is useful for operations like Password
Based Encryption (PBE) where the password is used to derive a key
for a particular cryptographic operations (usually encryption or
decryption).

Importing a key means that a previously generated key which was
exported and saved by an application is now being imported for
further cryptographic operations. Importing a key can also mean
that key data from a derive key operation is now being used to
create a APKeyInfoType object. In general, an application would
not export and save a derived key since it could be re-derived by
using the same input data. A generated key, however, must be
exported and saved if it is to be used for later cryptographic
operations.

Note that the CPM is designed to work with very little information
about the specific cryptographic operation requested. Especially for
data that remains on the originating device, most of the input and
output parameters for CPM APIs can be ignored.

To generate a new key (the application does not care about the type
of key since it is to be used to encrypt data that remains on the

Palm OS Cobalt Security
Cryptographic Provider Manager (CPM)

Exploring Palm OS: Security and Cryptography 11

device), do something along the lines of what is shown in Listing
1.4.

Listing 1.4 Generating a new key

status_t err;
APKeyInfoType keyInfo;

MemSet(&keyInfo, sizeof(APKeyInfoType), 0);

err = CPMLibGenerateKey(NULL, 0, &keyInfo);
if (err) {
 DbgPrintf("SSFD: Error on CPMLibGenerateKey 0x%x\n", err);
} else {
 DbgPrintf("SSFD: CPMLibGenerateKey - key of length 0x%x
 returned\n", keyInfo.length);
}

The call to generate a key allows the application to specify some
data to use as seed data for the pseudo-random number generator
before the pseudo-random number generator is used. Listing 1.5
illustrates how to generate a key of a specific type and length.

Listing 1.5 Generating a key of a specific type and length

status_t err;
APKeyInfoType keyInfo;
uint8_t *seedData;
uint32_t seedDataLength;

MemSet(&keyInfo, sizeof(APKeyInfoType), 0);
keyInfo.type = apSymmetricTypeRijndael;
keyInfo.length = 256/8; /* 256 bit key or 32 byte key */

/* provide some seed data to the random generator for
 generating the key */
GetSomeSeedData(seedData, seedDataLength);
err = CPMLibGenerateKey(seedData, seedDataLength, &keyInfo);
if (err) {
 DbgPrintf("SSFD: Error on CPMLibGenerateKey 0x%x\n", err);
} else {
 DbgPrintf("SSFD: CPMLibGenerateKey - key of length 0x%x
 returned\n", keyInfo.length);
}

Palm OS Cobalt Security
Cryptographic Provider Manager (CPM)

12 Exploring Palm OS: Security and Cryptography

All of the CPM APIs that include an output buffer for results allow
the application to specify a NULL output buffer and a valid output
buffer size pointer to receive the required output buffer size. In this
way an application can request the required output buffer size
before making the actual call.

Derived keys can have some complicated parameters like iterations
and salts which are better described elsewhere. In general, the CPM,
and providers will provide “sane” functionality when parameters
are left unspecified.

Deriving a key just returns exportable key data. To actually use a
derived key, the application must import the key data to get an
APKeyInfoType. The APKeyInfoType is used in subsequent
cryptographic operations. See Listing 1.6 for sample code that
derives a key.

Listing 1.6 Deriving a key

status_t err;
APDerivedKeyInfoType dki;
APKeyInfoType keyInfo;
uint32_t size;
uint32_t *key_data;

/*
 * this is provider dependent
 */
struct {
 unsigned long length;
 unsigned char *data;
} kdInfo;

MemSet(&dki, sizeof(APDerivedKeyInfoType), 0);
MemSet(&kdInfo, sizeof(kdInfo), 0);
GetUserPassword(kdInfo.data, kdInfo.length)
dki.kdInfo = &kdInfo;
size = 0;
err = CPMLibDeriveKeyData(&dki, NULL, &size);
if (err) {
 DbgPrintf("SSFD: Error on CPMLibDeriveKeyData 0x%x\n",
 err);

if (err == cpmErrBufTooSmall) {
 DbgPrintf("SSFD: cpmErrBufTooSmall with
 CPMLibDeriveKeyData returning %d\n", size);

Palm OS Cobalt Security
Cryptographic Provider Manager (CPM)

Exploring Palm OS: Security and Cryptography 13

 key_data = MemPtrNew(size);
 if (key_data != NULL) {
 err = CPMLibDeriveKeyData(&dki, key_data, &size);
 if (err) {
 DbgPrintf("SSFD: Error on CPMLibDeriveKeyData
 0x%x\n", err);
 } else {
 DbgPrintf("SSFD: CPMLibDeriveKeyData - 0x%x bytes
 returned\n", size
/* now we can use key_data as import data to get a key */
 MemSet(&keyInfo, sizeof(APKeyInfoType), 0);
 err = CPMLibImportKeyInfo(IMPORT_EXPORT_TYPE_RAW,
 key_data, size, &keyInfo);
 if (err) {
 DbgPrintf("SSFD: Error on CPMLibImportKeyInfo
 0x%x\n", err);
 } else {
 DbgPrintf("SSFD: CPMLibImportKeyInfo - key of
 length 0x%x returned\n", keyInfo.length);
 }
 }
 }
}

Import is used with keys from various sources such as a saved
database, a static application key or a key sourced from a protocol
negotiation. Typically an application must specify the type of key
that is being imported and the import format1. Since import data is
essentially raw byte streams, its important that the application
specify something.

Listing 1.7 Importing a key

status_t err;
APKeyInfoType keyInfo;
uint8_t key[] = { 0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD,
 0xEF };

MemSet(&keyInfo, sizeof(APKeyInfoType), 0);
keyInfo.type = apSymmetricTypeDES;

1. A given CPM import/export format, such as XML, is only supported if the pro-
vider supports it. IMPORT_EXPORT_TYPE_RAW is always supported.

Palm OS Cobalt Security
Cryptographic Provider Manager (CPM)

14 Exploring Palm OS: Security and Cryptography

err = CPMLibImportKeyInfo(IMPORT_EXPORT_TYPE_RAW, key,
 sizeof(key), &keyInfo);
if (err) {
 DbgPrintf("SSFD: Error on CPMLibImportKeyInfo 0x%x\n",
 err);
} else {
 DbgPrintf("SSFD: CPMLibImportKeyInfo - key of length 0x%x
 returned\n", keyInfo.length);
}

Message Digest Functions
Message digests or hashes are cryptographically strong one way
functions. A one way function yields a series of bits that represent
the input message. Nothing about the input message can be gleaned
from the message digest. The same input message always generates
the same hash. Typically hashes are used slow operations are to be
performed on long messages. Rather than performing the slow
operation on the entire message, the long operation is performed on
the hash of the message which is much shorter.

The CPM has two modes of operation for message digests. One
mode takes the input message as whole and outputs a digest. The
other mode takes the input message as parts and doesn’t output the
digest until the final part of the message is submitted.

In the all-in-one-shot mode of operation, no context is required for
the hashing operation. The application can safely ignore the
APHashInfoType parameter for the AIO operations. Listing 1.8
shows how to do a hashing operation in a single pass.

Listing 1.8 A single-pass hashing operation

status_t err;
uint32_t size;
uint8_t data[] = ('f', 'o', 'o');
uint8_t *md;

size = 0;
err = CPMLibHash(apHashTypeSHA1, NULL, data, sizeof(data),
 NULL, &size);
if (err) {
 DbgPrintf("SSFD: Error on CPMLibHash 0x%x\n", err);

Palm OS Cobalt Security
Cryptographic Provider Manager (CPM)

Exploring Palm OS: Security and Cryptography 15

 if (err == cpmErrBufTooSmall) {
 DbgPrintf("SSFD: cpmErrBufTooSmall with CPMLibHash
 returning %d\n", size);
 md = MemPtrNew(size);
 if (md != NULL) {
 err = CPMLibHash(apHashTypeSHA1, NULL, data,
 sizeof(data), md, &size);
 if (err) {
 DbgPrintf("SSFD: Error on CPMLibHash 0x%x\n", err);
 } else {
 DbgPrintf("SSFD: CPMLibHash - 0x%x bytes
 returned\n", size);
 }
 }
}

For the multi-part mode of operation, a context is required to pass
from initial operation to subsequent operations. Upon return from
the final operation the context must be cleaned up. It is the
application’s responsibility to pass the context to the Release
function for cleanup by the CPM and providers. See Listing 1.9 for a
sample illustrating the multi-part hashing operation.

Listing 1.9 A multi-part hashing operation

status_t err;
uint32_t size;
uint8_t data[] = ('f', 'o', 'o');
uint8_t *md;
APHashInfoType hashInfo;

MemSet(&hashInfo, sizeof(APHashInfoType), 0);
hashInfo.type = apHashTypeSHA1;

err = CPMLibHashInit(&hashInfo); /* initialize the context */
if (err) {
 DbgPrintf("SSFD: Error on CPMLibHashInit 0x%x\n", err);
} else {
 /*update the operation; can do this any number of times */
 err = CPMLibHashUpdate(&hashInfo, data, sizeof(data));
 if (err) {
 DbgPrintf("SSFD: Error on CPMLibHashUpdate 0x%x\n",
 err);
 } else {
 size = 0;
 err = CPMLibHashFinal(&hashInfo, NULL, 0, NULL, &size);

Palm OS Cobalt Security
Cryptographic Provider Manager (CPM)

16 Exploring Palm OS: Security and Cryptography

 if (err) {
 DbgPrintf("SSFD: Error on CPMLibHashFinal 0x%x\n",
 err);

 if (err == cpmErrBufTooSmall) {
 DbgPrintf("SSFD: cpmErrBufTooSmall with
 CPMLibHash returning %d\n", size);
 md = MemPtrNew(size);
 if (md != NULL) {
 /* finalize the operation */
 err = CPMLibHashFinal(&hashInfo, NULL, 0, md,
 &size);
 if (err) {
 DbgPrintf("SSFD: Error on CPMLibHash
 0x%x\n", err);
 } else {
 DbgPrintf("SSFD: CPMLibHashFinal - 0x%x
 bytes returned\n", size);
 }
 }
 }
 }
 }
 /* release the context */
 CPMLibReleaseHashInfo(&hashInfo);
}

Certain applications may require the hashing context to be saved off
and returned to at a later time. The APHashInfoType structures
may be exported and imported in much the same way as keys are
imported and exported.

Encryption and Decryption Functions
The CPM supports encryption and decryption in much the same
was as hashing is supported. That is encryption and decryption
have two modes of operation. An application can either encrypt or
decrypt a message as a whole, or in parts. Providers are not required
to support both modes.

Encryption algorithms either work on data a byte at a time or in
blocks of bytes (usually blocks of 8 bytes) at a time. The former is
called stream encryption while the latter is called, appropriately
enough, block encryption. Typically with block encryption, some
padding is added to the data to make the data an integral number of

Palm OS Cobalt Security
Cryptographic Provider Manager (CPM)

Exploring Palm OS: Security and Cryptography 17

blocks. Providers are not required to support padding. If the
provider does not support padding the application must pad data
for a block encryption algorithm or an error occurs.

As with the hashing operation, no context is required for the
operation if you perform the encryption in a single step. This is
illustrated in Listing 1.10.

Listing 1.10 A single-pass encryption operation

status_t err;
uint8_t key[] = {0x7C, 0xA1, 0x10, 0x45, 0x4A, 0x1A, 0x6E,
 0x57};
uint8_t plain[] = {0x01, 0xA1, 0xD6, 0xD0, 0x39, 0x77, 0x67,
 0x42};
uint8_t *output;
uint32_t index, size;
APKeyInfoType keyInfo;

MemSet(&keyInfo, sizeof(APKeyInfoType), 0);
keyInfo.type = apSymmetricTypeDES;
err = CPMLibImportKeyInfo(IMPORT_EXPORT_TYPE_RAW, key, 8,
 &keyInfo);
if (err) {
 DbgPrintf("SSFD: Error on CPMLibImportKeyInfo 0x%x\n",
 err);
} else {
 DbgPrintf("SSFD: CPMLibImportKeyInfo - key of length 0x%x
 returned\n", keyInfo.length);
 size = 0;
 err = CPMLibEncrypt(&keyInfo, NULL, plain, 8, NULL,
 &size);
 if (err) {
 DbgPrintf("SSFD: Error on CPMLibEncrypt 0x%x with size
 set to 0x%x\n", err, size);
 } else {
 DbgPrintf("SSFD: CPMLibEncrypt - cipher data of length
 0x%x returned\n", size);
 }

 if (err = cpmErrBufTooSmall) {
 output = MemPtrNew(size);
 if (output != NULL) {
 err = CPMLibEncrypt(&keyInfo, NULL, plain, 8,
 output, &size);
 if (err) {

Palm OS Cobalt Security
Cryptographic Provider Manager (CPM)

18 Exploring Palm OS: Security and Cryptography

 DbgPrintf("SSFD: Error on CPMLibEncrypt 0x%x\n",
 err);
 } else {
 DbgPrintf("SSFD: CPMLibEncrypt - cipher data of
 length 0x%x returned\n", size);
 }
 MemPtrFree(output);
 }
 }
 CPMLibReleaseKeyInfo(&keyInfo);
}

With the multi-part encryption, the application must pass the
context from the initial operation through to the final operation. The
multi-part encryption is much the same as the multi-part hashing.
The difference is that the provider does not maintain the state of the
encrypted data during an update. The application must supply an
output buffer for each update. The final operation will handle the
last input data and any padding that is required to make a full
encryption block of data. This is illustrated in Listing 1.11.

Listing 1.11 A multi-part encryption operation

status_t err;
uint32_t size;
uint8_t key[] = {0x7C, 0xA1, 0x10, 0x45, 0x4A, 0x1A, 0x6E,
 0x57};
uint8_t plain1[] = {0x01, 0xA1, 0xD6, 0xD0, 0x39, 0x77, 0x67,
 0x42};
uint8_t plain2[] = {'f', 'o', 'o', 'b', 'a', 'z', 'a', 'r'};
uint8_t *output;
APKeyInfoType keyInfo;
APCipherInfoType cipherInfo;

MemSet(&keyInfo, sizeof(APKeyInfoType), 0);
keyInfo.type = apSymmetricTypeDES;
err = CPMLibImportKeyInfo(IMPORT_EXPORT_TYPE_RAW, key, 8,
 &keyInfo);
if (err) {
 DbgPrintf("SSFD: Error on CPMLibImportKeyInfo 0x%x\n",
 err);
} else {
 DbgPrintf("SSFD: CPMLibImportKeyInfo - key of length 0x%x
 returned\n", keyInfo.length);
 MemSet(&cipherInfo, sizeof(APCipherInfoType), 0);

Palm OS Cobalt Security
Cryptographic Provider Manager (CPM)

Exploring Palm OS: Security and Cryptography 19

 /* initialize the context */
 err = CPMLibEncryptInit(&keyInfo, &cipherInfo);
 if (err) {
 DbgPrintf("SSFD: Error on CPMLibEncryptInit 0x%x\n",
 err);
 } else {
 /* update the operation; can do this any number of
 times */
 size = 0;
 err = CPMLibEncryptUpdate(&keyInfo, &cipherInfo,
 plain1, sizeof(plain1), NULL, size);
 if (err)
 DbgPrintf("SSFD: Error on CPMLibEncryptUpdate
 0x%x\n", err);

 if (err == cpmErrBufTooSmall) {
 output = MemPtrNew(size);
 if (output != NULL) {
 err = CPMLibEncryptUpdate(&keyInfo, &cipherInfo,
 plain1, sizeof(plain1), output, size);
 if (err) {
 DbgPrintf("SSFD: Error on CPMLibEncryptUpdate
 0x%x\n", err);
 } else {
 /* do something with output */
 err = CPMLibEncryptFinal(&keyInfo,
 &cipherInfo, plain2, sizeof(plain2),
 output, &size);
 if (err)
 DbgPrintf("SSFD: Error on
 CPMLibEncryptFinal 0x%x\n", err);

 if (err == cpmErrBufTooSmall) {
 DbgPrintf("SSFD: cpmErrBufTooSmall with
 CPMLibEncryptFinal returning %d\n",
 size);
 output = MemPtrRealloc(output, size);
 if (output != NULL) {
 err = CPMLibEncryptFinal(&keyInfo,
 &cipherInfo, plain2, sizeof(plain2),
 output, &size);
 if (err) {
 DbgPrintf("SSFD: Error on
 CPMLibEncryptFinal 0x%x\n", err);
 } else {
 /* do something with output */
 DbgPrintf("SSFD: CPMLibEncryptFinal -
 0x%x bytes returned\n", size);

Palm OS Cobalt Security
Cryptographic Provider Manager (CPM)

20 Exploring Palm OS: Security and Cryptography

 }
 }
 }
 }
 MemPtrFree(output);
 }
 }
 CPMLibReleaseCipherInfo(&cipherInfo);
 }
 CPMLibReleaseKeyInfo(&keyInfo);
}

Decryption is almost exactly the same as encryption. All in one and
multi-part decryption is supported if the provider supports the two
modes. Padding is required if the provider does not perform
padding and the application must ensure that the contexts are
released correctly.

As with encryption, the cipher context can be safely ignored if the
operation is performed in a single step, as shown in Listing 1.12.

Listing 1.12 A single-pass decryption operation

status_t err;
uint8_t key[] = {0x7C, 0xA1, 0x10, 0x45, 0x4A, 0x1A, 0x6E,
 0x57};
uint8_t cipher[] = (0x69, 0x0F, 0x5B, 0x0D, 0x9A, 0x26, 0x93,
 0x9B};
uint8_t *output;
uint32_t index, size;
APKeyInfoType keyInfo;

MemSet(&keyInfo, sizeof(APKeyInfoType), 0);
keyInfo.type = apSymmetricTypeDES;
err = CPMLibImportKeyInfo(IMPORT_EXPORT_TYPE_RAW, key, 8,
 &keyInfo);
if (err) {
 DbgPrintf("SSFD: Error on CPMLibImportKeyInfo 0x%x\n",
 err);
} else {
 DbgPrintf("SSFD: CPMLibImportKeyInfo - key of length 0x%x
 returned\n", keyInfo.length);
 size = 0;
 err = CPMLibDecrypt(&keyInfo, NULL, cipher, 8, NULL,
 &size);
 if (err) {

Palm OS Cobalt Security
Authentication Manager

Exploring Palm OS: Security and Cryptography 21

 DbgPrintf("SSFD: Error on CPMLibDecrypt 0x%x with size
 set to 0x%x\n", err, size);
 } else {
 DbgPrintf("SSFD: CPMLibDecrypt - deciphered data of
 length 0x%x returned\n", size);
 }

 if (err == cpmErrBufTooSmall) {
 output = MemPtrNew(size);
 if (output != NULL) {
 err = CPMLibDecrypt(&keyInfo, NULL, cipher, 8,
 output, &size);
 if (err) {
 DbgPrintf("SSFD: Error on CPMLibDecrypt 0x%x\n",
 err);
 } else {
 DbgPrintf("SSFD: CPMLibDecrypt - deciphered data
 of length 0x%x returned\n", size);
 }
 MemPtrFree(output);
 }
 }
 CPMLibReleaseKeyInfo(&keyInfo);
}

Authentication Manager
The Authentication Manager (AM) is an abstraction layer between
applications and authentication methods. The framework provided
by the AM allows modules (plug-ins) to be written that implement
specific authentication scenarios. Users of the AM deal with generic
interfaces and opaque objects that define an authentication context.

The Authentication Manager is the authority that can answer the
question “Are you X?” reliably, by utilizing some method of identity
verification such as a password. The question “Are you X?” may be
asked about a user or an application.

The services provided by the AM handle the following tasks:
credential (Token) management (creation, deletion, modification,
and storage), authentication against stored credentials (querying
user for system password), and a framework for run-time
extensibility via plug-ins.

Palm OS Cobalt Security
Authentication Manager

22 Exploring Palm OS: Security and Cryptography

The Palm OS Cobalt implementation of the AM includes three
authentication models:

• Password based authentication (as in OS5)

• Signed code (PKI) based authentication

• Code fingerprint (hashed code) based authentication

Authentication Tokens
A token is a reference to an authentication requirement. The
structure that represents a token contains credentials. Tokens can
either be system tokens or non-system tokens. The only difference is
in how the AM behaves when it destroys a token. When a system
token is destroyed the AM takes all of the same actions as when
destroying a non-system token, except that the named entry for the
token is not removed from the AM’s list of tokens. This is due to the
fact that system tokens should always exist: they are “well known”
tokens, such as the user token (password), or the admin token
(password). Tokens can be marked as system tokens at the time they
are created.

Every token has a unique system ID.

Token Types

AmTokenEnum is an enumeration of the different types of tokens
that can be requested from the system. These are the most common
type of tokens that the device will deal with. The custom type
(AmTokenCustom) allows the plug-in to announce a custom type of
token that it will service. If an application requests a custom token,
the Authentication Manager examines all plug-ins and finds all that
match that custom type. Out of all the matches the best fit is picked
to create the token.

typedef enum {
 AmTokenUnknown = 0,
 AmTokenCustom,
 AmTokenPassword,
 AmTokenSignedCode,
 AmTokenCodeFingerprint
} AmTokenEnum

Palm OS Cobalt Security
Authentication Manager

Exploring Palm OS: Security and Cryptography 23

To authenticate a token, the AM invokes a plug-in that implements a
specific authentication method.

Token Strength

Associated with each token is the concept of “strength.” Tokens can
be either strong or weak; weak tokens are authentication tokens that
can be easily guessed or broken, such as dictionary words for
passwords, or weak cryptography keys. Within the token structure
is the minimum level of strength that the plug-in supports for token
creation. The following levels are defined:

AmTokenStrengthLow: The lowest level. There are no
requirements for token creation.

AmTokenStrengthMedium: Some measures are taken to reject
weak tokens.

AmTokenStrengthHigh: The generated token should be
guaranteed to not be a weak token.

Token Management Functions
The Authentication Manager APIs include functions to create,
destroy, modify, and authenticate tokens:

• AmCreateToken()

• AmDestroyToken()

• AmModifyToken()

• AmAuthenticateToken()

To get information about a token, you use one of these functions:

• AmGetTokenBySystemId()

• AmGetTokenExtendedInfo()

• AmGetTokenInfo()

Finally, when manipulating the plug-ins themselves you work with
these Authentication Manager functions:

• AmGetPluginInfo()

• AmGetPluginReferences()

• AmRegisterPlugin()

Palm OS Cobalt Security
Authentication Manager

24 Exploring Palm OS: Security and Cryptography

• AmRemovePlugin()

The Authentication Manager also supports the “legacy” APIs from
earlier versions of Palm OS. These are the functions declared in
Password.h. (PwdExists(), PwdRemove(), PwdSet(), and
PwdVerify()). These functions all act on the user token. and only
work if the user token is of type AmTokenPassword.

The Authorization Manager functions are easy to use. For instance,
the code excerpt in Listing 1.13 shows how to authenticate the user
token.

Listing 1.13 Authenticating the user token

AmTokenType token;
status_t err;

AmGetTokenBySystemId(&token, SysUserToken);
err = AmAuthenticateToken(token, NULL, AmAuthenticationOther,
 NULL, NULL);
if (err == errNone){
 // Authentication succeeded. Do something here.
} else {
 // Authentication failed.
}

AmAuthenticateToken() can take hints about what type of
authentication is being performed (database access, device unlock,
and so on). In the above example it is AmAuthenticationOther.
This function can also take and optional title and description
strings. These can be used by the AM plug-in to clarify to the user
just why they are being prompted to enter a password (or provide a
thumbprint, or whatever).

Using the Authentication Manager
The Authentication Manager can be used either to authenticate a
user or to authenticate code.

User Authentication

User authentication requires that the user knows or has on his
possession a secret that identifies him to the system. This secret
comes in the form of a PIN, a password, biometrics, and so forth.

Palm OS Cobalt Security
Authentication Manager

Exploring Palm OS: Security and Cryptography 25

The Authentication Manager collects the credentials being
presented by the user and compares them to the stored credentials,
thereby authenticating the user.

Code Authentication

There are two major scenarios when it comes to code authentication:
signed code and unsigned code.

Signed code is usually a third-party application or a system patch. It
was signed with a certificate, which was assigned by a certificate
authority. The AM can verify the signature of the code and
authenticate the identity of the certificate that was used when the
code was signed. This is how the system protects patchable or
replaceable objects: by requiring that the application patching or
replacing an object be signed by a well-known certificate.

Code that is not signed is treated differently. It is expensive to
acquire certificates from a certificate authority, and most shareware
developers will not go through the trouble, yet the system is still
able to protect data from access by any other application. In order to
provide a non-interactive authentication method, the system creates
a token that uniquely identifies an application when that
application is installed on the device. An application may use this
token to protect objects, and the AM can then verify the identity of
the application by re-calculating the identity of the application and
matching it against the identity that was calculated at install time.

Signature Verification Library

The Signature Verification Library does the bulk of the work for the
following code authentication tasks:

• Interpreting the sign resource in an application’s resource
database.

• Extracting the X.509 certificate block from the sign resource.

• Verifying the validity of a digital signature in a PRC file.

This library enables any application on the device to verify a signed
PRC file. The Authentication Manager also uses this shared library
to authenticate signed code. The AM’s task is to authenticate
currently running applications. Any other type of authentication
that needs to be done can be accomplished by using this shared
library.

Palm OS Cobalt Security
Authentication Manager

26 Exploring Palm OS: Security and Cryptography

The Signature Verification Library is covered in detail under
“Signature Verification Library” on page 46.

Creating an Authentication Manager Plug-In
An Authentication Manager plug-in is a shared library of type
'ampl' that extends the authentication services provided by the
AM. Each plug-in implements one authentication model, and is
responsible for implementing any UI associated with that model.
Authentication Manager plug-ins are loaded by the security process
when the new plug-in is registered with the AM.

IMPORTANT: Plug-ins execute in privileged space and have
access to the whole system. Bugs in these modules can create
security holes that can potentially expose all of the data on the
device.

Working With Tokens

Plug-ins publish information about the type of tokens they can
create when registering with the AM. The AM then uses that
information to find the most appropriate plug-in to use when an
application creates a token. An application that wishes to use
specific features supported by a specific plug-in is able to request
that plug-in when creating a new token.

The plug-in that creates the token defines the structure of the
token’s data. Since the data for the token must be tamper proof, it is
stored in system space (owned by the Authentication Manager), and
the application is only given a reference: an AmTokenType. When
the AM is asked to authenticate with a token, the plug-in that
created the token is asked to collect a new token and compare it
with the stored token. If the two tokens match, the authentication
passes.

Plug-ins may define their own internal data structures to use for
storing information about the token. The memory may be
controlled by the AM or by the plug-in. If the memory allocation
and deallocation is to be done by the AM, the plug-in must specify
how much memory to allocate per token in the registration
structure of the plug-in.

Palm OS Cobalt Security
Authentication Manager

Exploring Palm OS: Security and Cryptography 27

The custom token type (AmTokenCustom) allows the plug-in to
announce a custom type of token that it will service. If your plug-in
creates custom tokens, be sure that it fills in the identifier field
of the AmTokenPropertiesType structure with the identifier for
the plug-in. Otherwise, the identifier field can be set to 0.

Each token has a public info block that can be shared with
applications through AmGetTokenInfo(). This info, defined by
the AmTokenInfoType structure, is set by the plug-in when the
token is created. Plug-ins may use their own discretion on how
much information to divulge. Note that not all fields are applicable
to all types of tokens.

Token attributes (defined by the AmTokenAttributesType
structure) are flags that specify information about the token. The
plug-in sets these flags and uses them later to allow or reject certain
actions.

destroy: the token may be destroyed.

modify: the token may be modified.

interactive: the token is user interactive. That is, it is a password,
PIN, or the like.

empty: the token is empty.

system: the token is a system token.

The remaining fields of the AmTokenInfoType structure are set or
filled in by the Authentication Manager, except for the “friendly
name” which should be supplied by the plug-in.

The function AmAuthenticateToken() can take hints about what
type of authentication is being performed (database access, device
unlock, and so on) in the form of an AmAuthenticationEnum
value. This function can also take optional title and description
strings. These can be used by the AM plug-in to clarify to the user
just why they are being prompted to enter a password (or provide a
thumbprint, or whatever).

Plug-In Entry Points

A plug-in is a shared library that has a main entry point (see “The
Main Entry Point” on page 33) which receives launch codes. During
the processing of the sysAppLaunchCmdNormalLaunch launch

Palm OS Cobalt Security
Authentication Manager

28 Exploring Palm OS: Security and Cryptography

code it fills in an initialization data structure which lets the AM
know the address of its entry points. These entry points constitute a
protocol for capturing, replacing, verifying, destroying, importing,
and exporting tokens. The AM invokes these entry points in a
defined sequence when carrying out a task such as creating a token.
Some of the entry points have a context argument (an
AmApplicationCtxType) that lets the plug-in know the context
in which it is executing. This allows the plug-in to implement the
correct UI associated with a given action under different contexts.

An AM plug-in implements entry points for the following actions:

Open and Close: Called at load and unload time, respectively.

Capture: Called by the AM during the capture of token
information.

Match: Called by the AM to compare two tokens.

Destroy Notify: Called by the AM when a token is being
destroyed.

Get Extended Info: Called to get extended information about a
plug-in.

Import and Export: Called to import or export a plug-in.

Get Derived Data: Called to get derived data from a token.

Admin: Called by the AM to administer a plug-in.

Except for the PluginOpen and PluginClose functions, the
plug-in exports the above listed functions in an
AmPluginFunctionsType structure.

Open and Close

PluginOpen is generally called upon receipt of a
sysAppLaunchCmdNormalLaunch launch code, while
PluginClose is usually called upon receipt of a
sysLaunchCmdFinalize launch code.

PluginOpen and PluginClose are not directly invoked by the
AM. Instead, the shared library support is used to let the plug-in
know about these actions. That is, the main entry point for the
shared library receives the following launch codes:

Palm OS Cobalt Security
Authentication Manager

Exploring Palm OS: Security and Cryptography 29

sysAppLaunchCmdNormalLaunch: Instructs the plug-in to
initialize itself. This is the “PluginOpen” functionality.
Along with this launch code the plug-in is passed a pointer to
an AmPluginPrivType structure (in the command block
pointer argument). The plug-in should initialize the ftn field
with pointers to those functions that the plug-in exports. It
should also set up the info field with pertinent information
about the plug-in (friendly name, vendor, version, and so on)
and the token properties, and set the tokenDataLength
and tokenExtendedInfoLength fields as appropriate.
Finally, the plug-in should open any needed libraries (such as
the CPM) and then return errNone.

sysLaunchCmdFinalize: Instructs the plug-in to close. It
should perform any necessary cleanup and close any
libraries opened by the PluginOpen function.

Capture

The Capture function is called whenever the AM needs your plug-in
to create a new token, or to verify or replace an existing token
created by the plug-in. Capture is invoked with one of four defined
modes (AmCallMode): Enrollment, Verification, Replacement
Start, and Replacement End. Enrollment is used when a new token
is being created. Verification is used when capturing tokens for
authentication. Replacement is a two-phase protocol: first the AM
may need to authenticate access to modify a token (start), and then
it captures a new token to replace the old (end) with.

During the processing of this function the plug-in may implement
UI to gather tokens. The mode passed in to this entry point can help
determine the exact UI to present.

Your Capture function should use the following prototype:

status_t (*pluginCaptureFtn)(AmCallMode, AmApplicationCtxType *,
AmTokenPrivType *, AmAuthenticationEnum, char *, char *)

See the description of AmPluginFunctionsType for a description
of this function’s parameters.

Your Capture function should return errNone if the operation
completed successfully. Otherwise, return an appropriate
Authentication Manager (or other) error code.

Palm OS Cobalt Security
Authentication Manager

30 Exploring Palm OS: Security and Cryptography

Match

When the AM needs to verify a token it invokes the associated
plug-in’s match entry point, passing in two token structures for
comparision. Any success or failure UI is implemented by the
plug-in.

Your Match function should use the following prototype:

status_t (*pluginMatchFtn)(AmApplicationCtxType *, AmTokenPrivType *,
AmTokenPrivType *)

See the description of AmPluginFunctionsType for a description
of this function’s parameters.

Your Match function should return errNone if the operation
completed successfully. Otherwise, return an appropriate error code
such as amErrAuthenticationFailed.

Destroy Notify

The destroy notification is sent to the plug-in that created the token
when the token is destroyed. Destroying a token is an action that
may be taken if the user has lost the ability to authenticate against
that token (as in the case of a lost password). When creating a token
the plug-in sets a flag that allows or disallows its destruction.

Your Destroy Notify function, if your plug-in implements one,
should use the following prototype:

status_t (*pluginDestroyNotifyFtn)(AmTokenPrivType *)

See the description of AmPluginFunctionsType for a description
of this function’s parameters.

Your Destroy Notify function should return errNone if the
operation completed successfully. Otherwise, return an appropriate
Authentication Manager (or other) error code.

Get Extended Info

This function is used to answer the query for extended info by an
application. A plug-in is not required to support this entry point,
though it can be useful for certain types of tokens. The Palm OS PKI
plug-in returns the certificate ID of the token (in an
AmPluginSignedCodeExtInfoType structure). The Palm OS

Palm OS Cobalt Security
Authentication Manager

Exploring Palm OS: Security and Cryptography 31

Code Fingerprint plug-in returns the type, creator, and name of the
database that was fingerprinted (in an
AmPluginCodePrintExtInfoType structure). The Palm OS
password plug-in, however, doesn’t implement this function.

Your Get Extended Info function, if your plug-in implements one,
should use the following prototype:

status_t (*pluginGetTokenExtendedInfoFtn)(AmTokenPrivType *, uint8_t *,
uint32_t)

See the description of AmPluginFunctionsType for a description
of this function’s parameters.

Your Get Extended Info function should return errNone if the
operation completed successfully. Otherwise, return an appropriate
Authentication Manager (or other) error code.

Import and Export

If the Authentication Manager does all of the memory management
for a particular plug-in, then the export and import of that plug-in’s
tokens is mostly taken care of by the AM. The AM will make sure
that the buffer it has allocated for internal data for each token is
exported and imported correctly. Plug-ins only need to worry about
exporting or importing data that they have allocated themselves.

The Import and Export entry points are for copying internal data
about a token for import or export. In your export function, memory
that is associated with a token and is managed by the plug-in should be
copied to the provided buffer and returned to the AM. The import
function should do the opposite: copy the contents of a passed-in
buffer into the token memory managed by the plug-in. Note that
import and export functions are needed only for tokens that have
associated data not managed by the AM itself. Because the
Authentication Managert knows how to import and export the
buffer that is allocated by the AM for the token data, simple plug-ins
such as the password plug-in don’t need to implement import and
export functions.

Your Import and Export functions, if your plug-in implements
them, should use the following prototypes:

status_t (*pluginImportTokenFtn)(AmTokenPrivType *, uint8_t *, uint32_t)

Palm OS Cobalt Security
Authentication Manager

32 Exploring Palm OS: Security and Cryptography

status_t (*pluginExportTokenFtn)(AmTokenPrivType *, uint8_t *, uint32_t *)

See the description of AmPluginFunctionsType for a description
of the function parameters.

Your Import and Export functions should return errNone if the
operation completed successfully. Otherwise, return an appropriate
Authentication Manager (or other) error code.

Get Derived Data

This function is used solely by the operating system to get seed data
for a cryptographic key derived from an authentication token (such
as password derived keys). Currently the only user of this feature is
the Data Manager; it uses this feature to generate password-derived
keys for the backup function.

Your Get Derived Data function, if your plug-in implements one,
should use the following prototype:

status_t (*pluginGetDerivedData)(AmTokenPrivType *, uint8_t *, uint32_t *)

See the description of AmPluginFunctionsType for a description
of the function parameters.

Your Get Derived Data function should return errNone if the
operation completed successfully. Otherwise, return an appropriate
Authentication Manager (or other) error code.

Admin

This function is the admin entry point for the plug-in. Some
plug-ins may have settings that can be changed (a biometric plug-in,
for instance, might allow the user to tweak the settings it uses to
match tokens); accordingly, the plug-in can implement an admin UI
in its implementation of this function.

Your Admin function, if your plug-in implements one, should use
the following prototype:

status_t (*pluginAdminFtn)(AmPluginType *)

See the description of AmPluginFunctionsType for a description
of the function parameters.

Palm OS Cobalt Security
Authentication Manager

Exploring Palm OS: Security and Cryptography 33

Your Admin function should return errNone if the operation
completed successfully. Otherwise, return an appropriate
Authentication Manager (or other) error code.

The Main Entry Point

The main entry point must have a definition as follows:

Prototype uint32_t AmPluginMain (uint16_t cmd,
MemPtr cmdPBP, uint16_t launchFlags)

Parameters cmd
The launch code. Of particular interest are
sysAppLaunchCmdNormalLaunch and
sysLaunchCmdFinalize.

cmdPBP
When the launch code is
sysAppLaunchCmdNormalLaunch, this parameter points
to an AmPluginPrivType structure. The plug-in must fill in
this structure before returning.

launchFlags
Not used.

Returns Return errNone to successfully register the plug-in. Otherwise,
return one of the error codes declared in Am.h.

The following is a sample implementation of a plug-in entry point
and initialization function:

Listing 1.14 Sample plug-in entry point function

uint32_t AmPkiPluginMain(uint16_t cmd, MemPtr cmdPBP,
 uint16_t launchFlags){
 switch(cmd) {
 case sysLaunchCmdInitialize:
 {
 // Do custom initialization here
 break;
 }

 case sysAppLaunchCmdNormalLaunch:
 {
 // For a PkiPlugin -- do the open
 AmPluginPrivType *pPlugin =
 (AmPluginPrivType *)cmdPBP;

Palm OS Cobalt Security
Authentication Manager

34 Exploring Palm OS: Security and Cryptography

 return (AmPkiPluginOpen(pPlugin));
 }

 case sysLaunchCmdFinalize:
 {
 // Do custom de-initialization here
 break;
 }
 default:
 break;
 }

 return 0;
}

status_t AmPwPluginOpen(AmPluginPrivType *pPlugin){
 uint16_t numProviders= 0;
 status_t err;

 // Setup the function array
 pPlugin->ftn.pluginCaptureFtn = AmPwPluginCapture;
 pPlugin->ftn.pluginMatchFtn = AmPwPluginMatch;
 pPlugin->ftn.pluginDestroyNotifyFtn =
 AmPwPluginDestroyNotify;
 pPlugin->ftn.pluginAdminFtn = AmPwPluginAdmin;
 pPlugin->ftn.pluginGetDerivedData =
 AmPwPluginGetDerivedData;

 // Setup the info piece
 strcpy(pPlugin->info.friendlyName, PwPluginFriendlyName);
 strcpy(pPlugin->info.vendor, PwPluginVendor);
 pPlugin->info.version = PwPluginVersion;

 pPlugin->info.tokenProperties.type = AmTokenPassword;
 pPlugin->info.tokenProperties.strength =
 AmTokenStrengthLow;
 pPlugin->info.tokenProperties.identifier =
 PwPluginCreator;

 // Setup the token length
 pPlugin->tokenDataLength = sizeof(PwPluginTokenType);

 return (err);
}

Palm OS Cobalt Security
Authentication Manager

Exploring Palm OS: Security and Cryptography 35

Sample Plug-In Implementations

The following sections provide some details about how the sample
implementations of the three standard plug-ins provided to Palm
OS licencees are implemented.

Password Plug-In

The password plug-in doesn’t store plain-text passwords. Instead, it
stores hashes of the passwords (SHA1 or MD5). Comparisons are
done using the hashes.

The Password plug-in implements the AM plug-in interface in the
following manner:

Open: Initializes the entry point function array, sets the plug-in
properties (friendlyName , vendor, and version), sets
the token properties (type = AmTokenPassword,
strength = AmTokenStrengthLow, identifier), sets
the token data length to sizeof(PwPluginTokenType),
and opens the CPM.

Close: Closes the CPM.

Capture: Supports each mode as described under “Capture” on
page 29.

Match: Compares the supplied password hashes.

Destroy Notify: Frees the memory allocated to the password hint.

Get Token Extended Info: Not implemented.

Import/Export: Not implemented.

Get Derived Data: Copies the password hash into the supplied
buffer.

Admin: Does nothing.

Certificate Plug-in

The certificate plug-in implements a code-signing authentication
model. This plug-in can verify whether a specific application has
been signed by a specific certificate. Tokens associated with this
plug-in authenticate when the executing application has a signature
from this certificate (the certificate ID is stored in the token).

Palm OS Cobalt Security
Authentication Manager

36 Exploring Palm OS: Security and Cryptography

The Certificate plug-in implements the AM plug-in interface in the
following manner:

Open: Initializes the entry point function array, sets the plug-in
properties (friendlyName , vendor, and version), sets
the token properties (type = AmTokenSignedCode,
strength = AmTokenStrengthHigh, identifier), sets
the token data length to sizeof(PkiPluginTokenType),
sets the tokenExtendedInfoLength to
sizeof(AmPluginSignedCodeExtInfoType), and
opens the CPM.

Close: Closes the CPM.

Capture: Implements AmEnrollment and AmVerification.
AmReplacementStart and AmReplacementEnd simply
return amErrActionnotSupported.

Match: Compares the supplied tokens.

Destroy Notify: Not implemented. Tokens created by this plug-in
cannot be destroyed.

Get Token Extended Info: Copies the certificate ID to the supplied
buffer.

Import/Export: Not implemented.

Get Derived Data: Not implemented.

Admin: Not implemented.

Application Fingerprint Plug-in

A application fingerprint is a cryptographic hash of an application’s
resources. This plug-in implements an authentication model where
current application must match a previously-stored cryptographic
hash. This allows the system to set up access control where a
specific application is granted access.

The Application Fingerprint plug-in implements the AM plug-in
interface in the following manner:

Open: Initializes the entry point function array, sets the plug-in
properties (friendlyName , vendor, and version), sets
the token properties (type = AmTokenCodeFingerprint,
strength = AmTokenStrengthLow, identifier), sets
the token data length to

Palm OS Cobalt Security
Authentication Manager

Exploring Palm OS: Security and Cryptography 37

sizeof(CodePrintPluginTokenType), sets the
tokenExtendedInfoLength to
sizeof(AmPluginCodePrintExtInfoType), and opens
the CPM.

Close: Closes the CPM.

Capture: Implements AmEnrollment and AmVerification.
AmReplacementStart and AmReplacementEnd simply
return amErrActionnotSupported.

Match: Compares the supplied tokens.

Destroy Notify: Not implemented. Tokens created by this plug-in
cannot be destroyed.

Get Token Extended Info: Copies the database name to the
supplied buffer.

Import/Export: Not implemented.

Get Derived Data: Not implemented.

Admin: Not implemented.

Manipulating Authentication Manager Plug-Ins
The header file Am.h defines functions that allow you to install and
remove Authentication Manager plug-ins, as well as get
information about an installed plug-in and find all references to an
installed plug-in.

Installing a Plug-in

Call AmRegisterPlugin() to install, or register, a plug-in. This
function loads and opens the plug-in shared library. If you attempt
to register a plug-in that is already registered you will be notified of
that fact unless you set the force parameter to true, in which case
the plug-in is closed and unloaded, then loaded and reopened. In
this case the reference to the plug-in doesn’t change; it is re-used.
This means that all tokens still have a valid reference to their creator.

As explained in “Plug-in Security” on page 38, the plug-in system
space is protected by a token which must be authenticated against
prior to installation; this keeps rogue plug-ins from being allowed
onto the device that could circumvent all authentication security.

Palm OS Cobalt Security
Authentication Manager

38 Exploring Palm OS: Security and Cryptography

Removing a Plug-in

You remove an installed Authentication Manager plug-in by calling
AmRemovePlugin(). Note that you can only remove a plug-in if
there are no tokens on the device that have been created by that
plug-in.

Other Plug-in Manipulation Operations

Call AmGetPluginInfo() to get the public info block for a
registered plug-in. The returned AmPluginInfoType data
structure contains information about the plug-in, such as vendor
name, friendly name, and information about the type of tokens that
the plug-in can create.

To get a list of all currently registered Authentication Manager
plug-ins, call AmGetPluginReferences(). You must allocate the
array into which the list of references (each is an AmPluginType) is
written; call AmGetPluginReferences() with a NULL pointer for
the array to have returned to you the number of elements that
would be written to the array.

Plug-in Security

The storage area used to hold plug-in information is protected by a
token. Authentication against this token is necessary before a
plug-in can be installed or removed. So, for instance, if the plug-in
storage space is protected by a password token, the user would
need to enter a password before a plug-in could be installed or
removed.

The device manufacturer can create a policy that controls how
Authentication Manager plug-ins are installed. If no policies are set,
the device behaves as follows when installing a plug-in:

• If the user’s current security level is set to None, the plug-in
is installed.

• If the user’s current security level is set to Medium, the user
is prompted to choose whether or not the plug-in should be
installed.

• If the user’s current security level is set to High, the plug-in is
not installed.

Palm OS Cobalt Security
Authorization Manager

Exploring Palm OS: Security and Cryptography 39

Authorization Manager
The Authorization Manager (AZM) manages access control lists that
are based on authentication tokens. These control lists are called
rule sets. Figure 1.2 illustrates the basic rule-set syntax.

Figure 1.2 Rule-set syntax

Figure 1.3 illustrates a simple rule set. When this rule set is
evaluated, it will be satisfied if the currently running application’s
signature can be verified with either certificate “A” or certificate
“B”.

A
M

 T
oken

A
M

 T
oken

A
M

 T
oken

...

AND

A
M

 T
oken

A
M

 T
oken

A
M

 T
oken

...

AND

OR

...

Palm OS Cobalt Security
Authorization Manager

40 Exploring Palm OS: Security and Cryptography

Figure 1.3 A simple rule-set

The set of APIs exposed by the Authorization Manager to
third-party developers is quite small, consisting only of:

• AzmAddRule(), which lets you add an access rule to an
existing rule-set container for a specific action.

• AzmNonInteractiveAuthorize(), which authorizes an
action given a rule-set reference.

• AzmGetSyncBypass() and AzmSetSyncBypass(), which
let you get and set the sync bypass flag in an existing rule-set
container for a specific action. Sync-bypass must enabled for
a specific action in order for an authenticated sync agent to be
able to complete that action successfully.

Note that as a third-party developer you cannot create or destroy
rule sets.

Applications use AzmAddRule() to add rules to a rule set. Listing
1.15 presents one common operation: authenticating the user to
perform a particular action.

Listing 1.15 Adding a rule to a rule set

AmTokenType usertoken;
AzmRulesetType ruleSet;

AmGetTokenBySystemId(&usertoken, SysUserToken);

ruleSet = CreateProtectedResource();
err = AzmAddRule(ruleSet, action, "%t", usertoken);

Digital Signature
Token “A”

Digital Signature
Token “B”

OR

Palm OS Cobalt Security
Certificate Manager

Exploring Palm OS: Security and Cryptography 41

The contents of the action parameter depend upon what is being
protected. Many applications will use access rules to control access
to schema databases. See “Schema Database Access Rule Action
Types” on page 301 of Exploring Palm OS: Memory, Databases, Files
for the access rules that can be applied to schema databases.

The above shows the addition of a very simple rule. More complex
rules can be constructed using AND and OR logic operations. To
construct a rule set that is valid if either of two tokens is authorized,
use the logic operator OR when specifying the rule format string, as
in “%t OR %t”. An AND operation is even simpler, since you don’t
supply the word “AND.” Simply specify the format like this: “%t
%t”.

Certificate Manager
The Certificate Manager provides a secure server for the storing and
parsing of DER-encoded X.509 digital certificates. It exposes
functions that allow you to import, export, parse, and verify those
certificates.

You can use the Certificate Manager in either of two different ways:
as a certificate verifier and parser, and as a certificate store. In the
verifier/parser mode, the Certificate Manager takes data as input
and parses it as a digital certificate. The user can then verify the
certificate and access its internal fields. In certificate store mode, the
Certificate Manager can securely store a tree of digital certificates
(with multiple roots) and make the fields of those certificates
available to users.

The Certificate Manager is a system server with a client-side library.
To securely store certificates, the Certificate Manager makes use of
the Data Manager’s vault facilities. This allows the Certificate
Manager to guarantee the integrity of any certificate added to its
certificate store.

Note that very few applications use the Certificate Manager directly.
As was shown in Figure 1.1 on page 4, both SSL and the Signature
Verification Library make use of the Certificate Manager on the
application’s behalf. The Certificate Manager only exposes a fairly
low-level set of APIs.

Palm OS Cobalt Security
Certificate Manager

42 Exploring Palm OS: Security and Cryptography

Certificate Store Operations
The Certificate Manager can securely store a tree of digital
certificates (with multiple roots). Figure 1.4 shows the basic
certificate hierarchy.

Figure 1.4 Certificate Hierarchy

At boot time the certificate store is seeded with the list of root
certificates that were stored in ROM by the device manufacturer.
These ROM certificates are used to authenticate RAM certificates.

To get a certificate from the store, call CertMgrFindCert(). This
function can be used in one of two modes: to find a particular
certificate by ID or by subject RDN, or to iterate through all of the
certificates in the certificate store. You control this function’s
operation through the use of the searchFlag parameter.

To add and remove certificates from the store, you use
CertMgrAddCert() and CertMgrRemoveCert(), respectively.
Note that you can only add a certificate if its authentication chain
already resides in the certificate store, or if the certificate is
self-signed. Also note that removing a certificate that is part of an
authentication chain may prevent new certificates from being
authenticated.

PalmSource Root PalmSource Affiliates 3rd Party

Certificate Authority

One-time Certificate One-time Certificate

Palm OS Cobalt Security
Certificate Manager

Exploring Palm OS: Security and Cryptography 43

The code excerpt shown in Listing 1.16 shows how you can use
CertMgrAddCert() to add a self-signed certificate to the
certificate store.

Listing 1.16 Adding a self-signed certificate

while (true) {
 err = CertMgrAddCert(&certInfo, false, &verifyResult);
 if (err) {
 CertMgrReleaseCertInfo(&certInfo);
 goto exit;
 }

 if (verifyResult.failureCode == 0) {
 break;
 } else {
 if (verifyResult.failureCode ==
 CertMgrVerifyFailSelfSigned) {
 verifyResult.failureCode = 0;
 continue;
 }

 /* Another type of failure */
 break;
 }
}

Certificate Verification and Parsing
Use CertMgrImportCert() to import a DER-encoded x509
certificate and get back a CertMgrCertInfoType structure. This
structure represents a certificate object. You then verify this
certificate’s contents by calling CertMgrVerifyCert(). Once you
have a verified certificate, use CertMgrGetField() to get fields
out of the certificate. Most commonly, applications will want to get
the key from the certificate.

Once you are done with a certificate, be sure to call
CertMgrReleaseCertInfo() to release these resources that were
allocated by the Certificate Manager during the call to
CertMgrFindCert() or CertMgrImportCert().

Palm OS Cobalt Security
Security Services

44 Exploring Palm OS: Security and Cryptography

Certificate Backup and Restore
All certificates in the certificate store are backed up and restored.

Security Services
In Palm OS Cobalt the security services allow the user of the Palm
Powered device to specify a level of “paranoia.” This maps directly
to the paradigm of private records being visible, masked, or hidden
but in Palm OS Cobalt this security setting extends to more than just
private records. The security services also control the automatic
locking and unlocking of the device. Finally, they also allow
licensees to specify basic restrictive policies for various managers
and services on the device, and provide APIs that let third-party
developers examine those policies.

Current Security Setting
SecSvcsGetDeviceSetting() and
SecSvcsSetDeviceSetting() allow you to get and set the
device’s current security setting. The security setting is an indication
of how much the user wants to be bothered with security and how
“paranoid” the user is. The manager or service reading this setting
should follow these guidelines with regard to the security setting:

SecSvcsDeviceSecurityNone: The user does not want to be
bothered at all and the device is totally open. Everything is
“ok” by the user.

SecSvcsDeviceSecurityMedium: The user should be bothered
with a Yes/No question about the pending operation with as
much information about the operation as is reasonably
possible (whether the code is signed or unsigned, which
manager is performing the operation, details about the
operation being performed, and so on). A “Yes” from the user
indicates that the operation should proceed. “No” means that
the operation should not be performed.

SecSvcsDeviceSecurityHigh: The user does not want to be
bothered at all and the device is essentially closed. In general,
no operations should be performed.

Palm OS Cobalt Security
Security Services

Exploring Palm OS: Security and Cryptography 45

The following table shows how certain aspects of Palm OS Cobalt
react, by default, to the various security settings:

Lockout Settings
SecSvcsGetDeviceLockout() and
SecSvcsSetDeviceLockout() get and set the device’s current
lockout scheme. These functions are intended to be used by security
applications that control the locking and unlocking of the device.

Use SecSvcsEncodeLockoutTime() to encode the lockout
parameters into a 32-bit value for use by
SecSvcsSetDeviceLockout(). As you might expect, you use
SecSvcsDecodeLockoutTime() to decode the lockout
parameters from the 32-bit value returned from
SecSvcsGetDeviceLockout().

Low-level modules that control whether or not the device is locked
can use SecSvcsIsDeviceLocked(). This function returns a
boolean value: true if the device is locked, false if it is not.

Security Policies
Palm OS Cobalt licensees can set security policies for the various
managers in their Palm OS system. Specifically, the following can be
gated by separate security policies:

• Processes

• FEPs and locale modules

• The BSP key

• IOS drivers

None Medium High

Trusted Desktop No UI Ask user Ask user

Sync Clients No UI Ask user Ask user

Token Caching Global Application Application

AM Plug-in No UI; always
allowed

Ask user No UI;
always
denied

Palm OS Cobalt Security
Signature Verification Library

46 Exploring Palm OS: Security and Cryptography

• Sync clients

• Authentication Manager plug-ins

• CPM providers

SecSvcsGetDevicePolicies() obtains the security policies
defined for the device. It checks, in order, the ROM token area of the
device, any ROM-based PDB files, and then any RAM-based PDB
files. The PDB files and ROM tokens that this function checks are of
a specific format. The format used by the policies is a
non-terminated list of 20 byte IDs of certificates against which code
must be checked for signed status. These IDs can be directly used
with the Signature Verification Library using the
SignVerifySignatureByID() function. The Signature
Verification Library is responsible for checking that code is signed
appropriately before it is used.

Application developers can build a secure application by including
a set of security policies in the PRC of the application (using
PRCCert and PRCSign; see the book Working with Resource Tools)
and then signing the PRC digitally. Before the Program Loader
launches the application, it will make sure the application’s
integrity has not been compromised. When such an application is
running, the Program Loader also makes sure that any shared
library loaded into that application’s process meets the requirement
of the security policies carried by the application’s PRC.

Signature Verification Library
The Signature Verification Library provides an interface through
which applications can access signature and certificate resources
('sign' and 'cert', respectively) in a PRC. With the exposed
APIs you can:

• Get the number of signatures or certificates

• Get a certificate or signature by index or certificate ID

• Get an overlay validation certificate list

• Get a shared library validation certificate list

• Validate a signature

Palm OS Cobalt Security
Signature Verification Library

Exploring Palm OS: Security and Cryptography 47

Reference documentation for the APIs exposed by this library can be
found in Chapter 15, “Signature Verification Library,” on page 313.

Signature Verification
Signature verification is perhaps the most common Signature
Verification Library operation. Listing 1.17 contains a code excerpt
that shows how you can verify a signature.

Listing 1.17 Validating a signature

DatabaseID dbID;
DmOpenRef dbP;
status_t err;

dbID = DmFindDatabase("Test_SignedCode", 'scta');
dbP = DmOpenDBNoOverlay(dbID, dmModeReadOnly);
err = SignVerifySignatureByIndex(dbP, 0);
if (err)
 DbgPrintf(“Error in Signature\n”);
else
 DbgPrintf(“Signature validation succeeded");
DmCloseDatabase(dbP);

To verify a PRC’s digital signature, its sign resource block must be
interpreted. Each signature block in a sign resource contains a
reference to its verifying certificate. This reference is the certificate’s
ID (the SHA1 digest of the public key).

The code verifying the signature can get the RSA verify key (the
public key) from the Certificate Manager by referencing the
certificate ID. If the certificate is not found in the certificate store,
search for a matching certificate in the PRC file. If a certificate in the
PRC file matches the ID, import it into the certificate store prior to
using it for verification. The Certificate Manager verifies the
integrity, validity, and suitability of the certificate during the process
of importing it into the certificate store.

Palm OS Cobalt Security
Signing Code

48 Exploring Palm OS: Security and Cryptography

NOTE: It is possible to import expired certificates into the
certificate store for purposes of verifying digital signatures. If a
certificate has expired, the signature verification code is
responsible for verifying that the PRC file was signed prior to the
expiration date of the certificate.

The Authentication Manager, running in the System process, makes
use of the signature verification shared library to provide signed
code authentication.

Signing Code
Applications are signed when code integrity is a concern.
Depending on the device, some code—such as a patch—may need
to be signed. Or, a secure database may be configured in such a way
as to only allow access by a particular group of signed applications.

What can be Signed
Signed code in Palm OS Cobalt is used to validate the authenticity
of a program resource. There are several types of resources that
could be signed in Palm OS Cobalt. Applications, system patches,
shared libraries, system components, system drivers, and the like.
All of these resources are packaged as PRC files and then loaded
onto the device.

Unlike the desktop world where digital signatures are used to
indicate the author of a piece of software, Palm OS uses digital
signatures to represent endorsements. For example, an enterprise
can use its own certificate to sign Palm OS applications that it has
tested for usefulness and interoperability with other core enterprise
applications. This makes it easy for employees to know they are
getting good applications.

An application can have multiple endorsements. For example, an
application created by a major software vendor could be signed by
the vendor as well as by the enterprise. It is also possible for user
groups to endorse software that they have reviewed favorably.
These endorsements help the user decided whether to install a piece
of downloaded software.

Palm OS Cobalt Security
Signing Code

Exploring Palm OS: Security and Cryptography 49

Overlay and Shared Library Validation Certificate List

A signed application can define two lists of certificate IDs: an
overlay list, and a shared library list. These lists authenticate the
integrity of overlays and shared libraries. They are defined at the
time that the first signature is applied to the application, and cannot
be changed without invalidating that signature.

Signing Algorithm
The algorithm for digital signatures in Palm OS Cobalt is the RSA/
SHA1 signing algorithm. This means that Palm OS Cobalt uses RSA
private keys to sign a SHA1 digest, and RSA public keys to verify
the signature. To be compatible with the widest range of
cryptographic hardware vendors, the padding format is PKCS #1
Block Type 1 from version 1.5 of the PKCS #1 specification.

The signing keys can be either self-issued or assigned by a
Certificate Authority (CA). These are RSA keys with 1024 bits and
can have either double-prime or triple-prime modulus. The
exponent can be 3 or 216+1. Verifying a signature produced with
exponent 3 is about three times faster than with the larger exponent.

Signing Tools
There are two tools that are required to do code-signing of PRC’s:
PRCCert and PRCSign. You use PRCCert to create your own RSA
key pairs and digital certificates. You may create self-signed
certificates for testing, or certificates that are signed by other private
keys. PRCCert creates RSA public/private key pairs at 1024-bit
length in PEM format. PRCCert also generates a public certificate
file in DER format.

The output files from PRCCert are used as input files to PRCSign.

PRCSign is a tool that you use to digitally sign your applications or
to embed digital signature certificates in your applications. PRCSign
creates a digital signature for a particular PRC using an asymmetric
key cipher, storing the signature into the PRC as a resource of type
'sign'. The signature can be verified as authentic by using your
public key to decipher the signature resource. Each application has
at most one 'sign' resource with a resource ID of 1000.

Palm OS Cobalt Security
Signing Code

50 Exploring Palm OS: Security and Cryptography

PRCSign takes your private key and signs a SHA1 hash of all of the
static (unchanging) resources in the PRC along the signature
attributes. PRCSign then adds the resulting output as the 'sign'
resource to your application PRC file. PRCSign also takes a digital
signature and adds it to the PRC as a 'cert' resource in such a
way that the Security Manager can retrieve it for application
certification.

PRCSign supports keys in regular files, and smart cards.

The tools can handle any kind of X.509 certificate as long as the
certificate’s key usage constraints include the ability to sign data.
Certificates that can only sign certificates, and certificates that can
only be used for encryption, are not acceptable. A certificate issued
for signing e-mail, however, is acceptable even though it is not
marked as being able to sign code. This allows for the widest
possible range of certificate-issuing systems or infrastructures to be
used to sign Palm OS software. It is up to the Certificate Manager
acting on behalf of the user or the administrator to further restrict
the suitability of certificates. The tools do not enforce this.

For detailed instructions on using PRCCert and PRCSign, see Palm
OS Resource Tools Guide.

Signed Code and Shared Libraries
Palm OS Cobalt can guarantee the integrity of the shared libraries
that are loaded by an application while it runs. In order to do this
the application has associated with it a list of certificates (the
“shared library certificate ID list”) that authenticate the shared
libraries that are loaded at runtime. The operating system then uses
this list of certificates to authenticate any shared library that is
loaded by the system for the application. If a shared library has a
valid signature (one that can be verified by one of the certificates in
the list), then it is loaded. Otherwise the load is cancelled, and the
application stops running.

The feature in PRCSign that allows the setting of this list is the
–scert parameter. Multiple –scert parameters can be supplied.
Note that the list of shared library certificates must be set when the
PRC is being signed; it cannot be modified after the first signature is
applied. Previous signatures will be invalidated if the list is

Palm OS Cobalt Security
Signing Code

Exploring Palm OS: Security and Cryptography 51

modified; the Application Manager requires that all signatures be
valid when it checks the integrity of the certificate list. If any
signature is determined to be invalid, the application is stopped.

Shared Library Scenarios

Whether or not a given shared library is loaded depends on whether
the application is signed, and whether the shared library’s signature
appears in the application’s shared library certificate ID list.

Unsigned PRC

If the application isn’t signed, the application is run and any needed
shared libraries are loaded without any verification of signatures.

Signed PRC, Empty Shared Library Certificate ID List

If the application is signed but the shared library certificate ID list is
empty, all signatures on the PRC must be valid, or the PRC
execution is halted. Any needed shared libraries are loaded without
signature verification.

Signed PRC, Shared Library Certificate ID List has Entries

If the application is signed and there are entries in the shared library
certificate ID list, all signatures on the PRC must be valid. Any
needed shared libraries must have a signature that can be validated
by one of the certificates in the shared library certificate ID list.

Signed Code and Overlays
Overlays for signed PRC’s must be authenticated before they are
applied. A signed PRC may contain a list of overlay certificate IDs.
This list contains the IDs of certificates that may be used to
authenticate overlays.

The list of overlay certificate IDs is included in the signing hash for
each signature, so if a user or application changes this list all
previous signatures are invalidated.

Prior to applying an overlay to a base PRC, the Locale Manager
must verify that the overlay can be authenticated by one of the
certificates in the “overlay certificate ID list” (from the 'sign'
resource).

Palm OS Cobalt Security
Securing Databases

52 Exploring Palm OS: Security and Cryptography

Overlay Scenarios

Whether or not a given overlay is applied depends on whether the
application is signed, and whether the overlay’s signature appears
in the application’s overlay certificate ID list.

Unsigned PRC

If the application isn’t signed, the application is run and any
overlays are applied without any verification of signatures.

Note that signed overlays may be applied to unsigned PRC files
because the operating system doesn’t check the signature of the
overlay.

Signed PRC, Empty Overlay Certificate ID List

If the application is signed, but its 'sign' resource doesn’t contain
any overlay certificate IDs, any overlay is allowed.

Signed PRC, Overlay Certificate ID List has Entries

If the application is signed and its 'sign' resource contains an
overlay certificate ID list, an overlay must be verified with the
certificate(s) in the list before it will be applied.

Securing Databases
The Data Manager in Palm OS Cobalt supports secure schema
databases. These databases have an Authorization Manager rule set
associated with them that is evaluated when the database is opened
or removed.

The Data Manager defines several different actions that the
application can define access rules for:

• dbActionRead

• dbActionWrite

• dbActionDelete

• dbActionBackup

• dbActionRestore

• dbActionEditSchema

Palm OS Cobalt Security
Securing Databases

Exploring Palm OS: Security and Cryptography 53

There are two functions for creating secure databases:
DbCreateSecureDatabase(), and
DbCreateSecureDatabaseFromImage().

When you first create a secure database, access is only granted to the
creator of that database, and the creator is only allowed to modify
the database’s access-control rule set. Accordingly, an application
that creates a secure database must then set rules for those actions
for which it wants to grant access.

A rule specifies a series of tokens that must be satisfied prior to
access being granted.

The following code shows how to create a secure database that
requires a user password for any action performed on that database.

Listing 1.18 Creating a secure database

AzmRuleSetType dbRuleSet;
AmTokenType usertoken;
UInt32 action = dbActionRead | dbActionWrite | dbActionDelete
 | dbActionBackup | dbActionRestore | dbActionEditSchema;
status_t err;

// Create DB – get AZM ruleset reference
err = DbCreateSecureDatabase(“My DB”, ‘crea’, ‘type’,
 numSchemas, schemaList, &dbRuleSet, &dbID);

// Set user password required for ALL actions
err = AmGetTokenBySystemId(&usertoken, SysUserToken);
err = AzmAddRule(dbRuleSet, action , "%t", usertoken);

Synchronization and Backup of Secure
Databases
“Sync bypass” must enabled for a specific action in order for an
authenticated HotSync agent to be able to complete that action
successfully. You use AzmGetSyncBypass() and
AzmSetSyncBypass() to get and set the sync bypass flag in an
existing rule-set container for a specific action. Sync bypass may be
flagged for any action; it tells the sync server to grant access to
registered sync clients. Sync bypass is used in both synchronization
and backup operations.

Palm OS Cobalt Security
Securing Databases

54 Exploring Palm OS: Security and Cryptography

HotSync and Secure Databases

If sync bypass has been granted for the appropriate actions, any
HotSync client that has registered with the HotSync server may
access a secure database on the device, and any HotSync conduit
may access a secure database from the desktop. Any application can
register with the HotSync Manager (although user confirmation
may be required).

Be aware that synchronizing a secure database exposes it on the
desktop and on the device. The secure database is synchronized “in
the clear,” meaning that the security of the link between the desktop
and the device is up to the HotSync client/server setup. For truly
secure data synchronization is not recommended.

Backing up Secure Databases

The database itself is always backed up encrypted, and the
encryption key is backed up as well. In order to allow the database
to be backed up, the backup action must be set in the bypass vector
of the rule set. As well, all actions must be protected by the user
token: only data that is protected solely by the user password can be
backed up. This is enforced by the Data Manager.

On the desktop the backup image is protected by the user password.
That means that the security of the backup depends on strength of
the password. However, because it is protected by a user password
on both the device and the desktop, the data is no more at risk on
the desktop than it is on the device.

Exploring Palm OS: Security and Cryptography 55

2
SSL Concepts

SSL Library Architecture
The SslLib library is an implementation of the SSL protocol for use
under Palm OS. The API implements an interface that can be used
to perform SSL and non-SSL network I/O. Figure 2.1 is intended to
help show the relationship between the different components of
SslLib and how they interact with the user’s application.

SSL Concepts
SSL Library Architecture

56 Exploring Palm OS: Security and Cryptography

Figure 2.1 SSL library architecture

In this diagram, the following items are labeled.

• Application – This is the user’s application that will be using
the SslLib library to secure its network connections.

Application

Read/Write Records

sys/socket API

Read/Write Buffers

SSL Handshake
Certificate
Verification

SslLib API

I/O Interface

Calls
Callback
Data flow

SSL Concepts
SSL Library Architecture

Exploring Palm OS: Security and Cryptography 57

• sys/socket API – This is the standard sockets API. This
box represents calls into that library.

• SslLib API – This is the Palm OS SslLib API. This box
represents calls into that library via it’s public interfaces.

• SSL – The SSL protocol which is under the SslLib API. This
represents the code that performs the SSL encapsulation of
the application’s data.

• Handshake – The SSL protocol, during the initial connection,
performs a message exchange with the remote SSL server.
This box represents the part of the SSL protocol that
implements this exchange.

• Certificate Verification – As part of the SSL handshake,
certificates need to be verified. This box represents the logic
that performs the certificate verification.

• Read/Write Records – The SSL protocol sends and receives
SSL records. This box represents the data structures used to
keep track of the last record read and the next record to be
written.

• Read/Write Buffers – SslLib buffers incoming and outgoing
data. This box represents the data structures used to hold this
data.

• I/O Interface – This is the code that sends data from a write
buffer to the network, or the code that reads data from the
network and puts it in the read buffer.

The application will call sys/socket directly to configure and
establish a network connection (a descriptor referencing the socket).
Once the socket has been configured, it is passed into SslLib by
associating the socket with an SslContext
(SslContextSet_Socket()). When a read or write call is made
to SslLib, depending on the mode of operation the SslContext is
configured to operate in (SslContextSet_Mode()), either the
data bytes will be directly sent, or they will under go SSL processing
to encrypt and MAC the data. The diagram shows how the data
bytes always go via the SslContext’s read/write buffers. These
buffers are used to store bytes waiting to be sent to the socket and
any extra bytes read from the socket that have not yet been
processed. The SSL protocol initially enters a handshake state,
where the security parameters to use to encrypt and MAC the

SSL Concepts
Critical Extensions

58 Exploring Palm OS: Security and Cryptography

application’s data bytes are determined. As part of this process,
some certificates need to be verified.

The callback arrows indicate where the application can register to
receive notification of activity in those relevant subsystems. The I/
O Interface can return via the info callback
(SslContextSet_InfoCallback()) information about the calls
to the socket APIs. The SSL box callback indicates the notification of
SSL Protocol Alerts that are received (via the info callback). The
handshake callback arrow indicates the calls to the info callback
when-ever the SSL handshake protocol changes state
(SslContextGet_HsState()). The information returned from
these three access points is mostly of interest for debugging reasons.
The final callback, the Verify callback
(SslContextSet_VerifyCallback()) is often used to modify
the policies regarding certificates.

Critical Extensions
Extensions are an optional set of fields in X.509 certificates. Certain
certificates, including SSL certificates, may have extensions. Some of
these extensions may be classified as “critical,” which means that
they should be processed by the entity trying use the certificate.
These extensions are defined by a Certificate Authority (“CA”) to
clarify and restrict the role of the certificate and its purpose. The SSL
library in Palm OS Cobalt version 6.1 and earlier ignores two of
these critical extensions:

Basic Constraints: The BasicConstraints extension is used to
clarify the role and position of the certificate in the CA
hierarchy. That is, root and sub CA certificates may contain a
BasicConstraints extension that identifies them as CA
certificates while end-entity certificates may be clearly
identified as not being such.

Key Usage: KeyUsage extensions define the purpose of the public
key contained in a certificate. The public key may be used for
digital signature, non repudiation, key encipherment, data
encipherment, key agreement, certificate signing, and
certificate revocation list (“CRL”) signing.

SSL Concepts
Attributes

Exploring Palm OS: Security and Cryptography 59

In Palm OS Cobalt version 6.1 and earlier, the SSL library does not
process the BasicConstraints or KeyUsage extensions. If the
SSL library finds a critical extension of any type, the error
CertMgrVerifyFailCriticalExtension is returned to the
application. In practice, this means that an application running on
Palm OS Cobalt version 6.1 that tries to connect to a website that has
a certificate with a critical KeyUsage or BasicConstraints
extension will get this error even if the extension is correct and valid
for the connection.

If a web server is using a certificate that has a KeyUsage extension
indicating a usage not appropriate for SSL, this means that the
certificate is being used for a different purpose than that stipulated
by the Certificate Authority. This basically waives the liability of the
CA for that particular certificate usage. If the root certificate of a
particular end-entity certificate does not have a basic constraint
specifying itself as a CA, or if the end-entity certificate specifies
itself as a CA, that is a potential misuse of the certificate(s).
However, regardless of whether a certificate has a KeyUsage or
BasicConstraints extension that is appropriate or inappropriate
for SSL, if the extension is marked critical, on Palm OS Cobalt
version 6.1 the error CertMgrVerifyFailCriticalExtension
is returned.

On Palm OS Cobalt 6.1 and earlier, it is up to the application to
decide whether to continue or abort the SSL connection when it
encounters a CertMgrVerifyFailCriticalExtension error.
This issue is more related to the liability of a CA for the usage of a
certificate not originally intended for SSL, rather than the actual SSL
processing and the security of the connection.

Attributes
The SslLib library uses two main structures to hold information: the
SslLib structure and the SslContext. The SslContext is used to hold
all information associated with a single SSL network connection. It
contains various flags that govern how the SSL protocol will
operate, and also contains a read buffer and a write buffer where
SSL protocol packets are assembled and disassembled. As part of
the SSL handshake, various structures are created . These include
the security parameters associated with the particular connection

SSL Concepts
Attributes

60 Exploring Palm OS: Security and Cryptography

and the certificate from the SSL server that is on the other end of the
network connection. Quite a large number of these attributes can be
retrieved for debugging and informational reasons. Others can be
set by the application to modify the behavior of the SSL protocol.
The SslLib can be though of as a template for many of these options.
The SslLib can have many of its attributes set, and then when an
SslContext is created using the SslLib, these attributes are inherited
directly. These values are copied into the SslContext, so subsequent
changes to the SslLib’s attributes will not modify any existing
SslContext’s.

Attribututes can be broken into two main classes; integer values,
and pointer values. The integer values are numbers that can be set
or retrieved via the SslLibGetLong(), SslLibSetLong(),
SslContextGetLong() and SslContextSetLong() calls.
These functions are not normally called directly; instead,
applications typically employ those macros declared in
SslLibMac.h. The pointer-based attributes are similarly set or
retrieved using macros; those macros evaluate to calls to
SslLibGetPtr(), SslLibSetPtr(), SslContextGetPtr()
and SslContextSetPtr(). Whenever an attribute is passed in
via a pointer, the type of the pointer is defined by the attribute being
used. The object that the pointer is pointing to is always copied into
the SslLib or SslContext, so the data element that is passed in does
not need to be preserved. There are some exceptions to this rule.
Pointer-based attributes that are retrived from an SslLib or an
SslContext will always be references to objects held inside the SslLib
or SslContext. If the application wishes these values to be
preserved, it should copy them into local storage.

The attributes can be grouped into several categories: some will
always be used, some will be regularly used and will profoundly
modify the behavior of some of SslLib core functions. Some are to
help debugging, and some are used to configure more subtle
protocol specific internal configuration parameters. The following
sections detail each attribute, grouping them by these categories.

SSL Concepts
Attributes

Exploring Palm OS: Security and Cryptography 61

Always-Used Attributes

AutoFlush

This attribute affects the behavior of SslSend() and SslWrite().
When enabled, these functions will attempt to immediately send the
supplied data bytes to the network. If the application performs 200
one-byte SslWrite() calls, this will generate 200 network packets,
each about 80 bytes in size (assuming TCP over Ethernet), for a total
of 16,000 bytes. If this data was buffered, it would have been sent in
a single packet of about 280 bytes. When buffering, there is an
additional advantage in that the write calls will not generate errors
unless the buffer fills. This can be used to simplify routines that
package data for transmission. It is very important to remember to
use the SslFlush() call when AutoFlush is disabled.
SslFlush() will write any data that is in the SslContext’s write
buffer. If an application does not flush this data to the network, the
server application at the other end will not reply, so the application
will probably deadlock, awaiting a response from the server that
will never come because the client has not yet sent its data to the
server.

The internal logic in SslLib is as follows:

Int32 SslWrite(...) {
write_data_to_output_buffer(...);
if (ssl->autoflush)
 flush_output_buffer(...);
}

Auto-flush is enabled by default.

Use the following macros to read and write this attribute:

SslLib Read: SslLibGet_AutoFlush()

SslLib Write: SslLibSet_AutoFlush()

SslContext Read: SslContextGet_AutoFlush()

SslContext Write: SslContextSet_AutoFlush()

CipherSuites

This attribute is used to specify the SSL cipher suites that the SSL
protocol will attempt to use. The pointer refers to an array of UInt8

SSL Concepts
Attributes

62 Exploring Palm OS: Security and Cryptography

bytes that specify the SSLv3 cipher suite values, in the order
desired, to be sent to the SSL Server. The first two bytes, in network
byte order, contain the number of bytes that follow. Following these
two bytes are values selected from “Cipher Suites” on page 344.
Note that each sslCs_RSA_xxx #define is two bytes long.

This value is inherited from the SslLib when an SslContext is
created. Setting CipherSuites with a value of NULL will restore
the use of the default cipher suite list. The default cipher suites list
(including the size bytes) is:

{0x00, 0x08, sslCs_RSA_RC4_128_MD5, sslCs_RSA_RC4_128_SHA1,
sslCs_RSA_RC4_56_SHA1, sslCs_RSA_RC4_40_MD5}

To ensure that an application only uses strong encryption, it should
make the following call:

static UInt8 cipherSuites[]={
 0x00,0x04, /* Number of following bytes
 (each value is two bytes) */
 sslCs_RSA_RC4_128_MD5,
 sslCs_RSA_RC4_128_SHA1
};

SslLibSet_CipherSuites(lib, cipherSuites);
/* To change the cipher suite for an existing SslContext */
SslContextSet_CipherSuites(lib, cipherSuites);

Use the following macros to read and write this attribute:

SslLib Read: SslLibGet_CipherSuites()

SslLib Write: SslLibSet_CipherSuites()

SslContext Read: SslContextGet_CipherSuites()

SslContext Write: SslContextSet_CipherSuites()

Error

When a fatal error occurs while using an SslContext, the internal
error attribute is set to the error value. The application can retrieve
this error value and change it if it desires. Normally an application
will not change this value, but once the error attribute is set, the
SslLib network APIs will continue to return this error (unless the

SSL Concepts
Attributes

Exploring Palm OS: Security and Cryptography 63

error is a non-fatal error) until either an SSL Reset is performed on
the SslContext or the error is cleared, at which point the Error
attribute will be zero. A SSL Reset can be performed with
SslContextSet_Mode():

SslContextSet_Mode(ssl,SslContextGet_Mode(ssl));

Note that SslErrIo is a non-fatal error.

Use the following macros to read and write this attribute:

SslContext Read: SslContextGet_Error()

SslContext Write: SslContextSet_Error()

Mode

This attribute is used to turn the SSL protocol on or off. It applies to
the SslContext, and when set to sslModeClear, causes the SSL
protocol to be bypassed. This can be useful for an application since
it can be written to use the SslLib API, and still perform normal non-
SSL data transfers via that API. This will let an application take
advantage of the buffering provided in an SslContext so that it can
perform buffer reads and buffer writes to the network. When an
SslContext has its Mode attribute changed, an SSL Reset occurs.
This clears any SSL state information and sets the SslContext back to
a state ready to establish a new SSL connection. The SSL Session
information is not cleared. This means that an application can start
in sslModeClear, and then switch to sslModeSslClient. If the
application switches back to sslModeClear, and again over to
sslModeSslClient, a new handshake will be performed.

The SslModeSsl is a subset value of sslModeSslClient. In a
future release of SslLib, the server side of the SSL protocol may be
supported in which case sslModeSslServer would be added.

An application can do the following in order to determine if the SSL
protocol is being used:

If (SslContextGet_Mode(ssl) & sslModeSsl)
 /* SSL protocol enabled */
else
 /* Using cleartext */

SSL Concepts
Attributes

64 Exploring Palm OS: Security and Cryptography

A comparison with sslModeSslClient could be used to
determine if the client or server side of the protocol is being used for
that particular SslContext.

The sslModeFlush flag is special. When supplied to
SslContextSet_Mode(), it causes any data in the internal data
buffers to be cleared. This is normally required when reusing an
SslContext for a new connection. If an application is using an
SslContext for cleartext, and then wants to enable SSL on the same
connection, this flag should not be used.

By default, the mode attribute is set to sslModeSslClient.

Use the following macros to read and write this attribute:

SslLib Read: SslLibGet_Mode()

SslLib Write: SslLibSet_Mode()

SslContext Read: SslContextGet_Mode()

SslContext Write: SslContextSet_Mode()

“Mode Attribute Values” on page 339 lists the values that this
attribute can have.

RbufSize

The read and write buffers are used in the SslContext to buffer
incoming and outgoing data. When these values are set for an
SslLib, SslContexts that are created against the SslLib will inherit
the SslLib’s values.

The write buffer size is the maximum number of bytes that can be
buffered before a network write operation is performed. The
number of application data bytes that can be buffered is less than
this number when in SSL mode—approximately 30 bytes less due to
SSL record overheads. If the application writes a 16 kb block of data
and the write buffer is about 1 kb in size, about 16 network packets
will be sent.

The read buffer is a little different from the write buffer in that it
may be automatically increased is size depending on other
configuration information. The SSLv3 protocol supports SSL
records up to 16 Kbytes in size. Depending on the encryption cipher
being used, the protocol may need to decrypt the record in a single
operation. In this case the read buffer will be increased in size to

SSL Concepts
Attributes

Exploring Palm OS: Security and Cryptography 65

buffer the incoming record. See the ReadStreaming option for
advanced usage of the read buffer to decrease latency of data
availability for the application.

Use the following macros to read and write this attribute:

SslLib Read: SslLibGet_RbufSize()

SslLib Write: SslLibSet_RbufSize()

SslContext Read: SslContextGet_RbufSize()

SslContext Write: SslContextSet_RbufSize()

The read buffer’s default size is 2048 bytes. You can change the size
of the read buffer to any value from 0 to 16384 bytes.

Socket

This call is used to specify the socket that the SslContext should use
to perform its network I/O operations. An SslContext is unable to
perform any network operation until the application creates and
supplies a suitable socket descriptor. The SslLib library does not
perform any operations on the supplied descriptor other than
sendto() and recvfrom(). All socket creation and shutdown
operations must be performed by the application.

Use the following macros to read and write this attribute:

SslContext Read: SslContextGet_Socket()

SslContext Write: SslContextSet_Socket()

VerifyCallback

The callback function is used to assist with certificate verification.
See SslCallbackFunc() (documented on page 373) for more
details on the SslCallback structure and its usages, specifically
when used to assist in certificate verification.

When a new Verify callback is specified, the application passes in a
pointer to an SslCallback structure. This structure is copied into
an internal SslCallback structure. The callback and data fields
are preserved. When the Verify callback structure is copied into an
SslLib, or copied into an SslContext, the callback function is called
with a command of sslCmdNew. When the parent SslLib or
SslContext is destroyed, a sslCmdFree command is issued.. If a

SSL Concepts
Attributes

66 Exploring Palm OS: Security and Cryptography

SSL Reset is performed, a sslCmdReset command is issued.
Outside of these situations, the callback will be called during the
certificate verification process as outlined in the documentation for
the SslCallbackFunc() function.

Use the following macros to read and write this attribute:

SslLib Read: SslLibGet_VerifyCallback()

SslLib Write: SslLibSet_VerifyCallback()

SslContext Read: SslContextGet_VerifyCallback()

SslContext Write: SslContextSet_VerifyCallback()

WbufSize

The read and write buffers are used in the SslContext to buffer
incoming and outgoing data. When these values are set for an
SslLib, SslContexts that are created against the SslLib will inherit
the SslLib’s values.

The write buffer size is the maximum number of bytes that can be
buffered before a network write operation is performed. The
number of application data bytes that can be buffered is less than
this number when in SSL mode—approximately 30 bytes less due to
SSL record overheads. If the application writes a 16 kb block of data
and the write buffer is about 1 kb in size, about 16 network packets
will be sent.

The read buffer is a little different from the write buffer in that it
may be automatically increased is size depending on other
configuration information. The SSLv3 protocol supports SSL
records up to 16 Kbytes in size. Depending on the encryption cipher
being used, the protocol may need to decrypt the record in a single
operation. In this case the read buffer will be increased in size to
buffer the incoming record. See the ReadStreaming option for
advanced usage of the read buffer to decrease latency of data
availability for the application.

Use the following macros to read and write this attribute:

SslLib Read: SslLibGet_WbufSize()

SslLib Write: SslLibSet_WbufSize()

SslContext Read: SslContextGet_WbufSize()

SSL Concepts
Attributes

Exploring Palm OS: Security and Cryptography 67

SslContext Write: SslContextSet_WbufSize()

The write buffer’s default size is 1024 bytes. You can change the size
of the write buffer to any value from 0 to 16384 bytes.

Debugging and Informational Attributes

AppInt32

The AppInt32 attribute is a 32-bit integer value that the application
can read or write as it sees fit. It is present so the application can
attach an arbitrary value to an SslLib or a SslContext.
SslLibDestroy() and SslContextDestroy() do not modify
this attribute, so if the data pointed to by this attribute needs to be
disposed of, the application must do this itself.

Use the following macros to read and write this attribute:

SslLib Read: SslLibGet_AppInt32()

SslLib Write: SslLibGet_AppInt32()

SslContext Read: SslContextGet_AppInt32()

SslContext Write: SslContextSet_AppInt32()

AppPtr

The AppPtr attribute is a pointer value that the application can
read or write as it sees fit. It is present so the application can attach
an arbitrary pointer to an SslLib or a SslContext.
SslLibDestroy() and SslContextDestroy() do not modify
this attribute, so if the data pointed to by this attribute needs to be
disposed of, the application must do this itself. The value of the
AppPtr attribute is NULL by default.

Use the following macros to read and write this attribute:

SslLib Read: SslLibGet_AppPtr()

SslLib Write: SslLibGet_AppPtr()

SslContext Read: SslContextGet_AppPtr()

SslContext Write: SslContextSet_AppPtr()

SSL Concepts
Attributes

68 Exploring Palm OS: Security and Cryptography

CipherSuite

Pass a pointer to a uint8_t pointer in order to retrieve this attribute.
The returned value points to two bytes which identify the cipher
suite being used by the current connection. Possible values for the
cipher suites are:

0x00, 0x00
No cipher suite

0x00, 0x04
sslCs_RSA_RC4_128_MD5

0x00, 0x05
sslCs_RSA_RC4_128_SHA1

0x00, 0x64
sslCs_RSA_RC4_56_SHA1

0x00, 0x03
sslCs_RSA_RC4_40_MD5

Also see the CipherSuites attribute for instructions on specifying
which cipher suites SslLib should advertise as available for use
when it initially connects to the SSL server.

Use the following macro to read this attribute:

SslContext Read: SslContextGet_CipherSuite()

CipherSuiteInfo

This function differs from most others in that the application passes
in a structure to be populated from the SslContext. Normally the
SslContext returns a pointer to an internal data structure. This call
returns the information relevant to the current cipher suite.

Use the following macro to read this attribute:

SslContext Read: SslContextGet_CipherSuiteInfo()

ClientCertRequest

The SSL protocol allows the SSL server to request a certificate from
the client. This attribute will be set if the server requested a client
certificate.

SslContext Read: SslContextGet_ClientCertRequest()

SSL Concepts
Attributes

Exploring Palm OS: Security and Cryptography 69

Compat

Turn on compatibility with incorrect SSL protocol implementations.
These bugs will not normally be encountered while using the SSL
protocol, but if desired, it is worth enabling the compatibility in case
old buggy servers are being accessed.

See “Compatibility Flags” on page 342 for the defined constants that
correspond to the compatibility flags. By default, none of these
compatibility flags are set.

Use the following macros to read and write this attribute:

SslLib Read: SslLibGet_Compat()

SslLib Write: SslLibSet_Compat()

SslContext Read: SslContextGet_Compat()

SslContext Write: SslContextSet_Compat()

HsState

This attribute is the state that the SSL protocol is currently in.
Possible values are defined under “SSL Protocol States” on
page 349. This information is generally only of use during
debugging. See the SSL protocol specification for clarification on
what the values mean.

Use the following macro to read this attribute:

SslContext Read: SslContextGet_HsState()

InfoCallback

This callback is called when various situations occur during the
usage of an SslContext. It is primarily intended for debugging and
feedback purposes. If the callback returns a non-zero value, this
error will be returned back out to the SslLib API. The callback will
be called with a command argument of sslCmdInfo.

A single Info callback is used for notification of four different types
of events. The InfoInterest attribute controls which of these
events will invoke the Info callback.

Use the following macros to read and write this attribute:

SslLib Read: SslLibGet_InfoCallback()

SSL Concepts
Attributes

70 Exploring Palm OS: Security and Cryptography

SslLib Write: SslLibSet_InfoCallback()

SslContext Read: SslContextGet_InfoCallback()

SslContext Write: SslContextSet_InfoCallback()

InfoInterest

This value is used to specify the events for which the
InfoCallback will be called. The value is the logical ORing of the
sslFlgInfoxxx values listed under “InfoInterest Values” on
page 347. The sslFlgInfoIo value controls the notification of the
four different Info Callbacks. By default, the InfoInterest
attribute value is zero.

Use the following macros to read and write this attribute:

SslLib Read: SslLibGet_InfoInterest()

SslLib Write: SslLibSet_InfoInterest()

SslContext Read: SslContextGet_InfoInterest()

SslContext Write: SslContextSet_InfoInterest()

IoFlags

Since we will normally be using TCP connections with SSL, this
attribute is more included for completeness rather than utility. Read
about this flags value in the sendto() and recvfrom() man
pages.

NOTE: The MSG_OOB and MSG_PEEK values are not valid and
will be silently removed.

Use the following macros to read and write this attribute:

SslContext Read: SslContextGet_IoFlags()

SslContext Write: SslContextSet_IoFlags()

IoStruct

The SslContext’s internal SslSocket structure.

Use the following macros to read and write this attribute:

SslContext Read: SslContextGet_IoStruct()

SSL Concepts
Attributes

Exploring Palm OS: Security and Cryptography 71

SslContext Write: SslContextSet_IoStruct()

IoTimeout

The SslContext contains internally a default timeout value to pass to
sys/socket calls. When a call is made into the SslLib API which
does not specify a timeout, this internal value is used. If the API call
has a timeout value, it overrides this internal value.

By default, the SslContext’s internal timeout value is 10 seconds.

Use the following macros to read and write this attribute:

SslContext Read: SslContextGet_IoTimeout()

SslContext Write: SslContextSet_IoTimeout()

LastAlert

The alert values are received from the server and are either fatal or
non-fatal. Non-fatal alerts have a value of the form 0x01XX, while
fatal alerts have the form 0x02XX. SslLib will fail on fatal alerts
and continue on non-fatal alerts. See “SSL Server Alerts” on
page 350 for the complete list of alerts.

Use the following macro to read this attribute:

SslContext Read: SslContextGet_LastAlert()

LastApi

This attribute is the last SslLib API call that was made.
sslLastApiRead is set if SslRead(), SslPeek() or
SslReceive() was called. sslLastApiWrite is set if
SslWrite() or SslSend() was called. This attribute can be
useful in event driven programs.

See “LastApi Attribute Values” on page 347 for the set of values that
this attribute can have.

Use the following macro to read this attribute:

SslContext Read: SslContextGet_LastApi()

LastIo

This function can be called to determine the last network operation.
If SslLib, while performing a network operation, encounters an

SSL Concepts
Attributes

72 Exploring Palm OS: Security and Cryptography

error, the error value will be returned to the application. Since most
of the SslLib API I/O functions can cause an SSL handshake to be
performed, it is often not possible to know if the reason that a
SslSend() returned netErrWouldBlock is because the send
operation failed or a receive operation failed (because a SSL
Handshake was being performed). This attribute allows the
application to determine which I/O operation was being called if an
network error is returned. If the application is using select(),
this attribute is very important. This attribute returns the last
network operation performed. This means that sslLastIoNone
will only be returned if the SslContext has not performed any I/O
operations since its last reset.

See “LastIO Attribute Values” on page 348 for the set of values that
this attribute can have.

Use the following macro to read this attribute:

SslContext Read: SslContextGet_LastIo()

PeerCert

If the certificate supplied by the other end of the SSL connection is
available, the certificate is returned. The returned pointer references
a data structure which is internal to the SslContext and will be
disposed of by the SslContext. If a new connection is established
with the SslContext, previously returned PeerCert pointers will
become invalid. If the application wishes to preserve the certificate
for an extended period, it should make a local copy.

The SslExtendedItems structure is described in “The
SslExtendedItems Structure” on page 380.

Use the following macro to read this attribute:

SslContext Read: SslContextGet_PeerCert()

PeerCommonName

This call will return a pointer to an SslExtendedItems structure
which contains the common name for the server’s certificate. If
using SSL in an https context, the client application should ensure
that the common name contained in the servers certificate matches
the URL requested. This function facilitates this functionality. The
pointer returned refers to a data structure from inside the peer

SSL Concepts
Attributes

Exploring Palm OS: Security and Cryptography 73

certificate; the offset field in the returned value is relative to the
value returned by SslContextGet_PeerCert().

The following code shows how to access the common name from
within the SslExtendedItems structure (see “The
SslExtendedItems Structure” on page 380 for a description of this
structure):

SslExtendedItems *cert;
SslExtendedItem *commonName;
uint16_t length;
uint8_t *bytes;

SslContextGet_PeerCert(ssl, &cert);
if (cert == NULL) goto err;
SslContextGet_PeerCommonName(ssl,&commonName);
length=commonName->len;
bytes=((Int8 *)cert)+commonName->offset;
// bytes now points to the common name, and length contains
// the length of the common name string.

Use the following macro to read this attribute:

SslContext Read: SslContextGet_PeerCommonName()

ProtocolVersion

The version of the SSL protocol to use. There are 3 versions of the
SSL protocol. SSLv2 which is deprecated due to security flaws,
SSLv3 which is the most widely deployed, and TLSv1, or SSLv3.1.
SslLib sends a TLSv1 ClientHello message by default. Note that in
Palm OS Cobalt version 6.0 an attempt to change this protocol
version to SSLv3 via SslContextSet_ProtocolVersion() has
no effect—SslLib continues to send a TLSv1 ClientHello message.

See “Protocol Versions” on page 340 for the defined constants that
correspond to the SSL protocol versions.

Use the following macros to read and write this attribute:

SslLib Read: SslLibGet_ProtocolVersion()

SslLib Write: SslLibSet_ProtocolVersion()

SslContext Read: SslContextGet_ProtocolVersion()

SslContext Write: SslContextSet_ProtocolVersion()

SSL Concepts
Attributes

74 Exploring Palm OS: Security and Cryptography

SessionReused

The SSL protocol has the capability to re-establish a secure
connection with a truncated handshake. This can be performed if
both end-points have communicated previously and share an SSL
Session. An SSL Session is a collection of security attributes that are
normally determined as part of the SSL Handshake. If the SSL
handshake was able to perform a truncated handshake by re-using
the SSL session values in the SslContext, this attribute will have a
non-zero value. See the SslSession attribute.

Use the following macro to read this attribute:

SslContext Read: SslContextGet_SessionReused()

SslSession

This attribute is either the SslSession currently being used, or the
SslSession for this SslContext to use to establish its next
connection. The SslSession holds all the security information
associated with a particular SSL connection. If an SslContext is
configured to use the same SslSession as a previous connection
to the same server, the SSL protocol can perform a truncated
handshake that involves less network traffic and a smaller CPU load
on the server.

If a new connection is performed on the SslContext, or another call
is made to retrieve the SslSession, any previously returned
SslSession pointers will become invalid. If the program wants to
keep the SslSession for an extended period, it should make a
local copy.

Use the following macros to read and write this attribute:

SslContext Read: SslContextGet_SslSession()

SslContext Write: SslContextSet_SslSession()

SslVerify

During certificate verification, an SslVerify structure (see “The
SslVerify Structure” on page 377 for a definition of this structure) is
used in the SslContext to preserve state. The application can
retrieve this structure to help it resolve any problems that SslLib
may have encounterd during certificate verifcation.

SSL Concepts
Attributes

Exploring Palm OS: Security and Cryptography 75

When a certificate is being verified and a verification error occurs, if
the application has registered a VerifyCallback the callback will
be called with an argv value pointing to the SslVerify structure.
If there is no callback, or if the callback still reports an error, SslLib
will return the error back to the application. The application can
then decide to look at the certificate verification state (by calling
SslContextGet_SslVerify()) and, if it determines that the
error is not fatal, clear the error and re-call the SslLib API that just
returned the error.

Use the following macro to read this attribute:

SslContext Read: SslContextGet_SslVerify()

Advanced Protocol Attributes
The following attributes are not normally used. They give access to
various internal aspects of the SSL protocol and or SslLib.

BufferedReuse

The SSL protocol is capable of performing a truncated handshake if
both endpoints share an SslSession from a previous connection. The
truncated handshake finishes with SslLib sending a SSL handshake
message to the SSL server. If the application then sends a message,
say a URL, under some network stacks a significant delay can be
incurred as the TCP protocol waits for a response from the SSL
server’s TCP stack. This option, if enabled, will buffer the last
message in an SslSession-reused handshake instead of sending it
over the network. The application must send data before it tries to
read any, or more to the point, it must make sure the data is flushed,
ether by having AutoFlush enabled, or by explicitly calling
SslFlush(). There are security implications in that a “man in the
middle” attack would only be detected once the first data bytes are
read from the server. This would mean an attacker could have read
all the bytes in the first message sent to the server. For this reason
this option should not be normally used. By default, this attribute is
set to zero, disabling the buffered reuse option.

Use the following macros to read and write this attribute:

SslLib Read: SslLibGet_BufferedReuse()

SslLib Write: SslLibSet_BufferedReuse()

SSL Concepts
Attributes

76 Exploring Palm OS: Security and Cryptography

SslContext Read: SslContextGet_BufferedReuse()

SslContext Write: SslContextSet_BufferedReuse()

DontSendShutdown

During the SSL protocol shutdown sequence, the two SSL endpoints
swap shutdown messages. This can incur a time penalty since extra
messages need to be exchanged over the network. If
DontSendShutdown is set, then a SslClose() will not send a
shutdown message to the server. If DontWaitForShutdown is set,
then SslLib will not wait for a shutdown message in SslClose().
To perform a correct SSL shutdown, these options should not be on.

This attribute has a default value of zero. A non-zero value indicates
that the SSL protocol should be modified.

Use the following macros to read and write this attribute:

SslLib Read: SslLibGet_DontSendShutdown()

SslLib Write: SslLibSet_DontSendShutdown()

SslContext Read: SslContextGet_DontSendShutdown()

SslContext Write: SslContextSet_DontSendShutdown()

DontWaitForShutdown

During the SSL protocol shutdown sequence, the two SSL endpoints
swap shutdown messages. This can incur a time penalty since extra
messages need to be exchanged over the network. If
DontSendShutdown is set, then a SslClose() will not send a
shutdown message to the server. If DontWaitForShutdown is set,
then SslLib will not wait for a shutdown message in SslClose().
To perform a correct SSL shutdown, these options should not be on.

This attribute has a default value of zero. A non-zero value indicates
that the SSL protocol should be modified.

Use the following macros to read and write this attribute:

SslLib Read: SslLibGet_DontWaitForShutdown()

SslLib Write: SslLibSet_DontWaitForShutdown()

SslContext Read: SslContextGet_DontWaitForShutdown()

SslContext Write: SslContextSet_DontWaitForShutdown()

SSL Concepts
Attributes

Exploring Palm OS: Security and Cryptography 77

ReadBufPending

This attribute is the number of data bytes that are currently buffered
for reading from the SslContext. This number of bytes also include
bytes used for encoding SSL records. This attribute is mostly for
debugging purposes.

Use the following macro to read this attribute:

SslContext Read: SslContextGet_ReadBufPending()

ReadOutstanding

This attribute is the number of bytes in the current record that have
not been read from the network. If this value is 0, then all bytes that
have been read from the network have had their MAC checked. If it
is not 0, then the last bytes that have been read have not had their
MAC value checked yet. See the Streaming and ReadStreaming
attributes to see why this value can be useful.

Use the following macro to read this attribute:

SslContext Read: SslContextGet_ReadOutstanding()

ReadRecPending

Unlike ReadBufPending, this attribute is the number of application
data bytes that are buffered, awaiting the application to read. If this
number of bytes is 0, then the next SslRead() or SslReceive()
will cause a recvfrom() call.

Use the following macro to read this attribute:

SslContext Read: SslContextGet_ReadRecPending()

ReadStreaming

The SSL protocol exchanges records between its endpoints. A SSL
record can contain up to 16K bytes of data. This record is encrypted
and protected with a cryptographic checksum call a MAC. If the
network is very low speed (300 baud modem), it can be desirable to
allow data to be returned to the application from the SSL connection
before the full record has been downloaded. If the ReadStreaming
flag is on, this protocol modification is enabled. There are security
implications behind this modification. The record MAC is used to
ensure that the data bytes downloaded have not been modified. If

SSL Concepts
Attributes

78 Exploring Palm OS: Security and Cryptography

the application has been sent a 16K record, and it is read-streaming
and only processing 300 bytes at a time, those bytes could be
corrupted or forged without SslLib notifiying the application of this
error until the last bytes of the 16K of data is sent. This attribute can
be useful if the application is displaying or saving the downloaded
data and does not want to be stuck in a SslRead() for an extended
period of time. Remember that if read-streaming is turned on, the
data may be invalid and you will only receive notification when the
last bytes are read from the record.

This attribute has a default value of zero. A non-zero value indicates
that the SSL protocol should be modified.

Use the following macros to read and write this attribute:

SslLib Read: SslLibGet_ReadStreaming()

SslLib Write: SslLibSet_ReadStreaming()

SslContext Read: SslContextGet_ReadStreaming()

SslContext Write: SslContextSet_ReadStreaming()

Streaming

This attribute returns 1 if the current SslContext is doing read-
streaming. Just because the ReadStreaming attribute is set, that
does not mean the SslLib will use read-streaming.

Use the following macro to read this attribute:

SslContext Read: SslContextGet_Streaming()

WriteBufPending

This attribute returns the number of bytes in the SslContext’s write
buffer waiting to be sent to the remote machine. This value will
normally be zero unless AutoFlush is disabled and/or non-blocking
I/O is being used. A SslFlush() will attempt to write these bytes
to the network.

Use the following macro to read this attribute:

SslContext Read: SslContextGet_WriteBufPending()

SSL Concepts
Sample Code

Exploring Palm OS: Security and Cryptography 79

Sample Code
The following is a simple example that demonstrates the usage of
some of the SslLib libraries functions by way of listing subroutines
that could be used by an application utilizing the SSL protocol.

#include <SslLib.h>

/* We will perform the initial SslLib setup. The SslLib would be
 * created with reasonable default values, which can be modified.
 * Quite a few of these values are
 * 'inherited' during SslContext creation.
 */
Err InitaliseSSL(libRet)
SslLib **libRet;
 {
 SslLib *lib;
 Int16 err;
 lnt32 lvar;

 /* Create the structure */
 if ((err=SslLibCreate(&lib)) != 0)
 return(err);

 /* Make sure we use the SSL protocol by default and increase
 * the write buffer size */
 SslLibSet_Mode(lib,sslModeSslClient);
 SslLibSet_WbufSize(lib,1024*8);

 *libRet=lib;
 return(0);
 }

/* This function would be called to create an sslContext from an open socket
 */
Err CreateSslConnection(SslLib *lib, int socket,SslContext **sslRet)
 {
 SslContext ssl=NULL;
 Int16 err;

 /* We first create a new SslContext.
 * This context will inherit various internal configuration
 * details from the SslLib.
 */
 if ((err=SslContextCreate(lib,&ssl)) != 0)
 return(err);

SSL Concepts
Sample Code

80 Exploring Palm OS: Security and Cryptography

 /* We now specify the socket to use for IO */
 SslContextSet_Socket(ssl,socket);

 /* At this point we could specify the SSL Mode of operation to use,
 * but since we already specified this for the SslLib, we do not
 * need to do it again.
 */
 //SslContextSet_Mode(ssl,sslModeSslClient);

 /* For this example, we will perform the SSL handshake now. */
 err=SslOpen(ssl,0,30*SysTicksPerSecond());

 *sslRet=ssl;
 return(Err);
 }

/* Shutdown the SSL protocol and return the socket */
Err CloseSslConnection(SslContext ssl, int *retSock)
 {
 int socket;
 SslSession *sslSession;
 MemHandle ssHandle;

 /* We will perform a full SSL protocol shutdown. We could have
 * set a flag against the SslContext earlier, or even against the
 * SslLib to specify the shutdown behavior.
 */
 err=SslClose(ssl,0,10*SysTicksPerSecond());

 /* We have now closed the SSL protocol, but the socket is still open
 * and the SslContext still has SslSession information that
 * other connections to the same site may want to use.
 * In this case we ask for a reference to the SslSession.
 * Since this structure is variable in size, once we have a
 * reference to it, we can duplicate it if we want to keep it.
 */
 SslContextGet_SslSession(ssl,&sslSession);

 ssHandle=MemHandleNew(sslSession->length);
 Memcpy(MemHandleLock(ssHandle),sslSession,sslSession->length)
 MemHandleUnlock(ssHandle);
 /* We now have a handle to a SslSession that we can store
 * for later use with a new connection. We would need to store
 * this SslSession with the relevant hostname/url information
 * to ensure we try to reuse it on only the relevant SSL server.
 * This mapping is application/protocol-specific (urls for https).
 */

SSL Concepts
Sample Code

Exploring Palm OS: Security and Cryptography 81

 /* We will return the Socket */
 *retSock=SslContextGet_Socket(ssl);

 /* Throw away the SslContext structure */
 SslContextDestroy(ssl);
 return(0);
 }

Err HTTPS_call(SslContext ssl,char *send,Uint16 len,char *reply,Uint32 *outlen)
 {

 Err err;
 Int16 ret;

 /* We will send the 'send' data, and then wait for the response */
 ret=SslSend(ssl,send,len,0,NULL,0,60*SysTicksPerSecond(),&err)
 if (ret <= 0) goto end;

 ret=SslReceive(ssl,reply,*outlen,0,NULL,0,60*SysTicksPerSecond(),&err);
 if (ret < 0) goto end;
 *outlen=ret;
end:
 return(err);
 }

SSL Concepts
Sample Code

82 Exploring Palm OS: Security and Cryptography

Part II
Reference

This part contains reference documentation for the following:

Authentication Manager 85

Authorization Manager. 129

Certificate Manager 141

CPM Library ARM Interface 169

CPM Library Common Definitions 219

CPM Library Provider 243

Encrypt . 293

Password . 295

Security Services. 299

Signature Verification Library 313

SSL Library . 331

SSL Library Macros 385

Exploring Palm OS: Security and Cryptography 85

3
Authentication
Manager
The Authentication Manager provides abstract methods for
authenticating access to protected objects. It allows modules (plug-
ins) to be written that implement specific authentication scenarios,
such as PIN, PKI, or password. Users of the Authentication
Manager deal with generic interfaces and opaque objects that define
an authentication context.

The Authentication Manager is the authority that can answer the
question “Are you X?” reliably, by utilizing some method of identity
verification. The question “Are you X?” may be asked either about a
user or an application.

The services provided by the Authentication Manager handle the
following tasks: credential (token) management (creation, deletion,
modification, and storage), authentication against stored credentials
(querying user for system password), and a framework for run-time
extensibility via plug-ins.

Every authentication model is a plug-in. Palm OS Cobalt includes
three authentication models: password, signed code, and hashed
code.

The remainder of this chapter documents the Authentication
Manager APIs. It is organized into the following sections:

Authentication Manager Structures and Types. 86

Authentication Manager Constants 92

Authentication Manager Functions and Macros 97

The header file Am.h declares the API that this chapter describes.

Authentication Manager
Authentication Manager Structures and Types

86 Exploring Palm OS: Security and Cryptography

Authentication Manager Structures and Types

AmApplicationCtxType Struct
Purpose A data structure that is prepared by the caller of the Authentication

Manager, it holds information about the application that needs to be
authenticated and other private data specific to the plug-in. The
data for the plug-in is defined by plug-in type.

Declared In Am.h

Prototype typedef struct {
 uint32_t processIDKey;
 AmTokenEnum dataType;
 uint8_t padding1;
 uint16_t padding2;
 union {
 struct {
 char *password;
 uint32_t passwordLength;
 char *hint;
 uint32_t hintLength;
 } passwordCtxType;
 struct {
 uint8_t *certificateId;
 uint32_t certificateIdLength;
 } signatureCtxType;
 struct {
 uint32_t type;
 uint32_t creator;
 char *dbname;
 uint32_t dbnameLength;
 } appFingerprintCtxType;
 struct {
 uint8_t *dataPtr;
 uint32_t dataLength;
 } customCtxType;
 } data;
} AmApplicationCtxType, *AmApplicationCtxPtr

Fields processIDKey
Used during authentication. The key ID of the application
being authenticated must be placed here. Mostly used by the

Authentication Manager
AmApplicationCtxType

Exploring Palm OS: Security and Cryptography 87

Authorization Manager, but anyone calling
AmAuthenticateToken() should fill this member in.

dataType
The type of data being passed. This is one of the
AmTokenEnum values, and it controls which of the data
enum data structures applies.

padding1
Padding bytes.

padding2
Padding bytes.

passwordCtxType
Data structure used when creating a password token.

password
The clear-text password. Depending on the call, this
field is used to verify or set the password.

passwordLength
Length of the password buffer, bytes.

hint
Hint to save in the new password token.

hintLength
Length of the hint buffer, in bytes.

signatureCtxType
Data structure used when creating a signed-code token.

certificateId
ID of the certificate. This field is used during creation.

certificateIdLength
Length of the certificate ID buffer, in bytes.

appFingerprintCtxType
Data structure used when creating a code-fingerprint token.

type
The type of the application’s resource database.

creator
The creator ID of the application’s resource database.

Authentication Manager
AmPluginInfoType

88 Exploring Palm OS: Security and Cryptography

dbname
The name of the application’s resource database.

dbnameLength
The length, in bytes, of the application’s resource
database name.

customCtxType
Data structure used when both creating and verifying a
custom token.

dataPtr
A data buffer passed into the plug-in.

dataLength
The length, in bytes, of the data buffer passed into the
plug-in.

AmPluginInfoType Struct
Purpose A structure through which the Authorization Manager shares

information about a plug-in with applications. Use
AmGetPluginInfo() to get plug-in information.

Declared In Am.h

Prototype typedef struct {
 char friendlyName[amPluginFriendlyNameLength];
 char vendor[amPluginVendorLength];
 uint32_t version;
 AmTokenPropertiesType tokenProperties;
} AmPluginInfoType, *AmPluginInfoPtr

Fields friendlyName
A “friendly” name for the plug-in that can be used for
display purposes.

vendor
A string that identifies the vendor of this plug-in.

version
The plug-in’s version.

tokenProperties
The properties of the tokens that this plug-in creates. A
AmTokenPropertiesType value.

Authentication Manager
AmTokenAttributesType

Exploring Palm OS: Security and Cryptography 89

AmPluginType Typedef
Purpose Reference to a token.

Declared In Am.h

Prototype typedef uint32_t AmPluginType

Comments Supply a token reference of this type when getting information
about a plug-in (AmGetPluginInfo()). When you retrieve a list of
all plug-ins (with AmGetPluginReferences()), you receive a set
of AmPluginType values.

AmTokenAttributesType Struct
Purpose Flags that indicate various token attributes. The plug-in sets these

values and uses them to allow or reject certain actions.

Declared In Am.h

Prototype typedef struct {
 int destroy:1;
 int modify:1;
 int interactive:1;
 int empty:1;
 int system:1;
 int reserved:11;
 uint16_t padding;
} AmTokenAttributesType, *AmTokenAttributesPtr

Fields destroy
The token may be destroyed.

modify
The token can be modified.

interactive
The token is user interactive. That is, it is a password, PIN, or
the like.

empty
The token is empty.

system
The token is a system token.

Authentication Manager
AmTokenInfoType

90 Exploring Palm OS: Security and Cryptography

reserved
Reserved for future use.

padding
Padding bits.

AmTokenInfoType Struct
Purpose The public info block that the plug-in fills in. Applications may

request this info block by calling AmGetTokenInfo().

Declared In Am.h

Prototype typedef struct {
 AmTokenType ref;
 AmTokenEnum type;
 AmTokenCacheSettings cacheSettings;
 AmTokenStrength strength;
 uint8_t rfu;
 AmTokenAttributesType attributes;
 uint8_t systemId[amTokenSystemIdLength];
 char friendlyName[amTokenFriendlyNameLength];
} AmTokenInfoType, *AmTokenInfoPtr

Fields ref
Reference to the token.

type
The token’s type. One of the AmTokenEnum values.

cacheSettings
The cache settings that govern this token. One of the
AmTokenCacheSettings values.

strength
The strength of the token. One of the AmTokenStrength
values.

rfu
Reserved for future use.

attributes
Token attribute flags. See AmTokenAttributesType for the
attribute flag values.

Authentication Manager
AmTokenPropertiesType

Exploring Palm OS: Security and Cryptography 91

systemId
The token’s system ID. Token system IDs will never exceed
amTokenSystemIdLength bytes in length.

friendlyName
A “friendly” name for the token that can be used for display
purposes.

AmTokenPropertiesType Struct
Purpose Structure containing various token properties. Used when creating

or modifying a token with AmCreateToken() or
AmModifyToken().

Declared In Am.h

Prototype typedef struct {
 uint32_t identifier;
 AmTokenEnum type;
 AmTokenStrength strength;
 AmTokenCacheSettings cacheSettings;
 uint8_t rfu;
} AmTokenPropertiesType, *AmTokenPropertiesPtr

Fields identifier
Identifier for the plug-in that will service this token.

type
The token’s type. One of the AmTokenEnum values.

strength
The strength of the token. One of the AmTokenStrength
values.

cacheSettings
The cache settings that will govern this token. One of the
AmTokenCacheSettings values.

rfu
Reserved for future use.

Comments This structure is used during token creation. The application
creating the token fills in the token type, strength and cache settings.

If the token is supported by a custom plug-in, the application
should fill in the custom identifier. The Authentication Manager

Authentication Manager
AmTokenType

92 Exploring Palm OS: Security and Cryptography

will match the custom identifier to the custom identifiers registered
with the Authentication Manager.

AmTokenType Typedef
Purpose Reference to a token.

Declared In Am.h

Prototype typedef uint32_t AmTokenType, *AmTokenPtr

Comments Supply a token reference of this type when creating, modifying,
destroying, or getting information about a token.

Authentication Manager Constants

Well-Known Tokens
Purpose System IDs of various well-known tokens.

Declared In Am.h

Constants #define SysAdminToken "SysAdminToken"
The Administrator token.

#define SysEmptyToken "SysEmptyToken"
The empty token.

#define SysLockOutToken "SysLockOutToken"
The “lockout” token.

#define SysUserToken "SysUserToken"
The User token.

Authentication Manager
Authentication Manager Error Codes

Exploring Palm OS: Security and Cryptography 93

Miscellaneous Authentication Manager
Constants

Purpose The header file Am.h also declares these constants.

Declared In Am.h

Constants #define amInvalidToken 0xFFFFFFFF
An invalid token value. If AmCreateToken() fails, it
returns amInvalidToken as a token value.

#define amPluginFriendlyNameLength 48
The maximum length, in bytes, of a plug-in’s “friendly”
name--a name that can be displayed to the user.

#define amPluginVendorLength 48
The maximum length, in bytes, of a plug-in’s vendor string.

#define AmServiceName "psysAuthenticationMgr"
The name under which the Authentication Manager is
registered with the Service Manager.

#define amTokenFriendlyNameLength 36
The maximum length, in bytes, of a token’s “friendly” name-
-a name that can be displayed to the user.

#define amTokenSystemIdLength 20
The maximum length, in bytes, of a token’s system ID.

#define amTokenTypeIdentifierLength 8

Authentication Manager Error Codes
Purpose Error codes returned by the various Authentication Manager

functions.

Declared In Am.h

Constants #define amErrActionNotSupported (amErrorClass |
0x16)

The required action is not suppoted for this token by its plug-
in.

#define amErrAlreadyRegistered (amErrorClass |
0x0D)

The specified plug-in was already registered.

Authentication Manager
Authentication Manager Error Codes

94 Exploring Palm OS: Security and Cryptography

#define amErrAuthenticationFailed (amErrorClass |
0x10)

The authentication operation failed.

#define amErrBackupInProgress (amErrorClass |
0x17)

A backup is in progress.

#define amErrBufferTooSmall (amErrorClass | 0x14)
The supplied buffer is too small.

#define amErrInvalidImportBuffer (amErrorClass |
0x15)

The supplied import buffer is invalid.

#define amErrInvalidParam (amErrorClass | 0x02)
One or more function parameters is invalid.

#define amErrInvalidPlugin (amErrorClass | 0x0B)
The specified plug-in reference is invalid.

#define amErrInvalidToken (amErrorClass | 0x09)
The specified token reference is invalid.

#define amErrLibNotOpen (amErrorClass | 0x03)
The library has not been opened.

#define amErrLibStillOpen (amErrorClass | 0x04)
An attempt to close the library returned without closing.

#define amErrMaxPlugins (amErrorClass | 0x0A)
The maximum number of plug-ins allowed in the system has
been reached.

#define amErrMaxTokens (amErrorClass | 0x08)
The maximum number of tokens allowed in the system has
been reached.

#define amErrMemory (amErrorClass | 0x06)
An internal memory error occurred.

#define amErrNoPluginsAllowed (amErrorClass |
0x11)

Security is set to high: no plug-ins are allowed.

#define amErrNotFound (amErrorClass | 0x0C)
The named resource was not found.

Authentication Manager
AmAuthenticationEnum

Exploring Palm OS: Security and Cryptography 95

#define amErrNotImplemented (amErrorClass | 0x01)
The plug-in does not implement the requested function.

#define amErrOutOfMemory (amErrorClass | 0x05)
There was insufficient memory to complete the requested
operation.

#define amErrResourceNotFound (amErrorClass |
0x0E)

An Authentication Manager resource or plug-in is missing.

#define amErrTokenDestroyed (amErrorClass | 0x12)
The token was destroyed during the action.

#define amErrTokenExists (amErrorClass | 0x13)
The named token already exists.

#define amErrUnsupportedTokenType (amErrorClass |
0x07)

The requested token type is unsupported.

#define amErrUserCancel (amErrorClass | 0x0F)
The user cancelled the action (such as password gathering).

AmAuthenticationEnum Enum
Purpose An enumeration of the different types of authentication situations.

When calling AmAuthenticateToken() you can pass a situation
so that the plug-in will have an idea of the type of UI to put up for
the user.

Declared In Am.h

Constants AmAuthenticationNone = 0
System use only.

AmAuthenticationOther
Other authentication.

AmAuthenticationDataAccess
Database access.

AmAuthenticationDeviceUnlock
The device is being unlocked.

AmAuthenticationTokenModify
The token is being modified. For instance, the password is
changing.

Authentication Manager
AmTokenCacheSettings

96 Exploring Palm OS: Security and Cryptography

AmTokenCacheSettings Enum
Purpose Different policies that can be applied to a token in the system. The

application creating the token defines the cache settings.

Declared In Am.h

Constants AmTokenCacheNever
The token is not cached.

AmTokenCacheSystem
The token is kept in the system’s token cache.

AmTokenEnum Enum
Purpose An enumeration of the different types of tokens that can be

requested from the system.

Declared In Am.h

Constants AmTokenUnknown = 0
The token type is unknown.

AmTokenCustom
A custom token. See the Comments section, below, for more
on custom tokens.

AmTokenPassword
A password token.

AmTokenSignedCode
A signed code token.

AmTokenCodeFingerprint
A code-fingerprint (hash) token.

Comments These are the most common type of tokens that the device will deal
with. The custom type allows the plug-in to announce a custom
type of plug-in that it will service. If an application requests a
custom type token, the Authentication Manager examines all plug-
ins and find all that match that custom type. Out of all the matches
the best fit is picked to create the token.

Authentication Manager
AmAuthenticateToken

Exploring Palm OS: Security and Cryptography 97

AmTokenStrength Enum
Purpose Token strengths: the minimum level of strength that a plug-in

supports for token creation.

Declared In Am.h

Constants AmTokenStrengthLow
Lowest level. No requirements for token creation.

AmTokenStrengthMedium
Some measures are taken to reject weak tokens.

AmTokenStrengthHigh
The generated token should be guaranteed to not be a weak
token.

Comments A weak token is an authentication token that can be easily guessed
or broken, such as dictionary words for passwords, or weak
cryptography keys.

Authentication Manager Functions and Macros

AmAuthenticateToken Function
Purpose Authenticates a token.

Declared In Am.h

Prototype status_t AmAuthenticateToken (AmTokenType token,
AmApplicationCtxPtr pAppCtx,
AmAuthenticationEnum authType,
char *titleString, char *descriptionString)

Parameters → token
The token to be authenticated.

↔ pAppCtx
A pointer to the application context information. The
application context contains data that the application wishes
to pass to the plug-in. The plug-in may also return data in
this structure.

Authentication Manager
AmAuthenticateToken

98 Exploring Palm OS: Security and Cryptography

→ authType
A hint to the Authentication Manager about why the token is
being authenticated—one of the AmAuthenticationEnum
values. This hint will be passed onto the plug-in that handles
this type of token. The plug-in is free to use the hint as it sees
fit. The hint is useful when the plug-in displays UI to the
user.

→ titleString
An optional string that is passed into the plug-in. The plug-
in may choose to display the string to the user if it is
interactive. The string is meant to be a reason for the
authentication request. Pass NULL if the plug-in doesn’t
display a string or if you don’t want one displayed.

The plug-in will typically display this string on the title of the
modal window for authentication. Accordingly, the string
must fit in the title of the window.

→ descriptionString
An optional string that is passed into the plug-in. The plug-
in may choose to display the string to the user if it is
interactive. The string is meant to be a more in-depth
description of the reason for the authentication request. Pass
NULL if the plug-in doesn’t display a string or if you don’t
want one displayed.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

AmErrInvalidToken
The token reference is invalid.

AmErrAuthenticationFailed
The authentication failed.

AmErrOutOfMemory
The Authentication Manager ran out of memory while
attempting to authenticate the token.

Comments The Authentication Manager invokes the plug-in to gather a new
token, and then calls the plug-in to compare the new token with the
supplied token. If the plug-in decides that they are a match, the
authentication is successful.

Authentication Manager
AmCreateToken

Exploring Palm OS: Security and Cryptography 99

AmCreateToken Function
Purpose Create a new token.

Declared In Am.h

Prototype status_t AmCreateToken (AmTokenPtr pToken,
char *pSystemId, char *pFriendlyName,
AmTokenPropertiesPtr pProperties,
AmApplicationCtxPtr pAppCtx,
Boolean systemToken)

Parameters ← pToken
Pointer to an AmTokenType variable that receives the
reference to the newly-created token. If an error occurs,
*pToken is set to amInvalidToken.

→ pSystemId
Optional system name for this token. This is a system unique
name; applications can later get a reference to this token by
looking up this ID. If this argument is set to NULL, a system
ID will be assigned by the Authentication Manager to this
token.

The name is copied into system space, so it may be de-
allocated by the caller as soon as this function returns.

→ pFriendlyName
Optional pointer to a string buffer containing the “friendly”
name that will be associated with this token. This is a name
that can be displayed to the user.

→ pProperties
A description of the parameters the new token should meet.
The system will attempt to meet all requirements, but this is
not guaranteed. The only parameter that must be met is the
type of token.

↔ pAppCtx
A pointer to the application context information. The
application context contains data that the application wishes
to pass to the plug-in. The plug-in may also return data in
this structure.

→ systemToken
true if this token should be marked as a system token. The
only difference between a non-system token and a system
token is that when they are destroyed, the reference to the

Authentication Manager
AmDestroyToken

100 Exploring Palm OS: Security and Cryptography

token is not invalidated. The Authentication Manager will
keep the token’s reference valid, but the token will be empty
after being destroyed. The notification about the token being
destroyed is still sent to the Authorization Manager.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

AmErrInvalidParam
One of the input parameters is invalid (most likely a NULL
pToken).

AmErrSystemIDInUse
The specified token system ID is already in use.

AmErrSystemIDTooLong
The name was larger than allowed. The token was not
created.

AmErrOutOfMemory
The Authentication Manager ran out of memory

AmErrUnsupportedTokenType
The specified token type is not supported

Comments The token property parameter is used by the caller to describe the
desired properties of the new token. The system will find the plug-
in that best meets these requirements, but does not guarantee that
all (or any) requirements will be met. Once a token has been
created, the caller may call AmGetTokenInfo() to get the
properties of the created token.

See Also AmDestroyToken(), AmModifyToken()

AmDestroyToken Function
Purpose Frees all resources associated with a specified token.

Declared In Am.h

Prototype status_t AmDestroyToken (AmTokenType token,
AmApplicationCtxPtr pAppCtx)

Parameters → token
Reference to the token to destroy.

Authentication Manager
AmDestroyToken

Exploring Palm OS: Security and Cryptography 101

↔ pAppCtx
A pointer to the application context information. The
application context contains data that the application wishes
to pass to the plug-in. The plug-in may also return data in
this structure.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

AmErrInvalidParam
One of the input parameters is invalid.

AmErrInvalidToken
The referenced token does not exist.

AmErrTokenDestructionRejected
Destruction of the token failed, either due to the user
rejecting it, or the plug-in vetoing the destruction, or the
authentication of the protecting token failing.

Comments Call this function when you would like to remove the token from
the system, but cannot authenticate against it prior to its deletion.
(That is, the token is lost).

The Authentication Manager will verify if there are other tokens
protecting the destruction of this token. If there are, those tokens
must be authenticated prior to destruction of the specified token.

The Authentication Manager will verify if the action is allowed with
the plug-in. If it is allowed then the token will be removed, along
with all the data that it protected. Care must be taken when a plug-in
allows destruction of tokens, as the deletion of certain data objects
may leave the system in a non-useful state.

Any application may call this function when a token is lost, even if
they did not create the token. (All data protected by this token is
deleted though, so this doesn’t introduce a security loophole). The
Authentication Manager will display a dialog informing the user
that the destruction of the token will lead to possible data loss.

When the token is destroyed, a notification is broadcast throughout
the system about the token being destroyed.

See Also AmCreateToken(), AmModifyToken()

Authentication Manager
AmGetPluginInfo

102 Exploring Palm OS: Security and Cryptography

AmGetPluginInfo Function
Purpose Get the public info block for a plug-in.

Declared In Am.h

Prototype status_t AmGetPluginInfo (AmPluginType plugin,
AmPluginInfoPtr pInfo)

Parameters → plugin
AmPluginType that references the plug-in for which you
want information.

← pInfo
Pointer to an AmPluginInfoType structure, allocated by
the caller, that is filled in by this function.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

AmErrInvalidParam
pInfo is NULL.

AmErrInvalidPlugin
The reference to the plug-in is invalid.

Comments The AmPluginInfoType data structure contains information
about the plug-in, such as vendor name, friendly name, and
information about the type of tokens that the plug-in can create.

AmGetPluginReferences Function
Purpose Get references to all of the plug-ins registered on the system.

Declared In Am.h

Prototype status_t AmGetPluginReferences
(AmPluginType *refList, uint16_t *pSize)

Parameters ← refList
A caller-allocated array where references to the installed
plug-ins are returned, or NULL to determine how large the
array should be. Each array element is an AmPluginType
that references a single plug-in.

Authentication Manager
AmGetTokenBySystemId

Exploring Palm OS: Security and Cryptography 103

↔ pSize
The number of elements in the refList array. If refList is
NULL, or if the supplied array isn’t large enough, this
function sets *pSize to the required array size.

Returns Returns errNone if the operation completed successfully, or
AmErrBufferTooSmall if the supplied buffer is too small.

Comments When calling this function you must pre-allocate an array of
references and pass the address of this array in refList. If the
buffer is too small or if refList is NULL, the pSize parameter is
set to the required number of entries in the array. Accordingly, you
may want to call this function twice. First, call it with refList set
to NULL in order to obtain the size of the needed buffer. Then, after
allocating a buffer of the proper size, call this function again to
obtain the plug in references.

See Also AmGetPluginInfo()

AmGetTokenBySystemId Function
Purpose Find a token reference given its system ID.

Declared In Am.h

Prototype status_t AmGetTokenBySystemId (AmTokenPtr pToken,
char *pSystemId)

Parameters ← pToken
Pointer to an AmTokenType variable that receives the
reference to the token.

→ pSystemId
The token’s system ID.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

AmErrSystemIDUnknown
The requested token was not found

AmErrInvalidParameter
pToken is NULL

Comments This function allows for the creation of “well known” tokens, such
as the system password, and the admin password on a device.

Authentication Manager
AmGetTokenExtendedInfo

104 Exploring Palm OS: Security and Cryptography

Applications that wish to protect data with the system password
can get a reference to it by invoking this function. See “Well-Known
Tokens” on page 92 for the predefined set of well-known tokens.

AmGetTokenExtendedInfo Function
Purpose Get extra information about this token.

Declared In Am.h

Prototype status_t AmGetTokenExtendedInfo
(AmTokenType token, uint8_t *pExtInfo,
uint32_t *pExtInfolen)

Parameters → token
A reference to the token about which information is needed.

← pExtInfo
Pointer to the buffer into which the information is written, or
NULL to determine how large the buffer should be.

← pExtInfolen
The size of the pExtInfo buffer. If pExtInfo is NULL or if
this parameter’s value indicates that the pExtInfo buffer
isn’t large enough to hold the information to be returned, the
size of the needed buffer is written to *pExtInfolen.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

AmErrInvalidParam
pExtInfo is NULL.

AmErrInvalidToken
The referenced token is invalid.

AmErrBufferTooSmall
pExtInfo is too small to hold the extended information. The
correct size is returned in *pExtInfolen.

AmErrNotSupported
The underlying plug-in doesn’t provide any extra
information about the token.

Comments The plug-in responds to this call directly. For PKI tokens managed
by the Palm OS PKI plug-in, the returned data is the certificate ID of
the token (in an AmPluginSignedCodeExtInfoType structure).

Authentication Manager
AmGetTokenInfo

Exploring Palm OS: Security and Cryptography 105

For tokens managed by the Palm OS Code Fingerprint plug-in, the
returned data contains the type, creator, and name of the database
that was fingerprinted (in an AmPluginCodePrintExtInfoType
structure). For password tokens managed by the Palm OS password
plug-in, the returned data is the hint. No extended information is
available for code-fingerprint tokens managed by the Palm OS
code-fingerprint plug-in.

See Also AmGetTokenInfo()

AmGetTokenInfo Function
Purpose Get the public info block for the referenced token.

Declared In Am.h

Prototype status_t AmGetTokenInfo (AmTokenType token,
AmTokenInfoPtr pInfo)

Parameters → token
A reference to the token about which information is needed.

← pInfo
Pointer to a location into which the contents of the token’s
public info block are written. This should be a
AmTokenInfoType structure.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

AmErrInvalidParam
pInfo is NULL.

AmErrInvalidToken
The referenced token is invalid.

Comments Applications call this function after creating a token to examine the
properties of the generated token.

See Also AmCreateToken(), AmGetTokenExtendedInfo()

Authentication Manager
AmModifyToken

106 Exploring Palm OS: Security and Cryptography

AmModifyToken Function
Purpose Replace or modify an existing token.

Declared In Am.h

Prototype status_t AmModifyToken (AmTokenType token,
AmTokenPropertiesPtr pProperties,
AmApplicationCtxPtr pAppCtxOld,
AmApplicationCtxPtr pAppCtxNew)

Parameters → token
Reference to the token to be modified. The new token
replaces the old token, using the same reference.

→ pProperties
An optional description of the parameters the new token
should meet. The system will attempt to meet all
requirements, but that is not guaranteed. The only parameter
that must be met is the type of token.

If no new properties are specified (pass NULL for this
parameter), the properties of the token being modified are
not changed.

→ pAppCtxOld
A pointer to the application context information as it relates
the token being modified. The caller may place information
required to authenticate the token—such as a password, for a
password token—in the application context.

→ pAppCtxNew
A pointer to the application context information for the new
token that will be created to replace the token being
modified, or NULL. The caller may place information needed
to create the token in this optional parameter.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

AmErrInvalidParam
One of the input parameters is invalid (most likely a NULL
pToken).

AmErrInvalidToken
The specified token was not found.

AmErrOutOfMemory
The Authentication Manager ran out of memory

Authentication Manager
AmRegisterPlugin

Exploring Palm OS: Security and Cryptography 107

AmErrUnsupportedTokenType
Token type is not supported

AmErrModifyRejected
The modification action was rejected: authentication of the
token protecting the to-be-modified token must have failed.

Comments Applications wishing to change tokens, (for instance, to change the
password, clear the password, and so on) use this function. This
function can be used to replace or even remove (by making the
token empty) an authentication token. The token being modified is
destroyed and a new token is created which takes its place.

The actual operation of this function depends on the plug-in.

If the token properties are specified, and a different token type is
requested, then the replacement token that is created will be of a
different type. (For example, you may replace a password token
with a biometric token). This means that the authentication model
is changed.

Tokens may be protected from modification by authentication
contexts. With the help of the Authorization Manager the
Authentication Manager authenticates the user prior to
modification of the token.

After authentication for modify, the Authentication Manager creates
a new token, given the properties supplied in pProperties. The
new token will replace the old token.

See Also AmCreateToken(), AmDestroyToken()

AmRegisterPlugin Function
Purpose Register a plug-in in the Authentication Manager.

Declared In Am.h

Prototype status_t AmRegisterPlugin (uint32_t creator,
Boolean force)

Parameters → creator
The creator ID of the plug-in being registered.

Authentication Manager
AmRemovePlugin

108 Exploring Palm OS: Security and Cryptography

→ force
true to force the registration, even if the plug-in has already
been loaded.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

AmErrOutOfMemory
Out of memory.

AmErrAlreadyRegistered
The plug-in was already registered and force is set to
false.

Comments Note that although you specify the plug-in’s creator, you don’t
specify its type. The plug-in type is implicit: all plug-ins are of type
'ampl'.

The plug-in’s shared library need not be loaded prior to registration.
This function loads and opens the shared library. If you set force to
true, forcing a re-registration, the shared library is closed and
unloaded. Then, it is reloaded and reopened. The reference to the
plug-in doesn’t change: it is re-used. Thus, all tokens still have a
valid reference to their creator.

See Also AmRemovePlugin()

AmRemovePlugin Function
Purpose Remove a registered plug-in.

Declared In Am.h

Prototype status_t AmRemovePlugin (uint32_t creator)

Parameters → creator
The creator ID of the plug-in being removed.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

AmErrNotFound
A plug-in with the specified creator ID has not been
registered.

Authentication Manager
AmRemovePlugin

Exploring Palm OS: Security and Cryptography 109

AmErrHasTokens
Tokens exist for this plug-in, and removing the plug-in
would invalidate them.

Comments In order for this function to work, there must not be any tokens with
references back to this plug-in.

See Also AmRegisterPlugin()

Authentication Manager
AmRemovePlugin

110 Exploring Palm OS: Security and Cryptography

Exploring Palm OS: Security and Cryptography 111

4
AmPlugin
AmPlugin.h declares a set of APIs that are used by Authentication
Manager plug-ins to implement a particular authentication model..
These plug-ins are shared libraries of type 'ampl'. After
initialization, which is done by sending the plug-in standard launch
codes, the Authentication Manager interacts with functions
exported by the plug-in through the AmPluginFunctionsType
structure.

The contents of this chapter are divided into the following sections:

AmPlugin Structures and Types 111

AmPlugin Constants 119

AmPlugin Functions and Macros 120

The header file AmPlugin.h declares the API that this chapter
describes.

For information on writing Authentication Manager plug-ins, see
“Creating an Authentication Manager Plug-In” on page 26.
Information on registering a plug-in with the Authentication
Manager or removing a registered plug-in can be found under
“Manipulating Authentication Manager Plug-Ins” on page 37.

AmPlugin Structures and Types

AmMemHandle Typedef
Purpose Handle to a memory chunk allocated in the vault.

Declared In AmPlugin.h

Prototype typedef uint32_t AmMemHandle

Comments You must use the AmMemHandle... functions to manipulate
Authentication Memory handles. All dynamic memory used by a

AmPlugin
AmPluginFunctionsType

112 Exploring Palm OS: Security and Cryptography

plug-in that is associated with a token should be done through a call
to one of the AmMemHandle... functions.

AmPluginFunctionsType Struct
Purpose Identifies those functions in the set that makes up the interface

between the Authentication Manager and a plug-in that are
implemented by the plug-in.

Declared In AmPlugin.h

Prototype typedef struct {
 status_t (*pluginCaptureFtn)(AmCallMode mode,
 AmApplicationCtxType *pAppContext,
 AmTokenPrivType *pPrivToken,
 AmAuthenticationEnum authType,
 char *title, char *description);
 status_t (*pluginMatchFtn)
 (AmApplicationCtxType *pAppContext,
 AmTokenPrivType *pToken1,
 AmTokenPrivType *pToken2);
 status_t (*pluginDestroyNotifyFtn)
 (AmTokenPrivType *pPrivToken);
 status_t (*pluginGetTokenExtendedInfoFtn)
 (AmTokenPrivType *pPrivToken,
 uint8_t *pExtInfo, uint32_t extInfoLen);
 status_t (*pluginImportTokenFtn)
 (AmTokenPrivType *pPrivToken,
 uint8_t *pBuffer, uint32_t bufferLen);
 status_t (*pluginExportTokenFtn)
 (AmTokenPrivType *pPrivToken,
 uint8_t *pBuffer, uint32_t *bufferLen);
 status_t (*pluginGetDerivedData)
 (AmTokenPrivType *pPrivToken,
 uint8_t *data, uint32_t *dataLength);
 status_t (*pluginAdminFtn)
 (AmPluginType *plugin);
} AmPluginFunctionsType

Fields pluginCaptureFtn
The Capture function is called whenever the AM needs your
plug-in to create a new token, or to verify or replace an

AmPlugin
AmPluginFunctionsType

Exploring Palm OS: Security and Cryptography 113

existing token created by the plug-in. Parameters passed to
this function are:

mode
An AmCallMode that indicates whether the plug-in
should create, verify, or replace a token.

pAppContext
An AmApplicationCtxType structure that holds
information about the application that needs to be
authenticated and other private data specific to the
plug-in.

pPrivToken
An AmTokenPrivType data structure that holds
information regarding the credentials that must be
matched for a valid authentication to occur.

authType
A AmAuthenticationEnum value that identifies the
authentication situation—the reason that the plug-in is
being called.

title
An optional string that the plug-in may choose to
display to the user. The string is meant to be a reason
for the authentication request. This parameter is NULL
if the caller doesn’t want a string to be displayed.

description
An optional string that the plug-in may choose to
display to the user. The string is meant to be a more
in-depth description of the reason for the
authentication request. This parameter is NULL if the
caller doesn’t want such a string to be displayed.

pluginMatchFtn
When the AM needs to verify a token it invokes the
associated plug-in’s Match entry point, passing in two token
structures for comparision. Parameters passed to this
function are:

pAppContext
An AmApplicationCtxType structure that holds
information about the application that needs to be

AmPlugin
AmPluginFunctionsType

114 Exploring Palm OS: Security and Cryptography

authenticated and other private data specific to the
plug-in.

pToken1
An AmTokenPrivType data structure that holds
information regarding the credentials for the first
token being matched.

pPToken2
An AmTokenPrivType data structure that holds
information regarding the credentials for the second
token being matched.

pluginDestroyNotifyFtn
The Destroy Notify entry point is called when a token is
destroyed. Destroying a token is an action that may be taken
if the user has lost the ability to authenticate against that
token (as in the case of a lost password). This function takes a
single parameter:

pPrivToken
An AmTokenPrivType data structure that holds
information about the token being destroyed.

pluginGetTokenExtendedInfoFtn
The Get Extended Info function is used to answer the query
for extended info by an application. A plug-in is not required
to support this entry point, though it can be useful for certain
types of tokens. The Palm OS PKI plug-in returns the
certificate ID of the token (in an
AmPluginSignedCodeExtInfoType structure). The Palm
OS Code Fingerprint plug-in returns the type, creator, and
name of the database that was fingerprinted (in an
AmPluginCodePrintExtInfoType structure). The Palm
OS password plug-in, however, doesn’t implement this
function. Parameters passed to this function are:

pPrivToken
An AmTokenPrivType data structure that holds
information about the token for which extended
information is being requested.

pExtInfo
Pointer to the buffer into which the information is to
be written.

AmPlugin
AmPluginFunctionsType

Exploring Palm OS: Security and Cryptography 115

extInfoLen
The size, in bytes, of the pExtInfo buffer.

pluginImportTokenFtn
The Import and Export entry points are for copying internal
data about a token for import or export. In your import
function, the contents of the provided buffer should be
copied to memory that is associated with a token and is
managed by the plug-in. Parameters passed to this function are:

pPrivToken
An AmTokenPrivType data structure that holds
information about the token being imported.

pBuffer
Pointer to the buffer containing the token info being
imported.

bufferLen
The size, in bytes, of the pBuffer buffer.

pluginExportTokenFtn
The Import and Export entry points are for copying internal
data about a token for import or export. In your export
function, memory that is associated with a token and is
managed by the plug-in should be copied to the provided
buffer and returned to the AM. Parameters passed to this
function are:

pPrivToken
An AmTokenPrivType data structure that holds
information about the token being exported.

pBuffer
Pointer to the buffer into which the token info should
be written.

bufferLen
The size, in bytes, of the pBuffer buffer.

pluginGetDerivedData
The Get Derived Data function is used solely by the
operating system to get seed data for a cryptographic key
derived from an authentication token (such as password
derived keys). Currently the only user of this feature is the
Data Manager; it uses this feature to generate password-

AmPlugin
AmPluginFunctionsType

116 Exploring Palm OS: Security and Cryptography

derived keys for the backup function. Parameters passed to
this function are:

pPrivToken
An AmTokenPrivType data structure that holds
information about the token for which derived data is
being requested.

data
Buffer into which your function should write seed
data derived from the authentication token.

dataLength
Size, in bytes, of the data buffer.

pluginAdminFtn
This function is the admin entry point for the plug-in. Some
plug-ins may have settings that can be changed (a biometric
plug-in, for instance, might allow the user to tweak the
settings it uses to match tokens); accordingly, the plug-in can
implement an admin UI in its implementation of this
function. Parameters passed to this function are:

plugin
A reference to the plug-in.

Comments These functions may return any error defined in Am.h.

Upon receipt of a sysAppLaunchCmdNormalLaunch launch code,
the plug-in should, among other things, identify which of these
functions it implements. Accompanying the launch code is a
AmTokenPrivType structure; this structure’s ftn field is an
AmPluginFunctionsType structure into which you write the
addresses of those functions that your plug-in implements.

AmPlugin
AmPluginPrivType

Exploring Palm OS: Security and Cryptography 117

AmPluginPrivType Struct
Purpose Describes a plug-in. This structure is used by the AM to reference a

plug-in loaded onto the system.

Declared In AmPlugin.h

Prototype typedef struct {
 AmPluginType pluginRef;
 uint32_t recordId;
 AmPluginInfoType info;
 uint32_t tokenDataLength;
 uint32_t tokenExtendedInfoLength;
 AmPluginFunctionsType ftn;
} AmPluginPrivType, *AmPluginPrivPtr

Fields pluginRef
Reference to this plug-in. This field is set by the AM.

recordId
Record ID for this plug-in in the AM vault. This field is set by
the AM.

info
An AmPluginInfoType structure that contains information
about the plug-in to be shared with applications.

tokenDataLength
The size, in bytes, of the tokens managed by this plug-in.

tokenExtendedInfoLength
The length, in bytes, of any extended information that is
returned to caller by the Get Extended Info entry point.

ftn
A list of plug-in entry points. Not all entry point function
pointers need to be initialized: only those entry points that a
plug-in chooses to implement need to be set in this structure.
See AmPluginFunctionsType for the complete set of entry
points a plug-in can export.

Comments An Authentication Manager plug-in fills in a data structure of this
type during initialization. Within this data structure are entry points
that provide the Authentication Manager with direct access to the
plug-in functions.

AmPlugin
AmTokenDataType

118 Exploring Palm OS: Security and Cryptography

See the discussion of the sysAppLaunchCmdNormalLaunch
launch code under “Open and Close” on page 28 for more
information on filling out this structure’s fields.

AmTokenDataType Struct
Purpose An optional linked list of record IDs that identify dynamic data

associated with the token.

Declared In AmPlugin.h

Prototype typedef struct _AmTokenDataTag {
 uint32_t recordId;
 struct _AmTokenDataTag *next;
} AmTokenDataType, *AmTokenDataPtr

Fields recordId
ID of the record that contains the dynamic data.

next
Pointer to the next AmTokenDataType structure in the
linked list, or NULL if there is no additional data.

AmTokenPrivType Struct
Purpose An opaque (to AM clients) data structure that holds information

regarding the credentials that must be matched for a valid
authentication to occur.

Declared In AmPlugin.h

Prototype typedef struct {
 AmTokenInfoType header;
 uint32_t pluginCreatorId;
 uint32_t tokenRecId;
 MemPtr dataPtr;
 uint32_t dataLength;
 AmTokenDataPtr dynamicData;
} AmTokenPrivType, *AmTokenPrivPtr

Fields header
Public information common to all tokens. See
AmTokenInfoType.

AmPlugin
AmCallMode

Exploring Palm OS: Security and Cryptography 119

pluginCreatorId
The creator ID that manages this token. This is the creator ID
of the plug-in.

tokenRecId
Reference to the record ID for this token in the AM vault.

dataPtr
Pointer to the token’s data segment.

dataLength
Length, in bytes, of the token’t data segment.

dynamicData
Pointer to an AmTokenDataType structure that holds
dynamic data associated with the token.

Comments The creation and management of tokens (these structures) is left up
to the authentication plug-in.

AmPlugin Constants

AmCallMode Enum
Purpose Indicates whether the pluginCaptureFtn() entry point function

is being called to create new credentials, verify existing credentials,
or replace existing credentials.

Declared In AmPlugin.h

Constants AmEnrollment = 0
The plug-in should create new credentials.

AmVerification
The plug-in should verify credentials.

AmReplacementStart
First phase of replacing a token. See the Comments section,
below.

AmReplacementEnd
Second phase of replacing a token. See the Comments
section, below.

AmPlugin
AmPlugin Functions and Macros

120 Exploring Palm OS: Security and Cryptography

Comments The replacement mode is used when a credential is being modified.
There are two stages. ReplacementStart is used first. In this
stage the plug-in must authenticate whoever is trying to modify the
token, be it a user or an application. ReplacementEnd is used last;
this is when the plug-in creates the new replacement credentials.

AmPlugin Functions and Macros

AmInitializeUIContext Function
Purpose Locks the UI context and grabs the event queue from the calling

thread.

Declared In AmPlugin.h

Prototype status_t AmInitializeUIContext (void)

Parameters None.

Returns Always returns errNone.

Comments If your plugin needs to interact with the user, at the point where you
need to display some form of UI it should call
WinStartThreadUI(), then it should call this function.

If the UI context is currently locked when this function is called, this
function blocks until it is released.

See Also AmReleaseUIContext()

AmMemHandleFree Function
Purpose Deallocates a dynamically-created memory chunk and disassociates

it from the associated token.

Declared In AmPlugin.h

Prototype void AmMemHandleFree (AmTokenPrivType *pPrivToken,
AmMemHandle hMem)

Parameters → pPrivToken
Pointer to the token with which the memory chunk is
associated.

AmPlugin
AmMemHandleLock

Exploring Palm OS: Security and Cryptography 121

→ hMem
Pointer to the memory chunk to be freed. This memory
chunk must have been allocated with AmMemHandleNew().

Returns Nothing.

Comments The memory chunk being freed should not be locked when this
function is called.

See Also AmMemHandleNew(), MemHandleFree()

AmMemHandleLock Function
Purpose Obtain a pointer to a chunk of memory referenced by an

AmMemHandle.

Declared In AmPlugin.h

Prototype MemPtr AmMemHandleLock (AmMemHandle hMem)

Parameters → hMem
Handle to the memory chunk. This handle must have been
returned from AmMemHandleNew().

Returns A pointer to the memory chunk, or NULL if the chunk couldn’t be
locked.

Comments This function does not return a pointer to the actual memory chunk
in the vault. Instead, an ordinary memory buffer of the
corresponding size is allocated using MemPtrNew() and the
contents of the vault chunk are copied into it. The pointer to this
new buffer is returned. When AmMemHandleUnlock() is called,
the buffer’s contents are copied back to the vault and the buffer
allocated during the call to AmMemHandleLock() is freed.

See Also AmMemHandleNew(), AmMemHandleUnlock(),
MemHandleLock()

AmPlugin
AmMemHandleNew

122 Exploring Palm OS: Security and Cryptography

AmMemHandleNew Function
Purpose Allocates a memory chunk of a specified size in the vault and

associates it with a specified token.

Declared In AmPlugin.h

Prototype AmMemHandle AmMemHandleNew
(AmTokenPrivType *pPrivToken, uint32_t size)

Parameters → pPrivToken
Pointer to the token with which the record is to be associated.

→ size
Size, in bytes, of the memory chunk to be allocated.

Returns Returns a handle to the newly-allocated memory chunk, or 0 if the
chunk could not be allocated as specified.

Comments The newly-allocated memory chunk is actually a database record of
the specified size.

You must call AmMemHandleLock() in order to obtain a pointer to
a buffer into which you can write (or from which you can read).

See Also AmMemHandleFree(), AmMemHandleLock(), MemHandleNew()

AmMemHandleUnlock Function
Purpose Unlocks a vault memory chunk previous locked with

AmMemHandleLock().

Declared In AmPlugin.h

Prototype void AmMemHandleUnlock (AmMemHandle hMem,
MemPtr pMem)

Parameters → hMem
Handle to the vault memory chunk previously allocated with
AmMemHandleNew().

→ pMem
Pointer to the memory buffer returned from a call to
AmMemHandleLock().

Returns Nothing.

AmPlugin
AmReleaseUIContext

Exploring Palm OS: Security and Cryptography 123

Comments This function copies the contents of the memory buffer pMem to the
memory chunk in the vault referenced by hMem. It then frees the
buffer pMem.

See Also AmMemHandleLock(), AmMemHandleNew(),
MemHandleUnlock()

AmReleaseUIContext Function
Purpose Unlock the UI context, and release the event queue.

Declared In AmPlugin.h

Prototype status_t AmReleaseUIContext (void)

Parameters None.

Returns Always returns errNone.

Comments As soon as possible after the AM plugin is done interacting with the
user, it should call this function and then it should call
WinFinishThreadUI().

See Also AmInitializeUIContext()

AmPlugin
AmReleaseUIContext

124 Exploring Palm OS: Security and Cryptography

Exploring Palm OS: Security and Cryptography 125

5
AmPluginCodePrint
This data structure is used by the Code Fingerprint plug-in to the
Authentication Manager. It provides extra information about the
tokens managed by the plug-in.

AmPluginCodePrint Structures and Types 125

The header file AmPluginCodePrint.h declares the API that this
chapter describes.

See Chapter 1, “Palm OS Cobalt Security,” on page 3 for more
information about the Authentication Manager and AM plug-ins.

AmPluginCodePrint Structures and Types

AmPluginCodePrintExtInfoType Struct
Purpose Data structure returned by the standard Code Fingerprint plug-in

when extended token information is requested by calling
AmGetTokenExtendedInfo().

Declared In AmPluginCodePrint.h

Prototype typedef struct {
 uint32_t type;
 uint32_t creator;
 char name[32];
} AmPluginCodePrintExtInfoType

Fields type
The type of the database that was fingerprinted.

creator
The creator ID of the database that was fingerprinted.

name
The name of the database that was fingerprinted.

AmPluginCodePrint
AmPluginCodePrintExtInfoType

126 Exploring Palm OS: Security and Cryptography

Exploring Palm OS: Security and Cryptography 127

6
AmPluginSignedCode
This data structure is used by the Signed Code plug-in to the
Authentication Manager. It provides extra information about the
PKI tokens managed by the plug-in.

The header file AmPluginSignedCode.h declares the API that this
chapter describes.

See Chapter 1, “Palm OS Cobalt Security,” on page 3 for more
information about the Authentication Manager and AM plug-ins.

AmPluginSignedCode Structures and Types

AmPluginSignedCodeExtInfoType Struct
Purpose Data structure returned by the standard PKI plug-in when extended

token information is requested by calling
AmGetTokenExtendedInfo().

Declared In AmPluginSignedCode.h

Prototype typedef struct {
 SignCertificateIDType certID;
} AmPluginSignedCodeExtInfoType

Fields certID
The certificate ID.

AmPluginSignedCode
AmPluginSignedCodeExtInfoType

128 Exploring Palm OS: Security and Cryptography

Exploring Palm OS: Security and Cryptography 129

7
Authorization
Manager
The Authorization Manager is the top-level component in the
security suite that enables protection of objects in the operating
system. The Authorization Manager is designed around the Access
Control List paradigm.

The Authorization Manager maintains a list of rule-set containers
that represent protected objects. Associated with each rule-set
container is the protected object’s fully-qualified name as defined by
the creator of the protected object and one or more rules specifying
how the object referenced by the Access Control List container is
protected. Each rule is an association between one or more actions
that could be performed on the object and the set of authentications
required to perform those actions.

The Authorization Manager relies on the managers of objects to
provide a fully-qualified name for the objects they want to protect,
and to define what actions can be performed on those objects.

The remainder of this chapter documents the Authorization
Manager APIs. It is organized into the following sections:

Authorization Manager Structures and Types 130

Authorization Manager Constants 131

Authorization Manager Functions and Macros 134

The header file azm.h declares the API that this chapter describes.

Authorization Manager
Authorization Manager Structures and Types

130 Exploring Palm OS: Security and Cryptography

Authorization Manager Structures and Types

AzmActionType Typedef
Purpose Defines a bitmap of actions. Each bit in the AzmActionType value

corresponds to a different rule.

Declared In azm.h

Prototype typedef uint32_t AzmActionType

AzmNotificationType Struct
Purpose Data structure that accompanies notifications sent by the

Authorization Manager.

Declared In azm.h

Prototype typedef struct {
 union {
 struct {
 uint8_t name [azmRuleSetNameMaxLength];
 uint32_t length;
 } ruleSetDestroyed;
 } data;
 uint16_t version;
 uint16_t padding;
} AzmNotificationType

Fields data
A union of structures, one for each of the notifications that
can be sent.

ruleSetDestroyed
The data variant that applies to
AzmNotificationRuleSetDestroyed
notifications. This structure has two fields: the name of
the rule-set being destroyed, and the length of that
name.

version
The version of the AzmNotificationType structure. The
structure as detailed above is version 1.

Authorization Manager
Miscellaneous Authorization Manager Constants

Exploring Palm OS: Security and Cryptography 131

padding
Padding bytes.

AzmRuleSetType Typedef
Purpose An opaque handle to an rule-set container managed by the

Authorization Manager.

Declared In azm.h

Prototype typedef uint32_t AzmRuleSetType

Authorization Manager Constants

Miscellaneous Authorization Manager
Constants

Purpose The header file azm.h also declares these constants.

Declared In azm.h

Constants #define azmActionModify 0x80000000
Predefined MODIFY action. This action may not be
redefined. This is an Authorization Manager-specific action
which gates the modification of a rule-set container. A
modification of a rule-set container is defined as creation
(always allowed), addition or modification of ACE entries, or
destruction.

#define azmCreator 'azm_'
Creator ID used for the vault that contains secure databases.

#define azmInvalidRuleSet 0xFFFFFFFF
Rule-set handle value representing an invalid rule-set.

#define azmMaxTokenNodes 2
Maximum number of token nodes.

#define azmMaxTokensInNode 8
Maximum number of tokens that can be placed into a single
node.

Authorization Manager
Authorization Manager Error Codes

132 Exploring Palm OS: Security and Cryptography

#define azmMaxTokensInTree azmMaxTokenNodes *
azmMaxTokensInNode

The maximum number of tokens that can occur in an access
rule.

#define AzmNotificationRuleSetDestroyed 0x1
“Rule-set destroyed” notification callback opcode.

#define azmRuleFormatLength 60
The maximum length in bytes (including the null terminator)
of a rule format string.

#define azmRuleSetNameMaxLength 20
The maximum length, in bytes, of an Authorization Manager
rule-set name.

#define AzmServiceName "psysAuthorizationMgr"
The name under which the Authorization Manager is
registered with the Service Manager.

#define azmSyncRuleSet 0x00800000
Handle to the rule-set container for synchronization.

Authorization Manager Error Codes
Purpose Error codes returned by the various Authorization Manager

functions.

Declared In azm.h

Constants #define azmErrAlreadyExists (azmErrorClass | 19)
The specified rule-set already exists.

#define azmErrAuthorizationFailed (azmErrorClass |
9)

The authorization request has failed.

#define azmErrBackupInProgress (azmErrorClass |
17)

A backup is in progress.

#define azmErrBadParam (azmErrorClass | 1)
One of the supplied parameters is invalid.

#define azmErrInvalidParameter (azmErrorClass |
18)

One of the supplied parameters is invalid.

Authorization Manager
Authorization Manager Error Codes

Exploring Palm OS: Security and Cryptography 133

#define azmErrInvalidReference (azmErrorClass | 8)
The reference to the rule-set container is invalid.

#define azmErrInvalidRuleSyntax (azmErrorClass |
16)

The syntax of the supplied rule definition is invalid.

#define azmErrInvalidTokenReference (azmErrorClass
| 15)

The token reference is invalid.

#define azmErrMaxRuleSets (azmErrorClass | 5)
The system already has the maximum number of rule sets
allowed.

#define azmErrMemory (azmErrorClass | 6)
The Authorization Manager encountered a memory error.
This may indicate a possible out-of-memory condition.

#define azmErrMgrAlreadyRegistered (azmErrorClass
| 13)

The manager creator ID is already registered.

#define azmErrMgrNotRegistered (azmErrorClass |
10)

A request was recieved from an unregistered manager.

#define azmErrNotFound (azmErrorClass | 12)
The rule-set being looked up was not found.

#define azmErrNotImplemented (azmErrorClass | 2)
The Authorization Manager attempted to perform an
unimplemented operation.

#define azmErrNotOpen (azmErrorClass | 3)
The library has not been opened.

#define azmErrOutOfMemory (azmErrorClass | 7)
There is insufficient memory to complete the requested
operation.

#define azmErrRestrictedAPI (azmErrorClass | 11)
This call can only be made from a registered manager.

#define azmErrStillOpen (azmErrorClass | 4)
The library is opened by others and cannot be closed.

Authorization Manager
Authorization Manager Functions and Macros

134 Exploring Palm OS: Security and Cryptography

#define azmErrTooManyTokensInRule (azmErrorClass |
14)

You have exceeded the limit on the number of tokens per
rule.

Authorization Manager Functions and Macros

AzmAddRule Function
Purpose Adds an access rule to an existing rule-set container for a specific

action bitmap.

Declared In azm.h

Prototype status_t AzmAddRule (AzmRuleSetType ruleset,
AzmActionType action, char *rulefmt, ...)

Parameters → ruleset
A valid handle to a rule-set container managed by the
Authorization Manager.

→ action
Bitmap of actions to apply these rules to.

→ rulefmt
A rule format string of the form: [%t]+ (OR [%t]*)?. This
string should not exceed azmRuleFormatLength bytes in
length.

→ ...
A variable argument list containing a valid AmTokenType
for each “%t” in the rule format string.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

azmErrParam
The rule format string is invalid.

azmErrMemory
Out of memory, or the Authorization Manager detected an
invalid internal memory structure.

azmErrInvalidReference
ruleset is invalid.

Authorization Manager
AzmAddRule

Exploring Palm OS: Security and Cryptography 135

azmErrAuthorizationFailed
The modify rule-set rule was not authenticated properly.

azmErrTooManyTokensInRule
Your rule has too many tokens. A given rule cannot have
more than azmMaxTokensInTree tokens.

Comments The rule format string is in the canonical form “%t (OR %t)”. That
is, at least one “%t”. This may be followed by “ OR %t” to indicate
the right hand side of the ACE rule. In the right hand side of the
ACE rule there may be zero or more “%t” references.

There must be a valid AmTokenType in the variable argument list
for each “%t” in the rule format string.

If the action referenced in the function call already has a rule
associated with it, the rule is replaced. See “Schema Database Access
Rule Action Types” on page 301 of Exploring Palm OS: Memory,
Databases, Files for the set of constants that correspond to those
schema database actions for which you can set access rules. For an
example of how to use this function to secure a schema database,
see “Securing Databases” on page 52.

Although this function is usually called by applications, it can be
called from anywhere. However, in order for the call to succeed you
must pass the rule-set container modify rule. To create a rule that
allows access to anyone, use the well-known system token
amEmptyToken and create a rule that only contains that token for
the action you wish to allow free access to. For example,

AmGetTokenBySystemId(&token, “empty”);
AzmAddRule(ruleSetRef, action, “%t”, token);

Authorization Manager
AzmGetSyncBypass

136 Exploring Palm OS: Security and Cryptography

AzmGetSyncBypass Function
Purpose Get the state of the sync bypass flags.

Declared In azm.h

Prototype status_t AzmGetSyncBypass
(AzmRuleSetType ruleset,
uint32_t *statebitfield)

Parameters → ruleset
A reference to the rule-set container for which the bypass
settings are being requested.

← statebitfield
A bitmap of the actions. If a bit is set for a specific action then
its bypass flag is set.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

azmErrInvalidReference
ruleset is invalid

azmErrBadParam
statebitfield is NULL.

Comments Upon return *statebitfield contains a 1 for each state that has
bypass enabled. Checking for a flag is easy. For instance, to see if
sync bypass it set for ACTION_READ, simply do the following:

if ((stateBitField & ACTION_READ) > 0)

Note that it is not possible to set a sync bypass for Authorization
Manager actions such as ACTION_MODIFY.

See Also AzmSetSyncBypass()

Authorization Manager
AzmNonInteractiveAuthorize

Exploring Palm OS: Security and Cryptography 137

AzmNonInteractiveAuthorize Function
Purpose Authorize an action given a rule-set reference.

Declared In azm.h

Prototype status_t AzmNonInteractiveAuthorize
(AzmRuleSetType ruleSet, AzmActionType action,
uint32_t appIdentityKeyId)

Parameters → ruleSet
A valid handle to a rule-set container managed by the
Authorization Manager.

→ action
A bitmap of the action to authorize. Only one action may be
authorized.

→ appIdentityKeyId
The keyID for the application ID key that was passed in to
the manager during the action request message.

Returns errNone if the authorization request succeeds. Otherwise, this
function returns one of the following:

azmErrInvalidReference
The reference to the Authorization Manager rule-set
container is invalid.

azmErrParam
The action paarameter is empty. That is, it has a value of 0.

azmErrMemory
An internal memory error occurred.

azmErrAuthorizationFailed
Authorization failed.

Comments The authorization function treats all interactive tokens as failed
authentications (without calling the Authentication Manager for
authentication), therefore the result is whether a non-interactive
authorization succeeds. This means that the device won’t bother the
user while this function is in operation.

The rule-set container must have been created prior to calling this
function.

Authorization Manager
AzmSetSyncBypass

138 Exploring Palm OS: Security and Cryptography

AzmSetSyncBypass Function
Purpose Set the state of the sync bypass flags.

Declared In azm.h

Prototype status_t AzmSetSyncBypass
(AzmRuleSetType ruleset, AzmActionType action,
Boolean state)

Parameters → ruleset
A reference to the rule-set container for which the bypass
settings are to be modified.

→ action
A bitmap of the actions. If a bit is set for a specific action then
its bypass flag is set, otherwise it is cleared.

→ state
What state to set the relationship to: true corresponds to
“allow sync,” while false corresponds to “disallow sync.”

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

AzmErrInvalidReference
ruleset is invalid.

AzmErrAuthorizationFailed
Authorization of the rule-set container modify rule failed.
You must be the manager that created the rule-set.

Comments Every rule-set can have a set of sync-bypass flags associated with it.
These bypass flags can be enabled or disabled on a per-action basis.

When sync-bypass is enabled for a specific action, an authenticated
sync agent will be able to complete that action successfully. (The
sync-bypass rules takes care of authenticating sync agents). For
example, if a data manager object (protected database) sets sync
bypass for the READ action, a sync agent such as HotSync can
access the contents of the database for READ only, thus enabling
one-way sync.

Although this function can be called from anywhere, only callers
that pass the ACTION_MODIFY rule will succeed in setting a
bypass flag.

See Also AzmGetSyncBypass()

Authorization Manager
AzmSetSyncBypass

Exploring Palm OS: Security and Cryptography 139

Authorization Manager
AzmSetSyncBypass

140 Exploring Palm OS: Security and Cryptography

Exploring Palm OS: Security and Cryptography 141

8
Certificate Manager
The Certificate Manager manages digital certificates, handling such
operations as import, export, parsing, secure storage, content
authentication, and storage querying. You can use the Certificate
Manager in two different ways: as a certificate verifier and parser,
and as a certificate store. In the verifier/parser mode, the Certificate
Manager takes data as input and parses it as a digital certificate. The
user can then verify the certificate and access its internal fields. In
certificate store mode, the Certificate Manager can securely store a
tree of digital certificates (with multiple roots) and make the fields
of those certificates available to users.

The Certificate Manager is a system server with a client-side library.
To securely store certificates, the Certificate Manager makes use of
the Data Manager’s vault facilities.

The remainder of this chapter documents the Certificate Manager
APIs. It is organized into the following sections:

Certificate Manager Structures and Types. 142

Certificate Manager Constants. 146

Certificate Manager Element Field Macros 154

Certificate Manager Functions and Macros 156

The header file CertificateMgr.h declares the API that this
chapter describes.

Certif icate Manager
Certificate Manager Structures and Types

142 Exploring Palm OS: Security and Cryptography

Certificate Manager Structures and Types

CertMgrCertChainType Struct
Purpose A certificate chain is used when calling CertMgrVerifyCert().

You may define a list of certificates to be used when trying to verify
the certificate chain.

Declared In CertificateMgr.h

Prototype typedef struct {
 CertMgrCertInfoType *certs;
 uint32_t count;
} CertMgrCertChainType

Fields certs
Pointer to the first certificate in the chain.

count
Number of certificates in the chain.

CertMgrCertElementEnum Typedef
Purpose Certificate element types, used in conjunction with

CertMgrGetField().

Declared In CertificateMgr.h

Prototype typedef uint32_t CertMgrCertElementEnum

Constants #define apCertMgrElementTypeRDN 34

#define apCertMgrElementTypeRSA 33

#define apCertMgrElementTypeX509Cert 32

#define apCertMgrElementTypeX509Extensions 35

Certif icate Manager
CertMgrCertInfoType

Exploring Palm OS: Security and Cryptography 143

CertMgrCertFieldEnum Typedef
Purpose Certificate element field types, used in conjunction with

CertMgrGetField().

Declared In CertificateMgr.h

Prototype typedef uint32_t CertMgrCertFieldEnum

Comments The values used with variables of this type depend on the certificate
element. Depending on the certificate element, the element’s field
types are listed under one of the following:

• “X509Cert Element Fields” on page 146

• “RSA Element Fields” on page 148

• “RDN Element Fields” on page 148

• “X509Extensions Element Fields” on page 149

CertMgrCertInfoType Struct
Purpose Abstracts a certificate object. An application uses a structure of this

type to refer to a certificate in the memory address space of the
Certificate Manager. You can get a reference to a certificate from a
successful call to CertMgrImportCert() or
CertMgrFindCert()

Declared In CertificateMgr.h

Prototype typedef struct {
 uint32_t ref;
 uint16_t format;
} CertMgrCertInfoType

Fields ref
An opaque object.

format
The format of the certificate. See “Certificate Formats” on
page 150 for the defined set of certificate format values.

Certif icate Manager
CertMgrCertSearchEnum

144 Exploring Palm OS: Security and Cryptography

CertMgrCertSearchEnum Typedef
Purpose Specifies the search mode to CertMgrFindCert().

Declared In CertificateMgr.h

Prototype typedef uint32_t CertMgrCertSearchEnum

Constants #define apCertMgrSearchCert 1000
In this mode, repeated calls to CertMgrFindCert() iterate
through the certificates in the store, each time returning the
certificate that resides at the location indicated by the index
parameter. Each time CertMgrFindCert() is called, the
index parameter is incremented. Accordingly, you can use
this mode to iterate through all of the certificates in the
certificate store.

#define apCertMgrSearchCertID 1001
Causes CertMgrFindCert() to look for a certificate with a
certID that matches that supplied in the reference
parameter. The data in reference should be a 20-byte
certID.

#define apCertMgrSearchSubjectRDN
apCertMgrFieldSubjectRDN

Causes CertMgrFindCert() to look for a certificate whose
SubjectRDN matches the one in the reference parameter.

CertMgrElementListType Struct
Purpose Structure that represents a list of elements. CertMgrGetField()

fills out this structure.

Declared In CertificateMgr.h

Prototype typedef struct {
 uint32_t length;
 uint32_t count;
 CertMgrElementType element[1];
} CertMgrElementListType

Fields length
The length of this structure, including all of the
CertMgrElementType structures needed to contain all of
the list’s fields.

Certif icate Manager
CertMgrVerifyResultType

Exploring Palm OS: Security and Cryptography 145

count
The number of fields—that is, the number of
CertMgrElementType structures—in the list.

element
The first element. Subsequent elements follow this one.

CertMgrElementType Struct
Purpose Structure that represents a single field.

Declared In CertificateMgr.h

Prototype typedef struct {
 uint16_t type;
 uint16_t field;
 uint16_t dataType;
 uint16_t length;
 uint32_t offset;
} CertMgrElementType

Fields type
The certificate element type. One of the
CertMgrCertElementEnum values.

field
The element field identifier. One of the values listed under
“X509Cert Element Fields,” “RSA Element Fields,” “RDN
Element Fields,”or “X509Extensions Element Fields.”

dataType
The field’s data type. One of the values listed under “Data
Types” on page 149.

length
The length, in bytes, of the field data.

offset
The offset, in bytes, to the beginning of the field data.

CertMgrVerifyResultType Struct
Purpose If a certificate fails to verify during a call to

CertMgrVerifyCert() or CertMgrAddCert(), this structure is

Certif icate Manager
Certificate Manager Constants

146 Exploring Palm OS: Security and Cryptography

filled in and returned to indicate the reason for the verification
failure.

Declared In CertificateMgr.h

Prototype typedef struct {
 uint32_t failureCode;
 CertMgrCertInfoType cert;
 uint32_t depth;
 uint32_t state;
 DateTimeType verifyTime;
} CertMgrVerifyResultType

Fields failureCode
The reason for the verification failure. See “Certificate
Verification Failure Codes” on page 152 for the set of values
that can be returned in this field.

cert
The certificate that failed to verify.

depth
How deep the failed certificate is.

state
The verification state.

verifyTime
The date and time against which the certificate was verified.

Certificate Manager Constants

X509Cert Element Fields
Purpose Fields in an X509Cert element.

Declared In CertificateMgr.h

Constants #define apCertMgrElementFieldEntireCert 17

#define apCertMgrElementFieldExtension 200

#define apCertMgrElementFieldExtensions 23

#define apCertMgrElementFieldInnerDER 1

#define apCertMgrElementFieldIssuerID 15

Certif icate Manager
X509Cert Element Fields

Exploring Palm OS: Security and Cryptography 147

#define apCertMgrElementFieldIssuerRDN 4

#define apCertMgrElementFieldIssuerUniqueID 21

#define apCertMgrElementFieldNotAfter 7

#define apCertMgrElementFieldNotBefore 6

#define apCertMgrElementFieldPubKeyBER 8

#define apCertMgrElementFieldSerialNumber 3

#define apCertMgrElementFieldSigAlgID 91

#define apCertMgrElementFieldSignature 14

#define apCertMgrElementFieldSigOID 12

#define apCertMgrElementFieldSigParams 13

#define apCertMgrElementFieldSubjectID 16

#define apCertMgrElementFieldSubjectRDN 5

#define apCertMgrElementFieldSubjectUniqueID 22

#define apCertMgrElementFieldVersion 2

#define apCertMgrFieldExtensions
apCertMgrElementFieldExtensions

#define apCertMgrFieldIssuerID
apCertMgrElementFieldIssuerID

#define apCertMgrFieldIssuerRDN
apCertMgrElementFieldIssuerRDN

#define apCertMgrFieldIssuerUniqueID
apCertMgrElementFieldIssuerUniqueID

#define apCertMgrFieldNotAfter
apCertMgrElementFieldNotAfter

#define apCertMgrFieldNotBefore
apCertMgrElementFieldNotBefore

#define apCertMgrFieldPubKeyBER
apCertMgrElementFieldPubKeyBER

#define apCertMgrFieldSerialNumber
apCertMgrElementFieldSerialNumber

Certif icate Manager
RSA Element Fields

148 Exploring Palm OS: Security and Cryptography

#define apCertMgrFieldSignature
apCertMgrElementFieldSignature

#define apCertMgrFieldSigOID
apCertMgrElementFieldSigOID

#define apCertMgrFieldSigParams
apCertMgrElementFieldSigParams

#define apCertMgrFieldSubjectID
apCertMgrElementFieldSubjectID

#define apCertMgrFieldSubjectRDN
apCertMgrElementFieldSubjectRDN

#define apCertMgrFieldSubjectUniqueID
apCertMgrElementFieldSubjectUniqueID

#define apCertMgrFieldVersion
apCertMgrElementFieldVersion

RSA Element Fields
Purpose Fields in an RSA element.

Declared In CertificateMgr.h

Constants #define apCertMgrElementFieldRSAModulus 16

#define apCertMgrElementFieldRSAPubExpo 17

RDN Element Fields
Purpose Fields in an RDN element.

Declared In CertificateMgr.h

Constants #define apCertMgrElementFieldRDNOID 4
First RDN OID.

#define apCertMgrElementFieldRDNValue 5
First RDN value.

Comments To get the second and subsequent OIDs and values, use the
apCertMgrElementFieldRDNOIDN() and
apCertMgrElementFieldRDNValueN() macros, respectively.

Certif icate Manager
Data Types

Exploring Palm OS: Security and Cryptography 149

X509Extensions Element Fields
Purpose Fields in an X509Extensions element.

Declared In CertificateMgr.h

Constants #define apCertMgrElementFieldX509ExBytes 2
First data bytes.

#define apCertMgrElementFieldX509ExCritical 1
First critical flag.

#define apCertMgrElementFieldX509ExOID 0
First extension OID.

Comments To get the second and subsequent data bytes, critical flags, and
extension OIDs, use the
apCertMgrElementFieldX509ExBytesN(),
apCertMgrElementFieldX509ExCriticalN(), and
apCertMgrElementFieldX509ExOIDN() macros, respectively.

Data Types
Purpose Data type of an element field. These values appear in the

CertMgrElementType data structure.

Declared In CertificateMgr.h

Constants #define apCertMgrElementDataTypeASN1BitString 3

#define apCertMgrElementDataTypeASN1BmpString 30

#define apCertMgrElementDataTypeASN1Boolean 1

#define apCertMgrElementDataTypeASN1EmbeddedPDV 11

#define apCertMgrElementDataTypeASN1Enumerated 10

#define apCertMgrElementDataTypeASN1Eoc 0

#define apCertMgrElementDataTypeASN1External 8

#define apCertMgrElementDataTypeASN1GenString 27

#define apCertMgrElementDataTypeASN1GenTime 24

#define apCertMgrElementDataTypeASN1GraphicString
25

#define apCertMgrElementDataTypeASN1IA5String 22

Certif icate Manager
Certificate Formats

150 Exploring Palm OS: Security and Cryptography

#define apCertMgrElementDataTypeASN1Integer 2

#define apCertMgrElementDataTypeASN1ISO64String 26

#define apCertMgrElementDataTypeASN1Null 5

#define apCertMgrElementDataTypeASN1NumericString
18

#define apCertMgrElementDataTypeASN1ObjDesc 7

#define apCertMgrElementDataTypeASN1OctetString 4

#define apCertMgrElementDataTypeASN1OID 6

#define apCertMgrElementDataTypeASN1PrintString 19

#define apCertMgrElementDataTypeASN1Real 9

#define apCertMgrElementDataTypeASN1Sequence 16

#define apCertMgrElementDataTypeASN1Set 17

#define apCertMgrElementDataTypeASN1T61String 20

#define apCertMgrElementDataTypeASN1UnivString 28

#define apCertMgrElementDataTypeASN1UTCTime 23

#define apCertMgrElementDataTypeASN1UTF8String 12

#define apCertMgrElementDataTypeASN1VideoTexString
21

Certificate Formats
Purpose Specifies the certificate format. The CertMgrCertInfoType

structure’s format field takes one of these values.

Declared In CertificateMgr.h

Constants #define apCertMgrFormatX509 1
The certificate is a DER encoded x509 certificate.

#define apCertMgrFormatXML 2
The certificate is formatted as XML.

NOTE: XML-formatted certificates are not currently supported in
Palm OS Cobalt.

Certif icate Manager
Certificate Manager Error Codes

Exploring Palm OS: Security and Cryptography 151

Certificate Manager Error Codes
Purpose Error codes returned by the various Certificate Manager functions.

Declared In CertificateMgr.h

Constants #define certMgrErrBackupInProgress (certErrorClass
| 0x0C)

The certificate vault could not be accessed because it is in the
process of being backed up.

#define certMgrErrBufTooSmall (certErrorClass |
0x07)

The export buffer is too small. The required size is written
into the variable pointed to by the length parameter.

#define certMgrErrCertNotFound (certErrorClass |
0x09)

A certificate matching the specified criteria was not found.

#define certMgrErrDatabaseFail (certErrorClass |
0x0B)

A Data Manager error occurred.

#define certMgrErrFieldNotFound (certErrorClass |
0x08)

The specified field could not be found.

#define certMgrErrInvalidEncoding (certErrorClass
| 0x02)

The specified format encoding is invalid.

#define certMgrErrInvalidParam (certErrorClass |
0x04)

One of the function parameters is invalid.

#define certMgrErrNotExportable (certErrorClass |
0x0A)

The certificate is not exportable. It is probably stored in
compressed form.

#define certMgrErrNotImplemented (certErrorClass |
0x01)

The requested certificate format is not supported.

#define certMgrErrNotRemovable (certErrorClass |
0x0D)

The certificate is not removable.

Certif icate Manager
Certificate Verification Failure Codes

152 Exploring Palm OS: Security and Cryptography

#define certMgrErrOutOfMemory (certErrorClass |
0x03)

There was insufficient memory to complete the operation.

#define certMgrErrOutOfResources (certErrorClass |
0x06)

The Certificate Manager ran out of resources.

#define certMgrErrServiceNotStarted
(certErrorClass | 0x05)

The Certificate Manager process has not started.

Certificate Verification Failure Codes
Purpose Indicates why a certificate failed to verify. These values are returned

in the CertMgrVerifyResultType structure’s failureCode
field as the result of a call to CertMgrVerifyCert() or
CertMgrAddCert(). These are also passed to the SSL Library’s
Verify callback; see “The Verify Callback” on page 376.

Declared In CertificateMgr.h

Constants #define CertMgrVerifyFail (certErrorClass+0x80)

#define CertMgrVerifyFailBasicConstraints
(CertMgrVerifyFail+8)

There was a constraint violation.

#define CertMgrVerifyFailCriticalExtension
(CertMgrVerifyFail+9)

The critical extension is unknown.

#define CertMgrVerifyFailKeyUsage
(CertMgrVerifyFail+7)

#define CertMgrVerifyFailNotAfter
(CertMgrVerifyFail+6)

#define CertMgrVerifyFailNotBefore
(CertMgrVerifyFail+5)

Certif icate Manager
Miscellaneous Certificate Manager Constants

Exploring Palm OS: Security and Cryptography 153

#define CertMgrVerifyFailSelfSigned
(CertMgrVerifyFail+4)

#define CertMgrVerifyFailSignature
(CertMgrVerifyFail+3)

The signature is invalid.

#define CertMgrVerifyFailUnknown
(CertMgrVerifyFail+0)

#define CertMgrVerifyFailUnknownIssuer
(CertMgrVerifyFail+1)

The root cannot be trusted since the issuer is not known.

#define CertMgrVerifyFailUnknownSigAlg
(CertMgrVerifyFail+2)

Miscellaneous Certificate Manager Constants
Purpose These constants are also declared in CertificateMgr.h.

Declared In CertificateMgr.h

Constants #define CertMgrServiceName
"pSysCertificateManager"

The name under which the Certificate Manager is registered
with the Service Manager.

Certif icate Manager
Certificate Manager Element Field Macros

154 Exploring Palm OS: Security and Cryptography

Certificate Manager Element Field Macros

apCertMgrElementFieldRDNOIDN Macro
Purpose Macro that evaulates to the field ID for the the second and

subsequent OID fields for an RDN element.

Declared In CertificateMgr.h

Prototype #define apCertMgrElementFieldRDNOIDN (n)

Parameters → n
The OID field index. The second OID field’s index would be
2.

Returns Evaluates to the RDN element’s OID field ID.

apCertMgrElementFieldRDNValueN Macro
Purpose Macro that evaulates to the field ID for the second and subsequent

Value fields for an RDN element..

Declared In CertificateMgr.h

Prototype #define apCertMgrElementFieldRDNValueN (n)

Parameters → n
The Value field index. The second Value field’s index would
be 2.

Returns Evaluates to the RDN element’s Value field ID.

apCertMgrElementFieldX509ExBytesN Macro
Purpose Macro that evaulates to the field ID for the the second and

subsequent Bytes fields for an X509Extended element.

Declared In CertificateMgr.h

Prototype #define apCertMgrElementFieldX509ExBytesN (n)

Parameters → n
The Bytes field index. The second Bytes field’s index would
be 2.

Certif icate Manager
apCertMgrElementFieldX509ExOIDN

Exploring Palm OS: Security and Cryptography 155

Returns Evaluates to the X509Extended element’s Bytes field ID.

apCertMgrElementFieldX509ExCriticalN Macro
Purpose Macro that evaulates to the field ID for the the second and

subsequent Criticial fields for an X509Extended element.

Declared In CertificateMgr.h

Prototype #define apCertMgrElementFieldX509ExCriticalN (n)

Parameters → n
The Critical field index. The second Critical field’s index
would be 2.

Returns Evaluates to the X509Extended element’s Critical field ID.

apCertMgrElementFieldX509ExOIDN Macro
Purpose Macro that evaulates to the field ID for the the second and

subsequent OID fields for an X509Extended element.

Declared In CertificateMgr.h

Prototype #define apCertMgrElementFieldX509ExOIDN (n)

Parameters → n
The OID field index. The second OID field’s index would be
2.

Returns Evaluates to the X509Extended element’s OID field ID.

Certif icate Manager
Certificate Manager Functions and Macros

156 Exploring Palm OS: Security and Cryptography

Certificate Manager Functions and Macros

CertMgrAddCert Function
Purpose Add a certificate to the certificate store.

Declared In CertificateMgr.h

Prototype status_t CertMgrAddCert
(CertMgrCertInfoType *certInfoP,
Boolean compress,
CertMgrVerifyResultType *verifyResult)

Parameters → certInfoP
Pointer to CertMgrCertInfoType structure for the
certificate to be added.

→ compress
If true, the certificate is stored in compressed form. This
saves space, but note that you cannot export certificates that
are compressed.

← verifyResult
Supply a pointer to a CertMgrVerifyResultType
structure that will be filled in if the certificate could not be
verified.

Returns Returns errNone if the certificate was added successfully, or one of
the following otherwise:

certMgrErrInvalidParam
certInfoP or verifyResult is NULL .

certMgrErrServiceNotStarted
The Certificate Manager process has not started.

certMgrErrDatabaseFail
A Data Manager error occurred.

certMgrErrBackupInProgress
The certificate vault could not be accessed because it is in the
process of being backed up.

Comments This function can be used to add an imported certificate to the
certificate store. When a certificate becomes part of the store it is

Certif icate Manager
CertMgrAddCert

Exploring Palm OS: Security and Cryptography 157

verified and then saved in the Certificate Manager’s secure vault.
Other applications may then query for it.

If the certificate cannot be added due to a failure in the verification
of the certificate, this function fills in the caller-supplied
CertMgrVerifyResultType structure. In many cases the caller
might choose to override the verification failure and request that the
certificate be stored anyway. The only errors that cannot be
overridden are signature failure and unknown issuer. To override a
verification error, clear the failure code in the
CertMgrVerifyResultType structure and then call
CertMgrAddCert() once again.

When the compress parameter is set to true, some data is thrown
away from the certificate to save space. Because of this, the stored
certificate is not complete and cannot be exported at a later time.

Example The following code excerpt adds certificates that may be self-signed:

while (true) {
 err = CertMgrAddCert(&certInfo, false, &verifyResult);
 if (err) {
 CertMgrReleaseCertInfo(&certInfo);
 goto exit;
 }

 if (verifyResult.failureCode == 0) {
 break;
 } else {
 if (verifyResult.failureCode ==
 CertMgrVerifyFailSelfSigned) {
 verifyResult.failureCode = 0;
 continue;
 }

 /* Another type of failure */
 break;
 }
}

See Also CertMgrImportCert(), CertMgrRemoveCert(),
CertMgrVerifyCert()

Certif icate Manager
CertMgrExportCert

158 Exploring Palm OS: Security and Cryptography

CertMgrExportCert Function
Purpose Exports a certificate from the certificate store to a caller-supplied

buffer.

Declared In CertificateMgr.h

Prototype status_t CertMgrExportCert
(CertMgrCertInfoType *certInfoP,
uint8_t *certData, uint32_t *certDataLen)

Parameters → certInfoP
Reference to the certificate to be exported.

← certData
Pointer to a caller-allocated buffer into which the exported
certificate data will be written, or NULL to determine how
large this buffer should be (the needed size, in bytes, is
returned via certDataLen).

↔ certDataLen
When calling this function, *certDataLen should be set to
the size of the certData buffer, or 0 to determine how large
the certData buffer should be. Upon return
*certDataLen is set to the size of the exported certificate
data.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

certMgrErrBufTooSmall
The export buffer is too small. The required size is written
into *certDataLen.

certMgrErrNotExportable
The certificate is not exportable. It is probably stored in
compressed form.

certMgrErrDatabaseFail
A Data Manager error occurred.

certMgrErrBackupInProgress
The certificate vault could not be accessed because it is in the
process of being backed up.

Comments This function attempts to fill the supplied buffer with the same data
that was imported into the Certificate Manager.

Certif icate Manager
CertMgrFindCert

Exploring Palm OS: Security and Cryptography 159

NOTE: In Palm OS Cobalt only DER encoded X509 format
certificates are supported. Because of this, all exported certificate
data will be in this format.

If the certificate was compressed when it was added to the store, it
cannot be exported.

If the export buffer is not large enough, an error is returned along
with the expected size.

See Also CertMgrImportCert()

CertMgrFindCert Function
Purpose Search the certificate store for a certificate matching the specified

criteria.

Declared In CertificateMgr.h

Prototype status_t CertMgrFindCert (uint32_t *index,
CertMgrCertSearchEnum searchFlag,
uint8_t *reference, uint32_t referenceLen,
CertMgrCertInfoType *certInfoP)

Parameters ↔ index
Set to 0 to start new search. As a certificate matching the
specified criteria is found, *index is set to the index of the
certificate within the certificate store.

→ searchFlag
Value that specifies how the search is to be performed.
Supply one of the values listed under
CertMgrCertSearchEnum.

→ reference
The data being searched for. If searchFlag is
apCertMgrSearchCertID, this should be the 20-byte
certID being searched for. If searchFlag is
apCertMgrSearchSubjectRDN search, this should be the
SubjectRDN being searched for.

→ referenceLen
The size, in bytes, of the data pointed to by reference.

Certif icate Manager
CertMgrGetField

160 Exploring Palm OS: Security and Cryptography

← certInfoP
Pointer to a CertMgrCertInfoType structure that is filled
in as appropriate to identify the certificate that was found.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

certMgrErrInvalidParam
One of the function parameters is invalid.

certMgrErrServiceNotStarted
The Certificate Manager process has not started.

certMgrErrCertNotFound
A certificate matching the specified criteria was not found.

certMgrErrBackupInProgress
The certificate vault could not be accessed because it is in the
process of being backed up.

Example To find a certificate with the certificate ID in certificateID, do
the following:

err = CertMgrFindCert(0, apCertMgrSearchCertID,
certificateID, 20,
 &certInfo);

See Also CertMgrReleaseCertInfo()

CertMgrGetField Function
Purpose Get the value of a certificate field.

Declared In CertificateMgr.h

Prototype status_t CertMgrGetField
(CertMgrCertInfoType *certInfoP,
CertMgrCertElementEnum elementType,
CertMgrCertFieldEnum fieldType,
CertMgrElementListType *result,
uint32_t *resultLengthP)

Parameters → certInfoP
Reference to the certificate from which the field is to be
retrieved.

Certif icate Manager
CertMgrGetField

Exploring Palm OS: Security and Cryptography 161

→ elementType
The certificate element type. This should be one of the values
listed under CertMgrCertElementEnum.

→ fieldType
The type of field to be retrieved. See
CertMgrCertFieldEnum. Note that the set of values that
can be supplied to this parameter varies depending on the
value of the elementType parameter.

← result
Pointer to a buffer into which the field data is written, or
NULL to obtain the size of the needed buffer. The size of the
field data (actual or needed) is written into
*resultLengthP. Note that the contents of the buffer upon
return are structured according to
CertMgrElementListType.

↔ resultLengthP
When calling this function, *resultLengthP should be set
to the size of the result buffer, or 0 to determine how large
the result buffer should be. Upon return
*resultLengthP is set to the size of the field data.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

certMgrErrInvalidParam
certInfoP is NULL or it is not a valid certificate reference, or
resultLengthP is NULL.

certMgrErrBufTooSmall
The export buffer is too small. The required size is written
into *resultLengthP.

certMgrErrFieldNotFound
The specified field could not be found.

Example The following code excerpt shows you you might use this function.

#define CertMgrOrganicationNameOIDLen 5
static uint8_t
CertMgrOrganizationNameOID[CertMgrOrganicationNameOIDLen] =
 {0x06, 0x03, 0x55, 0x04, 0x0a};

/* Getting the issuer RDN from the cert */
CertMgrImplGetField(certInfoP, apCertMgrElementTypeRDN, 0,
 field, &fieldlen);

Certif icate Manager
CertMgrGetField

162 Exploring Palm OS: Security and Cryptography

/* This gets the whole issuer RDN, you must then go through
each field and find the one that you want, an OID field leads
a data field */

/* The following code finds the code for the issuer name and
sets a label to it */
/* Fields in list */
for (index = 0; index < field->count; index++) {

 if (field->element[index].dataType ==
 apCertMgrElementDataTypeASN1OID) {
 if (field->element[index].length ==
 CertMgrOrganicationNameOIDLen) {
 if (MemCmp(CertMgrOrganizationNameOID,
 ((uint8_t *)field)+field->element[index].offset,
 CertMgrOrganizationNameOIDLen) == 0) {

 uint16_t buflen = field->element[index +
 1].length;
 uint8_t *buffer = ((uint8_t *)field) +
 field->element[index + 1].offset;
 uint16_t count = 0;

 Char label[40];
 uint16_t pre = 0;

 MemSet(label, 40, 0);

 if (buflen < 40) {
 pre = (40 - buflen) / 2;

 MemSet(label, pre, ' ');
 }

 MemMove(label+pre,buffer,buflen>39 ? 39:buflen);

 FrmCopyLabel(frmP, selfsignedaddCertnameLabel,
 label);
 break;
 }
 }
 }
}

Certif icate Manager
CertMgrImportCert

Exploring Palm OS: Security and Cryptography 163

CertMgrImportCert Function
Purpose Imports a certificate from a buffer into the certificate store.

Declared In CertificateMgr.h

Prototype status_t CertMgrImportCert (uint8_t *certData,
uint32_t certDataLen,
CertMgrCertInfoType *certInfoP)

Parameters → certData
Pointer to a buffer containing the certificate data being
imported.

→ certDataLen
The size, in bytes, of the data in certData.

↔ certInfoP
When calling this function, you can optionally specify the
format of the certificate data by setting the format field of
this structure. Upon return, this structure’s fields are filled in
appropriately to identify the certificate that was imported.

NOTE: In Palm OS Cobalt only DER encoded X509 format
certificates are supported.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

certMgrErrInvalidEncoding
The specified format encoding is invalid.

certMgrErrOutOfMemory
There was insufficient memory to complete the operation.

certMgrErrInvalidParam
One of the function parameters is invalid.

certMgrErrServiceNotStarted
The Certificate Manager process has not started.

certMgrErrBackupInProgress
The certificate vault could not be accessed because it is in the
process of being backed up.

certMgrErrNotImplemented
The requested certificate format is not supported.

Certif icate Manager
CertMgrReleaseCertInfo

164 Exploring Palm OS: Security and Cryptography

Example A likely scenario would be an application that imports a certificate
that was stored in the its PRC. The following code excerpt shows
how to do this:

/* Get certificate from PRC */
err = SignGetCertificateByIndex(dbP, certIndex, &certBlock,
 &certDataLength, certData);

/* Load certificate onto cert mgr */
err = CertMgrImportCert(certData, certDataLength, &certInfo);

See Also CertMgrExportCert()

CertMgrReleaseCertInfo Function
Purpose Release resources that allocated by the Certificate Manager during a

successful call to CertMgrFindCert() or
CertMgrImportCert().

Declared In CertificateMgr.h

Prototype status_t CertMgrReleaseCertInfo
(CertMgrCertInfoType *certInfoP)

Parameters → certInfoP
Reference to the certificate for which resources are to be
released..

Returns Returns errNone if the operation completed successfully, or
certMgrErrInvalidParam if certInfoP is invalid.

Comments Failure to call this function after a successful call to
CertMgrFindCert() or CertMgrImportCert() will result in a
memory leak.

Certif icate Manager
CertMgrVerifyCert

Exploring Palm OS: Security and Cryptography 165

CertMgrRemoveCert Function
Purpose Remove a certificate from the certificate store.

Declared In CertificateMgr.h

Prototype status_t CertMgrRemoveCert
(CertMgrCertInfoType *certInfoP)

Parameters → certInfoP
Pointer to CertMgrCertInfoType structure for the
certificate to be added.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

certMgrErrInvalidParam
certInfoP is invalid.

certMgrErrBackupInProgress
The certificate vault could not be accessed because it is in the
process of being backed up.

certMgrErrNotRemovable
The certificate is not removable.

Comments This function does not invalidate any other certificates already in
the store. However, it may cause further verifications of new
certificates to fail (for instance, if a root certificate is removed).

See Also CertMgrAddCert()

CertMgrVerifyCert Function
Purpose Authenticate the validity of a certificate.

Declared In CertificateMgr.h

Prototype status_t CertMgrVerifyCert
(CertMgrCertInfoType *certInfoP,
CertMgrCertChainType *certChainP,
CertMgrVerifyResultType *verifyResult)

Parameters → certInfoP
Pointer to CertMgrCertInfoType structure for the
certificate to be validated.

Certif icate Manager
CertMgrVerifyCert

166 Exploring Palm OS: Security and Cryptography

→ certChainP
A chain of certificates that make up the authentication tree
for this certificate.

← verifyResult
Supply a pointer to a CertMgrVerifyResultType
structure that will be filled in if the certificate could not be
verified.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

certMgrErrInvalidParam
certInfoP or verifyResult is NULL.

certMgrErrOutOfMemory
There was insufficient memory to complete the operation.

certMgrErrOutOfResources
The Certificate Manager ran out of resources.

certMgrErrServiceNotStarted
The Certificate Manager process has not started.

This function authenticates the validity of the certificate. Many
different error conditions may occur, and they are returned through
the verifyResult parameter.

Specify a certificate chain when the chain of certificates that
authenticate the specified certificate is not contained in the
Certificate Manager’s certificate store. (For instance, when all or
some of the certificatess in the chain have just been imported but not
yet added.) When necessary, the Certificate Manager will also
authenticate a certificate in the chain. The chain need not be in any
order, and the certificates in the chain need not all be part of the
chain.

See Also CertMgrAddCert()

Certif icate Manager
CertMgrVerifyFailure

Exploring Palm OS: Security and Cryptography 167

CertMgrVerifyFailure Macro
Purpose Determine if a given error code is a Certificate Manager verification

error.

Declared In CertificateMgr.h

Prototype #define CertMgrVerifyFailure (err)

Parameters → err
The error code being checked.

Returns Evaluates to true if the supplied error code is within the range of
verification failure errors, false otherwise. See “Certificate
Verification Failure Codes” on page 152 for those error codes that
are classified as verification errors.

Certif icate Manager
CertMgrVerifyFailure

168 Exploring Palm OS: Security and Cryptography

Exploring Palm OS: Security and Cryptography 169

9
CPM Library ARM
Interface
The functions documented in this chapter constitute the interface
implementation for the Cryptographic Provider Manager library in
Palm OS Cobalt. This chapter consists of a single section:

CPM Library ARM Interface Functions and Macros . . 169

The header file CPMLibARMInterface.h declares the API that this
chapter describes.

CPM Library ARM Interface Functions and
Macros

CPMLibAddRandomSeed Function
Purpose Puts a number of seed bytes into the pseudo-random number

generator maintained by the CPM.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibAddRandomSeed (uint8_t *seedDataP,
uint32_t dataLen)

Parameters → seedDataP
A buffer of seed bytes.

→ dataLen
The number of bytes in seedDataP.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

See Also CPMLibGenerateRandomBytes()

CPM Library ARM Interface
CPMLibClose

170 Exploring Palm OS: Security and Cryptography

CPMLibClose Function
Purpose Handles the closing of the CPM library.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibClose (void)

Parameters None.

Returns errNone if the operation completed successfully, or one of the
following otherwise:

cpmErrNotOpen
The CPM library is not open.

Comments Decrements the reference count. When the reference count reaches
zero, memory is cleared out and freed, all resources are returned to
the system, and the library is taken out of the system.

WARNING! If you completely close the CPM library (to the point
where the reference count is zero), you can prevent other
operating system functionality from working (SSL, Authorization
Manager, Certification Manager, some areas of the Data Manager
and the System library, plus possibly others). Never call
CPMLibClose() more times than you have called
CPMLibOpen().

See Also CPMLibOpen(), CPMLibSleep(), CPMLibWake()

CPMLibDecrypt Function
Purpose Performs the decryption operation in one pass.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibDecrypt (APKeyInfoType *keyInfoP,
APCipherInfoType *cipherInfoP, uint8_t *bufIn,
uint32_t bufInLen, uint8_t *bufOut,
uint32_t *bufOutLenP)

Parameters → keyInfoP
An APKeyInfoType structure, allocated and optionally
initialized by the application, that holds the key to be used
for the operation. Note that for this single-part operation, this

CPM Library ARM Interface
CPMLibDecrypt

Exploring Palm OS: Security and Cryptography 171

structure is not required unless the application wants to pass
setting information to or receive setting information from the
CPM or provider.

↔ cipherInfoP
An APCipherInfoType structure, allocated and optionally
initialized by the application, that holds the context
information to be used for this operation. Note that for this
single-part operation, this structure is not required unless the
application wants to pass setting information to or receive
setting information from the CPM or provider.

→ bufIn
Pointer to a buffer containing the data for the operation. This
parameter cannot be NULL.

→ bufInLen
Size, in bytes, of the buffer specified by bufIn.

↔ bufOut
Pointer to a buffer, allocated by the application, that receives
the output of the operation.

↔ bufOutLenP
The length, in bytes, of the buffer specified by bufOut.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

Comments The application is always responsible for allocating and freeing the
APKeyInfoType and APCipherInfoType structures. The
application must also call CPMLibReleaseKeyInfo() or
CPMLibReleaseCipherInfo(), as appropriate, before freeing
the structure to allow the CPM and the provider(s) to clean up.

See Also CPMLibDecryptFinal(), CPMLibDecryptInit(),
CPMLibDecryptUpdate(), CPMLibEncrypt(),
CPMLibReleaseCipherInfo(), CPMLibReleaseKeyInfo()

CPM Library ARM Interface
CPMLibDecryptFinal

172 Exploring Palm OS: Security and Cryptography

CPMLibDecryptFinal Function
Purpose Finalizes a multi-part decryption operation.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibDecryptFinal
(APKeyInfoType *keyInfoP,
APCipherInfoType *cipherInfoP, uint8_t *bufIn,
uint32_t bufInLen, uint8_t *bufOut,
uint32_t *bufOutLenP)

Parameters → keyInfoP
The key to be used for the operation.

↔ cipherInfoP
The context returned from CPMLibDecryptInit().

→ bufIn
Pointer to a buffer containing the final data for the operation,
or NULL if there is no additional data.

→ bufInLen
Size, in bytes, of the buffer specified by bufIn.

↔ bufOut
Pointer to a buffer, allocated by the application, that receives
the output of the operation.

↔ bufOutLenP
The length, in bytes, of the buffer specified by bufOut.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

See Also CPMLibDecryptInit(), CPMLibDecryptUpdate(),
CPMLibEncryptFinal(), CPMLibReleaseCipherInfo()

CPM Library ARM Interface
CPMLibDecryptInit

Exploring Palm OS: Security and Cryptography 173

CPMLibDecryptInit Function
Purpose Begins a multi-part decryption operation with the specified key and

returns the context of the operation.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibDecryptInit
(APKeyInfoType *keyInfoP,
APCipherInfoType *cipherInfoP)

Parameters → keyInfoP
Pointer to an APKeyInfoType structure, allocated and
optionally initialized by the application, containing the key
to be used for the subsequent calls to
CPMLibDecryptUpdate() and CPMLibDecryptFinal().

↔ cipherInfoP
An APCipherInfoType structure, allocated and optionally
initialized by the application, that holds the context
information for use in subsequent calls to the same class of
operations.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

Comments The application is always responsible for allocating and freeing the
APKeyInfoType and APCipherInfoType structures. The
application must also call CPMLibReleaseKeyInfo() or
CPMLibReleaseCipherInfo(), as appropriate, before freeing
the structure to allow the CPM and the provider(s) to clean up.

You must call CPMLibDecryptFinal() to finalize the operation.

See Also CPMLibDecrypt(), CPMLibDecryptFinal(),
CPMLibDecryptUpdate(), CPMLibEncryptInit(),
CPMLibReleaseCipherInfo()

CPM Library ARM Interface
CPMLibDecryptUpdate

174 Exploring Palm OS: Security and Cryptography

CPMLibDecryptUpdate Function
Purpose Updates a multi-part decryption operation with more data.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibDecryptUpdate
(APKeyInfoType *keyInfoP,
APCipherInfoType *cipherInfoP, uint8_t *bufIn,
uint32_t bufInLen, uint8_t *bufOut,
uint32_t *bufOutLenP)

Parameters → keyInfoP
The key to be used for the operation.

↔ cipherInfoP
The context returned from CPMLibDecryptInit().

→ bufIn
Pointer to a buffer containing the data for the operation. This
parameter cannot be NULL.

→ bufInLen
Size, in bytes, of the buffer specified by bufIn. This value
must be greater than zero.

↔ bufOut
Pointer to a buffer, allocated by the application, that receives
the output of the operation.

↔ bufOutLenP
The length, in bytes, of the buffer specified by bufOut.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

See Also CPMLibDecryptFinal(), CPMLibDecryptInit(),
CPMLibEncryptUpdate()

CPM Library ARM Interface
CPMLibDeriveKeyData

Exploring Palm OS: Security and Cryptography 175

CPMLibDeriveKeyData Function
Purpose Derives a key from the supplied input data.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibDeriveKeyData
(APDerivedKeyInfoType *derivedKeyInfoP,
uint8_t *keyDataP, uint32_t *dataLen)

Parameters ↔ derivedKeyInfoP
Pointer to an APDerivedKeyInfoType structure.

→ keyDataP
Pointer to a buffer into which the derived key data is written.
Pass NULL to determine how large this buffer should be.

↔ dataLen
When calling this function, set the variable to which this
parameter points to the size of the keyDataP buffer. Upon
return, the variable will be set to the number of bytes written
to keyDataP. If you set keyDataP to NULL, set this variable
to 0.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

Comments Given the same input data, the same key is always derived from
that data. Key derivation is useful for operations such as Password-
Based Encryption (PBE) where the password is used to derive a key
for a particular cryptographic operation (usually encryption or
decryption).

Unlike with generated keys, applications typically do not export
and save derived keys since they can be re-derived from the same
input data.

Example To determine how large a buffer you need to allocate for the derived
key data, set keyDataP to NULL and *dataLen to 0.
CPMLibDeriveKeyData() will return an error code of
cpmErrBuffTooSmall and will set the variable pointed to by
dataLen to the needed buffer size. Your code can then allocate the

CPM Library ARM Interface
CPMLibDeriveKeyData

176 Exploring Palm OS: Security and Cryptography

needed buffer and again call CPMLibDeriveKeyData() with a
pointer to the buffer, as shown in the following code excerpt:

uint32_t size;
uint32_t *key_data;

// The APDerivedKeyInfoType structure is initialized
// prior to this point
size = 0;
err = CPMLibDeriveKeyData(&dki, NULL, &size);
if (err == cpmErrBufTooSmall) {
 key_data = MemPtrNew(size);
 if (key_data != NULL) {
 err = CPMLibDeriveKeyData(&dki, key_data, &size);
 if (err) {
 // handle errors here
 } else {
 // The key data was successfully derived; use
 // key_data as import data to get a key
 MemSet(&keyInfo, sizeof(APKeyInfoType), 0);
 err = CPMLibImportKeyInfo(IMPORT_EXPORT_TYPE_RAW,
 key_data, size, &keyInfo);
 if (err) {
 // handle errors here
 } else {
 // At this point, we have an APKeyInfoType struct
 }
 }
 }
}

See Also CPMLibGenerateKey(), CPMLibGenerateKeyPair()

CPM Library ARM Interface
CPMLibEncrypt

Exploring Palm OS: Security and Cryptography 177

CPMLibEncrypt Function
Purpose Performs an encryption operation in one pass.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibEncrypt (APKeyInfoType *keyInfoP,
APCipherInfoType *cipherInfoP, uint8_t *bufIn,
uint32_t bufInLen, uint8_t *bufOut,
uint32_t *bufOutLenP)

Parameters → keyInfoP
An APKeyInfoType structure, allocated and optionally
initialized by the application, that holds the key to be used
for the operation. Note that for this single-part operation, this
structure is not required unless the application wants to pass
setting information to or receive setting information from the
CPM or provider.

↔ cipherInfoP
An APCipherInfoType structure, allocated and optionally
initialized by the application, that holds the context
information to be used for this operation. Note that for this
single-part operation, this structure is not required unless the
application wants to pass setting information to or receive
setting information from the CPM or provider.

→ bufIn
Pointer to a buffer containing the data for the operation. This
parameter must not be NULL.

→ bufInLen
Size, in bytes, of the buffer specified by bufIn.

↔ bufOut
Pointer to a buffer, allocated by the application, that receives
the output of the operation.

↔ bufOutLenP
The length, in bytes, of the buffer specified by bufOut.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

Comments The application is always responsible for allocating and freeing the
APKeyInfoType and APCipherInfoType structures. The
application must also call CPMLibReleaseKeyInfo() or

CPM Library ARM Interface
CPMLibEncryptFinal

178 Exploring Palm OS: Security and Cryptography

CPMLibReleaseCipherInfo(), as appropriate, before freeing
the structure to allow the CPM and the provider(s) to clean up.

See Also CPMLibDecrypt(), CPMLibEncryptFinal(),
CPMLibEncryptInit(), CPMLibEncryptUpdate(),
CPMLibReleaseCipherInfo()

CPMLibEncryptFinal Function
Purpose Finalizes a multi-part encryption operation.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibEncryptFinal
(APKeyInfoType *keyInfoP,
APCipherInfoType *cipherInfoP, uint8_t *bufIn,
uint32_t bufInLen, uint8_t *bufOut,
uint32_t *bufOutLenP)

Parameters → keyInfoP
The key to be used for the operation.

→ cipherInfoP
The context information returned from the
CPMLibEncryptInit() call.

→ bufIn
Pointer to a buffer containing the final data for the operation,
or NULL if there is no additional data.

→ bufInLen
Size, in bytes, of the buffer specified by bufIn.

↔ bufOut
Pointer to a buffer, allocated by the application, that receives
the output of the operation.

↔ bufOutLenP
The length, in bytes, of the buffer specified by bufOut.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

See Also CPMLibDecryptFinal(), CPMLibEncryptInit(),
CPMLibEncryptUpdate(), CPMLibReleaseCipherInfo()

CPM Library ARM Interface
CPMLibEncryptInit

Exploring Palm OS: Security and Cryptography 179

CPMLibEncryptInit Function
Purpose Begins multi-part encryption operation with the specified key and

returns the context of the operation.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibEncryptInit
(APKeyInfoType *keyInfoP,
APCipherInfoType *cipherInfoP)

Parameters → keyInfoP
Pointer to an APKeyInfoType structure, allocated and
optionally initialized by the application, containing the key
to be used for the subsequent calls to
CPMLibEncryptUpdate() and CPMLibEncryptFinal().

↔ cipherInfoP
An APCipherInfoType structure, allocated and optionally
initialized by the application, that holds the context
information for use in subsequent calls to the same class of
operations.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

Comments The application is always responsible for allocating and freeing the
APKeyInfoType and APCipherInfoType structures. The
application must also call CPMLibReleaseKeyInfo() or
CPMLibReleaseCipherInfo(), as appropriate, before freeing
the structure to allow the CPM and the provider(s) to clean up.

You must call CPMLibEncryptFinal() to finalize the operation.

See Also CPMLibDecryptInit(), CPMLibEncrypt(),
CPMLibEncryptFinal(), CPMLibEncryptUpdate(),
CPMLibReleaseCipherInfo()

CPM Library ARM Interface
CPMLibEncryptUpdate

180 Exploring Palm OS: Security and Cryptography

CPMLibEncryptUpdate Function
Purpose Updates a multi-part encryption operation with more data.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibEncryptUpdate
(APKeyInfoType *keyInfoP,
APCipherInfoType *cipherInfoP, uint8_t *bufIn,
uint32_t bufInLen, uint8_t *bufOut,
uint32_t *bufOutLenP)

Parameters → keyInfoP
The key to be used for the operation.

→ cipherInfoP
The context information returned from the
CPMLibEncryptInit() call.

→ bufIn
Pointer to a buffer containing the data for the operation.

→ bufInLen
Size, in bytes, of the buffer specified by bufIn.

↔ bufOut
Pointer to a buffer, allocated by the application, that receives
the output of the operation.

↔ bufOutLenP
The length, in bytes, of the buffer specified by bufOut.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

Comments The bufIn parameter may not be NULL and bufInLen may not be
zero.

See Also CPMLibDecryptUpdate(), CPMLibEncryptFinal(),
CPMLibEncryptInit()

CPM Library ARM Interface
CPMLibExportCipherInfo

Exploring Palm OS: Security and Cryptography 181

CPMLibEnumerateProviders Function
Purpose Enumerates the providers that the CPM library currently knows

about.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibEnumerateProviders
(uint32_t providerIDs[],
uint16_t *numProviders)

Parameters → providerIDs
An array of provider IDs for the providers about which the
CPM currently knows.

← numProviders
The number of providers currently installed under the CPM
library. Also the number of IDs in the providerIDs
parameter.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

Comments The CPM library returns the IDs of the providers. The IDs can be
used to specifically reference a particular provider.

See Also CPMLibGetInfo(), CPMLibGetProviderInfo(), CPMLibOpen

CPMLibExportCipherInfo Function
Purpose Creates a storable instance of an APCipherInfoType structure.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibExportCipherInfo
(APCipherInfoType *cipherInfoP,
uint8_t encoding, uint8_t *exportDataP,
uint32_t *dataLenP)

Parameters ↔ cipherInfoP
An APCipherInfoType structure, allocated and optionally
initialized by the application, that holds the context
information to be used for this operation.

CPM Library ARM Interface
CPMLibExportHashInfo

182 Exploring Palm OS: Security and Cryptography

→ encoding
One of the encodings documented under “Import/Export
Types” on page 237.

↔ exportDataP
Pointer to a buffer to receive the raw exported data.

↔ dataLenP
Size, in bytes, of the buffer specified by exportDataP.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

Comments The application is always responsible for allocating and freeing the
APCipherInfoType structure. The application must also call
CPMLibReleaseCipherInfo() before freeing the
APICipherInfoType structure to allow the CPM and the
provider(s) to clean up.

See Also CPMLibImportCipherInfo(), CPMLibReleaseCipherInfo()

CPMLibExportHashInfo Function
Purpose Creates a storable instance of an APHashInfoType structure.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibExportHashInfo
(APHashInfoType *hashInfoP, uint8_t encoding,
uint8_t *exportDataP, uint32_t *dataLenP)

Parameters ↔ hashInfoP
An APHashInfoType structure, allocated by the
application, that holds information about the hashing
operation.

→ encoding
One of the encodings documented under “Import/Export
Types” on page 237.

↔ exportDataP
Pointer to a buffer, allocated by the application, into which
the raw exported data will be placed.

↔ dataLenP
The size, in bytes, of the buffer specified by exportDataP.

CPM Library ARM Interface
CPMLibExportKeyInfo

Exploring Palm OS: Security and Cryptography 183

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

See Also CPMLibImportHashInfo()

CPMLibExportKeyInfo Function
Purpose Creates a storable instance of a key that is already familiar to the

CPM framework.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibExportKeyInfo
(APKeyInfoType *keyInfoP, uint8_t encoding,
uint8_t *exportDataP, uint32_t *dataLenP)

Parameters ↔ keyInfoP
An APKeyInfoType structure, allocated and optionally
initialized by the application, that holds information about
the key to be used for this operation.

→ encoding
One of the values documented under “Import/Export
Types” on page 237.

↔ exportDataP
Pointer to a buffer, allocated by the application, into which
the raw exported data is to be placed.

↔ dataLenP
The size of the buffer specified by exportDataP.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

Comments If a generated key is used for any cryptographic operations, it must
be exported and saved in order to be used again. It is statistically
improbable that a generated key could be regenerated. Derived
keys, on the other hand, are generally not exported since given the
same input data (often a password or something similar), the same
key is always derived from that data.

The application is always responsible for allocating and freeing the
APKeyInfoType structure. The application must call

CPM Library ARM Interface
CPMLibExportKeyPairInfo

184 Exploring Palm OS: Security and Cryptography

CPMLibReleaseKeyInfo() before freeing the APKeyInfoType
structure to allow the CPM and provider to clean up.

See Also CPMLibImportKeyInfo(), CPMLibReleaseKeyInfo()

CPMLibExportKeyPairInfo Function
Purpose Creates a storable instance of a set of APKeyInfoType structures

representing a private key and a public key.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibExportKeyPairInfo
(APKeyInfoType *privateKeyInfoP,
APKeyInfoType *publicKeyInfoP,
uint8_t encoding, uint8_t *exportDataP,
uint32_t *dataLenP)

Parameters ↔ privateKeyInfoP
Pointer to an APKeyInfoType structure for the private key.

↔ publicKeyInfoP
Pointer to an APKeyInfoType structure for the public key.

→ encoding
One of the values documented under “Import/Export
Types” on page 237.

↔ exportDataP
Pointer to a buffer, allocated by the application, into which
the raw exported data is placed.

↔ dataLenP
The size, in bytes, of the buffer indicated by exportDataP.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

Comments The application is always responsible for allocating and freeing the
APKeyInfoType structures. The application must call
CPMLibReleaseKeyInfo() before freeing an APKeyInfoType
structure to allow the CPM and provider to clean up.

See Also CPMLibImportKeyPairInfo(), CPMLibReleaseKeyInfo()

CPM Library ARM Interface
CPMLibExportMACInfo

Exploring Palm OS: Security and Cryptography 185

CPMLibExportMACInfo Function
Purpose Creates a storable instance of an APMACInfoType structure.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibExportMACInfo
(APMACInfoType *macInfoP, uint8_t encoding,
uint8_t *exportDataP, uint32_t *dataLenP)

Parameters ↔ macInfoP
An APMACInfoType structure, allocated and optionally
initialized by the application, that holds the message
authentication context information to be used for this
operation.

→ encoding
One of the encodings documented under “Import/Export
Types” on page 237.

↔ exportDataP
Pointer to a buffer to receive the raw exported data.

↔ dataLenP
Size, in bytes, of the buffer specified by exportDataP.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

Comments The application is always responsible for allocating and freeing the
APMACInfoType structures. The application must call
CPMLibReleaseMACInfo() before freeing an APMACInfoType
structure to allow the CPM and provider to clean up.

See Also CPMLibImportMACInfo(), CPMLibReleaseMACInfo()

CPM Library ARM Interface
CPMLibExportSignInfo

186 Exploring Palm OS: Security and Cryptography

CPMLibExportSignInfo Function
Purpose Creates a storable instance of an APSignInfoType structure.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibExportSignInfo
(APSignInfoType *signInfoP, uint8_t encoding,
uint8_t *exportDataP, uint32_t *dataLenP)

Parameters ↔ signInfoP
An APSignInfoType structure, allocated and optionally
initialized by the application, that holds the context
information to be used for this operation.

→ encoding
One of the encodings documented under “Import/Export
Types” on page 237.

↔ exportDataP
Pointer to a buffer to receive the raw exported data.

↔ dataLenP
Size, in bytes, of the buffer specified by exportDataP.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

Comments The application is always responsible for allocating and freeing the
APSignInfoType structures. The application must call
CPMLibReleaseSignInfo() before freeing an
APSignInfoType structure to allow the CPM and provider to
clean up.

See Also CPMLibImportSignInfo(), CPMLibReleaseSignInfo()

CPM Library ARM Interface
CPMLibExportVerifyInfo

Exploring Palm OS: Security and Cryptography 187

CPMLibExportVerifyInfo Function
Purpose Creates a storable instance of an APVerifyInfoType structure.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibExportVerifyInfo
(APVerifyInfoType *verifyInfoP,
uint8_t encoding, uint8_t *exportDataP,
uint32_t *dataLenP)

Parameters ↔ verifyInfoP
An APVerifyInfoType structure, allocated and optionally
initialized by the application, that holds the context
information to be used for this operation.

→ encoding
One of the encodings documented under “Import/Export
Types” on page 237.

↔ exportDataP
Pointer to a buffer to receive the raw exported data.

↔ dataLenP
Size, in bytes, of the buffer specified by exportDataP.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

Comments The application is always responsible for allocating and freeing the
APVerifyInfoType structures. The application must call
CPMLibReleaseVerifyInfo() before freeing an
APSVerifyInfoType structure to allow the CPM and provider to
clean up.

See Also CPMLibImportVerifyInfo(), CPMLibReleaseVerifyInfo()

CPM Library ARM Interface
CPMLibGenerateKey

188 Exploring Palm OS: Security and Cryptography

CPMLibGenerateKey Function
Purpose Generates a new key.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibGenerateKey (uint8_t *keyDataP,
uint32_t dataLen, APKeyInfoType *keyInfoP)

Parameters → keyDataP
Pointer to a buffer of seed bytes to be used by the pseudo-
random number generator, or NULL to have the pseudo-
random number generator use the seed data it already has.

→ dataLen
The length, in bytes, of the buffer pointed to by keyDataP.

↔ keyInfoP
An APKeyInfoType structure, allocated and optionally
initialized by the application, into which the generated key is
written.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

Comments If the newly-generated key is utilized for any cryptographic
operations, it must be exported and saved in order to be used again.
It is statistically improbably that a generated key could be
regenerated.

The application is always responsible for allocating and freeing the
APKeyInfoType structure. The application must call
CPMLibReleaseKeyInfo() before freeing the APKeyInfoType
structure to allow the CPM and provider to clean up.

See Also CPMLibExportKeyInfo(), CPMLibImportKeyInfo()

CPM Library ARM Interface
CPMLibGenerateKeyPair

Exploring Palm OS: Security and Cryptography 189

CPMLibGenerateKeyPair Function
Purpose Generates a new public/private key pair.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibGenerateKeyPair
(uint8_t *keyDataP, uint32_t dataLen,
APKeyInfoType *privateKeyInfoP,
APKeyInfoType *publicKeyInfoP)

Parameters → keyDataP
Pointer to a buffer of seed bytes to be used by the pseudo-
random number generator, or NULL to have the pseudo-
random number generator use the seed data it already has.

→ dataLen
The length, in bytes, of the buffer pointed to by keyDataP.

↔ privateKeyInfoP
Pointer to the APKeyInfoType structure for the private key.

↔ publicKeyInfoP
Pointer to the APKeyInfoType structure for the public key.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

Comments If the newly-generated key pair is utilized for any cryptographic
operations, the pair must be exported and saved in order to be used
again. It is statistically improbably that a generated key pair could
be regenerated.

The application is always responsible for allocating and freeing the
APKeyInfoType structures. The application must call
CPMLibReleaseKeyInfo() before freeing an APKeyInfoType
structure to allow the CPM and provider to clean up.

See Also CPMLibExportKeyPairInfo(),
CPMLibImportKeyPairInfo()

CPM Library ARM Interface
CPMLibGenerateRandomBytes

190 Exploring Palm OS: Security and Cryptography

CPMLibGenerateRandomBytes Function
Purpose Returns a requested number of random bytes.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibGenerateRandomBytes
(uint8_t *bufferP, uint32_t *bufLenP)

Parameters ← bufferP
Pointer to a buffer, allocated by the application, into which
the random bytes are written.

↔ bufLenP
When calling this function, set the variable pointed to by this
parameter to the size of bufferP. Upon return, the variable
contains the number of random bytes written to bufferP.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

Comments If there are not bufLenP random bytes available, this function
returns the available random bytes and returns the number of
available bytes in bufLenP.

See Also CPMLibAddRandomSeed()

CPMLibGetInfo Function
Purpose Returns information about the CPM library as its currently known

to the system. This includes the number of instances of the CPM
library, the number of providers the CPM library is aware of, and
whether or not the default provider is known.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibGetInfo (CPMInfoType *infoP)

Parameters ← infoP
Information about the CPM library. See CPMInfoType.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

See Also CPMLibEnumerateProviders(), CPMLibGetProviderInfo()

CPM Library ARM Interface
CPMLibHash

Exploring Palm OS: Security and Cryptography 191

CPMLibGetProviderInfo Function
Purpose Gets information about the requested provider. Information

returned includes the name of the provider, some additional text
about the provider, the “algorithms” supported, and so on.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibGetProviderInfo
(uint32_t providerID,
APProviderInfoType *providerInfoP)

Parameters → providerID
A provider ID referencing the provider for which info is
being requested.

← providerInfoP
A APProviderInfoType structure, allocated by the
application, into which information about the provider is
written.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

See Also CPMLibEnumerateProviders(), CPMLibGetInfo()

CPMLibHash Function
Purpose Performs the hashing operation in one pass.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibHash (APHashEnum type,
APHashInfoType *hashinfo, uint8_t *bufIn,
uint32_t bufInLen, uint8_t *bufOut,
uint32_t *bufOutLenP)

Parameters → type
The algorithm provider hash type. One of the values defined
by the APHashEnum.

↔ hashinfo
Pointer to an APHashInfoType structure, allocated by the
application, into which the context is stored.

CPM Library ARM Interface
CPMLibHashFinal

192 Exploring Palm OS: Security and Cryptography

→ bufIn
Pointer to a buffer containing the data for the operation. This
parameter cannot be NULL.

→ bufInLen
The size, in bytes, of the buffer specified by the bufIn
parameter.

↔ bufOut
Pointer to a buffer, allocated by the application, that receives
the output of the operation.

↔ bufOutLenP
The size, in bytes, of the buffer specified by bufOut.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

See Also CPMLibHashFinal(), CPMLibHashInit(),
CPMLibHashUpdate()

CPMLibHashFinal Function
Purpose Finalizes a multi-part hash operation.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibHashFinal
(APHashInfoType *hashinfo, uint8_t *bufIn,
uint32_t bufInLen, uint8_t *bufOut,
uint32_t *bufOutLenP)

Parameters → hashinfo
The context returned from the call to CPMLibHashInit().
This is an APHashInfoType structure.

→ bufIn
Pointer a buffer containing the final data for the operation, or
NULL if there is no additional data.

→ bufInLen
The size of the buffer specified by the bufIn parameter.

↔ bufOut
Pointer to a buffer, allocated by the application, that receives
the output of the operation.

CPM Library ARM Interface
CPMLibHashInit

Exploring Palm OS: Security and Cryptography 193

↔ bufOutLenP
The size, in bytes, of the buffer specified by bufOut.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

Comments The results of the hash operation are placed in bufOut.

NOTE: When this function returns, the context in *hashinfo is
no longer valid.

See Also CPMLibHashInit(), CPMLibHashUpdate(),
CPMLibReleaseHashInfo()

CPMLibHashInit Function
Purpose Begins a multi-part hash operation of a specified type and returns

the context of the hash operation.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibHashInit
(APHashInfoType *hashinfo)

Parameters ↔ hashinfo
Pointer to an APHashInfoType structure, allocated by the
application, into which the context is stored. This context is
needed by the CPMLibHashUpdate() and
CPMLibHashFinal() functions.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

Comments Requires that CPMLibHashFinal() must be called to free the
context.

See Also CPMLibHash(), CPMLibHashFinal(), CPMLibHashUpdate()

CPM Library ARM Interface
CPMLibHashUpdate

194 Exploring Palm OS: Security and Cryptography

CPMLibHashUpdate Function
Purpose Updates a multi-part hash operation with more data.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibHashUpdate
(APHashInfoType *hashinfo, uint8_t *bufIn,
uint32_t bufInLen)

Parameters → hashinfo
The context returned from the call to CPMLibHashInit().
This is an APHashInfoType structure.

→ bufIn
Pointer to a buffer containing the data for the operation. This
parameter must not be NULL.

→ bufInLen
The size of the buffer specified by the bufIn parameter. This
value must be greater than zero.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

See Also CPMLibHashFinal(), CPMLibHashInit()

CPMLibImportCipherInfo Function
Purpose Initialize the contents of an APCipherInfoType structure based

upon a storable instance of that structure.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibImportCipherInfo
(uint8_t encoding, uint8_t *importDataP,
uint32_t dataLen,
APCipherInfoType *cipherInfoP)

Parameters → encoding
One of the encodings documented under “Import/Export
Types” on page 237.

→ importDataP
Pointer to a buffer containing the raw data to be imported.

CPM Library ARM Interface
CPMLibImportHashInfo

Exploring Palm OS: Security and Cryptography 195

→ dataLen
Length, in bytes, of the buffer specified by importDataP.

↔ cipherInfoP
An APCipherInfoType structure, allocated and optionally
initialized by the application, that holds the context
information to be used for this operation.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

Comments The application is always responsible for allocating and freeing the
APCipherInfoType structure. The application must also call
CPMLibReleaseCipherInfo() before freeing the
APICipherInfoType structure to allow the CPM and the
provider(s) to clean up.

See Also CPMLibExportCipherInfo(), CPMLibReleaseCipherInfo()

CPMLibImportHashInfo Function
Purpose Initialize the contents of an APHashInfoType structure based

upon a storable instance of that structure.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibImportHashInfo (uint8_t encoding,
uint8_t *importDataP, uint32_t dataLen,
APHashInfoType *hashInfoP)

Parameters → encoding
One of the encodings documented under “Import/Export
Types” on page 237.

→ importDataP
Pointer to a buffer containing the raw data to be imported.

→ dataLen
The size, in bytes, of the buffer indicated by importDataP.

↔ hashInfoP
An APHashInfoType structure, allocated by the
application, that holds information about the hashing
operation.

CPM Library ARM Interface
CPMLibImportKeyInfo

196 Exploring Palm OS: Security and Cryptography

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

See Also CPMLibExportHashInfo()

CPMLibImportKeyInfo Function
Purpose Introduces an existing key to the CPM framework.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibImportKeyInfo (uint8_t encoding,
uint8_t *importDataP, uint32_t dataLen,
APKeyInfoType *keyInfoP)

Parameters → encoding
One of the values documented under “Import/Export
Types” on page 237.

→ importDataP
Pointer to a buffer containing the raw data to be imported.

→ dataLen
The size of the buffer specified by importDataP.

↔ keyInfoP
An APKeyInfoType structure, allocated and optionally
initialized by the application, that holds information about
the key to be used for this operation.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

Comments If no previous key exists, use CPMLibGenerateKey() to generate
a new key.

The application is always responsible for allocating and freeing the
APKeyInfoType structure. The application must call
CPMLibReleaseKeyInfo() before freeing the APKeyInfoType
structure to allow the CPM and provider to clean up.

See Also CPMLibExportKeyInfo(), CPMLibGenerateKey(),
CPMLibReleaseKeyInfo()

CPM Library ARM Interface
CPMLibImportKeyPairInfo

Exploring Palm OS: Security and Cryptography 197

CPMLibImportKeyPairInfo Function
Purpose Introduces an existing public/private key pair to the CPM

framework.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibImportKeyPairInfo
(uint8_t encoding, uint8_t *importDataP,
uint32_t dataLen,
APKeyInfoType *privateKeyInfoP,
APKeyInfoType *publicKeyInfoP)

Parameters → encoding
One of the values documented under “Import/Export
Types” on page 237.

→ importDataP
Pointer to a buffer containing the raw data to be imported.

→ dataLen
The size, in bytes, of the buffer indicated by importDataP.

↔ privateKeyInfoP
Pointer to an APKeyInfoType structure for the private key.

↔ publicKeyInfoP
Pointer to an APKeyInfoType structure for the public key.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

Comments The application is always responsible for allocating and freeing the
APKeyInfoType structures. The application must call
CPMLibReleaseKeyInfo() before freeing an APKeyInfoType
structure to allow the CPM and provider to clean up.

See Also CPMLibExportKeyPairInfo(), CPMLibReleaseKeyInfo()

CPM Library ARM Interface
CPMLibImportMACInfo

198 Exploring Palm OS: Security and Cryptography

CPMLibImportMACInfo Function
Purpose Initialize the contents of an APMACInfoType structure based upon

a storable instance of that structure.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibImportMACInfo (uint8_t encoding,
uint8_t *importDataP, uint32_t dataLen,
APMACInfoType *macInfoP)

Parameters → encoding
One of the values documented under “Import/Export
Types” on page 237.

→ importDataP
Pointer to a buffer containing the raw data to be imported.

→ dataLen
The size, in bytes, of the buffer indicated by importDataP.

↔ macInfoP
Pointer to an APMACInfoType structure, allocated by the
application, to contain information about the message
authentication context.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

Comments The application is always responsible for allocating and freeing the
APMACInfoType structure. The application must call
CPMLibReleaseMACInfo() before freeing the APMACInfoType
structure to allow the CPM and provider to clean up.

See Also CPMLibExportMACInfo(), CPMLibReleaseMACInfo()

CPM Library ARM Interface
CPMLibImportSignInfo

Exploring Palm OS: Security and Cryptography 199

CPMLibImportSignInfo Function
Purpose Initialize the contents of an APSignInfoType structure based

upon a storable instance of that structure.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibImportSignInfo (uint8_t encoding,
uint8_t *importDataP, uint32_t dataLen,
APSignInfoType *signInfoP)

Parameters → encoding
One of the values documented under “Import/Export
Types” on page 237.

→ importDataP
Pointer to a buffer containing the raw data to be imported.

→ dataLen
The size, in bytes, of the buffer indicated by importDataP.

↔ signInfoP
Pointer to an APSignInfoType structure, allocated by the
application, to contain information about the signature
context.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

Comments The application is always responsible for allocating and freeing the
APSignInfoType structure. The application must call
CPMLibReleaseSignInfo() before freeing the
APSignInfoType structure to allow the CPM and provider to
clean up.

See Also CPMLibExportSignInfo(), CPMLibReleaseSignInfo()

CPM Library ARM Interface
CPMLibImportVerifyInfo

200 Exploring Palm OS: Security and Cryptography

CPMLibImportVerifyInfo Function
Purpose Initialize the contents of an APVerifyInfoType structure based

upon a storable instance of that structure.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibImportVerifyInfo
(uint8_t encoding, uint8_t *importDataP,
uint32_t dataLen,
APVerifyInfoType *verifyInfoP)

Parameters → encoding
One of the values documented under “Import/Export
Types” on page 237.

→ importDataP
Pointer to a buffer containing the raw data to be imported.

→ dataLen
The size, in bytes, of the buffer indicated by importDataP.

↔ verifyInfoP
Pointer to an APVerifyInfoType structure, allocated by
the application, to contain information about the verification
context.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

Comments The application is always responsible for allocating and freeing the
APVerifyInfoType structure. The application must call
CPMLibReleaseVerifyInfo() before freeing the
APVerifyInfoType structure to allow the CPM and provider to
clean up.

See Also CPMLibExportVerifyInfo(), CPMLibReleaseVerifyInfo()

CPM Library ARM Interface
CPMLibMAC

Exploring Palm OS: Security and Cryptography 201

CPMLibMAC Function
Purpose Performs the message authentication operation in one pass.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibMAC (APKeyInfoType *keyInfoP,
APHashInfoType *hashInfoP, APMACEnum type,
APMACInfoType *macInfoP, uint8_t *bufIn,
uint32_t bufInLen, uint8_t *bufOut,
uint32_t *bufOutLenP)

Parameters ↔ keyInfoP
Pointer to an APKeyInfoType structure, allocated by the
application, containing the key to be used for the operation.

↔ hashInfoP
Pointer to an APHashInfoType structure, allocated by the
application, that holds information about the hashing
operation to be used for the operation.

→ type
One of the values declared by the APMACEnum enum.

↔ macInfoP
Pointer to an APMACInfoType structure, allocated by the
application, to be used in subsequent calls to the same class
of operations.

→ bufIn
Pointer to a buffer containing the data for the operation. This
parameter must not be NULL.

→ bufInLen
The size, in bytes, of the buffer specified by bufIn. This
value must be greater than zero.

↔ bufOut
Pointer to a buffer, allocated by the application, to receive the
output of the operation.

↔ bufOutLenP
The size, in bytes, of the buffer specified by the bufOut
parameter.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

CPM Library ARM Interface
CPMLibMACFinal

202 Exploring Palm OS: Security and Cryptography

Comments The application is always responsible for allocating and freeing the
APKeyInfoType, APHashInfoType, and APMACInfoType
structures. The application must call the appropriate release
function before freeing the structure to allow the CPM and provider
to clean up.

See Also CPMLibMACFinal()CPMLibMACInit(), CPMLibMACUpdate(),
CPMLibReleaseKeyInfo(), CPMLibReleaseMACInfo(),
CPMLibReleaseSignInfo()

CPMLibMACFinal Function
Purpose Finalizes a multi-part message authentication operation.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibMACFinal (APMACInfoType *macInfoP,
uint8_t *bufIn, uint32_t bufInLen,
uint8_t *bufOut, uint32_t *bufOutLenP)

Parameters → macInfoP
Pointer to the APMACInfoType structure that was initialized
during the call to CPMLibMACInit().

→ bufIn
Pointer to a buffer containing the data for the operation, or
NULL if there is no additional data.

→ bufInLen
The size, in bytes, of the buffer specified by bufIn.

↔ bufOut
Pointer to a buffer, allocated by the application, to receive the
output of the operation.

↔ bufOutLenP
The size, in bytes, of the buffer specified by the bufOut
parameter.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

See Also CPMLibMACInit(), CPMLibMACUpdate(),
CPMLibReleaseMACInfo()

CPM Library ARM Interface
CPMLibMACInit

Exploring Palm OS: Security and Cryptography 203

CPMLibMACInit Function
Purpose Begins a multi-part message authentication operation with the

specified key and hash info and returns the context of the operation.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibMACInit (APKeyInfoType *keyInfoP,
APHashInfoType *hashInfoP,
APMACInfoType *macInfoP)

Parameters ↔ keyInfoP
Pointer to an APKeyInfoType structure, allocated by the
application, containing the key to be used in the subsequent
calls to CPMLibMACUpdate() and CPMLibMACFinal().

↔ hashInfoP
Pointer to an APHashInfoType structure, allocated by the
application, that holds information about the hashing
operation for use in the subsequent calls to
CPMLibMACUpdate() and CPMLibMACFinal().

↔ macInfoP
Pointer to an APMACInfoType structure, allocated by the
application, to be used in subsequent calls to the same class
of operations.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

Comments The application is always responsible for allocating and freeing the
APKeyInfoType, APHashInfoType, and APMACInfoType
structures. The application must call the appropriate release
function before freeing the APKeyInfoType or APMACInfoType
structure to allow the CPM and provider to clean up.

See Also CPMLibMAC(), CPMLibMACFinal(), CPMLibMACUpdate(),
CPMLibReleaseHashInfo(), CPMLibReleaseKeyInfo(),
CPMLibReleaseMACInfo()

CPM Library ARM Interface
CPMLibMACUpdate

204 Exploring Palm OS: Security and Cryptography

CPMLibMACUpdate Function
Purpose Updates a multi-part message authentication operation with more

data.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibMACUpdate
(APMACInfoType *macInfoP, uint8_t *bufIn,
uint32_t bufInLen, uint8_t *bufOut,
uint32_t *bufOutLenP)

Parameters → macInfoP
Pointer to the APMACInfoType structure that was initialized
during the call to CPMLibMACInit().

→ bufIn
Pointer to a buffer containing the data for the operation. This
parameter must not be NULL.

→ bufInLen
The size, in bytes, of the buffer specified by bufIn. This
value must be greater than zero.

↔ bufOut
Pointer to a buffer, allocated by the application, to receive the
output of the operation.

↔ bufOutLenP
The size, in bytes, of the buffer specified by the bufOut
parameter.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

See Also CPMLibSignFinal(), CPMLibSignInit()

CPMLibOpen Function
Purpose Handles the open of the CPM library.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibOpen (uint16_t *numProviders)

Parameters ← numProviders
The number of providers the CPM currently knows about.

CPM Library ARM Interface
CPMLibReleaseCipherInfo

Exploring Palm OS: Security and Cryptography 205

Returns errNone if the operation completed successfully, one of the errors
listed under “Data Manager Error Codes” on page 112 of Exploring
Palm OS: Memory, Databases, Files if the Data Manager couldn’t open
the library, or one of the following otherwise:

cpmErrAlreadyOpen
The library is already open.

cpmErrOutOfMemory
There wasn’t enough memory to open the library.

cpmErrNoProviders
The CPM library is not aware of any providers. With no
providers the CPM library has no functionality.

cpmErrNoBaseProvider
The CPM library cannot load the base provider.

Comments This function establishes the CPM application context to be used in
future CPM calls. It also returns the number of providers the CPM
currently knows about. This number should be 1 for the base
provider plus any additional providers that may be installed. To
enumerate those providers, use CPMLibEnumerateProviders().

See Also CPMLibClose(), CPMLibSleep(), CPMLibWake()

CPMLibReleaseCipherInfo Function
Purpose Allows the CPM and the provider(s) to clean up before the

application frees the APICipherInfoType structure.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibReleaseCipherInfo
(APCipherInfoType *cipherInfoP)

Parameters ↔ cipherInfoP
Pointer to the APCipherInfoType structure.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

CPM Library ARM Interface
CPMLibReleaseHashInfo

206 Exploring Palm OS: Security and Cryptography

CPMLibReleaseHashInfo Function
Purpose Allows the CPM and the provider(s) to clean up before the

application frees the APIHashInfoType structure.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibReleaseHashInfo
(APHashInfoType *hashInfoP)

Parameters ↔ hashInfoP
Pointer to the APHashInfoType structure.

Comments The application is not required to call this function;
APHashInfoType structures need not be released.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

CPMLibReleaseKeyInfo Function
Purpose Allows the CPM and the provider(s) to clean up before the

application frees the APKeyInfoType structure.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibReleaseKeyInfo
(APKeyInfoType *keyInfoP)

Parameters ↔ keyInfoP
Pointer to an APKeyInfoType structure.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

CPM Library ARM Interface
CPMLibReleaseVerifyInfo

Exploring Palm OS: Security and Cryptography 207

CPMLibReleaseMACInfo Function
Purpose Allows the CPM and the provider(s) to clean up before the

application frees the APMACInfoType structure.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibReleaseMACInfo
(APMACInfoType *macInfoP)

Parameters ↔ macInfoP
Pointer to an APMACInfoType structure.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

CPMLibReleaseSignInfo Function
Purpose Allows the CPM and the provider(s) to clean up before the

application frees the APSignInfoType structure.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibReleaseSignInfo
(APSignInfoType *signInfoP)

Parameters ↔ signInfoP
Pointer to an APSignInfoType structure.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

CPMLibReleaseVerifyInfo Function
Purpose Allows the CPM and the provider(s) to clean up before the

application frees the APVerifyInfoType structure.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibReleaseVerifyInfo
(APVerifyInfoType *verifyInfoP)

Parameters ↔ verifyInfoP
Pointer to an APVerifyInfoType structure.

CPM Library ARM Interface
CPMLibSetDebugLevel

208 Exploring Palm OS: Security and Cryptography

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

CPMLibSetDebugLevel Function
Purpose Specify the level of debug output to be sent from the library using

DbgMessage().

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibSetDebugLevel (uint8_t debugLevel)

Parameters → debugLevel
The level of debug output to be sent. One of the values listed
under “Debug Output Levels” on page 239.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

CPMLibSetDefaultProvider Function
Purpose Sets the default provider.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibSetDefaultProvider
(uint32_t providerID)

Parameters → providerID
A provider ID referencing the provider that is to be the
default provider.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

Comments The default provider is checked first for supporting operations
rather than performing a linear search through the known
providers. If an operation is not supported by the default provider,
the CPM then checks the other providers.

See Also CPMLibEnumerateProviders(), CPMLibGetProviderInfo()

CPM Library ARM Interface
CPMLibSign

Exploring Palm OS: Security and Cryptography 209

CPMLibSign Function
Purpose Performs the signing operation in one pass.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibSign (APKeyInfoType *keyInfoP,
APSignInfoType *signInfoP, uint8_t *bufIn,
uint32_t bufInLen, uint8_t *bufOut,
uint32_t *bufOutLenP, uint8_t *signature,
uint32_t *signatureLenP)

Parameters ↔ keyInfoP
Pointer to an APKeyInfoType structure, allocated by the
application, containing the key to be used for this signing
operation. Note that for this single-part operation, this
structure is not required unless the application wants to pass
setting information to or receive setting information from the
CPM or provider.

↔ signInfoP
Pointer to an APSignInfoType structure, allocated by the
application, to be used for this signing operation. Note that
for this single-part operation, this structure is not required
unless the application wants to pass setting information to or
receive setting information from the CPM or provider.

→ bufIn
Pointer to a buffer containing the data for the operation. This
parameter must not be NULL.

→ bufInLen
The size, in bytes, of the buffer specified by bufIn.

↔ bufOut
Pointer to a buffer, allocated by the application, to receive the
output of the operation.

↔ bufOutLenP
The size, in bytes, of the buffer specified by the bufOut
parameter.

↔ signature
Pointer to a buffer, allocated by the application, to receive the
calculated signature.

CPM Library ARM Interface
CPMLibSignFinal

210 Exploring Palm OS: Security and Cryptography

↔ signatureLenP
The size, in bytes, of the buffer specified by the signature
parameter.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

Comments The application is always responsible for allocating and freeing the
APKeyInfoType and APSignInfoType structures. The
application must call CPMLibReleaseKeyInfo() or
CPMLibReleaseSignInfo(), as appropriate, before freeing the
structure to allow the CPM and provider to clean up.

See Also CPMLibSignFinal()CPMLibSignInit(),
CPMLibSignUpdate(), CPMLibReleaseKeyInfo(),
CPMLibReleaseSignInfo()

CPMLibSignFinal Function
Purpose Finalizes a multi-part signing operation.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibSignFinal
(APKeyInfoType *keyInfoP,
APSignInfoType *signInfoP, uint8_t *bufIn,
uint32_t bufInLen, uint8_t *bufOut,
uint32_t *bufOutLenP, uint8_t *signature,
uint32_t *signatureLenP)

Parameters → keyInfoP
Pointer to an APKeyInfoType structure containing the key
to be used for the operation.

→ signInfoP
Pointer to the APSignInfoType structure that was
initialized during the call to CPMLibSignInit().

→ bufIn
Pointer to a buffer containing the final data for the operation,
or NULL if there is no additional data.

→ bufInLen
The size, in bytes, of the buffer specified by bufIn.

CPM Library ARM Interface
CPMLibSignInit

Exploring Palm OS: Security and Cryptography 211

↔ bufOut
Pointer to a buffer, allocated by the application, to receive the
output of the operation.

↔ bufOutLenP
The size, in bytes, of the buffer specified by the bufOut
parameter.

↔ signature
Pointer to a buffer, allocated by the application, to receive the
final calculated signature.

↔ signatureLenP
The size, in bytes, of the buffer specified by the signature
parameter.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

See Also CPMLibSignInit(), CPMLibSignUpdate(),
CPMLibReleaseKeyInfo(), CPMLibReleaseSignInfo()

CPMLibSignInit Function
Purpose Begins a multi-part signing operation with the specified key and

returns the context of the signing operation.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibSignInit (APKeyInfoType *keyInfoP,
APSignInfoType *signInfoP)

Parameters → keyInfoP
Pointer to an APKeyInfoType structure, allocated by the
application, containing the key to be used for the subsequent
calls to CPMLibSignUpdate() and CPMLibSignFinal().

← signInfoP
Pointer to an APSignInfoType structure, allocated by the
application, to be used in subsequent calls to the same class
of operations.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

CPM Library ARM Interface
CPMLibSignUpdate

212 Exploring Palm OS: Security and Cryptography

Comments The application is always responsible for allocating and freeing the
APKeyInfoType and APSignInfoType structures. The
application must call CPMLibReleaseKeyInfo() or
CPMLibReleaseSignInfo(), as appropriate, before freeing the
structure to allow the CPM and provider to clean up.

The application must call CPMLibSignFinal() to finalize the
operation.

See Also CPMLibSign(), CPMLibSignFinal(), CPMLibSignUpdate(),
CPMLibReleaseKeyInfo(), CPMLibReleaseSignInfo()

CPMLibSignUpdate Function
Purpose Updates a multi-part signing operation with more data.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibSignUpdate
(APKeyInfoType *keyInfoP,
APSignInfoType *signInfoP, uint8_t *bufIn,
uint32_t bufInLen)

Parameters → keyInfoP
Pointer to an APKeyInfoType structure containing the key
to be used for the operation.

→ signInfoP
Pointer to the APSignInfoType structure that was
initialized during the call to CPMLibSignInit().

→ bufIn
Pointer to a buffer containing the data for the operation. This
parameter must not be NULL.

→ bufInLen
The size, in bytes, of the buffer specified by bufIn. This
value must be greater than zero.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

See Also CPMLibSignFinal(), CPMLibSignInit()

CPM Library ARM Interface
CPMLibVerify

Exploring Palm OS: Security and Cryptography 213

CPMLibSleep Function
Purpose Allows the library to handle the device going to sleep.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibSleep (void)

Parameters None.

Returns errNone.

See Also CPMLibClose(), CPMLibOpen(), CPMLibWake()

CPMLibVerify Function
Purpose Performs the verify operation in one pass.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibVerify (APKeyInfoType *keyInfoP,
APVerifyInfoType *verifyInfoP, uint8_t *bufIn,
uint32_t bufInLen, uint8_t *bufOut,
uint32_t *bufOutLenP, uint8_t *signature,
uint32_t signatureLen,
VerifyResultType *verifyResultP)

Parameters ↔ keyInfoP
Pointer to an APKeyInfoType structure, allocated by the
application, containing the key to be used for this signing
operation. Note that for this single-part operation, this
structure is not required unless the application wants to pass
setting information to or receive setting information from the
CPM or provider.

↔ verifyInfoP
Pointer to an APVerifyInfoType structure, allocated by
the application, to be used for this verify operation. Note that
for this single-part operation, this structure is not required
unless the application wants to pass setting information to or
receive setting information from the CPM or provider.

→ bufIn
Pointer to a buffer containing the data for the operation. This
parameter must not be NULL.

→ bufInLen
The size, in bytes, of the buffer specified by bufIn.

CPM Library ARM Interface
CPMLibVerify

214 Exploring Palm OS: Security and Cryptography

↔ bufOut
Pointer to a buffer, allocated by the application, to receive the
output of the operation.

↔ bufOutLenP
The size, in bytes, of the buffer specified by the bufOut
parameter.

→ signature
Pointer to a buffer containing the previously calculated
signature that is being verified.

→ signatureLen
The length, in bytes, of the buffer specified by signature.

← verifyResultP
Supply a pointer to a VerifyResultType. If the function
call completed without error, upon return the
VerifyResultType variable will be set to zero if the
signature verifies or 1 if the signature did not verify.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

Comments The application is always responsible for allocating and freeing the
APKeyInfoType and APVerifyInfoType structures. The
application must call CPMLibReleaseKeyInfo() or
CPMLibReleaseVerifyInfo(), as appropriate, before freeing
the structure to allow the CPM and provider to clean up.

See Also CPMLibVerifyFinal()CPMLibVerifyInit(),
CPMLibVerifyUpdate(), CPMLibReleaseKeyInfo(),
CPMLibReleaseVerifyInfo()

CPM Library ARM Interface
CPMLibVerifyFinal

Exploring Palm OS: Security and Cryptography 215

CPMLibVerifyFinal Function
Purpose Finalizes a multi-part verification operation.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibVerifyFinal
(APKeyInfoType *keyInfoP,
APVerifyInfoType *verifyInfoP, uint8_t *bufIn,
uint32_t bufInLen, uint8_t *bufOut,
uint32_t *bufOutLenP, uint8_t *signature,
uint32_t signatureLen,
VerifyResultType *verifyResultP)

Parameters → keyInfoP
Pointer to an APKeyInfoType structure containing the key
to be used for the operation.

→ verifyInfoP
Pointer to the APVerifyInfoType structure that was
initialized during the call to CPMLibVerifyInit().

→ bufIn
Pointer to a buffer containing the final data for the operation,
or NULL if there is no additional data.

→ bufInLen
The size, in bytes, of the buffer specified by bufIn.

↔ bufOut
Pointer to a buffer, allocated by the application, to receive the
output of the operation.

↔ bufOutLenP
The size, in bytes, of the buffer specified by the bufOut
parameter.

→ signature
Pointer to a buffer containing the previously calculated
signature that is being verified.

→ signatureLen
The length, in bytes, of the buffer specified by signature.

← verifyResultP
Supply a pointer to a VerifyResultType. If the function
call completed without error, upon return the
VerifyResultType variable will be set to zero if the
signature verifies or 1 if the signature did not verify.

CPM Library ARM Interface
CPMLibVerifyInit

216 Exploring Palm OS: Security and Cryptography

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

See Also CPMLibVerifyInit(), CPMLibVerifyUpdate(),
CPMLibReleaseKeyInfo(), CPMLibReleaseVerifyInfo()

CPMLibVerifyInit Function
Purpose Begins a multi-part verification operation with the specified key and

returns the context of the verification operation.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibVerifyInit
(APKeyInfoType *keyInfoP,
APVerifyInfoType *verifyInfoP)

Parameters → keyInfoP
Pointer to an APKeyInfoType structure, allocated and
optionally initialized by the application, containing the key
to be used for the subsequent calls to
CPMLibVerifyUpdate() and CPMLibVerifyFinal().

← verifyInfoP
Pointer to an APVerifyInfoType structure, allocated by
the application, to be used in subsequent calls to
CPMLibVerifyUpdate() and CPMLibVerifyFinal().

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

Comments The application is always responsible for allocating and freeing the
APKeyInfoType and APVerifyInfoType structures. The
application must call CPMLibReleaseKeyInfo() or
CPMLibReleaseVerifyInfo(), as appropriate, before freeing
the structure to allow the CPM and provider to clean up.

The application must call CPMLibVerifyFinal() to finalize the
operation.

See Also CPMLibVerify(), CPMLibVerifyFinal(),
CPMLibVerifyUpdate(), CPMLibReleaseKeyInfo(),
CPMLibReleaseVerifyInfo()

CPM Library ARM Interface
CPMLibWake

Exploring Palm OS: Security and Cryptography 217

CPMLibVerifyUpdate Function
Purpose Updates a multi-part verification operation with more data.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibVerifyUpdate
(APKeyInfoType *keyInfoP,
APVerifyInfoType *verifyInfoP, uint8_t *bufIn,
uint32_t bufInLen)

Parameters → keyInfoP
Pointer to an APKeyInfoType structure containing the key
to be used for the operation.

→ verifyInfoP
Pointer to the APVerifyInfoType structure that was
initialized during the call to CPMLibVerifyInit().

→ bufIn
Pointer to a buffer containing the data for the operation. This
parameter must not be NULL.

→ bufInLen
The size, in bytes, of the buffer specified by bufIn. This
value must be greater than zero.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

See Also CPMLibVerifyFinal(), CPMLibVerifyInit()

CPMLibWake Function
Purpose Allows the library to handle the device waking up.

Declared In CPMLibARMInterface.h

Prototype status_t CPMLibWake (void)

Parameters None.

Returns errNone.

See Also CPMLibClose(), CPMLibOpen(), CPMLibSleep()

CPM Library ARM Interface
CPMLibWake

218 Exploring Palm OS: Security and Cryptography

Exploring Palm OS: Security and Cryptography 219

10
CPM Library
Common Definitions
The CPMLibCommon.h header file declares the various structures,
types, and constants used by the CPM library. These structures,
types, and constants are documented in this chapter; this
documentation is organized into the following sections:

CPM Library Structures and Types. 220

CPM Library Constants. 230

CPM Library Common Definit ions
CPM Library Structures and Types

220 Exploring Palm OS: Security and Cryptography

CPM Library Structures and Types

APCipherInfoType Struct
Purpose Structure to hold information about a particular operation’s context,

including generic information about contexts and specific
information about the provider’s concept of the context.

Declared In CPMLibCommon.h

Prototype struct APCipherInfoStruct {
 APProviderContextType providerContext;
 APAlgorithmEnum type;
 APPaddingEnum padding;
 APModeEnum mode;
 uint8_t *iv;
 uint32_t ivLength;
 void *algorithmParams;
}
typedef struct APCipherInfoStruct
APCipherInfoType, *APCipherInfoPtr

Fields providerContext
The provider context of this info type.

type
Cipher type. One of the APAlgorithmEnum values.

padding
The type of padding for this cipher. One of the
APPaddingEnum values.

mode
Modes of operation for symmetric encryption/decryption.
One of the APModeEnum values.

iv
Initialization vector as specified by the caller.

ivLength
The size, in bytes, of the initialization vector.

algorithmParams
Provider-specific algorithm parameters.

CPM Library Common Definit ions
APDerivedKeyInfoType

Exploring Palm OS: Security and Cryptography 221

Comments The application is always responsible for allocating and freeing the
APCipherInfoType structure. The application must also call
CPMLibReleaseCipherInfo() before freeing the
APICipherInfoType structure to allow the CPM and the
provider(s) to clean up.

If the application does not care or wants default settings for the
APCipherInfoType, allocate the APCipherInfoType structure
and zero its contents. Upon return from either
CPMLibEncryptInit(), CPMLibEncrypt(),
CPMLibDecryptInit(), CPMLibDecrypt(), or
CPMLibImportCipherInfo() the APICipherInfoType
structure will have been filled in by the CPM and provider with the
appropriate information.

if the application does care about the settings for the
APCipherInfoType, the application should allocate the
APICipherInfoType structure and set the fields as appropriate
before passing it in to one of the previously mentioned functions.

APDerivedKeyInfoType Struct
Purpose Structure to hold the various pieces of information about the

derivation functions and parameters.

Declared In CPMLibCommon.h

Prototype struct APDerivedKeyInfoStruct {
 APProviderContextType providerContext;
 APKeyDerivationEnum kdType;
 APKeyDerivationUsageEnum kdUsage;
 uint8_t *salt;
 uint32_t saltLen;
 uint32_t iterationCount;
 void *kdInfo;
}
typedef struct APDerivedKeyInfoStruct
APDerivedKeyInfoType, *APKeyDerivedKeyInfoPtr

Fields providerContext
The provider context of this info type. See
APProviderContextType.

CPM Library Common Definit ions
APHashInfoType

222 Exploring Palm OS: Security and Cryptography

kdType
The type of key derivation to be performed. One of the
values specified by APKeyDerivationEnum.

kdUsage
The allowed usage of the subsequently derived key. One of
the values specified by APKeyDerivationUsageEnum.

salt
Cryptographic salt to be used for the derivation function.

saltLen
The length, in bytes, of the salt.

iterationCount
The number of iterations for this particular derivation
operation.

kdInfo
Other derivation-function-specific parameters as defined by
both the provider handling the derivation and the derivation
function itself.

APHashInfoType Struct
Purpose Structure to hold information about a particular hashing operation,

including generic information about hashing operations and
specific information about the provider's concept of the hashing
operation.

Declared In CPMLibCommon.h

Prototype struct APHashInfoStruct {
 APProviderContextType providerContext;
 APHashEnum type;
 uint32_t length;
}
typedef struct APHashInfoStruct APHashInfoType,
*APHashInfoPtr

Fields providerContext
The provider context of this info type. See
APProviderContextType.

CPM Library Common Definit ions
APKeyInfoType

Exploring Palm OS: Security and Cryptography 223

type
The type of the hash. One of the values specified by
APHashEnum.

length
The length of the hash, in bytes.

Comments The application is responsible for allocating memory and
deallocating memory for this structure.

APKeyInfoType Struct
Purpose Structure to hold information about a particular key, including

generic information about all keys and specific information about
the provider’s concept of the key.

Declared In CPMLibCommon.h

Prototype struct APKeyInfoStruct {
 APProviderContextType providerContext;
 APAlgorithmEnum type;
 APKeyUsageEnum usage;
 APKeyClassEnum keyclass;
 uint32_t length;
 uint32_t actualLength;
 uint16_t exportable;
 uint16_t ephemeral;
}
typedef struct APKeyInfoStruct APKeyInfoType,
*APKeyInfoPtr

Fields providerContext
The provider context of this info type. See
APProviderContextType.

type
The type of this key. One of the values specified by
APAlgorithmEnum.

usage
The key usage. One of the values specified by
APKeyUsageEnum.

CPM Library Common Definit ions
APKeyInfoType

224 Exploring Palm OS: Security and Cryptography

keyclass
The key class. One of the values specified by
APKeyClassEnum.

length

actualLength

exportable
Whether or not this key is exportable. This field has a value
of 1 if it is, or 0 if it is not.

ephemeral
Whether or not this key is permanent. This field has a value
of 1 if it is, or 0 if it is not.

Comments The application is always responsible for allocating and freeing the
APKeyInfoType structure. The application must call
CPMLibReleaseKeyInfo() before freeing the APKeyInfoType
structure to allow the CPM and provider to clean up.

If the application does not care or wants default settings for the
APKeyInfoType, the application should allocate the
APKeyInfoType structure and set its contents to zero. Upon return
from either CPMLibImportKeyInfo() or
CPMLibGenerateKey() the APKeyInfoType structure would
have been filled in by the CPM and the provider with the
appropriate information.

If the application does care about the settings for the
APKeyInfoType, the application should allocate the
APKeyInfoType structure and set the fields appropriately before
passing it in to CPMLibGenerateKey().

CPM Library Common Definit ions
APProviderContextType

Exploring Palm OS: Security and Cryptography 225

APMACInfoType Struct
Purpose

Declared In CPMLibCommon.h

Prototype struct APMACInfoStruct {
 APProviderContextType providerContext;
 APMACEnum type;
}
typedef struct APMACInfoStruct APMACInfoType,
*APMACInfoPtr

Fields providerContext
The provider context of this info type. See
APProviderContextType.

type
The MAC type. One of the APMACEnum values.

APProviderContextType Struct
Purpose Contains provider-specific information.

Declared In CPMLibCommon.h

Prototype struct APProviderContextStruct {
 uint32_t providerID;
 void *localContext;
}
typedef struct APProviderContextStruct
APProviderContextType, *APProviderContextPtr

Fields providerID
The provider handling this operation.

localContext
Provider-specific infomation about this operation.

CPM Library Common Definit ions
APProviderInfoType

226 Exploring Palm OS: Security and Cryptography

APProviderInfoType Struct
Purpose Structure to hold information about a particular provider as it is

known by the current instantiation of the CPM library.

Declared In CPMLibCommon.h

Prototype struct APProviderInfoStruct {
 char name[32];
 char other[64];
 uint32_t flags;
 uint8_t numAlgorithms;
 Boolean bHardware;
}
typedef struct APProviderInfoStruct
APProviderInfoType, *APProviderInfoPtr

Fields name
Name of the provider.

other
Other textual information.

flags
Flags to indicate functionality supported by the
cryptographic provider. This is a combination of the values
documented under “Cryptographic Provider Functionality
Flags” on page 238.

numAlgorithms
Number of algorithms supported.

bHardware
Whether or not this is a hardware provider.

APSignInfoType Struct
Purpose Structure to hold information about a particular operation’s

signature context, including generic information about signature
contexts and specific information about the provider’s concept of

CPM Library Common Definit ions
APSignInfoType

Exploring Palm OS: Security and Cryptography 227

the signature context. This structure is needed to maintain state
across the various multi-part operations.

Declared In CPMLibCommon.h

Prototype struct APSignInfoStruct {
 APProviderContextType providerContext;
 APHashInfoType *hashInfoP;
 APCipherInfoType *cipherInfoP;
}
typedef struct APSignInfoStruct APSignInfoType,
*APSignInfoPtr

Fields providerContext
The provider context of this info type. See
APProviderContextType.

hashInfoP
The hash to use. See APHashInfoType.

cipherInfoP
The cipher to use. See APCipherInfoType.

Comments The application is always responsible for allocating and freeing the
APSignInfoType structure and the associated
APCipherInfoType and APHashInfoType structures. The
application must call CPMLibReleaseCipherInfo() with the
APCipherInfoType structure to allow the CPM and the
provider(s) to clean up the APCipherInfoType structure. The
application must call CPMLibReleaseHashInfo() with the
APHashInfoType structure to allow the CPM and the provider(s)
to clean up the APHashInfoType structure.

If the application does not care or wants default settings for either
the APCipherInfoType or the APHashInfoType, allocate and
zero the structures. Upon return from CPMLibSign() or
CPMLibSignInit() the APCipherInfoType structure and the
APHashInfoType structure would have been filled in by the CPM
and the provider(s) with the appropriate information.

If the application does care about the settings for either the
APCipherInfoType or the APHashInfoType, allocate the
structures and set the fields appropriately before calling
CPMLibSign() or CPMLibSignInit(). The application may set
the fields in one or the other or both.

CPM Library Common Definit ions
APVerifyInfoType

228 Exploring Palm OS: Security and Cryptography

APVerifyInfoType Struct
Purpose Structure to hold information about a particular operation’s

verification context, including generic information about
verification contexts and specific information about the provider’s
concept of the verification context.

Declared In CPMLibCommon.h

Prototype struct APVerifyInfoStruct {
 APProviderContextType providerContext;
 APHashInfoType *hashInfoP;
 APCipherInfoType *cipherInfoP;
}
typedef struct APVerifyInfoStruct
APVerifyInfoType, *APVerifyInfoPtr

Fields providerContext
The provider context of this info type. See
APProviderContextType.

hashInfoP
The hash to use. See APHashInfoType.

cipherInfoP
The cipher to use. See APCipherInfoType.

Comments The application is always responsible for allocating and freeing the
APSignInfoType structure and the associated
APCipherInfoType and APHashInfoType structures. The
application must call CPMLibReleaseCipherInfo() with the
APCipherInfoType structure to allow the CPM and the
provider(s) to clean up the APCipherInfoType structure. The
application must call CPMLibReleaseHashInfo() with the
APHashInfoType structure to allow the CPM and the provider(s)
to clean up the APHashInfoType structure.

If the application does not care or wants default settings for either
the APCipherInfoType or the APHashInfoType, allocate and
zero the structures. Upon return from CPMLibVerify() or
CPMLibVerifyInit() the APCipherInfoType structure and the
APHashInfoType structure would have been filled in by the CPM
and the provider(s) with the appropriate information.

If the application does care about the settings for either the
APCipherInfoType or the APHashInfoType, allocate the

CPM Library Common Definit ions
VerifyResultType

Exploring Palm OS: Security and Cryptography 229

structures and set the fields appropriately before calling
CPMLibVerify() or CPMLibVerifyInit(). The application
may set the fields in one or the other or both.

CPMInfoType Struct
Purpose Structure to hold information about the CPM library as it is known

by the currently running system.

Declared In CPMLibCommon.h

Prototype struct CPMInfoStruct {
 uint8_t numInstances;
 uint8_t numProviders;
 Boolean defaultProviderPresent;
}
typedef struct CPMInfoStruct CPMInfoType,
*CPMInfoPtr

Fields numInstances
Number of instances of this library.

numProviders
Number of providers this library knows about.

defaultProviderPresent
Whether or not the default provider is known.

VerifyResultType Typedef
Purpose Type that holds the result of a verification operation.

Declared In CPMLibCommon.h

Prototype typedef uint32_t VerifyResultType,
*VerifyResultPtr

Comments This type is used by CPMLibVerify() and
CPMLibVerifyFinal(). These functions set a variable of this type
to zero if the signature verifies, or to 1 if the signature did not verify.

CPM Library Common Definit ions
CPM Library Constants

230 Exploring Palm OS: Security and Cryptography

CPM Library Constants

APAlgorithmEnum Typedef
Purpose Cipher types. Used by the APCipherInfoType and

APKeyInfoType structures.

Declared In CPMLibCommon.h

Prototype typedef uint32_t APAlgorithmEnum

Constants #define apAlgorithmTypeUnspecified 0x00L
The algorithm type is unspecified.

Block Ciphers

#define apSymmetricTypeDES 0x01L

#define apSymmetricTypeRC2 0x02L

#define apSymmetricTypeRC4 0x03L

#define apSymmetricTypeRC5 0x04L

#define apSymmetricTypeRC6 0x05L

#define apSymmetricTypeDESX_XDX3 0x06L

#define apSymmetricType3DES_EDE2 0x07L

#define apSymmetricType3DES_EDE3 0x08L

#define apSymmetricTypeIDEA 0x09L

#define apSymmetricTypeDiamond2 0x0aL

#define apSymmetricTypeBlowfish 0x0bL

#define apSymmetricTypeTEA 0x0cL

#define apSymmetricTypeSAFER 0x0dL

#define apSymmetricType3WAY 0x0eL

#define apSymmetricTypeGOST 0x0fL

#define apSymmetricTypeSHARK 0x10L

#define apSymmetricTypeCAST128 0x11L

#define apSymmetricTypeSquare 0x12L

CPM Library Common Definit ions
APAlgorithmEnum

Exploring Palm OS: Security and Cryptography 231

#define apSymmetricTypeSkipjack 0x13L

Stream Ciphers

#define apSymmetricTypePanama 0x14L

#define apSymmetricTypeARC4 0x15L

#define apSymmetricTypeSEAL 0x16L

#define apSymmetricTypeWAKE 0x17L

#define apSymmetricTypeSapphire 0x18L

#define apSymmetricTypeBBS 0x19L

AES Block Ciphers

#define apSymmetricTypeRijndael 0x2aL

#define apSymmetricTypeCAST256 0x2bL

#define apSymmetricTypeTwofish 0x2cL

#define apSymmetricTypeMARS 0x2dL

#define apSymmetricTypeSerpent 0x2eL

Asymmetric Key Types

#define apAsymmetricTypeRSA 0x2fL

#define apAsymmetricTypeDSA 0x30L

#define apAsymmetricTypeElgamal 0x31L

#define apAsymmetricTypeNR 0x32L
Nyberg-Rueppel

#define apAsymmetricTypeBlumGoldwasser 0x33L

#define apAsymmetricTypeRabin 0x34L

#define apAsymmetricTypeRW 0x35L
Rabin-Williams

#define apAsymmetricTypeLUC 0x36L

#define apAsymmetricTypeLUCELG 0x37L

Elliptic Curve

#define apAsymmetricTypeECDSA 0x38L

CPM Library Common Definit ions
APHashEnum

232 Exploring Palm OS: Security and Cryptography

#define apAsymmetricTypeECNR 0x39L

#define apAsymmetricTypeECIES 0x3aL

#define apAsymmetricTypeECDHC 0x3bL

#define apAsymmetricTypeECMQVC 0x3cL

Key Agreement

#define apKeyAgreementTypeDH 0x3dL

#define apKeyAgreementTypeDH2 0x3eL
Unified Diffie-Hellman

#define apKeyAgreementTypeMQV 0x3fL
Menezes-Qu-Vanstone

#define apKeyAgreementTypeLUCDIF 0x40L

#define apKeyAgreementTypeXTRDH 0x41L

APHashEnum Typedef
Purpose Algorithm provider hash types. Used by the APHashInfoType

structure.

Declared In CPMLibCommon.h

Prototype typedef uint32_t APHashEnum

Constants #define apHashTypeHAVAL 0x05L

#define apHashTypeMD2 0x02L

#define apHashTypeMD5 0x03L

#define apHashTypeNone 0x01L

#define apHashTypePanama 0x08L

#define apHashTypeRIPEMD160 0x06L

CPM Library Common Definit ions
APKeyClassEnum

Exploring Palm OS: Security and Cryptography 233

#define apHashTypeSHA1 0x04L

#define apHashTypeSHA256 0x09L

#define apHashTypeSHA384 0x0aL

#define apHashTypeSHA512 0x0bL

#define apHashTypeTiger 0x07L

#define apHashTypeUnspecified 0x00L

APKeyClassEnum Typedef
Purpose The key class. Used by the APKeyInfoType structure.

Declared In CPMLibCommon.h

Prototype typedef uint32_t APKeyClassEnum

Constants #define apKeyClassPrivate 0x03L

#define apKeyClassPublic 0x02L

#define apKeyClassSymmetric 0x01L

#define apKeyClassUnspecified 0x00L

CPM Library Common Definit ions
APKeyDerivationEnum

234 Exploring Palm OS: Security and Cryptography

APKeyDerivationEnum Typedef
Purpose The type of key derivation to be performed. Used by the

APDerivedKeyInfoType structure.

Declared In CPMLibCommon.h

Prototype typedef uint32_t APKeyDerivationEnum

Constants #define apKeyDerivationTypePKCS12 0x03L

#define apKeyDerivationTypePKCS5v1 0x01L

#define apKeyDerivationTypePKCS5v2 0x02L

#define apKeyDerivationTypePKIX 0x04L

#define apKeyDerivationTypeTLS 0x05L

#define apKeyDerivationUnspecified 0x00L

APKeyDerivationUsageEnum Typedef
Purpose The allowed usage of the subsequently derived key. Used by the

APDerivedKeyInfoType structure.

Declared In CPMLibCommon.h

Prototype typedef uint32_t APKeyDerivationUsageEnum

Constants #define apKeyDerivationUsageEncryption 0x01L

#define apKeyDerivationUsageIV 0x03L

#define apKeyDerivationUsageMAC 0x02L

#define apKeyDerivationUsageUnspecified 0x00L

CPM Library Common Definit ions
APMACEnum

Exploring Palm OS: Security and Cryptography 235

APKeyUsageEnum Typedef
Purpose The key usage. Used by the APKeyInfoType structure.

Declared In CPMLibCommon.h

Prototype typedef uint32_t APKeyUsageEnum

Constants #define apKeyUsageAll 0x01L

#define apKeyUsageCertificateSigning 0x04L

#define apKeyUsageDataEncrypting 0x06L

#define apKeyUsageEncryption 0x03L

#define apKeyUsageKeyEncrypting 0x05L

#define apKeyUsageMessageIntegrity 0x07L

#define apKeyUsageSigning 0x02L

#define apKeyUsageUnspecified 0x00L

APMACEnum Typedef
Purpose The MAC type. Used by the APMACInfoType structure.

Declared In CPMLibCommon.h

Prototype typedef uint32_t APMACEnum

Constants #define apMACHMAC 0x01L

#define apMACUnspecified 0x00L

CPM Library Common Definit ions
APModeEnum

236 Exploring Palm OS: Security and Cryptography

APModeEnum Typedef
Purpose Modes of operation for symmetric encryption/decryption. Used by

the APCipherInfoType structure.

Declared In CPMLibCommon.h

Prototype typedef uint32_t APModeEnum

Constants #define apModeCounter 0x07L

#define apModeTypeCBC 0x03L

#define apModeTypeCBC_CTS 0x04L

#define apModeTypeCFB 0x05L

#define apModeTypeECB 0x02L

#define apModeTypeNone 0x01L

#define apModeTypeOFB 0x06L

#define apModeTypeUnspecified 0x00L

APPaddingEnum Typedef
Purpose The type of padding for a cipher. Used by the APCipherInfoType

structure.

Declared In CPMLibCommon.h

Prototype typedef uint32_t APPaddingEnum

Constants #define apPaddingTypeNone 0x01L

#define apPaddingTypeOAEP 0x05L

CPM Library Common Definit ions
Import/Export Types

Exploring Palm OS: Security and Cryptography 237

#define apPaddingTypePKCS1Type1 0x02L

#define apPaddingTypePKCS1Type2 0x03L

#define apPaddingTypePKCS5 0x04L

#define apPaddingTypeSSLv23 0x06L

#define apPaddingTypeUnspecified 0x00L

Import/Export Types
Purpose Indicates the type of encoding to use when importing or exporting

using one of the CPMLibImport... or CPMLibExport...
functions.

Declared In CPMLibCommon.h

Constants #define IMPORT_EXPORT_TYPE_DER 1
A standardized ASN.1 DER encoding

#define IMPORT_EXPORT_TYPE_RAW 0
A raw form of import/export as defined by the provider.

#define IMPORT_EXPORT_TYPE_XML 2
A standardized XML encoding.

Comments A given CPM import/export format, such as XML, is only
supported if the provider supports it. IMPORT_EXPORT_TYPE_RAW
is always supported.

CPM Library Common Definit ions
Cryptographic Provider Functionality Flags

238 Exploring Palm OS: Security and Cryptography

Cryptographic Provider Functionality Flags
Purpose Flags that identify the functionality provided by a given

cryptographic provider. The appropriate flags are ORd together to
make up the flags field of the APProviderInfoType structure.

Declared In CPMLibCommon.h

Constants #define APF_CIPHER 0x00000080
The provider supports encryption and decryption, import
and export

#define APF_HASH 0x00000040
The provider supports message digests.

#define APF_HW 0x00000002
The provider is implemented in hardware (SmartCard).

#define APF_KEYDERIVE 0x00000020
The provider supports key derivation, import and export.

#define APF_KEYGEN 0x00000004
The provider supports key generation, import and export.

#define APF_KEYPAIRGEN 0x00000010
The provider supports key pair generation, import and
export.

#define APF_MAC 0x00000400
The provider supports MAC.

#define APF_MP 0x00000001
Multiple-part operations are supported (Init, Update, Final).

#define APF_SIGN 0x00000100
The provider supports signing.

#define APF_VERIFY 0x00000200
The provider supports verification.

CPM Library Common Definit ions
CPM Library Error Codes

Exploring Palm OS: Security and Cryptography 239

Debug Output Levels
Purpose Values that specify the level of debug output to be sent from the

library using DbgMessage(). Set the debug output level by calling
CPMLibSetDebugLevel().

Declared In CPMLibCommon.h

Constants #define LOG_ALERT 1
Action must be taken immediately.

#define LOG_CRIT 2
Critical conditions.

#define LOG_DEBUG 7
Debug-level messages.

#define LOG_EMERG 0
The system is unusable.

#define LOG_ERR 3
Error conditions.

#define LOG_INFO 6
Informational.

#define LOG_NOTICE 5
Normal but significant condition.

#define LOG_WARNING 4
Warning conditions.

CPM Library Error Codes
Purpose Error codes returned by the various CPM library functions.

Declared In CPMLibCommon.h

Constants #define cpmErrAlreadyOpen (cpmErrorClass | 1)
The CPM library is already open. Usually returned from
CPMLibOpen() indicating that the library is already open.

#define cpmErrBadData (cpmErrorClass | 14)
Data passed to the CPM library was no good.

#define cpmErrBufTooSmall (cpmErrorClass | 13)
A buffer passed to the CPM library was too small.

CPM Library Common Definit ions
CPM Library Error Codes

240 Exploring Palm OS: Security and Cryptography

#define cpmErrKeyExists (cpmErrorClass | 18)
The key you are trying to import already seems to exist.

#define cpmErrKeyNotFound (cpmErrorClass | 19)
The key you are trying to use doesn’t seem to exist.

#define cpmErrNoAppContext (cpmErrorClass | 17)
The CPM application context could not be found for this
operation. Most likely, the CPM library is not open.

#define cpmErrNoBaseProvider (cpmErrorClass | 5)
The CPM library cannot load the base provider.

#define cpmErrNoProviders (cpmErrorClass | 4)
The CPM library is not aware of any providers. With no
providers the CPM library has no functionality.

#define cpmErrNotOpen (cpmErrorClass | 2)
The CPM library is not open.

#define cpmErrOutOfMemory (cpmErrorClass | 12)
The CPM library is out of dynamic heap.

#define cpmErrOutOfResources (cpmErrorClass | 11)
The CPM library is out of resources (such as memory, static
heap, and so on).

#define cpmErrParamErr (cpmErrorClass | 10)
A CPM library call was made with an invalid parameter.

#define cpmErrProviderNotFound (cpmErrorClass | 6)
The CPM library cannot find the specified provider.

#define cpmErrStillOpen (cpmErrorClass | 3)
The CPM library is still open after a call to CPMLibClose().

#define cpmErrUnimplemented (cpmErrorClass | 15)
A CPM library function is not implemented.

#define cpmErrUnsupported (cpmErrorClass | 16)
A CPM library function is unsupported in the current
version.

CPM Library Common Definit ions
Miscellaneous CPM Library Constants

Exploring Palm OS: Security and Cryptography 241

Miscellaneous CPM Library Constants
Purpose The CPMLibCommon.h header file also declares these constants.

Declared In CPMLibCommon.h

Constants #define cpmCreator 'cpml'
The CPM creator ID. Used for both the databae that contains
the Cryptographic Provider Manager Library and its
preferences database.

#define cpmFtrCreator cpmCreator
The feature creator. Intended for use with FtrGet().

#define cpmFtrNumVersion 0
The number of the CPM feature that contains the current
version of the CPM library. The value returned from this
feature has the following format: 0xMMmfsbbb, where MM is
the major version, m is the minor version, f is the bug fix
level, s is the build stage (3 = release, 2 = beta, 1 = alpha, 0 =
development), and bbb is the build number for non-releases

CPM Library Common Definit ions
Miscellaneous CPM Library Constants

242 Exploring Palm OS: Security and Cryptography

Exploring Palm OS: Security and Cryptography 243

11
CPM Library
Provider

CPM Library Provider Structures and Types 243

CPM Library Provider Function Argument Structures . 244

CPM Library Provider Constants 281

Application-Defined Functions 287

The header file CPMLibProvider.h declares the API that this
chapter describes.

CPM Library Provider Structures and Types

CPMCallerInfoType Struct
Purpose This structure is passed to the provider’s dispatcher. It contains all

the information necessary for the provider to call back into the CPM
framework and use the CPM’s resources.

Declared In CPMLibProvider.h

Prototype typedef struct _CPMCallerInfoType {
 void *appContext;
 CPMDebugOutProcPtr debugout;
 CPMDispatcherProcPtr dispatcher;
 CPMGenerateRandomBytesProcPtr generateRandom;
 CPMAddRandomSeedProcPtr addSeed;
} CPMCallerInfoType

CPM Library Provider
CPM Library Provider Function Argument Structures

244 Exploring Palm OS: Security and Cryptography

typedef CPMCallerInfoType *CPMCallerInfoPtr;

Fields appContext
Pointer to a structure containing the provider-specific
application context to be used in future CPM calls. This
structure is normally created and initialized when the library
is opened.

debugout
Pointer to a function that outputs a debug message to the
debug device. See CPMDebugOutProcPtr()

dispatcher
Pointer to the CPM function dispatcher. See
CPMDispatcherProcPtr().

generateRandom
Pointer to a function that can return a requested number of
random bytes. See
CPMGenerateRandomBytesProcPtr().

addSeed
Pointer to a function that puts a number of seed bytes into
the pseudo-random number generator maintained by the
CPM. See CPMAddRandomSeedProcPtr()

CPM Library Provider Function Argument
Structures

APCmdPBType Struct
Purpose Declares the algorithm provider interface command parameter

blocks.

Declared In CPMLibProvider.h

Prototype typedef union APCmdPBType {
 ...
} APCmdPBType, *APCmdPBPtr

Fields Various structures. Each structure is documented separately within
this section.

CPM Library Provider
APDecrypt

Exploring Palm OS: Security and Cryptography 245

APDecrypt Struct
Purpose The command paramater block for the Decrypt call.

Declared In CPMLibProvider.h

Prototype struct {
 APKeyInfoType *keyInfoP;
 APCipherInfoType *cipherInfoP;
 uint8_t *bufIn;
 uint32_t bufInLen;
 uint8_t *bufOut;
 uint32_t *bufOutLenP;
 } APDecrypt;

Fields keyInfoP
The key to be used for the operation.

cipherInfoP
Avalid context for this operation initialized by the
initialization operation.

bufIn
The data to add to the operation.

bufInLen
The length of the data to add to this operation.

bufOut
The buffer where the results of the operation are to be placed.

bufOutLenP
The size of the buffer specified by bufOut. Also returns the
actual number of bytes placed in bufOut on return.

Comments The cipherInfoP field specifies an initialized context which was
created in the initialization of this class of functions.

bufInLen may not be zero and bufIn must be valid.

The provider performs a complete decryption operation using the
data in bufIn of length bufInLen and puts the results in bufOut.
The actual number of bytes placed in bufOut is placed in
bufOutLenP.

CPM Library Provider
APDecryptFinal

246 Exploring Palm OS: Security and Cryptography

APDecryptFinal Struct
Purpose The command paramater block for the DecryptFinal call.

Declared In CPMLibProvider.h

Prototype struct {
 APKeyInfoType *keyInfoP;
 APCipherInfoType *cipherInfoP;
 uint8_t *bufIn;
 uint32_t bufInLen;
 uint8_t *bufOut;
 uint32_t *bufOutLenP;
 } APDecryptFinal;

Fields keyInfoP
The key to be used for the operation.

cipherInfoP
Avalid context for this operation initialized by the
initialization operation.

bufIn
The data to add to the operation.

bufInLen
The length of the data to add to this operation.

bufOut
The buffer where the results of the operation are to be placed.

bufOutLenP
The size of the buffer specified by bufOut. Also returns the
actual number of bytes placed in bufOut on return.

Comments The cipherInfoP field specifies an initialized context which was
created in the initialization of this class of functions.

bufInLen may not be zero and bufIn must be valid.

The provider performs a complete decryption operation using the
data in bufIn of length bufInLen and puts the results in bufOut.
The actual number of bytes placed in bufOut is placed in
bufOutLenP.

CPM Library Provider
APDecryptUpdate

Exploring Palm OS: Security and Cryptography 247

APDecryptInit Struct
Purpose The command paramater block for the DecryptInit call.

Declared In CPMLibProvider.h

Prototype struct {
 APKeyInfoType *keyInfoP;
 APCipherInfoType *cipherInfoP;
 } APDecryptInit;

Fields keyInfoP
The key to be used for the operation.

cipherInfoP
A handle to a context to pass to the other members of the
Decrypt functions.

Comments The provider is responsible for initializing a context of the
appropriate type with the specified keyInfoP for the operation and
saving it in cipherInfoP. This Init operation must be concluded
with a single finalization operation with zero or more update
operations in between.

APDecryptUpdate Struct
Purpose The command paramater block for the DecryptUpdate call.

Declared In CPMLibProvider.h

Prototype struct {
 APKeyInfoType *keyInfoP;
 APCipherInfoType *cipherInfoP;
 uint8_t *bufIn;
 uint32_t bufInLen;
 uint8_t *bufOut;
 uint32_t *bufOutLenP;
 } APDecryptUpdate;

Fields keyInfoP
The key to be used for the operation.

cipherInfoP
Avalid context for this operation initialized by the
initialization operation.

CPM Library Provider
APDeriveKeyData

248 Exploring Palm OS: Security and Cryptography

bufIn
The data to add to the operation.

bufInLen
The length of the data to add to this operation.

bufOut
The buffer where the results of the operation are to be placed.

bufOutLenP
The size of the buffer specified by bufOut. Also returns the
actual number of bytes placed in bufOut on return.

Comments The cipherInfoP field specifies an initialized context which was
created in the initialization of this class of functions.

If bufInLen is non-zero, the provider uses cipherInfoP to
update the operation with the data in bufIn of length bufInLen.

The provider finalizes the operation which was initialized by the
Init operation and places the results of the operation in bufOut. The
provider updates bufOutLenP with the actual number of bytes
placed in bufOut. The provider is responsible for cleaning up the
cipherInfoP parameter.

APDeriveKeyData Struct
Purpose The command paramater block for the DeriveKeyData call.

Declared In CPMLibProvider.h

Prototype struct {
 APKeyDerivationEnum kdType;
 APKeyDerivationUsageEnum kdUsage;
 uint8_t *saltP;
 uint32_t saltLen;
 uint32_t iterationCount;
 void *kdInfo;
 uint8_t *keyDataP;
 uint32_t *keyDataLenP;
 } APDeriveKeyData;

Fields kdType
The type of key derivation to be performed. One of the
values specified by APKeyDerivationEnum.

CPM Library Provider
APDeriveKeyData

Exploring Palm OS: Security and Cryptography 249

kdUsage
The allowed usage of the subsequently derived key. One of
the values specified by APKeyDerivationUsageEnum.

saltP
Cryptographic salt to be used for the derivation function.

saltLen
The length, in bytes, of the salt.

iterationCount
The number of iterations for this particular derivation
operation.

kdInfo
Other derivation-function-specific parameters as defined by
both the provider handling the derivation and the derivation
function itself.

keyDataP
Pointer to a buffer into which the derived key data is written.
Pass NULL to determine how large this buffer should be.

keyDataLenP
When calling DeriveKeyData, set the variable to which this
parameter points to the size of the keyDataP buffer. Upon
return, the variable will be set to the number of bytes written
to keyDataP. If you set keyDataP to NULL, set this variable
to 0.

CPM Library Provider
APEncrypt

250 Exploring Palm OS: Security and Cryptography

APEncrypt Struct
Purpose The command paramater block for the Encrypt call.

Declared In CPMLibProvider.h

Prototype struct {
 APKeyInfoType *keyInfoP;
 APCipherInfoType *cipherInfoP;
 uint8_t *bufIn;
 uint32_t bufInLen;
 uint8_t *bufOut;
 uint32_t *bufOutLenP;
 } APEncrypt;

Fields keyInfoP
The key to be used for the operation.

cipherInfoP
A valid context for this operation initialized by the
initialization operation.

bufIn
The data to add to the operation.

bufInLen
The length of the data to add to this operation.

bufOut
The buffer where the results of the operation are to be placed.

bufOutLenP
The size of the buffer specified by the bufOut parameter.
Also returns the actual number of bytes placed in bufOut on
return.

Comments The cipherInfoP parameter specifies an initialized context which
was created during the initialization of this class of functions.

The parameter bufInLen may not be zero and bufIn must be
valid.

The provider performs a complete encryption operation using the
data in bufIn of length bufInLen and puts the results in bufOut.
The actual number of bytes placed in bufOut is placed in
bufOutLenP.

CPM Library Provider
APEncryptFinal

Exploring Palm OS: Security and Cryptography 251

APEncryptFinal Struct
Purpose The command paramater block for the EncryptFinal call.

Declared In CPMLibProvider.h

Prototype struct {
 APKeyInfoType *keyInfoP;
 APCipherInfoType *cipherInfoP;
 uint8_t *bufIn;
 uint32_t bufInLen;
 uint8_t *bufOut;
 uint32_t *bufOutLenP;
 } APEncryptFinal;

Fields keyInfoP
The key to be used for the operation.

cipherInfoP
A valid context for this operation initialized by the
initialization operation.

bufIn
The data to add to the operation.

bufInLen
The length of the data to add to this operation.

bufOut
The buffer where the results of the operation are to be placed.

bufOutLenP
The size of the buffer specified by the bufOut parameter.
Also returns the actual number of bytes placed in bufOut on
return

Comments The cipherInfoP parameter specifies an initialized context which
was created in the Init of this class of functions.

If the bufInLen is non-zero, the provider uses the cipherInfoP
to update the operation with the data in bufIn of length
bufInLen.

The provider finalizes the operation which was initialized by the
Init operation and places the results of the operation in bufOut. The
provider updates bufOutLenP with the actual number of bytes
placed in bufOut. The provider is responsible for cleaning up the
cipherInfoP parameter.

CPM Library Provider
APEncryptInit

252 Exploring Palm OS: Security and Cryptography

APEncryptInit Struct
Purpose The command paramater block for the EncryptInit call.

Declared In CPMLibProvider.h

Prototype struct {
 APKeyInfoType *keyInfoP;
 APCipherInfoType *cipherInfoP;
 } APEncryptInit;

Fields keyInfoP
The key to be used for the operation.

cipherInfoP
A handle to a context to pass to the other members of the
Encrypt functions.

Comments The provider is responsible for initializing a context of the
appropriate type with the specified keyInfoP for the operation
and saving it in cipherInfoP. This initialization operation must be
concluded with a single finalization operation with zero or more
update operations in between.

APEncryptUpdate Struct
Purpose The command paramater block for the EncryptUpdate call.

Declared In CPMLibProvider.h

Prototype struct {
 APKeyInfoType *keyInfoP;
 APCipherInfoType *cipherInfoP;
 uint8_t *bufIn;
 uint32_t bufInLen;
 uint8_t *bufOut;
 uint32_t *bufOutLenP;
 } APEncryptUpdate;

Fields keyInfoP
The key to be used for the operation.

cipherInfoP
A valid context for this operation initialized by the
initialization operation.

CPM Library Provider
APExportCipherInfo

Exploring Palm OS: Security and Cryptography 253

bufIn
The data to add to the operation.

bufInLen
The length of the data to add to this operation.

bufOut
The buffer where the results of the operation are to be placed.

bufOutLenP
The size of the buffer specified by the bufOut parameter.
Also returns the actual number of bytes placed in bufOut on
return

Comments The cipherInfoP parameter specifies an initialized context which
was created by the initialization of this class of functions. The
provider uses cipherInfoP to update the operation with the data
in bufIn of length bufInLen. The provider also updates
cipherInfoP to reflect the update. Any number of update
operations (including zero) may occur between an initialization and
a finalization operation. The parameters bufIn and bufInLen
must be valid for the operation or an error is returned.

APExportCipherInfo Struct
Purpose The command paramater block for the ExportCipherInfo call.

Declared In CPMLibProvider.h

Prototype struct {
 uint8_t encoding;
 uint8_t *exportDataP;
 uint32_t *dataLenP;
 APCipherInfoType *cipherInfoP;
 } APExportCipherInfo;

Fields encoding
The encoding of the data being exported.

exportDataP
The data for the export operation.

dataLenP
Length of the exported data.

CPM Library Provider
APExportHashInfo

254 Exploring Palm OS: Security and Cryptography

cipherInfoP
A valid context for this operation initialized by the
initialization operation.

APExportHashInfo Struct
Purpose The command paramater block for the ExportHashInfo call.

Declared In CPMLibProvider.h

Prototype struct {
 uint8_t encoding;
 uint8_t *exportDataP;
 uint32_t *dataLenP;
 APHashInfoType *hashInfoP;
 } APExportHashInfo;

Fields encoding
The encoding of the data being exported.

exportDataP
The data for the export operation.

dataLenP
Length of the exported data.

hashInfoP
An APHashInfoType structure, allocated by the
application, that holds information about the hashing
operation.

CPM Library Provider
APExportKeyPairInfo

Exploring Palm OS: Security and Cryptography 255

APExportKeyInfo Struct
Purpose The command paramater block for the ExportKey call.

Declared In CPMLibProvider.h

Prototype struct {
 uint8_t encoding;
 APKeyInfoType *keyInfoP;
 uint8_t *exportDataP;
 uint32_t *dataLenP;
 } APExportKeyInfo;

Fields encoding
The encoding desired for the export data.

keyInfoP
Pointer to the key being exported.

exportDataP
The data for the export operation.

dataLenP
Length of the exported data.

APExportKeyPairInfo Struct
Purpose The command paramater block for the ExportKeyPair call.

Declared In CPMLibProvider.h

Prototype struct {
 uint8_t encoding;
 uint8_t *exportDataP;
 uint32_t *dataLenP;
 APKeyInfoType *privateKeyInfoP;
 APKeyInfoType *publicKeyInfoP;
 } APExportKeyPairInfo;

Fields encoding
The encoding of the data being exported.

exportDataP
The data for the export operation.

dataLenP
Length of the exported data.

CPM Library Provider
APExportMacInfo

256 Exploring Palm OS: Security and Cryptography

privateKeyInfoP
Pointer to the APKeyInfoType structure for the private key.

publicKeyInfoP
Pointer to the APKeyInfoType structure for the public key.

APExportMacInfo Struct
Purpose The command paramater block for the ExportMAC call.

Declared In CPMLibProvider.h

Prototype struct {
 uint8_t encoding;
 uint8_t *exportDataP;
 uint32_t *dataLenP;
 APMACInfoType *macInfoP;
 } APExportMACInfo;

Fields encoding
The encoding of the data being exported.

exportDataP
The data for the export operation.

dataLenP
Length of the exported data.

macInfoP
Pointer to an APMACInfoType structure.

APExportSignInfo Struct
Purpose The command paramater block for the ExportSignInfo call.

Declared In CPMLibProvider.h

Prototype struct {
 uint8_t encoding;
 uint8_t *exportDataP;
 uint32_t *dataLenP;
 APSignInfoType *signInfoP;
 } APExportSignInfo;

Fields encoding
The encoding of the data being exported.

CPM Library Provider
APExportVerifyInfo

Exploring Palm OS: Security and Cryptography 257

exportDataP
The data for the export operation.

dataLenP
Length of the exported data.

signInfoP
A valid context for this operation initialized by the
initialization operation.

APExportVerifyInfo Struct
Purpose The command paramater block for the ExportVerifyInfo call.

Declared In CPMLibProvider.h

Prototype struct {
 uint8_t encoding;
 uint8_t *exportDataP;
 uint32_t *dataLenP;
 APVerifyInfoType *verifyInfoP;
 } APExportVerifyInfo;

Fields encoding
The encoding of the data being exported.

exportDataP
The data for the export operation.

dataLenP
Length of the exported data.

verifyInfoP
A valid context for this operation initialized by the
initialization operation.

CPM Library Provider
APGenerateKey

258 Exploring Palm OS: Security and Cryptography

APGenerateKey Struct
Purpose The command paramater block for the GenerateKey call.

Declared In CPMLibProvider.h

Prototype struct {
 uint8_t *keyDataP;
 uint32_t dataLen;
 APKeyInfoType *keyInfoP;
 } APGenerateKey;

Fields keyDataP
Pointer to a buffer of seed bytes to be used by the pseudo-
random number generator, or NULL to have the pseudo-
random number generator use the seed data it already has.

dataLen
Length of the keyDataP data.

keyInfoP
An opaque handle to the key generated by the provider.

Comments If the newly-generated key is utilized for any cryptographic
operations, it must be exported and saved in order to be used again.
It is statistically improbably that a generated key could be
regenerated.

The provider generates a key of the specified type and returns an
opaque handle the key in keyInfoP.

CPM Library Provider
APGetProviderInfo

Exploring Palm OS: Security and Cryptography 259

APGenerateKeyPair Struct
Purpose The command paramater block for the GenerateKeyPair call.

Declared In CPMLibProvider.h

Prototype struct {
 uint8_t *keyDataP;
 uint32_t dataLen;
 APKeyInfoType *privateKeyInfoP;
 APKeyInfoType *publicKeyInfoP;
 } APGenerateKeyPair;

Fields keyDataP
Pointer to a buffer of seed bytes to be used by the pseudo-
random number generator, or NULL to have the pseudo-
random number generator use the seed data it already has.

dataLen
Length of the keyDataP data.

privateKeyInfoP
Pointer to the APKeyInfoType structure for the private key.

publicKeyInfoP
Pointer to the APKeyInfoType structure for the public key.

Comments If the newly-generated key pair is utilized for any cryptographic
operations, the pair must be exported and saved in order to be used
again. It is statistically improbably that a generated key pair could
be regenerated.

APGetProviderInfo Struct
Purpose The command paramater block for the GetProviderInfo call.

The info field is filled in with appropriate information. The
provider is responsible for filling the correct information.

Declared In CPMLibProvider.h

Prototype struct {
 APProviderInfoType *infoP;
} APGetProviderInfo;

Fields infoP
pointer to the APProviderInfoType structure.

CPM Library Provider
APHash

260 Exploring Palm OS: Security and Cryptography

APHash Struct
Purpose The command paramater block for the Hash call.

Declared In CPMLibProvider.h

Prototype struct {
 APHashEnum type;
 APHashInfoType *hashInfoP;
 uint8_t *bufIn;
 uint32_t bufInLen;
 uint8_t *bufOut;
 uint32_t *bufOutLenP;
 } APHash;

Fields type
The type of hash requested for this operation.

hashInfoP
The hash context information for this operation.

bufIn
The data to add to the operation.

bufInLen
The length of the data to add to this operation.

bufOut
The buffer into which the results of the operation are to be
placed.

bufOutLenP
The size of the buffer specified by the bufOut parameter.
Returns the actual number of bytes placed in bufOut.

Comments The hashInfoP parameter specifies an initialized context which
was created in the initialization of this class of functions.

The parameter bufInLen may not be zero and bufIn must be
valid.

The provider performs a complete operation of type using the data
in bufIn of length bufInLen and puts the results in bufOut. The
actual number of bytes placed in bufOut is placed in bufOutLenP.

CPM Library Provider
APHashFinal

Exploring Palm OS: Security and Cryptography 261

APHashFinal Struct
Purpose The command paramater block for the HashFinal call.

Declared In CPMLibProvider.h

Prototype struct {
 APHashInfoType *hashInfoP;
 uint8_t *bufIn;
 uint32_t bufInLen;
 uint8_t *bufOut;
 uint32_t *bufOutLenP;
 } APHashFinal;

Fields hashInfoP
A valid context for this operation initialized by the HashInit
operation.

bufIn
The data to add to the operation.

bufInLen
The length of the data to add to this operation.

bufOut
The buffer where the results of the operation are placed.

bufOutLenP
The size of the buffer specified by the bufOut parameter.
Returns the actual number of bytes placed in bufOut.

Comments The hashInfoP parameter specifies an initialized context which
was created in the Init of this class of functions.

If the bufInLen is non-zero, the provider uses the hashInfoP to
update the operation with the data in bufIn of length bufInLen.

The provider finalizes the operation which was initialized by the
Init operation and places the results of the operation in bufOut. The
provider updates bufOutLenP with the actual number of bytes
placed in bufOut. The provider is responsible for cleaning up the
hashInfoP parameter.

CPM Library Provider
APHashInit

262 Exploring Palm OS: Security and Cryptography

APHashInit Struct
Purpose The command paramater block for the HashInit call.

Declared In CPMLibProvider.h

Prototype struct {
 APHashInfoType *hashInfoP;
 } APHashInit;

Fields hashInfoP
A pointer to a hash info structure to pass to the other
members of the Hash functions.

Comments The provider is responsible for initializing a context of the
appropriate for the operation and saving it in *hashInfoP. This
initialization operation must be concluded with a single HashFinal
operation with zero or more HashUpdate operations in between.

APHashUpdate Struct
Purpose The command paramater block for the HashUpdate call.

Declared In CPMLibProvider.h

Prototype struct {
 APHashInfoType *hashInfoP;
 uint8_t *bufIn;
 uint32_t bufInLen;
 } APHashUpdate;

Fields hashInfoP
A valid context for this operation initialized by the HashInit
operation.

bufIn
The data to add to the operation.

bufInLen
The length of the data to add to this operation.

Comments The hashInfoP parameter specifies an initialized context which
was created during the initialization of this class of functions. The
provider uses the hashInfoP to update the operation with the data
in bufIn of length bufInLen. The provider also updates the
hashInfoP to reflect the update. Any number of update operations
(including zero) may occur between an intialization and a

CPM Library Provider
APImportHashInfo

Exploring Palm OS: Security and Cryptography 263

finalization operation. The parameters bufIn and bufInLen must
be valid for the operation or an error is returned.

APImportCipherInfo Struct
Purpose The command paramater block for the ImportCipherInfo call.

Declared In CPMLibProvider.h

Prototype struct {
 uint8_t encoding;
 uint8_t *importDataP;
 uint32_t dataLen;
 APCipherInfoType *cipherInfoP;
 } APImportCipherInfo;

Fields encoding
The encoding of the data being imported.

importDataP
The data for the import operation.

dataLen
Length of the importDataP block.

cipherInfoP
A valid context for this operation initialized by the
initialization operation.

APImportHashInfo Struct
Purpose The command paramater block for the ImportHashInfo call.

Declared In CPMLibProvider.h

Prototype struct {
 uint8_t encoding;
 uint8_t *importDataP;
 uint32_t dataLen;
 APHashInfoType *hashInfoP;
 } APImportHashInfo;

Fields encoding
The encoding of the data being imported.

CPM Library Provider
APImportKeyInfo

264 Exploring Palm OS: Security and Cryptography

importDataP
The data for the import operation.

dataLen
Length of the importDataP block.

hashInfoP
Pointer to an APHashInfoType structure that holds
information about the hashing operation.

APImportKeyInfo Struct
Purpose The command paramater block for the ImportKey call.

Declared In CPMLibProvider.h

Prototype struct {
 uint8_t encoding;
 uint8_t *importDataP;
 uint32_t dataLen;
 APKeyInfoType *keyInfoP;
 } APImportKeyInfo;

Fields encoding
The encoding of the data being imported.

importDataP
The data for the import operation.

dataLen
Length of the importDataP block.

keyInfoP
An opaque handle to the key generated by the provider.

Comments The provider imports a key as specified by the data in
importDataP and returns an opaque handle the key in keyInfoP.

CPM Library Provider
APImportMacInfo

Exploring Palm OS: Security and Cryptography 265

APImportKeyPairInfo Struct
Purpose The command paramater block for the ImportKeyPair call.

Declared In CPMLibProvider.h

Prototype struct {
 uint8_t encoding;
 uint8_t *importDataP;
 uint32_t dataLen;
 APKeyInfoType *privateKeyInfoP;
 APKeyInfoType *publicKeyInfoP;
 } APImportKeyPairInfo;

Parameters encoding
The encoding of the data being imported.

importDataP
The data for the import operation.

dataLen
Length of the import data.

privateKeyInfoP
Pointer to the APKeyInfoType structure for the private key.

publicKeyInfoP
Pointer to the APKeyInfoType structure for the public key.

APImportMacInfo Struct
Purpose The command paramater block for the ImportMAC call.

Declared In CPMLibProvider.h

Prototype struct {
 uint8_t encoding;
 uint8_t *importDataP;
 uint32_t dataLen;
 APMACInfoType *macInfoP;
 } APImportMACInfo;

Fields encoding
The encoding of the data being imported.

importDataP
The data for the import operation.

CPM Library Provider
APImportSignInfo

266 Exploring Palm OS: Security and Cryptography

dataLen
Length of the importDataP block.

macInfoP
Pointer to an APMACInfoType structure.

APImportSignInfo Struct
Purpose The command paramater block for the ImportSignInfo call.

Declared In CPMLibProvider.h

Prototype struct {
 uint8_t encoding;
 uint8_t *importDataP;
 uint32_t dataLen;
 APSignInfoType *signInfoP;
 } APImportSignInfo;

Fields encoding
The encoding of the data being imported.

importDataP
The data for the import operation.

dataLen
Length of the importDataP block.

signInfoP
A valid context for this operation initialized by the
initialization operation.

CPM Library Provider
APMac

Exploring Palm OS: Security and Cryptography 267

APImportVerifyInfo Struct
Purpose The command paramater block for the ImportVerifyInfo call.

Declared In CPMLibProvider.h

Prototype struct {
 uint8_t encoding;
 uint8_t *importDataP;
 uint32_t dataLen;
 APVerifyInfoType *verifyInfoP;
 } APImportVerifyInfo;

Fields encoding
The encoding of the data being imported.

importDataP
The data for the import operation.

dataLen
Length of the importDataP block.

verifyInfoP
A valid context for this operation initialized by the
initialization operation.

APMac Struct
Purpose The command paramater block for the Mac call.

Declared In CPMLibProvider.h

Prototype struct {
 APKeyInfoType *keyInfoP;
 APHashInfoType *hashInfoP;
 APMACEnum type;
 APMACInfoType *macInfoP;
 uint8_t *bufIn;
 uint32_t bufInLen;
 uint8_t *bufOut;
 uint32_t *bufOutLenP;
 } APMac;

Fields keyInfoP
Pointer to an APKeyInfoType structure, allocated by the
application, containing the key to be used for the operation.

CPM Library Provider
APMacFinal

268 Exploring Palm OS: Security and Cryptography

hashInfoP
Pointer to an APHashInfoType structure, allocated by the
application, that holds information about the hashing
operation to be used for the operation.

type
One of the values declared by the APMACEnum enum.

macInfoP
Pointer to an APMACInfoType structure, allocated by the
application, to be used in subsequent calls to the same class
of operations.

bufIn
Pointer to a buffer containing the data for the operation. This
parameter must not be NULL.

bufInLen
The size, in bytes, of the buffer specified by bufIn. This
value must be greater than zero.

bufOut
Pointer to a buffer, allocated by the application, to receive the
output of the operation.

bufOutLenP
The size, in bytes, of the buffer specified by the bufOut
parameter.

APMacFinal Struct
Purpose The command paramater block for the MacFinal call.

Declared In CPMLibProvider.h

Prototype struct {
 APMACInfoType *macInfoP;
 uint8_t *bufIn;
 uint32_t bufInLen;
 uint8_t *bufOut;
 uint32_t *bufOutLenP;
 } APMacFinal;

Fields macInfoP
Pointer to the APMACInfoType structure that was initialized
during the call to CPMLibMACInit().

CPM Library Provider
APMacInit

Exploring Palm OS: Security and Cryptography 269

bufIn
Pointer to a buffer containing the data for the operation, or
NULL if there is no additional data.

bufInLen
The size, in bytes, of the buffer specified by bufIn.

bufOut
Pointer to a buffer, allocated by the application, to receive the
output of the operation.

bufOutLenP
The size, in bytes, of the buffer specified by the bufOut
parameter.

APMacInit Struct
Purpose The command paramater block for the MacInit call.

Declared In CPMLibProvider.h

Prototype struct {
 APKeyInfoType keyInfoP;
 APHashInfoType hashInfoP;
 APMACInfoType *macInfoP;
 } APMacInit;

Parameters keyInfoP
Pointer to an APKeyInfoType structure, allocated by the
application, containing the key to be used in the subsequent
calls to CPMLibMACUpdate() and CPMLibMACFinal().

hashInfoP
Pointer to an APHashInfoType structure, allocated by the
application, that holds information about the hashing
operation for use in the subsequent calls to
CPMLibMACUpdate() and CPMLibMACFinal().

macInfoP
Pointer to an APMACInfoType structure, allocated by the
application, to be used in subsequent calls to the same class
of operations.

CPM Library Provider
APMacUpdate

270 Exploring Palm OS: Security and Cryptography

APMacUpdate Struct
Purpose The command paramater block for the MacUpdate call.

Declared In CPMLibProvider.h

Prototype struct {
 APMACInfoType *macInfoP;
 uint8_t *bufIn;
 uint32_t bufInLen;
 uint8_t *bufOut;
 uint32_t *bufOutLenP;
 } APMacUpdate;

Fields macInfoP
Pointer to the APMACInfoType structure that was initialized
during the call to CPMLibMACInit().

bufIn
Pointer to a buffer containing the data for the operation. This
parameter must not be NULL.

bufInLen
The size, in bytes, of the buffer specified by bufIn. This
value must be greater than zero.

bufOut
Pointer to a buffer, allocated by the application, to receive the
output of the operation.

bufOutLenP
The size, in bytes, of the buffer specified by the bufOut
parameter.

APReleaseCipherInfo Struct
Purpose The command paramater block for the ReleaseCipherInfo call.

Declared In CPMLibProvider.h

Prototype struct {
 APCipherInfoType *cipherInfoP;
 } APReleaseCipherInfo;

Parameters cipherInfoP
A valid context for this operation initialized by the
initialization operation.

CPM Library Provider
APReleaseMACInfo

Exploring Palm OS: Security and Cryptography 271

APReleaseHashInfo Struct
Purpose The command paramater block for the ReleaseHashInfo call.

Declared In CPMLibProvider.h

Prototype struct {
 APHashInfoType *hashInfoP;
 } APReleaseHashInfo;

Fields hashInfoP
Pointer to the APHashInfoType structure.

APReleaseKeyInfo Struct
Purpose The command paramater block for the ReleaseKey call.

Declared In CPMLibProvider.h

Prototype struct {
 APKeyInfoType *keyInfoP;
 } APReleaseKeyInfo;

Fields keyInfoP
Pointer to the key data to be released.

Comments The provider releases the key specified by keyInfoP. After this call,
keyInfoP is no longer valid for any operations.

APReleaseMACInfo Struct
Purpose The command paramater block for the ReleaseMACInfo call.

Declared In CPMLibProvider.h

Prototype struct {
 APMACInfoType *macInfoP;
 } APReleaseMACInfo;

Fields macInfoP
Pointer to an APMACInfoType structure.

CPM Library Provider
APReleaseSignInfo

272 Exploring Palm OS: Security and Cryptography

APReleaseSignInfo Struct
Purpose The command paramater block for the ReleaseSignInfo call.

Declared In CPMLibProvider.h

Prototype struct {
 APSignInfoType *signInfoP;
 } APReleaseSignInfo;

Fields signInfoP
A valid context for this operation initialized by the
initialization operation.

APReleaseVerifyInfo Struct
Purpose The command paramater block for the ReleaseVerifyInfo call.

Declared In CPMLibProvider.h

Prototype struct {
 APVerifyInfoType *verifyInfoP;
 } APReleaseVerifyInfo;

Fields verifyInfoP
A valid context for this operation initialized by the
initialization operation.

CPM Library Provider
APSign

Exploring Palm OS: Security and Cryptography 273

APSign Struct
Purpose The command paramater block for the Sign call.

Declared In CPMLibProvider.h

Prototype struct {
 APKeyInfoType *keyInfoP;
 APSignInfoType *signInfoP;
 uint8_t *bufIn;
 uint32_t bufInLen;
 uint8_t *bufOut;
 uint32_t *bufOutLenP;
 uint8_t *signature;
 uint32_t *signatureLenP;
 } APSign;

Fields keyInfoP
The key to be used for the operation.

signInfoP
A valid context for this operation initialized by the
initialization operation.

bufIn
The data to add to the operation.

bufInLen
The length of the data to add to this operation.

bufOut
The buffer where the results of the operation are to be placed.

bufOutLenP
The size of the buffer specified by the bufOut parameter.
Also returns the actual number of bytes placed in bufOut on
return.

signature
Pointer to a buffer, allocated by the application, to receive the
calculated signature.

signatureLenP
The size, in bytes, of the buffer specified by the signature
parameter.

Comments The signInfoP parameter specifies an initialized context which
was created in the Init of this class of functions.

CPM Library Provider
APSignFinal

274 Exploring Palm OS: Security and Cryptography

The parameter bufInLen may not be zero and bufIn must be
valid.

The provider performs a complete operation using the data in
bufIn of length bufInLen and puts the results in bufOut. The
actual number of bytes placed in bufOut is placed in bufOutLenP.

APSignFinal Struct
Purpose The command paramater block for the SignFinal call.

Declared In CPMLibProvider.h

Prototype struct {
 APKeyInfoType *keyInfoP;
 APSignInfoType *signInfoP;
 uint8_t *bufIn;
 uint32_t bufInLen;
 uint8_t *bufOut;
 uint32_t *bufOutLenP;
 uint8_t *signature;
 uint32_t *signatureLenP;
 } APSignFinal;

Fields keyInfoP
The key to be used for the operation.

signInfoP
A valid context for this operation initialized by the
initialization operation.

bufIn
The data to add to the operation.

bufInLen
The length of the data to add to this operation.

bufOut
The buffer where the results of the operation are to be placed.

bufOutLenP
The size of the buffer specified by the bufOut parameter.
Also returns the actual number of bytes placed in bufOut on
return.

CPM Library Provider
APSignInit

Exploring Palm OS: Security and Cryptography 275

signature
Pointer to a buffer, allocated by the application, to receive the
calculated signature.

signatureLenP
The size, in bytes, of the buffer specified by the signature
parameter.

APSignInit Struct
Purpose The command paramater block for the SignInit call.

Declared In CPMLibProvider.h

Prototype struct {
 APKeyInfoType *keyInfoP;
 APSignInfoType *signInfoP;
 } APSignInit;

Fields keyInfoP
The key to be used for the operation.

signInfoP
A handle to a context to pass to the other members of the
Sign functions.

Comments The provider is responsible for initializing a context with the
specified keyInfoP for the operation and saving it in signInfoP.
This initialization operation must be concluded with a single
finalization operation with zero or more update operations in
between.

CPM Library Provider
APSignUpdate

276 Exploring Palm OS: Security and Cryptography

APSignUpdate Struct
Purpose The command paramater block for the SignUpdate call.

Declared In CPMLibProvider.h

Prototype struct {
 APKeyInfoType *keyInfoP;
 APSignInfoType *signInfoP;
 uint8_t *bufIn;
 uint32_t bufInLen;
 } APSignUpdate;

Fields keyInfoP
The key to be used for the operation.

signInfoP
A valid context for this operation initialized by the
initialization operation.

bufIn
The data to add to the operation.

bufInLen
The length of the data to add to this operation.

Comments The signInfoP parameter specifies an initialized context which
was during in the initialization of this class of functions. The
provider uses signInfoP to update the operation with the data in
bufIn of length bufInLen. The provider also updates the
signInfoP to reflect the update. Any number of update operations
(including zero) may occur between an initialization and a
finalization operation. The parameters bufIn and bufInLen must
be valid for the operation or an error is returned.

CPM Library Provider
APVerify

Exploring Palm OS: Security and Cryptography 277

APVerify Struct
Purpose The command paramater block for the Verify call.

Declared In CPMLibProvider.h

Prototype struct {
 APKeyInfoType *keyInfoP;
 APVerifyInfoType *verifyInfoP;
 uint8_t *bufIn;
 uint32_t bufInLen;
 uint8_t *bufOut;
 uint32_t *bufOutLenP;
 uint8_t *signature;
 uint32_t signatureLen;
 VerifyResultType *verifyResultP;
 } APVerify;

Fields keyInfoP
The key to be used for the operation.

verifyInfoP
A valid context for this operation initialized by the
intialization operation

bufIn
The data to add to the operation.

bufInLen
The length of the data to add to this operation.

bufOut
The buffer where the results of the operation are to be placed.

bufOutLenP
The size of the buffer specified by the bufOut parameter.
Also returns the actual number of bytes placed in bufOut on
return.

signature
Pointer to a buffer containing the previously calculated
signature that is being verified.

signatureLen
The length, in bytes, of the buffer specified by signature.

verifyResultP
Value that should be set by the provider to zero if the
signature verifies or 1 if the signature did not verify.

CPM Library Provider
APVerifyFinal

278 Exploring Palm OS: Security and Cryptography

Comments The verifyInfoP parameter specifies an initialized context which
was created during the initialization of this class of functions.

The parameter bufInLen may not be zero and bufIn must be
valid.

The provider performs a complete verification operation using the
data in bufIn of length bufInLen and puts the results in bufOut.
The actual number of bytes placed in bufOut is placed in
bufOutLenP.

APVerifyFinal Struct
Purpose The command paramater block for the VerifyFinal call.

Declared In CPMLibProvider.h

Prototype struct {
 APKeyInfoType *keyInfoP;
 APVerifyInfoType *verifyInfoP;
 uint8_t *bufIn;
 uint32_t bufInLen;
 uint8_t *bufOut;
 uint32_t *bufOutLenP;
 uint8_t *signature;
 uint32_t signatureLen;
 VerifyResultType *verifyResultP;
 } APVerifyFinal;

Fields keyInfoP
The key to be used for the operation.

verifyInfoP
A valid context for this operation initialized by the
intialization operation

bufIn
The data to add to the operation.

bufInLen
The length of the data to add to this operation.

bufOut
The buffer where the results of the operation are to be placed.

CPM Library Provider
APVerifyInit

Exploring Palm OS: Security and Cryptography 279

bufOutLenP
The size of the buffer specified by the bufOut parameter.
Also returns the actual number of bytes placed in bufOut on
return.

signature
Pointer to a buffer containing the previously calculated
signature that is being verified.

signatureLen
The length, in bytes, of the buffer specified by signature.

verifyResultP
Value that should be set by the provider to zero if the
signature verifies or 1 if the signature did not verify.

Comments The verifyInfoP parameter specifies an initialized context which
was created during the initialization of this class of functions.

If bufInLen is non-zero, the provider uses verifyInfoP to
update the operation with the data in bufIn of length bufInLen.

The provider finalizes the operation which was initialized by the
initialize operation and places the results of the operation in
bufOut. The provider updates bufOutLenP with the actual
number of bytes placed in bufOut. The provider is responsible for
cleaning up the verifyInfoP parameter.

APVerifyInit Struct
Purpose The command paramater block for the VerifyInit call.

Declared In CPMLibProvider.h

Prototype struct {
 APKeyInfoType *keyInfoP;
 APVerifyInfoType *verifyInfoP;
 } APVerifyInit;

Fields keyInfoP
The key to be used for the operation.

verifyInfoP
A handle to a context to pass to the other members of the
Verify functions.

CPM Library Provider
APVerifyUpdate

280 Exploring Palm OS: Security and Cryptography

Comments The provider is responsible for initializing a context with the
specified keyInfoP for the operation and saving it in
verifyInfoP. This initialization operation must be concluded with
a single finalize operation with zero or more update operations in
between.

APVerifyUpdate Struct
Purpose The command paramater block for the VerifyUpdate call.

Declared In CPMLibProvider.h

Prototype struct {
 APKeyInfoType *keyInfoP;
 APVerifyInfoType *verifyInfoP;
 uint8_t *bufIn;
 uint32_t bufInLen;
 } APVerifyUpdate;

Fields keyInfoP
The key to be used for the operation.

verifyInfoP
A valid context for this operation initialized by the
intialization operation

bufIn
The data to add to the operation.

bufInLen
The length of the data to add to this operation.

Comments The verifyInfoP parameter specifies an initialized context which
was created during the initialization of this class of functions. The
provider uses the verifyInfoP to update the operation with the
data in bufIn of length bufInLen. The provider also updates the
verifyInfoP to reflect the update. Any number of update
operations (including zero) may occur between an initialization and
a finalization operation. The parameters bufIn and bufInLen
must be valid for the operation or an error is returned.

CPM Library Provider
APCmdType

Exploring Palm OS: Security and Cryptography 281

CPM Library Provider Constants

APCmdType Enum
Purpose Algorithm provider command selectors.

Declared In CPMLibProvider.h

Constants apClose
Handles the closing of the library.

apDecrypt
Performs a decryption operation in one pass. Parameters are
passed to this function using an APDecrypt structure.

apDecryptFinal
Finalizes a multi-part decryption operation. Parameters are
passed to this function using an APDecryptFinal structure.

apDecryptInit
Begins a multi-part decryption operation with the specified
key and returns the context of the decrypt operation.
Parameters are passed to this function using an
APDecryptInit structure.

apDecryptUpdate
Updates a multi-part decryption operation with more data.
Parameters are passed to this function using an
APDecryptUpdate structure.

apDeriveKeyData
Derives a key from the supplied input data. Parameters are
passed to this function using an APDeriveKeyData
structure.

apEncrypt
Performs an encryption operation in one pass. Parameters
are passed to this function using an APEncrypt structure.

apEncryptFinal
Finalizes a multi-part encryption operation. Parameters are
passed to this function using an APEncryptFinal structure.

apEncryptInit
Begins a multi-part encryption operation with the specified
key and returns the context of the encrypt operation.

CPM Library Provider
APCmdType

282 Exploring Palm OS: Security and Cryptography

Parameters are passed to this function using an
APEncryptInit structure.

apEncryptUpdate
Updates a multi-part encryption operation with more data.
Parameters are passed to this function using an
APEncryptUpdate structure.

apExportCipherInfo
Creates a storable instance of an APCipherInfoType
structure. Parameters are passed to this function using an
APExportCipherInfo structure.

apExportHashInfo
Creates a storable instance of an APHashInfoType
structure. Parameters are passed to this function using an
APExportHashInfo structure.

apExportKeyInfo
Creates a storable instance of a key that is already familiar to
the CPM framework. Parameters are passed to this function
using an APExportKeyInfo structure.

apExportKeyPairInfo
Creates a storable instance of a set of APKeyInfoType
structures representing a private key and a public key.
Parameters are passed to this function using an
APExportKeyPairInfo structure.

apExportMACInfo
Creates a storable instance of an APMACInfoType structure.
Parameters are passed to this function using an
APExportMacInfo structure.

apExportSignInfo
Creates a storable instance of an APSignInfoType
structure. Parameters are passed to this function using an
APExportSignInfo structure.

apExportVerifyInfo
Creates a storable instance of an APVerifyInfoType
structure. Parameters are passed to this function using an
APExportVerifyInfo structure.

apGenerateKey
Generates a new key. Parameters are passed to this function
using an APGenerateKey structure.

CPM Library Provider
APCmdType

Exploring Palm OS: Security and Cryptography 283

apGenerateKeyPair
Generates a new public/private key pair. Parameters are
passed to this function using an APGenerateKeyPair
structure.

apGetInfo
Not used.

apGetProviderInfo
Gets information about the requested provider. Information
returned includes the name of the provider, some additional
text about the provider, the “algorithms” supported, and so
on. Parameters are passed to this function using an
APGetProviderInfo structure.

apHash
Performs the hashing operation in one pass. Parameters are
passed to this function using an APHash structure.

apHashFinal
Finalizes a multi-part hash operation. Parameters are passed
to this function using an APHashFinal structure.

apHashInit
Begins a multi-part hash operation of a specified type and
returns the context of the hash operation. Parameters are
passed to this function using an APHashInit structure.

apHashUpdate
Updates a multi-part hash operation with more data.
Parameters are passed to this function using an
APHashUpdate structure.

apImportCipherInfo
Initialize the contents of an APCipherInfoType structure
based upon a storable instance of that structure. Parameters
are passed to this function using an APImportCipherInfo
structure.

apImportHashInfo
Initialize the contents of an APHashInfoType structure
based upon a storable instance of that structure. Parameters
are passed to this function using an APImportHashInfo
structure.

CPM Library Provider
APCmdType

284 Exploring Palm OS: Security and Cryptography

apImportKeyInfo
Introduces an existing key to the CPM framework.
Parameters are passed to this function using an
APImportKeyInfo structure.

apImportKeyPairInfo
Introduces an existing public/private key pair to the CPM
framework. Parameters are passed to this function using an
APImportKeyPairInfo structure.

apImportMACInfo
Initialize the contents of an APMACInfoType structure based
upon a storable instance of that structure. Parameters are
passed to this function using an APImportMacInfo
structure.

apImportSignInfo
Initialize the contents of an APSignInfoType structure
based upon a storable instance of that structure. Parameters
are passed to this function using an APImportSignInfo
structure.

apImportVerifyInfo
Initialize the contents of an APVerifyInfoType structure
based upon a storable instance of that structure. Parameters
are passed to this function using an APImportVerifyInfo
structure.

apMAC
Performs the message authentication operation in one pass.
Parameters are passed to this function using an APMac
structure.

apMACFinal
Finalizes a multi-part message authentication operation.
Parameters are passed to this function using an APMacFinal
structure.

apMACInit
Begins a multi-part message authentication operation with
the specified key and hash info and returns the context of the
operation. Parameters are passed to this function using an
APMacInit structure.

CPM Library Provider
APCmdType

Exploring Palm OS: Security and Cryptography 285

apMACUpdate
Updates a multi-part message authentication operation with
more data. Parameters are passed to this function using an
APMacUpdate structure.

apOpen
Handles the opening of the library.

apReleaseCipherInfo
Allows the CPM and the provider(s) to clean up before the
application frees the APICipherInfoType structure.
Parameters are passed to this function using an
APReleaseCipherInfo structure.

apReleaseHashInfo
Allows the CPM and the provider(s) to clean up before the
application frees the APIHashInfoType structure.
Parameters are passed to this function using an
APReleaseHashInfo structure.

apReleaseKeyInfo
Allows the CPM and the provider(s) to clean up before the
application frees the APKeyInfoType structure. Parameters
are passed to this function using an APReleaseKeyInfo
structure.

apReleaseMACInfo
Allows the CPM and the provider(s) to clean up before the
application frees the APMACInfoType structure. Parameters
are passed to this function using an APReleaseMACInfo
structure.

apReleaseSignInfo
Allows the CPM and the provider(s) to clean up before the
application frees the APSignInfoType structure.
Parameters are passed to this function using an
APReleaseSignInfo structure.

apReleaseVerifyInfo
Allows the CPM and the provider(s) to clean up before the
application frees the APVerifyInfoType structure.
Parameters are passed to this function using an
APReleaseVerifyInfo structure.

apSign
Performs the signing operation in one pass. Parameters are
passed to this function using an APSign structure.

CPM Library Provider
APCmdType

286 Exploring Palm OS: Security and Cryptography

apSignFinal
Finalizes a multi-part signing operation. Parameters are
passed to this function using an APSignFinal structure.

apSignInit
Begins a multi-part signing operation with the specified key
and returns the context of the signing operation. Parameters
are passed to this function using an APSignInit structure.

apSignUpdate
Updates a multi-part signing operation with more data.
Parameters are passed to this function using an
APSignUpdate structure.

apStatus

apVerify
Performs the verify operation in one pass. Parameters are
passed to this function using an APVerify structure.

apVerifyFinal
Finalizes a multi-part verification operation. Parameters are
passed to this function using an APVerifyFinal structure.

apVerifyInit
Begins a multi-part verification operation with the specified
key and returns the context of the verification operation.
Parameters are passed to this function using an
APVerifyInit structure.

apVerifyUpdate
Updates a multi-part verification operation with more data.
Parameters are passed to this function using an
APVerifyUpdate structure.

apLast
Not a value that represents an actual function, this is one
greater than the final function selector value.

apZero

CPM Library Provider
APDispatchProcPtr

Exploring Palm OS: Security and Cryptography 287

Miscellaneous CPM Library Provider
Constants

Purpose The CPMLibProvider.h file also declares the following constants.

Declared In CPMLibProvider.h

Constants #define cpmProviderResourceID 0
Defines the resource ID of the code resource.

#define cpmProviderResourceType 'cpmp'
Defines the type (creator/type) of the provider.

Application-Defined Functions

APDispatchProcPtr Function
Purpose Pointer to the provider’s command dispatch function. Each

provider must export a function matching this signature as a
dispatcher for the commands and command parameter blocks that
will be sent to the provider by the CPM.

Declared In CPMLibProvider.h

Prototype status_t (*APDispatchProcPtr)
(CPMCallerInfoPtr info, APCmdType cmd,
APCmdPBPtr pbP)

Parameters → info
Pointer to a CPMCallerInfoType structure that contains all
the information necessary for the provider to call back into
the CPM’s framework and use the CPM’s resources.

→ cmd
One of the values listed under “CPM Library Provider
Constants” on page 281.

↔ pbP
Pointer to the appropriate parameter block structure for the
command. The documentation for each command identifies
the parameter block structure to use with that command.

CPM Library Provider
CPMAddRandomSeedProcPtr

288 Exploring Palm OS: Security and Cryptography

Returns errNone if the operation completed successfully, or an appropriate
error code (usually, one of the codes listed under “CPM Library
Error Codes” on page 239).

See Also CPMDispatcherProcPtr()

CPMAddRandomSeedProcPtr Function
Purpose Pointer to a function that puts a number of seed bytes into the

pseudo-random number generator maintained by the CPM.

Declared In CPMLibProvider.h

Prototype status_t (*CPMAddRandomSeedProcPtr)
(void *appContext, uint8_t *buffer,
uint32_t buflen)

Parameters → appContext
Pointer to a structure containing the provider-specific
application context to be used in future CPM calls. This
structure is normally created and initialized when the library
is opened.

→ buffer
Pointer to a buffer of seed bytes.

→ buflen
The number of bytes in buffer.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

See Also CPMAddRandomSeedProcPtr()

CPMDebugOutProcPtr Function
Purpose Pointer to a function that sends a null-terminated string to the

current debug device, if the level set using

CPM Library Provider
CPMDispatcherProcPtr

Exploring Palm OS: Security and Cryptography 289

CPMLibSetDebugLevel() is less than or equal to the message’s
debug output level.

Declared In CPMLibProvider.h

Prototype status_t (*CPMDebugOutProcPtr) (void *appContext,
uint8_t level, char *fmtstring, ...)

Parameters → appContext
Pointer to a structure containing the provider-specific
application context to be used in future CPM calls. This
structure is normally created and initialized when the library
is opened.

→ level
The debug output level of the message. One of the values
listed under “Debug Output Levels” on page 239.

→ fmtstring
A printf-style format string for the debug message being
sent.

→ ...
Zero or more arguments to be substituted as appropriate in
the format string.

Returns errNone.

See Also CPMLibSetDebugLevel()

CPMDispatcherProcPtr Function
Purpose Pointer to the Cryptographic Provider Manager’s function

dispatcher. This function attempts to locate a provider that
implements the supplied command. If it is successful, it directs the
command and parameter block to that provider.

Declared In CPMLibProvider.h

Prototype status_t (*CPMDispatcherProcPtr)
(void *appContext, APCmdType cmd,
APCmdPBType *cmdPB, uint32_t *id)

Parameters → appContext
Pointer to a structure containing the provider-specific
application context to be used. This structure is normally
created and initialized when the library is opened.

CPM Library Provider
CPMDispatcherProcPtr

290 Exploring Palm OS: Security and Cryptography

→ cmd
One of the values listed under “CPM Library Provider
Constants” on page 281.

→ cmdPB
Pointer to the appropriate parameter block structure for the
command. The documentation for each command identifies
the parameter block structure to use with that command.

→ id
Pointer to a uint32_t containing the ID of a specific
provider to which the command is to be directed. If *id is 0,
the CPM directs the command to the first provider that
implements the requested functionality.

Returns The return value passed back from the provider (which may be
cpmErrUnimplemented if the provider recognizes but does not
implement the supplied command), or one of the following if the
command couldn’t be directed to a provider:

cpmErrProviderNotFound
A provider ID was supplied, but the CPM couldn’t find a
provider with the supplied ID.

cpmErrNoProviders
Given the supplied application context, the CPM is unaware
of any providers.

cpmErrNoAppContext
The appContext parameter is NULL.

cpmErrParamErr
The supplied command isn’t a valid command.

cpmErrUnsupported
The supplied command isn’t supported.

Comments If *id is 0, the CPM’s function dispatcher attempts to locate a
provider that implements cmd. If it finds one, that provider’s
dispatch function (an APDispatchProcPtr) is called with the
specified command and command parameters.

See Also APDispatchProcPtr

CPM Library Provider
CPMGenerateRandomBytesProcPtr

Exploring Palm OS: Security and Cryptography 291

CPMGenerateRandomBytesProcPtr Function
Purpose Pointer to a function that returns a requested number of random

bytes.

Declared In CPMLibProvider.h

Prototype status_t (*CPMGenerateRandomBytesProcPtr)
(void *appContext, uint8_t *buffer,
uint32_t *buflenP)

Parameters → appContext
Pointer to a structure containing the provider-specific
application context to be used in future CPM calls. This
structure is normally created and initialized when the library
is opened.

← buffer
Pointer to a buffer, allocated by the application, into which
the random bytes are written.

↔ buflenP
When this function is called, the variable pointed to by this
parameter is set to the size of buffer. Upon return, the
variable contains the number of random bytes written to
buffer.

errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

Comments If there are not bufLenP random bytes available, this function
returns the available random bytes and returns the number of
available bytes in bufLenP.

See Also CPMAddRandomSeedProcPtr()

CPM Library Provider
CPMGenerateRandomBytesProcPtr

292 Exploring Palm OS: Security and Cryptography

Exploring Palm OS: Security and Cryptography 293

12
Encrypt
These functions allow you to encrypt or digest strings. The header
file Encrypt.h only declares functions, so this chapter only
consists of a single section:

Encrypt Functions and Macros 293

The header file Encrypt.h declares the API that this chapter
describes.

Encrypt Functions and Macros

EncDES Function
Purpose Perform a reversible encryption or decryption of an 8-byte string

using an 8-byte key.

Declared In Encrypt.h

Prototype status_t EncDES (uint8_t *srcP, uint8_t *keyP,
uint8_t *dstP, Boolean encrypt)

Parameters → srcP
The 8-byte string to be encrypted.

→ keyP
The 8-byte key with which to encrypt the string in srcP.

← dstP
The 8-byte encrypted result.

→ encrypt
Pass true to encrypt, false to decrypt.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

Encrypt
EncDigestMD4

294 Exploring Palm OS: Security and Cryptography

EncDigestMD4 Function
Purpose Digest a string of bytes to produce a 128-bit result using the MD4

algorithm.

Declared In Encrypt.h

Prototype status_t EncDigestMD4 (uint8_t *strP,
uint16_t strLen, uint8_t digestP[16])

Parameters → strP
The string to be digested.

→ strLen
The length of the string passed in strP.

← digestP[16]
The resulting 128-bit (16 byte) digest.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

EncDigestMD5 Function
Purpose Digest a string of bytes to produce a 128-bit result using the MD5

algorithm.

Declared In Encrypt.h

Prototype status_t EncDigestMD5 (uint8_t *strP,
uint16_t strLen, uint8_t digestP[16])

Parameters → strP
The string to be digested.

→ strLen
The length of the string passed in strP.

← digestP[16]
The resulting 128-bit (16 byte) digest.

Returns errNone if the operation completed successfully, or one of the error
codes listed under “CPM Library Error Codes” on page 239
otherwise.

Exploring Palm OS: Security and Cryptography 295

13
Password
The APIs declared in Password.h and documented in this chapter
are provided for compatibility with previous versions of Palm OS.
Applications written specifically for Palm OS Cobalt should make
use of the Authentication Manager instead.

The contents of this chapter are organized into the following
sections:

Password Constants 295

Password Functions and Macros 296

The header file Password.h declares the API that this chapter
describes.

Password Constants

Miscellaneous Password Constants
Purpose The following constants are declared in Password.h.

Declared In Password.h

Constants #define pwdLength 32
The maximum length of the password string passed to
PwdVerify().

Password
Password Functions and Macros

296 Exploring Palm OS: Security and Cryptography

Password Functions and Macros

PwdExists Function
Purpose Determine if the system password is set.

Declared In Password.h

Prototype Boolean PwdExists (void)

Parameters None.

Returns Returns true if the system password is set, false otherwise.

Compatibility This function is provided for compatibility with previous versions
of Palm OS only. Palm OS Cobalt applications should make use of
the APIs provided by the Authentication Manager instead.

PwdRemove Function
Purpose Remove the encrypted password string and recover data hidden in

databases.

Declared In Password.h

Prototype void PwdRemove (void)

Parameters None.

Returns Nothing.

Comments IMPORTANT: When called from the main application thread,
this function may block. While blocked, the application will not
receive events and won’t redraw its windows. As well, deferred
sublaunches and notifications won’t execute while the main
application thread is blocked.

Compatibility This function is provided for compatibility with previous versions
of Palm OS only. Palm OS Cobalt applications should make use of
the APIs provided by the Authentication Manager instead.

Password
PwdVerify

Exploring Palm OS: Security and Cryptography 297

PwdSet Function
Purpose Use a passed string as the new password.

Declared In Password.h

Prototype void PwdSet (char *oldPassword,
char *newPassword)

Parameters → oldPassword
The old password. It must be successfully verified or the new
password isn’t accepted

→ newPassword
A string to use as the password. NULL means no password.

Returns Nothing.

Comments The password is stored in an encrypted form.

IMPORTANT: When called from the main application thread,
this function may block. While blocked, the application will not
receive events and won’t redraw its windows. As well, deferred
sublaunches and notifications won’t execute while the main
application thread is blocked.

Compatibility This function is provided for compatibility with previous versions
of Palm OS only. Palm OS Cobalt applications should make use of
the APIs provided by the Authentication Manager instead.

PwdVerify Function
Purpose Verify that a passed string matches the system password.

Declared In Password.h

Prototype Boolean PwdVerify (char *string)

Parameters → string
String to compare to the system password. NULL means no
current password.

Returns Returns true if the string matches the system password.

Password
PwdVerify

298 Exploring Palm OS: Security and Cryptography

Comments IMPORTANT: When called from the main application thread,
this function may block. While blocked, the application will not
receive events and won’t redraw its windows. As well, deferred
sublaunches and notifications won’t execute while the main
application thread is blocked.

Compatibility This function is provided for compatibility with previous versions
of Palm OS only. Palm OS Cobalt applications should make use of
the APIs provided by the Authentication Manager instead.

Exploring Palm OS: Security and Cryptography 299

14
Security Services
The Security Services manage the device settings regarding the
user’s level of concern for security. This includes the overall security
level set for the device as well as the device lockout settings.

This chapter provides reference documentation for the Security
Services. It is organized into the following sections:

Security Services Structures and Types 300

Security Services Constants 302

Security Services Functions and Macros 305

The header file SecurityServices.h declares the API that this
chapter describes.

Security Services
Security Services Structures and Types

300 Exploring Palm OS: Security and Cryptography

Security Services Structures and Types

SecSvcsDecodeLockoutTimePtrType Typedef
Purpose Pointer to the SecSvcsDecodeLockoutTime() function.

Declared In SecurityServices.h

Prototype typedef status_t
 (*SecSvcsDecodeLockoutTimePtrType)
 (uint32_t encoded_level,
 SecSvcsDeviceLockoutEnum *lockoutType,
 uint32_t *hours, uint32_t *minutes)

SecSvcsEncodeLockoutTimePtrType Typedef
Purpose Pointer to the SecSvcsEncodeLockoutTime() function.

Declared In SecurityServices.h

Prototype typedef status_t
 (*SecSvcsEncodeLockoutTimePtrType)
 (SecSvcsDeviceLockoutEnum lockoutType,
 uint32_t *encoded_level, uint32_t hours,
 uint32_t minutes)

SecSvcsGetDeviceLockoutPtrType Typedef
Purpose Pointer to the SecSvcsGetDeviceLockout() function.

Declared In SecurityServices.h

Prototype typedef status_t
 (*SecSvcsGetDeviceLockoutPtrType)
 (uint32_t *encoded_level)

SecSvcsGetDevicePoliciesPtrType Typedef
Purpose Pointer to the SecSvcsGetDevicePolicies() function.

Declared In SecurityServices.h

Security Services
SecSvcsSetDeviceLockoutPtrType

Exploring Palm OS: Security and Cryptography 301

Prototype typedef status_t
 (*SecSvcsGetDevicePoliciesPtrType)
 (uint32_t creatorID, uint8_t *buffer,
 uint32_t *buflen)

SecSvcsGetDeviceSettingPtrType Typedef
Purpose Pointer to the SecSvcsGetDeviceSetting() function.

Declared In SecurityServices.h

Prototype typedef status_t
 (*SecSvcsGetDeviceSettingPtrType)
 (SecSvcsDeviceSettingEnum *level)

SecSvcsIsDeviceLockedPtrType Typedef
Purpose Pointer to the SecSvcsIsDeviceLocked() function.

Declared In SecurityServices.h

Prototype typedef Boolean (*SecSvcsIsDeviceLockedPtrType)
 (void)

SecSvcsSetDeviceLockedPtrType Typedef
Purpose Pointer to the SecSvcsSetDeviceLocked() function.

Declared In SecurityServices.h

Prototype typedef status_t (*SecSvcsSetDeviceLockedPtrType)
 (Boolean locked)

SecSvcsSetDeviceLockoutPtrType Typedef
Purpose Pointer to the SecSvcsSetDeviceLockout() function.

Declared In SecurityServices.h

Prototype typedef status_t
 (*SecSvcsSetDeviceLockoutPtrType)
 (uint32_t encoded_level)

Security Services
SecSvcsSetDeviceSettingPtrType

302 Exploring Palm OS: Security and Cryptography

SecSvcsSetDeviceSettingPtrType Typedef
Purpose Pointer to the SecSvcsSetDeviceSetting() function.

Declared In SecurityServices.h

Prototype typedef status_t
 (*SecSvcsSetDeviceSettingPtrType)
 (SecSvcsDeviceSettingEnum level)

Security Services Constants

Security Services Entry Points
Purpose Each of the Security Services functions is identified by its entry

point. These constants define those entry points.

Declared In SecurityServices.h

Constants #define entryNumSecSvcsDecodeLockoutTime (6)

#define entryNumSecSvcsEncodeLockoutTime (5)

#define entryNumSecSvcsGetDeviceLockout (3)

#define entryNumSecSvcsGetDevicePolicies (0)

#define entryNumSecSvcsGetDeviceSetting (1)

#define entryNumSecSvcsSetDeviceLockout (4)

#define entryNumSecSvcsSetDeviceSetting (2)

Security Services Errors
Purpose Error codes returned by the various Security Services functions.

Declared In SignVfy.h

Constants #define secSvcsErrBufferTooSmall
((status_t)(secSvcsErrorClass | 2))

The supplied buffer was too small. The required size has
been returned through the length parameter.

Security Services
Miscellaneous Security Services Constants

Exploring Palm OS: Security and Cryptography 303

#define secSvcsErrInvalid
((status_t)(secSvcsErrorClass | 7))

The specified security level or lockout type isn’t one of the
allowable values.

#define secSvcsErrNoPolicies
((status_t)(secSvcsErrorClass | 3))

The licensee has not specified any policies for the device.

#define secSvcsErrNotImplemented
((status_t)(secSvcsErrorClass | 1))

A requested service is not implemented.

#define secSvcsErrOutOfMemory
((status_t)(secSvcsErrorClass | 5))

There was insufficient memory to complete the operation.

#define secSvcsErrServiceNotStarted
((status_t)(secSvcsErrorClass | 6))

The Security Services process has not started.

#define secSvcsErrUnauthorized
((status_t)(secSvcsErrorClass | 4))

The caller is not authorized to perform the requested
operation.

Miscellaneous Security Services Constants
Purpose The SecurityServices.h header file also declares these constants.

Declared In SecurityServices.h

Constants #define SecSvcsServiceName "pSysSecSvcs"
The name under which the Security Services are registered
with the Service Manager.

Security Services
SecSvcsDeviceLockoutEnum

304 Exploring Palm OS: Security and Cryptography

SecSvcsDeviceLockoutEnum Enum
Purpose “Lockout type” values that specify when the device will be

automatically locked by the operating system.

Declared In SecurityServices.h

Constants SecSvcsDeviceLockoutNever = 0
The device never locks.

SecSvcsDeviceLockoutPowerOff
The device locks upon power off.

SecSvcsDeviceLockoutAt
The device is locked at the specified time.

SecSvcsDeviceLockoutAfter
The device is locked after the specified amount of time has
elapsed.

SecSvcsDeviceSettingEnum Enum
Purpose The user’s “paranoia level.”

Declared In SecurityServices.h

Constants SecSvcsDeviceSecurityNone = 0
No security needed: the device and services should be as
open as possible.

SecSvcsDeviceSecurityMedium
The user would like to be notified whenever security-related
operations take place, and where appropriate given the
opportunity to veto the operation.

SecSvcsDeviceSecurityHigh
The user is extremely security-conscious and likely wants all
security-related operations denied.

Security Services
SecSvcsDecodeLockoutTime

Exploring Palm OS: Security and Cryptography 305

Security Services Functions and Macros

SecSvcsDecodeLockoutTime Function
Purpose Decodes the 32-bit encoded_level value obtained from

SecSvcsGetDeviceLockout() into a set of lockout parameters
(lockoutType, hours, and minutes).

Declared In SecurityServices.h

Prototype status_t SecSvcsDecodeLockoutTime
 (uint32_t encoded_level,
 SecSvcsDeviceLockoutEnum *lockoutType,
 uint32_t *hours, uint32_t *minutes)

Parameters → encoded_level
The encoded lockout parameters.

← lockoutType
One of the SecSvcsDeviceLockoutEnum values that
specifies when the device will be locked.

← hours
In conjunction with minutes, the time when the device will
lock or the amount of time that must elapse before the device
will lock. See the Comments section, below, for more
information.

← minutes
In conjunction with hours, the time when the device will
lock or the amount of time that must elapse before the device
will lock. See the Comments section, below, for more
information.

Returns Always returns errNone.

Comments If the lockout type is SecSvcsDeviceLockoutAt, the device will
lock at the time specified by hours and minutes. If the lockout
type is SecSvcsDeviceLockoutAfter, the device will lock after
the specified number of hours and minutes have elapsed.

See Also SecSvcsEncodeLockoutTime()

Security Services
SecSvcsEncodeLockoutTime

306 Exploring Palm OS: Security and Cryptography

SecSvcsEncodeLockoutTime Function
Purpose Encodes the lockout parameters into a 32-bit value for use with

SecSvcsSetDeviceLockout().

Declared In SecurityServices.h

Prototype status_t SecSvcsEncodeLockoutTime
 (SecSvcsDeviceLockoutEnum lockoutType,
 uint32_t *encoded_level, uint32_t hours,
 uint32_t minutes)

Parameters → lockoutType
One of the SecSvcsDeviceLockoutEnum values that
specifies when the device will be locked.

← encoded_level
The encoded lockout parameters.

→ hours
In conjunction with minutes, the time when the device will
lock or the amount of time that must elapse before the device
will lock. See the Comments section, below, for more
information.

→ minutes
In conjunction with hours, the time when the device will
lock or the amount of time that must elapse before the device
will lock. See the Comments section, below, for more
information.

Returns Always returns errNone.

Comments If the lockout type is SecSvcsDeviceLockoutAt, the device will
lock at the time specified by hours and minutes. If the lockout
type is SecSvcsDeviceLockoutAfter, the device will lock after
the specified number of hours and minutes have elapsed.

See Also SecSvcsDecodeLockoutTime()

Security Services
SecSvcsGetDevicePolicies

Exploring Palm OS: Security and Cryptography 307

SecSvcsGetDeviceLockout Function
Purpose Gets the lockout parameters as currently set for the device.

Declared In SecurityServices.h

Prototype status_t SecSvcsGetDeviceLockout
 (uint32_t *encoded_level)

Parameters ← encoded_level
The lockout parameters. These are encoded to save space and
must be decoded using SecSvcsDecodeLockoutTime().

Returns Always returns errNone.

See Also SecSvcsSetDeviceLockout()

SecSvcsGetDevicePolicies Function
Purpose Obtain the security policies defined for the device.

Declared In SecurityServices.h

Prototype status_t SecSvcsGetDevicePolicies
 (uint32_t creatorID, uint8_t *buffer,
 uint32_t *buflen)

Parameters → creatorID
Specifies the particular policies being requested. Note that
this is not specifically related to actual creator ID values but
rather agreed-upon and documented names. In this way a
manager can utilize multiple sets of policies.

← buffer
A caller-allocated buffer that will receive the requested
policies, or NULL to request the necessary buffer size (which
is then returned through buflen).

↔ buflen
When calling this function, this is the size of buffer. Upon
return it is set to the total size of the returned policies.

Returns Returns errNone if the operation completed successfully,
secSvcsErrNoPolicies if the device has no policies, or one of
the following otherwise:

Security Services
SecSvcsGetDeviceSetting

308 Exploring Palm OS: Security and Cryptography

secSvcsErrBufferTooSmall
The specified buffer is too small to contain the security
policies. *buflen has been set to the needed buffer size.

Comments Upon calling this function, you can expect one of three “valid”
returns:

• No policies returned (secSvcsErrNoPolicies). The
licensee has not specified any policies and the service or
manager should behave openly (that is, with no restrictions).

• A multiple of 20 bytes is returned, with each 20 byte
boundary representing a valid certificate ID.

• One 20 byte wildcard certificate is returned. A wildcard
certificate represents a slightly higher level of security than
the totally open device. The wildcard means that the service
or manager will check to see if the code is signed by a signer
already in the list of trusted roots. If the code is signed by one
of the trusted roots, then allow the operation. If the code is
not signed by one of the trusted roots or not signed at all then
annoy the user with as much information about the code as
possible (not signed, signed by whom, etc.) and ask the user
if the code should be applied.

SecSvcsGetDeviceSetting Function
Purpose Obtain the current security services setting.

Declared In SecurityServices.h

Prototype status_t SecSvcsGetDeviceSetting
 (SecSvcsDeviceSettingEnum *level)

Parameters ← level
One of the SecSvcsDeviceSettingEnum values.

Returns Always returns errNone.

Comments Generally, for SecSvcsDeviceSecurityNone the user does not
care and the device and services should be as open as possible. For
SecSvcsDeviceSecurityMedium the user is requesting
notification for operations performed by various services, perhaps a
yes/no dialog before the operation takes place. For

Security Services
SecSvcsSetDeviceLocked

Exploring Palm OS: Security and Cryptography 309

SecSvcsDeviceSecurityHigh the user is “paranoid” and
probably wants the operations denied

See Also SecSvcsGetDevicePolicies(),
SecSvcsIsDeviceLocked(), SecSvcsSetDeviceSetting()

SecSvcsIsDeviceLocked Function
Purpose Determine whether the device is currently in a locked state.

Declared In SecurityServices.h

Prototype Boolean SecSvcsIsDeviceLocked (void)

Parameters None.

Returns Returns true if the device is locked, false if it is not.

Comments This function is intended to be used for low-level modules that
control whether or not the device is locked.

See Also SecSvcsGetDeviceLockout(), SecSvcsSetDeviceLocked()

SecSvcsSetDeviceLocked Function
Purpose Lock or unlock the device.

Declared In SecurityServices.h

Prototype status_t SecSvcsSetDeviceLocked (Boolean locked)

Parameters → locked
Supply a value of true to lock the device, or false to
unlock it.

Returns Returns errNone if the operation completed successfully, or
secSvcsErrServiceNotStarted if the Security Services
process has not started.

Comments This function is intended to be used for low-level modules that
control whether or not the device is locked.

See Also SecSvcsIsDeviceLocked(), SecSvcsSetDeviceLockout()

Security Services
SecSvcsSetDeviceLockout

310 Exploring Palm OS: Security and Cryptography

SecSvcsSetDeviceLockout Function
Purpose Sets the current lockout parameters for the device.

Declared In SecurityServices.h

Prototype status_t SecSvcsSetDeviceLockout
 (uint32_t encoded_level)

Parameters → encoded_level
The lockout parameters. These must have been encoded
using SecSvcsEncodeLockoutTime().

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

amErrUserCancel
The user canceled the operation.

secSvcsErrInvalid
The specified lockout type isn’t one of the allowable values.

secSvcsErrServiceNotStarted
The Security Services process has not started.

Comments IMPORTANT: When called from the main application thread,
this function may block. While blocked, the application will not
receive events and won’t redraw its windows. As well, deferred
sublaunches and notifications won’t execute while the main
application thread is blocked.

See Also SecSvcsGetDeviceLockout()

SecSvcsSetDeviceSetting Function
Purpose Change the current security services setting.

Declared In SecurityServices.h

Prototype status_t SecSvcsSetDeviceSetting
 (SecSvcsDeviceSettingEnum level)

Parameters → level
One of the SecSvcsDeviceSettingEnum values.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

Security Services
SecSvcsSetDeviceSetting

Exploring Palm OS: Security and Cryptography 311

amErrUserCancel
The user canceled the operation.

secSvcsErrInvalid
The specified level isn’t one of the allowable values.

Comments IMPORTANT: When called from the main application thread,
this function may block. While blocked, the application will not
receive events and won’t redraw its windows. As well, deferred
sublaunches and notifications won’t execute while the main
application thread is blocked.

See Also SecSvcsGetDeviceSetting()

Security Services
SecSvcsSetDeviceSetting

312 Exploring Palm OS: Security and Cryptography

Exploring Palm OS: Security and Cryptography 313

15
Signature
Verification Library
Signed code in Palm OS Cobalt is used to validate the authenticity
of a program resource. There are several types of resources that can
be signed in Palm OS Cobalt, including applications, system
patches, shared libraries, system components (add-ons), and system
drivers. All of these resources are packaged as PRC files and then
loaded onto the device. The APIs in the Signature Verification
Library can be used to verify a PRC’s signature on the device.

This chapter provides reference documentation for the Signature
Verification Library. This chapter is organized into the following
sections:

Signature Verification Library Structures and Types . . 314

Signature Verification Library Constants 316

Signature Verification Library Functions and Macros . . 318

The header file SignVfy.h declares the API that this chapter
describes.

Signature Verif ication Library
Signature Verification Library Structures and Types

314 Exploring Palm OS: Security and Cryptography

Signature Verification Library Structures and
Types

SignCertificateBlockType Struct
Purpose Data structure that references a signature block.

Declared In SignVfy.h

Prototype typedef struct {
 uint16_t encoding;
 SignCertificateIDType certificateID;
} SignCertificateBlockType

Fields encoding
The certificate encoding.

certificateID
The certificate ID.

Comments The certificate structure returned by
SignGetCertificateByIndex() and
SignGetCertificateByID() is byte buffer that contains the
X.509 representation of the certificate. The signature verification
library does not attempt to interpret the X.509 representation of the
certificate; that task is left up to the certificate manager.

SignCertificateIDType Typedef
Purpose Contains a certificate ID.

Declared In SignVfy.h

Prototype typedef uint8_t SignCertificateIDType[20]

Comments The certificate ID holds the SHA1 digest of the certificate public key.

Signature Verif ication Library
SignGetShLibCertIdListPtrType

Exploring Palm OS: Security and Cryptography 315

SignSignatureBlockType Struct
Purpose Data structure that references a signature block.

Declared In SignVfy.h

Prototype typedef struct {
 uint32_t index;
 SignCertificateIDType certificateID;
 uint32_t signingDate;
} SignSignatureBlockType

Fields index
Index position of the signature block in the sign resource.

certificateID
ID of the certificate used to verify this signature.

signingDate
Date when the PRC file was signed.

SignGetNumSignaturesPtrType Typedef
Purpose Pointer to the SignGetNumSignatures() function.

Declared In SignVfy.h

Prototype typedef status_t (*SignGetNumSignaturesPtrType)
 (DmOpenRef dbP, uint16_t *sigCountP)

SignGetShLibCertIdListPtrType Typedef
Purpose Pointer to the SignGetShLibCertIdListPtrType() function.

Declared In SignVfy.h

Prototype typedef status_t (*SignGetShLibCertIdListPtrType)
 (DmOpenRef dbP, uint8_t *certIdList,
 uint32_t *certIdListSize)

Signature Verif ication Library
SignVerifySignatureByIDPtrType

316 Exploring Palm OS: Security and Cryptography

SignVerifySignatureByIDPtrType Typedef
Purpose Pointer to the SignVerifySignatureByID() function.

Declared In SignVfy.h

Prototype typedef status_t (*SignVerifySignatureByIDPtrType)
 (DmOpenRef dbP,
 const SignCertificateIDType certificateID)

SignVerifySignatureByIndexPtrType Typedef
Purpose Pointer to the SignVerifySignatureByIndex() function.

Declared In SignVfy.h

Prototype typedef status_t
 (*SignVerifySignatureByIndexPtrType)
 (DmOpenRef dbP, uint16_t index)

Signature Verification Library Constants

Signature Verification Library Entry Points
Purpose Each of the functions in the Signature Verification Library is

identified by its entry point. These constants define those entry
points.

Declared In SignVfy.h

Constants #define entryNumSignGetCertificateByID (7)

#define entryNumSignGetCertificateByIndex (5)

#define entryNumSignGetDigest (8)

#define entryNumSignGetNumCertificates (3)

#define entryNumSignGetNumSignatures (2)

#define entryNumSignGetOverlayCertIdList (9)

#define entryNumSignGetShLibCertIdList (10)

#define entryNumSignGetSignatureByID (6)

Signature Verif ication Library
Signature Verification Library Errors

Exploring Palm OS: Security and Cryptography 317

#define entryNumSignGetSignatureByIndex (4)

#define entryNumSignVerifySignatureByID (1)

#define entryNumSignVerifySignatureByIndex (0)

Signature Verification Library Errors
Purpose Error codes returned by the various Signature Verification Library

functions.

Declared In SignVfy.h

Constants #define signErrBufferTooSmall (signErrorClass |
10)

The supplied buffer was too small. The required size has
been returned through the length parameter.

#define signErrDigestMismatch (signErrorClass | 7)
The signed digest does not match the calculated PRC digest.

#define signErrIndexOutOfBounds (signErrorClass |
3)

The specified index is outside the range of certificate or
signature indexes for the PRC.

#define signErrInvalidCertResource (signErrorClass
| 5)

The 'cert' resource is malformed, or invalid in some way.

#define signErrInvalidParams (signErrorClass | 9)
One or more function parameters is invalid.

#define signErrInvalidResourceInDB (signErrorClass
| 12)

The PRC contains an invalid resource.

#define signErrInvalidSignatureBlock
(signErrorClass | 6)

The signature block is invalid.

#define signErrInvalidSignResource (signErrorClass
| 4)

The 'sign' resource is malformed, or invalid in some way.

#define signErrNoCertResource (signErrorClass | 2)
No 'cert' resource exists in the PRC file.

Signature Verif ication Library
Signature Verification Library Functions and Macros

318 Exploring Palm OS: Security and Cryptography

#define signErrNoSignResource (signErrorClass | 1)
No 'sign' resource exists in the PRC file.

#define signErrNotFound (signErrorClass | 8)
A certificate or signature with the specified ID was not found.

#define signErrOutOfMemory (signErrorClass | 11)
There was insufficient memory to complete the operation.

Signature Verification Library Functions and
Macros

SignGetCertificateByID Function
Purpose Get a certificate by its ID.

Declared In SignVfy.h

Prototype status_t SignGetCertificateByID (DmOpenRef dbP,
 const SignCertificateIDType certificateID,
 SignCertificateBlockType *certificateBlock,
 uint32_t *certificateLength,
 uint8_t *certificateData)

→ dbP
Pointer to an open PRC database from which to get
certificates.

→ certificateID
The 20-byte ID of the certificate.

← certificateBlockP
The PRC’s certificate block. See
SignCertificateBlockType.

↔ certificateLength
When calling this function, *certificateLength should
contain the size of the buffer indicated by
certificateData. Upon return, it contains the length of
the returned certificate data. If a NULL pointer was passed in
for certificateData, signErrBufferTooSmall is
returned and the required length is returned through this
parameter.

Signature Verif ication Library
SignGetCertificateByID

Exploring Palm OS: Security and Cryptography 319

← certificateData
A pointer to a caller-allocated buffer to receive the certificate
data. To determine how large this buffer should be, set this
parameter to NULL; upon return *certificateLength
will contain the needed buffer size. After allocating a buffer
of the proper size, call this function again to obtain the
certificate.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

signErrInvalidParameter
certificateBlockP is NULL.

signErrNoCertResource
No 'cert' resource exists in the PRC file.

signErrInvalidCertResource
The 'cert' resource is malformed, or invalid in some way.

signErrNotFound
A certificate with the specified ID was not found.

signErrBufferTooSmall
The supplied buffer was too small. The required size has
been returned through the certificateLength parameter.

signErrInvalidParameter
The certificateLength parameter was set to NULL.

Comments The ID of a certificate is the SHA1 digest of the DER encoded
SubjectPublicKeyInfo field in the certificate, including the
sequence tag and length.

The certificate structure returned by this function is a byte buffer
that contains the X.509 representation of the certificate. The
signature verification library does not attempt to interpret the X.509
representation of the certificate; that task is left up to the Certificate
Manager.

See Also SignGetCertificateByIndex(),
SignGetNumCertificates(), SignGetSignatureByID()

Signature Verif ication Library
SignGetCertificateByIndex

320 Exploring Palm OS: Security and Cryptography

SignGetCertificateByIndex Function
Purpose Get a certificate given its index in the sign resource’s certificate

block list.

Declared In SignVfy.h

Prototype status_t SignGetCertificateByIndex (DmOpenRef dbP,
 uint16_t index,
 SignCertificateBlockType *certificateBlock,
 uint32_t *certificateLength,
 uint8_t *certificateData)

Parameters → dbP
Pointer to an open PRC database from which to get
certificates.

→ index
The position of the certificate within the certificate block list.

← certificateBlockP
The PRC’s certificate block. See
SignCertificateBlockType.

↔ certificateLength
When calling this function, *certificateLength should
contain the size of the buffer indicated by
certificateData. Upon return, it contains the length of
the returned certificate data. If a NULL pointer was passed in
for certificateData, signErrBufferTooSmall is
returned and the required length is returned through this
parameter.

← certificateData
A pointer to a caller-allocated buffer to receive the certificate
data. To determine how large this buffer should be, set this
parameter to NULL; upon return *certificateLength
will contain the needed buffer size. After allocating a buffer
of the proper size, call this function again to obtain the
certificate.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

signErrInvalidParameter
certificateBlockP is NULL.

Signature Verif ication Library
SignGetDigest

Exploring Palm OS: Security and Cryptography 321

signErrNoCertResource
No 'cert' resource exists in the PRC file.

signErrInvalidCertResource
The 'cert' resource is malformed, or invalid in some way.

signErrIndexOutOfBounds
The specified index is outside the range of certificate indexes
for the PRC’s certificate block.

signErrBufferTooSmall
The supplied buffer was too small. The required size has
been returned through the certificateLength parameter.

signErrInvalidParameter
The certificateLength parameter was set to NULL.

Comments The ID of a certificate is the SHA1 digest of the DER encoded
SubjectPublicKeyInfo field in the certificate, including the
sequence tag and length.

The certificate structure returned by this function is a byte buffer
that contains the X.509 representation of the certificate. The
signature verification library does not attempt to interpret the X.509
representation of the certificate; that task is left up to the Certificate
Manager.

See Also SignGetCertificateByID(), SignGetNumCertificates(),
SignGetSignatureByIndex()

SignGetDigest Function
Purpose Calculate the digest of a PRC.

Declared In SignVfy.h

Prototype status_t SignGetDigest (DmOpenRef dbP,
 APHashInfoType *hashinfo)

Parameters → dbP
Pointer to an open PRC database for which the digest is to be
calculated.

↔ hashinfo
An initialized APHashInfoType structure.

Signature Verif ication Library
SignGetNumCertificates

322 Exploring Palm OS: Security and Cryptography

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

signErrOutOfMemory
There was insufficient memory to complete the operation.

signErrInvalidResourceInDB
The PRC contains an invalid resource.

Comments The caller is responsible for calling CPMLibHashFinal() and
releasing any resources allocated by the Crytographic Provider
Manager with CPMLibReleaseHashInfo().

SignGetNumCertificates Function
Purpose Get the number of certificates in the 'cert' resource.

Declared In SignVfy.h

Prototype status_t SignGetNumCertificates (DmOpenRef dbP,
 uint16_t *num)

Parameters → dbP
Pointer to an open PRC database from which to get
certificates.

← num
The number of certificates in the 'cert' resource.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

signErrInvalidParameter
num is NULL.

signErrNoCertResource
No 'cert' resource exists in the PRC file.

signErrInvalidCertResource
The 'cert' resource is malformed, or invalid in some way.

See Also SignGetCertificateByIndex(), SignGetNumSignatures()

Signature Verif ication Library
SignGetOverlayCertIdList

Exploring Palm OS: Security and Cryptography 323

SignGetNumSignatures Function
Purpose Get the number of signatures in the 'sign' resource.

Declared In SignVfy.h

Prototype status_t SignGetNumSignatures (DmOpenRef dbP,
 uint16_t *sigCountP)

Parameters → dbP
Pointer to an open PRC database from which to get
signatures.

← sigCountP
The number of signature blocks in the 'sign' resource.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

signErrInvalidParameter
sigCountP is NULL.

signErrNoSignResource
No 'sign' resource exists in the PRC file.

signErrInvalidSignResource
The 'sign' resource is malformed, or invalid in some way.

See Also SignGetNumCertificates(), SignGetSignatureByIndex()

SignGetOverlayCertIdList Function
Purpose Get the list of certificate IDs that will validate an overlay for a

signed base PRC.

Declared In SignVfy.h

Prototype status_t SignGetOverlayCertIdList (DmOpenRef dbP,
 uint8_t *certIdList,
uint32_t *certIdListSize)

Parameters → dbP
Pointer to an open PRC database from which to get
certificates.

← certIdList
Pointer to a byte buffer tht receives the certificate IDs. To
determine how large this buffer should be, set this parameter

Signature Verif ication Library
SignGetShLibCertIdList

324 Exploring Palm OS: Security and Cryptography

to NULL; upon return *certIdListSize will contain the
needed buffer size. After allocating a buffer of the proper
size, call this function again to obtain the certificate ID list.

↔ certIdListSize
When calling this function, *certIdListSize should
contain the size of the buffer indicated by certIdList.
Upon return, it contains the length of the returned certificate
data. If a NULL pointer was passed in for certIdList,
signErrBufferTooSmall is returned and the required
length is returned through this parameter.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

signErrInvalidParameter
certIDListSize is NULL.

signErrNoSignResource
No 'sign' resource exists in the PRC file.

signErrInvalidSignResource
The 'sign' resource is malformed, or invalid in some way.

signErrBufferTooSmall
The supplied buffer was too small. The required size has
been returned through the certIdListSize parameter.

signErrInvalidParameter
The certIdListSize parameter was set to NULL.

See Also SignGetShLibCertIdList()

SignGetShLibCertIdList Function
Purpose Get the list of certificate IDs that will validate a shared library

(patch) for the signed base PRC.

Declared In SignVfy.h

Prototype status_t SignGetShLibCertIdList (DmOpenRef dbP,
 uint8_t *certIdList,
uint32_t *certIdListSize)

Parameters → dbP
Pointer to an open PRC database from which to get
certificates.

Signature Verif ication Library
SignGetShLibCertIdList

Exploring Palm OS: Security and Cryptography 325

← certIdList
Pointer to a byte buffer tht receives the certificate IDs. To
determine how large this buffer should be, set this parameter
to NULL; upon return *certIdListSize will contain the
needed buffer size. After allocating a buffer of the proper
size, call this function again to obtain the certificate ID list.

↔ certIdListSize
When calling this function, *certIdListSize should
contain the size of the buffer indicated by certIdList.
Upon return, it contains the length of the returned certificate
data. If a NULL pointer was passed in for certIdList,
signErrBufferTooSmall is returned and the required
length is returned through this parameter.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

signErrInvalidParameter
certIDListSize is NULL.

signErrNoSignResource
No 'sign' resource exists in the PRC file.

signErrInvalidSignResource
The 'sign' resource is malformed, or invalid in some way.

signErrBufferTooSmall
The supplied buffer was too small. The required size has
been returned through the certIdListSize parameter.

signErrInvalidParameter
The certIdListSize parameter was set to NULL.

See Also SignGetOverlayCertIdList()

Signature Verif ication Library
SignGetSignatureByID

326 Exploring Palm OS: Security and Cryptography

SignGetSignatureByID Function
Purpose Get a signature block given the ID of the signing certificate.

Declared In SignVfy.h

Prototype status_t SignGetSignatureByID (DmOpenRef dbP,
 const SignCertificateIDType certificateID,
 SignSignatureBlockType *signatureBlockP)

Parameters → dbP
Pointer to an open PRC database from which to get
signatures.

→ certificateID
The 20-byte ID of the certificate.

← signatureBlockP
The returned signature block, which contains meta-data
about the signature.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

signErrInvalidParameter
signatureBlockP is NULL.

signErrNoSignResource
No 'sign' resource exists in the PRC file.

signErrInvalidSignResource
The 'sign' resource is malformed, or invalid in some way.

signErrNotFound
A signature with the specified certificate ID was not found.

Comments A signature block ID is the ID of the public certificate that can be
used to verify the signature.

See Also SignGetCertificateByID(), SignGetNumSignatures(),
SignGetSignatureByIndex(),
SignVerifySignatureByID()

Signature Verif ication Library
SignGetSignatureByIndex

Exploring Palm OS: Security and Cryptography 327

SignGetSignatureByIndex Function
Purpose Get a signature block given its index position in the signature block

list.

Declared In SignVfy.h

Prototype status_t SignGetSignatureByIndex (DmOpenRef dbP,
 uint16_t index,
 SignSignatureBlockType *signatureBlockP)

Parameters → dbP
Pointer to an open PRC database from which to get
signatures.

→ index
The position of the signature within the signature block list.

← signatureBlockP
The returned signature block, which contains meta-data
about the signature.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

signErrInvalidParameter
signatureBlockP is NULL.

signErrNoSignResource
No 'sign' resource exists in the PRC file.

signErrInvalidSignResource
The 'sign' resource is malformed, or invalid in some way.

signErrIndexOutOfBounds
The specified index is outside the range of signature indexes
for the PRC’s signature block.

Comments A signature block ID is the ID of the public certificate that can be
used to verify the signature.

See Also SignGetCertificateByIndex(),
SignGetNumSignatures(), SignGetSignatureByID(),
SignVerifySignatureByIndex()

Signature Verif ication Library
SignVerifySignatureByID

328 Exploring Palm OS: Security and Cryptography

SignVerifySignatureByID Function
Purpose Verify the signature block referenced by the specified ID. The ID is

that of the certificate used for verification of the digital signature
block.

Declared In SignVfy.h

Prototype status_t SignVerifySignatureByID (DmOpenRef dbP,
 const SignCertificateIDType certificateID)

Parameters → dbP
Pointer to an open PRC database from which to get
signatures.

→ certificateID
The 20-byte ID of the certificate.

Returns Returns errNone if the signature block is valid, or one of the
following if an error occurred:

signErrNoSignResource
No 'sign' resource exists in the PRC file.

signErrInvalidSignResource
The 'sign' resource is malformed, or invalid in some way.

signErrInvalidSignatureBlock
The signature block is invalid.

signErrDigestMismatch
The signed digest does not match the calculated PRC digest.

See Also SignGetSignatureByID(),
SignVerifySignatureByIndex()

SignVerifySignatureByIndex Function
Purpose Verify the signature block referenced by the specified index.

Declared In SignVfy.h

Prototype status_t SignVerifySignatureByIndex
 (DmOpenRef dbP, uint16_t index)

Parameters → dbP
Pointer to an open PRC database from which to get
signatures.

Signature Verif ication Library
SignVerifySignatureByIndex

Exploring Palm OS: Security and Cryptography 329

→ index
The position of the signature within the signature block list.

Returns Returns errNone if the signature block is valid, or one of the
following if an error occurred:

signErrNoSignResource
No 'sign' resource exists in the PRC file.

signErrInvalidSignResource
The 'sign' resource is malformed, or invalid in some way.

signErrIndexOutOfBounds
The specified index is outside the range of certificate indexes
for the PRC’s certificate block.

signErrInvalidSignatureBlock
The signature block is invalid.

signErrDigestMismatch
The signed digest does not match the calculated PRC digest.

See Also SignGetSignatureByIndex(),
SignVerifySignatureByID()

Signature Verif ication Library
SignVerifySignatureByIndex

330 Exploring Palm OS: Security and Cryptography

Exploring Palm OS: Security and Cryptography 331

16
SSL Library
This chapter contains reference documentation for the APIs defined
in SslLib.h. The contents of this chapter are organized into the
following sections:

SSL Library Structures and Types 331

SSL Library Constants 338

SSL Library Functions 355

Application-Defined Functions 373

The header file SslLib.h declares the API that this chapter
describes.

For information on making use of the APIs documented in this
chapter, see Chapter 2, “SSL Concepts,” on page 55. Much of what
you do when working with the SSL library involves working with
attributes; reference documentation for the macros that you use to
set and get attribute values can be found in Chapter 17, “SSL
Library Macros,” on page 385.

SSL Library Structures and Types

SslAttribute Typedef
Purpose Container for an SslLib or SslContext attribute value.

Declared In SslLib.h

Prototype typedef uint32_t SslAttribute

Comments Attribute values are listed in “SSL Library Macro Constants” on
page 385. Descriptions of each attribute can be found under
“Attributes” on page 59.

SSL Library
SslCallback

332 Exploring Palm OS: Security and Cryptography

SslCallback Struct
Purpose Structure used when the SSL library transfers control back to the

application via a callback function.

Declared In SslLib.h

Prototype struct SslCallback_st {
 void *reserved;
 SslCallbackFunc callback;
 void *data;
 SslContext *ssl;
}
typedef struct SslCallback_st SslCallback

Fields reserved
Reserved for internal use by SslLib.

callback
A function pointer of the function to be called. See
SslCallbackFunc().

data
Can be set to a value by the application, and will remain
unchanged by SslLib. This value will then be available to the
callback function. Use this field to communicate context
information from the application to the callback. An example
of its use is in a ‘diagnostic’ callback, in which the application
could use this field to provide a handle to the logging
routines to be used.

ssl
SslLib sets this field to be the SslContext if the callback is
related to an SslContext. If it is not (due to being related to a
SslLib), it is set to NULL.

Comments This structure is used when the SSL library transfers control back to
the application via a callback. A callback is a function that the
application supplies to SslLib that will be called when specific
situations occur during the SSL protocol. The callbacks are specific
to the particular SslContext or SslLib they are registered with.
Examples of callbacks used by the SslLib are an ‘information’
callback and a ‘certificate validation’ callback.

SSL Library
SslCipherSuiteInfo

Exploring Palm OS: Security and Cryptography 333

SslCipherSuiteInfo Struct
Purpose Encapsulates information about the current cipher suite.

Declared In SslLib.h

Prototype typedef struct SslCipherSuiteInfo_st {
 uint8_t cipherSuite[2];
 uint16_t cipher;
 uint16_t digest;
 uint16_t keyExchange;
 uint16_t authentication;
 uint16_t version;
 uint16_t cipherBitLength;
 uint16_t cipherKeyLength;
 uint16_t keyExchangeLength;
 uint16_t authenticationLength;
 uint16_t exportCipher;
} SslCipherSuiteInfo

Fields cipherSuite
The two bye cipher suite value for the current cipher suite.
See the CipherSuite attribute for more details.

cipher
A number indicating which cipher is being used for this
connection. One of the sslCsiCipher... constants listed
under “Cipher Suite Info Constants” on page 344.

digest
The digest value. One of the sslCsiDigest... constants
listed under “Cipher Suite Info Constants” on page 344.

keyExchange
The key exchange type which was used. One of the
sslCsiKeyExch... constants listed under “Cipher Suite
Info Constants” on page 344.

authentication
The authentication type used. One of the sslCsiAuth...
constants listed under “Cipher Suite Info Constants” on
page 344.

version
The SSL version being used.

SSL Library
SslContext

334 Exploring Palm OS: Security and Cryptography

cipherBitLength
The number of bits of key material used for encryption key
generation. For export ciphers this will be either 40 or 56 bits.

cipherKeyLength
The length of the key for the underlying cipher. For an export
RC4 cipher, the cipherBitLength would be 40, but the
cipherKeyLength would be 128. This is because while the
SSL protocol would be using 128-bit keys to encrypt and
decrypt with RC4, only 40 bits of random data would be used
to generate the 128-bit key.

keyExchangeLength
The length in bits of the public key used to establish a shared
secret.

authenticationLength
The length of the public key used to ensure the key exchange
was not tampered with. For export ciphers, the
keyExchangeLength is often shorter than the
authenticationLength.

exportCipher
Set when an export cipher is being used.

Comments This structure differs from most others in that the application passes
in a structure to be populated from the SslContext. Normally the
SslContext returns a pointer to an internal data structure.

SslContext Struct
Purpose An opaque data structure that represents an SSL connection.

Declared In SslLib.h

Prototype typedef struct SslContext_st SslContext

Fields None.

SSL Library
SslIoBuf

Exploring Palm OS: Security and Cryptography 335

SslIoBuf Struct
Purpose Passed to the ‘info’ functions when I/O is being done.

Declared In SslLib.h

Prototype typedef struct SslIoBuf_st {
 SslContext *ssl;
 uint8_t *ptr;
 uint32_t outNum;
 uint32_t inNum;
 uint32_t max;
 uint32_t err;
 uint32_t flags;
} SslIoBuf

Fields ssl
The SslContext for which this callback is being called from. It
should be the same value that is held in the SslCallback
structure’s ssl field.

ptr
The buffer being used to store the bytes.

outNum
The number of bytes read or written; it is 0 in the ‘Before’
states.

inNum
The number of bytes to be read or written.

max
The maximum read that could be performed. inNum is the
number of bytes that the SSL library needs right now, but
max bytes could be read if they are available. Often the read
operation will read more bytes than are needed, so the
outNum field which returns the number of bytes read or
written, can, for the read case, be larger than inNum.

err
In the ‘After’ argi states, err will contain the error code
from the I/O operation. If there was no error, it will be 0
(errNone).

flags
The flags field is not currently used and is set to zero.

SSL Library
SslLib

336 Exploring Palm OS: Security and Cryptography

Comments The ‘Before’ argi values indicate that the passed SslIoBuf
indicates the I/O operation about to be performed. The ‘After’ argi
values indicate that the SslIoBuf contains the results of the just-
performed I/O operation.

SslLib Struct
Purpose An opaque data structure that represents the SSL library.

Declared In SslLib.h

Prototype typedef struct SslLib_st SslLib

Fields None.

SslSession Struct
Purpose Holds all the security information associated with a particular SSL

connection.

Declared In SslLib.h

Prototype typedef struct SslSession_st {
 uint32_t length;
 uint16_t version;
 unsigned char cipherSuite[2];
 unsigned char compression;
 unsigned char sessionId[33];
 unsigned char masterSecret[48];
 unsigned char time[8];
 unsigned char timeout[4];
 uint16_t certificateOffset;
 uint16_t extraData;
} SslSession

Fields length

version

cipherSuite
The cipher suite. One of the values listed under “Cipher
Suites” on page 344.

SSL Library
SslSocket

Exploring Palm OS: Security and Cryptography 337

compression

sessionId
The session ID. The first byte is the length.

masterSecret
Master secret.

time
Host-specific start time.

timeout
Timeout, in seconds.

certificateOffset
Optional Peer certificate; this is the offset from the front of the
structure to a SslExtendedItems structure. If the offset if
0, it does not exist

extraData
Can be used to store anything, such as the host name of the
peer. Application defined.

SslSocket Struct
Purpose The structure used to hold the arguments to be passed to any sys/

socket calls.

Declared In SslLib.h

Prototype typedef struct SslSocket_st {
 int32_t socket;
 uint16_t flags;
 uint16_t addrLen;
 status_t err;
 int32_t timeout;
 unsigned char addr[8];
} SslSocket

Comments When setting this structure, the socket field will not be copied in.
To set the socket to use for network connections, see the Socket
attribute. The socket, flags, addrLen, err, and addr fields all
correspond to the arguments passed to sendto() and
recvfrom(). Read further on those functions for more details. The
SslSocket passed into the SslContext will be copied into the

SSL Library
SSL Library Constants

338 Exploring Palm OS: Security and Cryptography

SslContext’s SslSocket structure and the SslSocket pointer
returned refers to an internal SslContext data structure. When the
application calls a function such as SslReceive(), the arguments
passed to that function will overwrite the internal SslSocket
values, so a subsequent call to SslContextGet_IoStruct() will
return the newly updated fields.

SSL Library Constants

SSL Open Mode Flags
Purpose Flags used to specify how the connection should be started when

calling SslOpen().

Declared In SslLib.h

Constants #define sslOpenBufferedReuse 0x0040
This is the same as
SslContextSet_BufferedReuse(ssl,1);

#define sslOpenDelayHandshake 0x0080
Do not perform the handshake now

#define sslOpenModeClear 0x0001
Turn off the SSL protocol.

#define sslOpenModeSsl 0x0002
Turn on the SSL protocol.

#define sslOpenNewConnection 0x0004
Perform a new SSL handshake, clearing any previous
SslSession value. This is the same as
SslContextSet_SslSession(ssl,NULL).

#define sslOpenNoAutoFlush 0x0008
This is the same as SslContextSet_AutoFlush(ssl,0);

#define sslOpenUseDefaultTimeout 0x0020
Use the SslContext timeout value instead of timeout
parameter.

SSL Library
Mode Attribute Values

Exploring Palm OS: Security and Cryptography 339

SSL Close Mode Flags
Purpose Flags that allow you to specify how to perform the SSL Protocol

shutdown when calling SslClose().

Declared In SslLib.h

Constants #define sslCloseDontSendShutdown 0x0001
Do not send the SSL shutdown message to the server.

SslContextSet_DontSendShutdown(ssl,1);

#define sslCloseDontWaitForShutdown 0x0002
Don’t wait for the server to send a shutdown message.

SslContextSet_DontWaitForShutdown(ssl,1);

#define sslCloseUseDefaultTimeout 0x0020
Use the timeout value set against the SslContext, not the
timeout parameter.

Mode Attribute Values
Purpose Values that control the SslContext’s operating mode.

Declared In SslLib.h

Constants #define sslModeClear 0x0000
Causes the SSL protocol to be bypassed.

#define sslModeFlush 0x8000
Causes any data in the internal data buffers to be cleared.

#define sslModeSsl 0x0002
A subset value of sslModeSslClient

#define sslModeSslClient 0x000A

Comments SslModeSsl is a subset value of sslModeSslClient. In a future
release of SslLib, the server side of the SSL protocol may be
supported in which case sslModeSslServer would be added.
The application can use code like the following to determine if the
SSL protocol is being used:

If (SslContextGet_Mode(ssl) & sslModeSsl)
 /* SSL protocol enabled */
else
 /* Using cleartext */

SSL Library
Protocol Versions

340 Exploring Palm OS: Security and Cryptography

A comparison with sslModeSslClient could be used to
determine if the client or server side of the protocol is being used for
that particular SslContext.

The sslModeFlush flag is special. When used in
SslContextSet_Mode(), it causes any data in the internal data
buffers to be cleared. This is normally required when reusing a
SslContext for a new connection. If an application is using a
SslContext for cleartext, and then wants to enable SSL on the same
connection, this flag should not be used.

Protocol Versions
Purpose The version of the SSL protocol to use.

Declared In SslLib.h

Constants #define sslVersionSSLv3 0x0300
Version SSLv3 of the SSL protocol.

#define sslVersionTLSv1 0x0301
Version TLSvs, or SSLv3.1 of the SSL protocol.

Comments SslLib sends a TLSv1 ClientHello message by default. Note that in
Palm OS Cobalt version 6.0 an attempt to change this protocol
version to SSLv3 via SslContextSet_ProtocolVersion() has
no effect—SslLib continues to send a TLSv1 ClientHello message.

Protocol Variants
Purpose The protocol variants supported by the library.

Declared In SslLib.h

Constants #define sslSupport_anonDHKeyExchange 0x0008

#define sslSupport_Both (sslSupport_SSLv3Protocol
| sslSupport_TLSv1Protocol)

Enables both the SSLv3 and TLSv1 protocols.

#define sslSupport_DHKeyExchange 0x0002

SSL Library
Protocol Variants

Exploring Palm OS: Security and Cryptography 341

#define sslSupport_DSASign 0x0010

#define sslSupport_Ex1024 0x0040

#define sslSupport_Ex512 0x0020

#define sslSupport_RSAKeyExchange 0x0001

#define sslSupport_RSASign 0x0004

#define sslSupport_SSLv2Header 0x0400

#define sslSupport_SSLv3 (_sslSupport_SslLib |
sslSupport_SSLv3Protocol)

Enables the SSLv3 protocol.

#define sslSupport_SSLv3Protocol 0x0100

#define sslSupport_TLSv1 (_sslSupport_SslLib |
sslSupport_TLSv1Protocol)

Enables the TLSv1 protocol.

#define sslSupport_TLSv1Protocol 0x0200

Comments The protocol variants differ from the protocol version. The
ProtocolHello/ProtocolVersion is what you use to talk to the peer,
while the protocol variants determine what sections of the library
code are turned on or off. These values are used with the
ProtocolSupport attribute; set this attribute with
SslContextSet_ProtocolSupport() and get it with
SslContextGet_ProtocolSupport().

WARNING! Do not disable things that you don’t know anything
about. Also, do not turn off the Ex512/Ex1024 bits without also
removing the relevant ciphers from the cipher suite list.

Use sslSupport_SSLv3, sslSupport_TLSv1, or
sslSupport_Both to enable SSLv3, TLSv1, or both protocols. The
default is sslSupport_Both.

SSL Library
Compatibility Flags

342 Exploring Palm OS: Security and Cryptography

Compatibility Flags
Purpose Compat attribute flags that turn on compatibility with incorrect SSL

protocol implementations.

Declared In SslLib.h

Constants #define sslCompat1RecordPerMessage 0x0004
Some servers do not like to receive SSL protocol messages
separated into multiple SSL records. This option stops the
write buffers being set to a size less than 1024 bytes which
ensures this problem will not occur.

#define sslCompatAll 0xffff
This value enables all the bug compatibility flags.

#define sslCompatBigRecords 0x0008
Some old Microsoft servers would send data to the SSL
Client in records larger than 16k bytes in size. This is not
legal in the SSLv3 protocol. This flag makes SslLib tolerate
these large records.

#define sslCompatNetscapeCaDnBug 0x0002
Enables support for some old versions of Netscape servers
which encoded certificate requests Distinguished names
wrongly. This is not currently a problem for SslLib since it
does not support Client certificates.

#define sslCompatReuseCipherBug 0x0001
Enables support for servers that change cipher suites on
session-reuse. They should not be doing this.

Comments These bugs will not normally be encountered while using the SSL
protocol, but if desired, it is worth enabling the compatibility in case
old buggy servers are being accessed.

SSL Callback Commands
Purpose General commands that all callbacks should expect to receive. There

are normally related to creation and destruction of the structure that

SSL Library
SSL Callback Commands

Exploring Palm OS: Security and Cryptography 343

holds the callback. These commands are used in conjunction with
SslCallbackFunc().

Declared In SslLib.h

Constants #define sslCmdFree 0x0002
Called when the callback is ‘destroyed’, normally due to its
parent SslLib or SslContext being destroyed.

#define sslCmdGet 0x0004
Called to return a value from the callback to SslLib. The argi
value for this callback is callback-specific.

#define sslCmdInfo 0x0012
An Info callback. See “The Info Callback” on page 375 for
more information.

#define sslCmdNew 0x0001
Called when the callback is ‘copied’ into an SslLib or
SslContext.

#define sslCmdRead 0x0010

#define sslCmdReset 0x0003
Called when the SslContext has been reset, which occurs
when a new connection is being started. It is called instead of
sslCmdNew. sslCmdNew will be called only once;
sslCmdReset will be called subsequently to ‘reset’ the state
associated with the callback.

#define sslCmdSet 0x0005
Called to pass a value from SslLib to the callback. The argi
value would specify the argv parameter. The argi
parameter would be callback-specific.

#define sslCmdVerify 0x0013
A Verify callback. See “The Verify Callback” on page 376 for
more information.

#define sslCmdWrite 0x0011

SSL Library
Cipher Suite Info Constants

344 Exploring Palm OS: Security and Cryptography

Cipher Suite Info Constants
Purpose Constants used with various fields of the SslCipherSuiteInfo

structure.

Declared In SslLib.h

Constants #define sslCsiAuthNULL 0x00

#define sslCsiAuthRsa 0x01

#define sslCsiCipherNull 0x00

#define sslCsiCipherRc4 0x01

#define sslCsiDigestMd2 0x03

#define sslCsiDigestMd5 0x01

#define sslCsiDigestNull 0x00

#define sslCsiDigestSha1 0x02

#define sslCsiKeyExchNull 0x00

#define sslCsiKeyExchRsa 0x01

Cipher Suites
Purpose SSL cipher suites that the SSL protocol can attempt to use.

Declared In SslLib.h

Constants #define sslCs_RSA_3DES_168_SHA1 0x00, 0x0A

#define sslCs_RSA_DES_40_SHA1 0x00, 0x08

#define sslCs_RSA_DES_56_SHA1 0x00, 0x09

#define sslCs_RSA_RC4_128_MD5 0x00,0x04

SSL Library
Info Callbacks

Exploring Palm OS: Security and Cryptography 345

#define sslCs_RSA_RC4_128_SHA1 0x00,0x05

#define sslCs_RSA_RC4_40_MD5 0x00,0x03

#define sslCs_RSA_RC4_56_SHA1 0x00,0x64

Comments Set the cipher suites using either SslLibSet_CipherSuites() or
SslContextSet_CipherSuites().

Ciphers
Purpose

Declared In SslLib.h

Constants #define sslCs_ExportCiphers
"\x00\x06\x00\x64\x00\x03\x00\x08"

#define sslCs_StrongCiphers
"\x00\x06\x00\x0A\x00\x05\x00\x04"

#define sslCs_WeakExportCiphers
"\x00\x04\x00\x03\x00\x08"

Info Callbacks
Purpose The SslCallbackFunc() callback is called when various

situations occur during the usage of a SslContext. It is primarily
intended for debugging and feedback purposes. If the callback
returns a non-zero value, this error will be returned back out the
SslLib API. The callback will be called with a command argument of
sslCmdInfo. The constants listed in this section represent the
possible argi values.

Declared In SslLib.h

Constants #define sslArgInfoAlert 0x0002
Notification of an Alert in the SSL protocol. The
sslArgInfoAlert notification is called with a NULL value
for the argv parameter. The application can get the

SSL Library
Info Callbacks

346 Exploring Palm OS: Security and Cryptography

LastAlert attribute from the SslContext to determine
which alert was received.

#define sslArgInfoCert 0x0003
Notification of peer certificate. The sslArgInfoCert call is
made after the server’s certificate chain has been verified.
The argv parameter is a SslExtendedItems pointer,
which points to the remote server’s certificate.

#define sslArgInfoHandshake 0x0001
Notification of a state change in the SSL protocol. The
sslArgInfoHandshake will be called upon each
handshake state change. The argv parameter will be NULL,
but the HsState attribute can be interrogated to read the
current state.

#define sslArgInfoReadAfter (sslCmdRead | 0x8000)
Notification after a recvfrom(), recv(), or read() sys/
socket call. See the Comments section, below, for more
information.

#define sslArgInfoReadBefore sslCmdRead
Notification before a recvfrom(), recv(), or read()
sys/socket call. See the Comments section, below, for
more information.

#define sslArgInfoWriteAfter (sslCmdWrite |
0x8000)

Notification after a sendto(), send(), or write() sys/
socket call. See the Comments section, below, for more
information.

#define sslArgInfoWriteBefore sslCmdWrite
Notification before a sendto(), send(), or write() sys/
socket call. See the Comments section, below, for more
information.

Comments The sslArgInfo[Read | Write] [Before | After]
callback is called twice for each network I/O operation. The first call
is made before the call to the underlying sys/socket send or
receive function. The second is made after the call has completed. If
the callback returns a non-zero value, this value will be returned by
original SslLib call the application made.

The argv parameter is a SslIoBuf structure. This structure’s ssl
field is the SslContext that the I/O operation is being performed by.

SSL Library
LastApi Attribute Values

Exploring Palm OS: Security and Cryptography 347

ptr points to the space used, or to be used, in the operation.
outNum is the number of bytes processed. It is only set in the After
calls. inNum is the number of bytes to be read or written in the call.
max is the maximum number of bytes that could be read. It can be
larger than inNum. err is the error value, if any. This value is only
set in the After calls. flags is currently not used and is set to 0.

InfoInterest Values
Purpose Values used to specify the events for which of the Info Callbacks

will be called. The InfoInterest value is the logical OR of these
values.

Declared In SslLib.h

Constants #define sslFlgInfoAlert 0x0001
The sslArgInfoAlert callback.

#define sslFlgInfoCert 0x0008
The sslArgInfoCert callback.

#define sslFlgInfoHandshake 0x0002
The sslArgInfoHandshake callback.

#define sslFlgInfoIo 0x0004
The sslArgInfoReadAfter, sslArgInfoReadBefore,
sslArgInfoWriteAfter, and sslArgInfoWriteBefore
callbacks.

LastApi Attribute Values
Purpose The last SslLib API call made. This attribute can be useful in event-

driven programs.

Declared In SslLib.h

#define sslLastApiFlush 0x04

#define sslLastApiNone 0x00

#define sslLastApiOpen 0x01

SSL Library
LastIO Attribute Values

348 Exploring Palm OS: Security and Cryptography

#define sslLastApiRead 0x02
Set if SslRead(), SslPeek() or SslReceive() was last
called.

#define sslLastApiShutdown 0x05

#define sslLastApiWrite 0x03
Set if SslWrite() or SslSend() was last called.

LastIO Attribute Values
Purpose The last network operation performed.

Declared In SslLib.h

#define sslLastIoNone 0x00
No I/O operations have been performed since the context
was last reset.

#define sslLastIoRead 0x01
A read operation.

#define sslLastIoWrite 0x02
A write operation.

Comments Since most of the SslLib API I/O functions can cause an SSL
handshake to be performed, it is often not possible to know if the
reason that a SslSend() returned netErrWouldBlock is because
the Send operation failed or a Receive operation failed (because a
SSL Handshake was being performed). This attribute allows the
application to determine which I/O operation was being called if a
network error is returned. If the application is using select(), this
attribute is very important. Because this attribute returns the last
network operation performed, sslLastIoNone will only be
returned if the SslContext has not performed any I/O operations
since its last reset.

SSL Library
SSL Protocol States

Exploring Palm OS: Security and Cryptography 349

SSL Protocol States
Purpose These constants indicate the state that the SSL protocol is currently

in. See the SSL protocol specification for clarification on what the
values mean.

Declared In SslLib.h

Constants #define sslHsStateCert 7

#define sslHsStateCertB 8

#define sslHsStateCertReq 13

#define sslHsStateCertReqB 14

#define sslHsStateCkEx 17

#define sslHsStateCleanup 25

#define sslHsStateClientCert 16

#define sslHsStateClientHello 2

#define sslHsStateClosed 28

#define sslHsStateDone 26

#define sslHsStateFinished 19

#define sslHsStateFlush 4

#define sslHsStateGenerateKeys 21

#define sslHsStateHelloRequest 29

#define sslHsStateNone 0

#define sslHsStateReadCcs 20

#define sslHsStateReadFinished 22

#define sslHsStateReadFinishedB 23

#define sslHsStateReadFinishedC 24

#define sslHsStateServerDone 15

#define sslHsStateServerHello 3

#define sslHsStateShutdown 27

#define sslHsStateSkEx 9

#define sslHsStateSkExAnonDh 12

SSL Library
SSL Server Alerts

350 Exploring Palm OS: Security and Cryptography

#define sslHsStateSkExDh 11

#define sslHsStateSkExRsa 10

#define sslHsStateStart 1

#define sslHsStateWrite 6

#define sslHsStateWriteCcs 18

#define sslHsStateWriteClose 30

#define sslHsStateWriteFlush 5

SSL Server Alerts
Purpose Alert values received from the server. These are the defined Sslv3/

TLSv1 alerts as defined in the SSLv3 and TLSv1 specifications. For
their meanings, refer to those specifications.

Declared In SslLib.h

Constants #define sslAlertAccessDenied (0x0200+49)

#define sslAlertBadCertificate (0x0100+42)

#define sslAlertBadRecordMac (0x0200+20)

#define sslAlertCertificateExpired (0x0100+45)

#define sslAlertCertificateRevoked (0x0100+44)

#define sslAlertCertificateUnknown (0x0100+46)

#define sslAlertCloseNotify (0x0100+ 0)

#define sslAlertDecodeError (0x0200+50)

#define sslAlertDecompressionFailure (0x0200+30)

#define sslAlertDecryptError (0x0200+51)

#define sslAlertDecryptionFailed (0x0200+21)

#define sslAlertExportRestricion (0x0200+60)

#define sslAlertHandshakeFailure (0x0200+40)

#define sslAlertIllegalParameter (0x0200+47)

#define sslAlertInsufficientSecurity (0x0200+71)

SSL Library
SSL Library Errors

Exploring Palm OS: Security and Cryptography 351

#define sslAlertInternalError (0x0200+80)

#define sslAlertNoCertificate (0x0100+41)

#define sslAlertNoRenegotiation (0x0100+100)

#define sslAlertProtocolVersion (0x0200+70)

#define sslAlertRecordOverflow (0x0200+22)

#define sslAlertUnexpectedMessage (0x0200+10)

#define sslAlertUnknownCa (0x0200+48)

#define sslAlertUnsupportedCertificate (0x0100+43)

#define sslAlertUserCancled (0x0100+90)

Comments The alert values are received from the server and are of two types,
fatal and non-fatal.

The non-fatal alerts have a value of the form 0x01XX, while fatal
Alerts have the form 0x02XX. SslLib will fail on fatal alerts and
continue on non-fatal alerts.

SSL Library Errors
Purpose Error codes returned by the various SSL library functions.

Declared In SslLib.h

Constants #define sslErrBadArgument (sslErrorClass+17)
An invalid argument was provided to the function.

#define sslErrBadDecode (sslErrorClass+9)
An error occurred while decoding values during certificate
verification.

#define sslErrBadLength (sslErrorClass+13)
A length argument was invalid.

#define sslErrBadOption (sslErrorClass+18)
An invalid argument was provided to the function.

#define sslErrBadPeerFinished (sslErrorClass+46)
The final check of the SSL handshake failed. This indicates
that there was a problem establishing a shared secret value. It
could be caused by the server using a certificate that does not
match its private key.

SSL Library
SSL Library Errors

352 Exploring Palm OS: Security and Cryptography

#define sslErrBadSignature (sslErrorClass+47)
An invalid signature was found on a ephemeral Cipher Suite
message.

#define sslErrBufferTooSmall (sslErrorClass+11)
A supplied buffer was not large enough for the output data.

#define sslErrCbAbort (sslErrorClass+4)
This error code would be returned by an applications
callback function to indicate a desire to exit. This error may
not be fatal, depending on the callback that generated the
error.

#define sslErrCert (sslErrorClass+39)
A generic error occurred inside the SslLib certificate library.

#define sslErrCertDecodeError (sslErrorClass+51)
The Servers certificate could not be decoded.

#define sslErrCsp (sslErrorClass+38)
A generic error occurred inside the SslLib cryptographic
library.

#define sslErrDivByZero (sslErrorClass+7)
Something went wrong in the Math library. These error will
normally only be generated by certificates which have
invalid public keys.

#define sslErrEof (sslErrorClass+2)
Error returned by SslLib functions when either the SSL
protocol has been closed or the underlying socket has been
closed. This error indicates that the current SslContext is
unable to read or write any more data bytes.

#define sslErrExtraHandshakeData
(sslErrorClass+43)

Extra data was found in the SSL handshake messages that
should not have been there.

#define sslErrFailed (sslErrorClass+1)
A generic error.

#define sslErrFatalAlert (sslErrorClass+45)
A fatal alert was received by the SSL protocol.

#define sslErrHandshakeEncoding (sslErrorClass+40)
An error occurred during decoding of SSL handshake
messages.

SSL Library
SSL Library Errors

Exploring Palm OS: Security and Cryptography 353

#define sslErrHandshakeProtocol (sslErrorClass+42)
An error occurred while processing the decoded SSL
handshake messages.

#define sslErrInitNotCalled (sslErrorClass+10)
An internal SslLib error.

#define sslErrInternalError (sslErrorClass+21)
An internal SslLib error.

#define sslErrIo (sslErrorClass+5)
This error code is returned when an underlying sys/
socket function call returned an error that is not fatal. A
timeout, or other such non-fatal network errors will be
reclassified as this error type. A function that returns this
error type can be re-called once the error condition has
disappeared.

#define sslErrMissingCipherSuite
(sslErrorClass+80)

#define sslErrMissingProvider (sslErrorClass+41)
An internal SslLib error.

#define sslErrNoDmem (sslErrorClass+14)
An internal SslLib error.

#define sslErrNoMethodSet (sslErrorClass+15)
An internal SslLib error.

#define sslErrNoModInverse (sslErrorClass+8)
Something went wrong in the Math library. These error will
normally only be generated by certificates which have
invalid public keys.

#define sslErrNoRandom (sslErrorClass+16)
A problem with the random number source.

#define sslErrNotFound (sslErrorClass+6)
Returned on an internal SslLib search that did not find a
valid entry. Consider this an internal SslLib error.

#define sslErrNotImplemented (sslErrorClass+19)
An internal SslLib error.

#define sslErrNullArg (sslErrorClass+12)
An passed argument was NULL that should not have been
NULL.

SSL Library
SSL Library Errors

354 Exploring Palm OS: Security and Cryptography

#define sslErrOk (sslErrorClass+0)
Not an error.

#define sslErrOutOfMemory (sslErrorClass+3)
Returned if a dynamic memory allocation failed. This is
normally considered a very bad error.

#define sslErrReadAppData (sslErrorClass+50)
Application data was read by the SSL protocol when it was
expecting handshake messages.

#define sslErrReallocStaticData (sslErrorClass+20)
An internal SslLib error

#define sslErrRecordError (sslErrorClass+37)
An invalid record was received in the SslContext.

#define sslErrUnexpectedRecord (sslErrorClass+49)
A record of the wrong was received inside the SSL protocol.

#define sslErrUnsupportedCertType
(sslErrorClass+52)

The Servers certificate contains a public key we cannot
decode.

#define sslErrUnsupportedProtocol
(sslErrorClass+54)

#define sslErrUnsupportedSignatureType
(sslErrorClass+53)

We have been send a certificate with a signature type we do
not recognize.

#define sslErrVerifyCallback (sslErrorClass+128)

#define sslErrWrongMessage (sslErrorClass+44)
An invalid SSL message was received.

SSL Library
SslClose

Exploring Palm OS: Security and Cryptography 355

Miscellaneous SSL Library Constants
Purpose These constants are also defined in SslLib.h.

Declared In SslLib.h

Constants #define kSslDBName "SslLib"
The SSL library’s database name.

#define kSslLibCreator 'ssl0'
The SSL library’s creator ID.

#define kSslLibType sysFileTLibrary
The SSL library’s type.

SSL Library Functions

SslClose Function
Purpose Performs the shutdown part of the SSL protocol.

Declared In SslLib.h

Prototype status_t SslClose (SslContext *ctx,
uint16_t mode, uint32_t timeout)

Parameters → ctx
The context to query.

→ mode
Flags that specify how to perform the SSL Protocol
shutdown. A combination of the values listed under “SSL
Close Mode Flags” on page 339.

→ timeout
Timeout, in system ticks, to use for final message exchange

Returns Returns errNone if the operation completed successfully.
Otherwise, this function returns one of the error codes listed under
“SSL Library Errors” on page 351.

Comments This usually involves message exchanges. This function can be
repeatedly called after a timeout until either a network error is
reported or the final SSL shutdown message exchange has been
completed. The mode values can be logically OR’ed together.

SSL Library
SslConsume

356 Exploring Palm OS: Security and Cryptography

Example The following code excerpt show how you might use this function:

Err err;
SslContext *ssl;

err = SslOpen(ssl,0,20*SysTicksPerSecond());
/* Perform SSL IO */
/* Shutdown the protocol but don’t linger waiting for a
 * response from the server */
err = SslClose(ssl,sslCloseDontWaitForshutdown,
 20*SysTicksPerSecond());

See Also SslOpen(), SslContextSetLong(), SslContextSetPtr()

SslConsume Function
Purpose Removes up to a specified number of bytes from the buffered read

bytes in the passed SslContext.

Declared In SslLib.h

Prototype void SslConsume (SslContext *ctx, int32_t number)

Parameters → ctx
The SslContext to operate on.

→ number
The number of bytes to remove from the internal buffer.

Returns Nothing.

Comments This function is normally used in conjunction with SslPeek().

Example The following code excerpt shows how this function might be used.

Err err;
void *data;
Int32 *dataLen;

err=SslPeek(ssl,&data,*dataLen,16*1024);
/* Process the dataLen bytes located at data */
SslConsume(ssl,dataLen);

See Also SslPeek(), SslRead(), SslReceive()

SSL Library
SslContextDestroy

Exploring Palm OS: Security and Cryptography 357

SslContextCreate Function
Purpose Creates a new SSL Context.

Declared In SslLib.h

Prototype status_t SslContextCreate (SslLib *lib,
SslContext **ctx)

Parameters → lib
The SSL library structure.

← ctx
Where to deposit the SslContext pointer.

Returns Returns errNone if the operation completed successfully.
Otherwise, this function returns one of the error codes listed under
“SSL Library Errors” on page 351.

Comments A SslContext is the data structure used to encapsulates all aspects of
a SSL connection. This routine will deposit a pointer to the newly
created structure at the address given by the ctx argument. Various
default values will be inherited from the passed SslLib.

See Also SslOpen(), SslContextDestroy(), SslContextSetLong(),
SslContextSetPtr()

SslContextDestroy Function
Purpose Destroys the SSL Context.

Declared In SslLib.h

Prototype void SslContextDestroy (SslContext *ctx)

Parameters → ctx
The SslContext to destroy.

Returns Nothing.

Comments This routine will free the memory associated with the passed
SslContext. This function will not close the network connection or
shutdown the SSL protocol. See SslClose() for information on
shutting down the SSL Protocol.

See Also SslContextCreate(), SslClose()

SSL Library
SslContextGetLong

358 Exploring Palm OS: Security and Cryptography

SslContextGetLong Function
Purpose Retrieve an integer attribute value from the passed SslContext

structure.

Declared In SslLib.h

Prototype int32_t SslContextGetLong (SslContext *lib,
SslAttribute attr)

Parameters → lib
The SslContext from which the value is to be retrieved.

→ attr
Attribute to retrieve.

Returns The value of the attribute is returned. If a non-existent attribute was
requested, -1 is returned. This could give incorrect values so an
application should make sure to call this routine with the correct
arguments.

Comments This function is not normally used directly, but via pre-defined
macros.

Example The following example shows the use of one of the macros that
make use of this function:

/* Is the SslContext configured to do ssl? */
if (!(SslContextGet_Mode(lib) & sslModeSsl))
 return(WE_ARE_NOT_USING_SSL);

See Also SslContextSetLong(), SslContextGetLong()

SslContextGetPtr Function
Purpose Retrieve a pointer to an attribute value from the passed SslContext

structure.

Declared In SslLib.h

Prototype status_t SslContextGetPtr (SslContext *lib,
SslAttribute attr, void **value)

Parameters → lib
The SslContext to retrieve the attribute from.

SSL Library
SslContextSetLong

Exploring Palm OS: Security and Cryptography 359

→ attr
The attribute to retrieve

← value
A pointer to an attribute specific pointer

Returns Returns errNone if the operation completed successfully.
Otherwise, this function returns one of the error codes listed under
“SSL Library Errors” on page 351.

Comments This function is not normally used directly, but via pre-defined
macros. The type of the pointer returned is specific to the attribute
being requested.

Example The following example shows the use of one of the macros that
makes use of this function:

SslSession *session;
Err err;

err = SslContextGet_SslSession(ssl,&session);

See Also SslContextSetPtr(), SslLibGetPtr()

SslContextSetLong Function
Purpose Modify one of the numeric attributes of a SslContext structure.

Declared In SslLib.h

Prototype status_t SslContextSetLong (SslContext *lib,
SslAttribute attr, long value)

Parameters → lib
The SslContext on which to operate.

→ attr
The attribute to modify.

→ value
The new value.

Returns Returns errNone if the operation completed successfully.
Otherwise, this function returns one of the error codes listed under
“SSL Library Errors” on page 351.

SSL Library
SslContextSetPtr

360 Exploring Palm OS: Security and Cryptography

Comments This function is not normally used directly, rather it is used via pre-
defined macros. The attr parameter specifies the SslContext
attribute that will be set to the value passed in value.

Example The following code excerpt shows how this function is used.

SslContext *ssl;
Err err;

err = SslContextCreate(lib,&ssl);
/*modify output buffer size */
err = SslContextSet_WbufSize(lib,8*1024);

See Also SslContextSetPtr(), SslContextGetPtr(),
SslContextGetLong()

SslContextSetPtr Function
Purpose Update one of the non-integer attributes of a SslContext.

Declared In SslLib.h

Prototype status_t SslContextSetPtr (SslContext *lib,
SslAttribute attr, void *value)

Parameters → lib
The SslContext to modify.

→ attr
The attribute to update.

→ value
The value to update, specific to the SslAttribute.

Returns Returns errNone if the operation completed successfully.
Otherwise, this function returns one of the error codes listed under
“SSL Library Errors” on page 351.

Comments The attr value defines the type of the value parameter. This
function is not normally used directly, rather it is used via pre-
defined macros.

Example The following code excerpt shows how this function is used.

SslContext *ssl;
SslCallback cb;

SSL Library
SslFlush

Exploring Palm OS: Security and Cryptography 361

Err err;

err = SslContextCreate(lib,&ssl);

/* Configure to have ‘debugCallbackFunction’ called for each
 * SSL protocol handshake state change */
cb.callback = debugCallbackFunction;
cb.data = NULL;
err = SslContextSet_InfoInterest(lib, sslInfoHandshake);
err = SslContextSet_InfoCallback(lib,(void *)&cb);

See Also SslContextGetLong(), SslContextSetLong(),
SslContextGetPtr()

SslFlush Function
Purpose Cause an immediate write of any data buffered in the SslContext to

the network.

Declared In SslLib.h

Prototype status_t SslFlush (SslContext *ctx,
int32_t *outstanding)

Parameters → ctx
The SslContext to operate on.

← outstanding
The number of byte still unflushed after this call.

Returns Returns errNone if the operation completed successfully.
Otherwise, this function returns one of the error codes listed under
“SSL Library Errors” on page 351.

Comments An SslContext can be set into “no AutoFlush” mode. This means
that the SslSend() and SslWrite() operations will not cause an
immediate write to the network. If this mode is enabled, then
explicit SslFlush calls need to be made to ensure that the data
buffered in the SslContext is sent to the network. The main use of
“no AutoFlush” is to allow multiple SslWrite()/SslSend()
commands to have their output buffered in the SslContext’s output
buffer. This improves the SSL Protocols efficiency and is generally a
good policy if lots of small write operations are being performed by
the application. The number of bytes that can be written to the

SSL Library
SslLibClose

362 Exploring Palm OS: Security and Cryptography

SslContext write buffer is a few tens of bytes less than the output
buffer size. This means that if the application is writing less than
this number of bytes, no network errors can occur until the
SslFlush() call is made. The outstanding parameter will be
updated to contain the number of buffered bytes that are still
buffered in the SslContext. If this value is non-zero, the next
SslWrite(), SslSend(), SslFlush() operation will attempt to
write those bytes to the network.

Example The following code excerpt shows how this function can be used:

Err err;

SslContextSet_AutoFlush(ssl,0);
SslWrite(ssl,”GET “,4);
SslWrite(ssl,url,StrLen(url));
SslWrite(ssl,” HTTP/1.0\r\n\r\n”,13);

err=SslFlush(ssl,NULL);

See Also SslWrite(), SslSend(), SslContextSetLong()

SslLibClose Function
Purpose SSL library’s shared library close function.

Declared In SslLib.h

Prototype status_t SslLibClose (void)

Parameters None.

Returns

SslLibCreate Function
Purpose Creates the SSL library context.

Declared In SslLib.h

Prototype status_t SslLibCreate (SslLib **lib)

Parameters ← lib
Where to deposit the SslLib pointer

SSL Library
SslLibGetLong

Exploring Palm OS: Security and Cryptography 363

Returns Returns errNone if the operation completed successfully.
Otherwise, this function returns one of the error codes listed under
“SSL Library Errors” on page 351.

Comments This routine will deposit the newly-created SslLib at the address
given by the lib argument. This routine is generally the first call
made when performing SSL functionality. Various default
configuration values can be set against this structure. These values
will be inherited by SslContext structures created against the SslLib.

See Also SslLibDestroy(), SslContextCreate(),
SslLibSetLong(), SslLibSetPtr()

SslLibDestroy Function
Purpose Destroys the context represented by lib.

Declared In SslLib.h

Prototype void SslLibDestroy (SslLib *lib)

Parameters → lib
SslLib structure to be destroyed.

Returns Nothing.

See Also SslLibCreate()

SslLibGetLong Function
Purpose Retrieve an integer attribute value from the passed SslLib structure.

Declared In SslLib.h

Prototype int32_t SslLibGetLong (SslLib *lib,
SslAttribute attr)

Parameters → lib
The SslLib from which the value is to be retrieved.

→ attr
Attribute to retrieve.

Returns The value of the attribute is returned. If a non-existent attribute was
requested, -1 is returned.

SSL Library
SslLibGetPtr

364 Exploring Palm OS: Security and Cryptography

Comments This function is not normally used directly, but via pre-defined
macros.

See Also SslContextGetPtr(), SslLibSetLong(),
SslContextGetLong()

SslLibGetPtr Function
Purpose Retrieve an pointer attribute value from the passed SslLib structure.

Declared In SslLib.h

Prototype status_t SslLibGetPtr (SslLib *lib,
SslAttribute attr, void **value)

Parameters → lib
The SslLib to retrieve the attribute from.

→ attr
The attribute to retrieve.

← value
A pointer to a attribute specific pointer

Returns Returns errNone if the operation completed successfully.
Otherwise, this function returns one of the error codes listed under
“SSL Library Errors” on page 351.

Comments This function is not normally used directly, but via pre-defined
macros. The type of the pointer returned is specific to the attribute
being requested.

Example The following code excerpt shows how this function is used.

SslCallback *cb;
Err err;

err = SslLibGet_InfoCallback(lib,&cb);

See Also SslLibSetPtr(), SslContextGetPtr()

SSL Library
SslLibSetLong

Exploring Palm OS: Security and Cryptography 365

SslLibName Function
Purpose

Declared In SslLib.h

Prototype status_t SslLibName (void)

Parameters None.

Returns

SslLibOpen Function
Purpose SSL library’s shared library open function.

Declared In SslLib.h

Prototype status_t SslLibOpen (void)

Parameters None.

Returns

SslLibSetLong Function
Purpose Modify one of the numeric attributes of a SslLib structure.

Declared In SslLib.h

Prototype status_t SslLibSetLong (SslLib *lib,
SslAttribute attr, int32_t value)

Parameters → lib
The SslLib on which to operate.

→ attr
The attribute to modify.

→ value
The new value.

Returns Returns errNone if the operation completed successfully.
Otherwise, this function returns one of the error codes listed under
“SSL Library Errors” on page 351.

SSL Library
SslLibSetPtr

366 Exploring Palm OS: Security and Cryptography

Comments This function is not normally used directly, rather it is used via pre-
defined macros. The attr parameter specifies the SslLib attribute
that will be set to the value passed in value.

Example The following code excerpt shows how this function is used.

SslLib *lib;
Err err;

err = SslLibCreate(&lib);
err = SslLibSet_AutoFlush(lib,0); /* Turn of auto flushing */

See Also SslLibCreate(), SslLibSetPtr(), SslLibGetPtr(),
SslLibGetLong()

SslLibSetPtr Function
Purpose Update one of the non-integer attributes of a SslLib.

Declared In SslLib.h

Prototype status_t SslLibSetPtr (SslLib *lib,
SslAttribute attr, void *value)

Parameters → lib
The SslLib to operate on.

→ attr
The attribute to update.

→ value
The value to update, specific to the SslAttribute.

Returns Returns errNone if the operation completed successfully.
Otherwise, this function returns one of the error codes listed under
“SSL Library Errors” on page 351.

Comments The attr value defines the type of the value parameter. This
function is not normally used directly, rather it is used via pre-
defined macros.

Example The following code excerpt shows how this function is used.

SslLib *lib;
SslCallback cb;
Err err;

SSL Library
SslLibWake

Exploring Palm OS: Security and Cryptography 367

err = SslLibCreate(&lib);

/* Configure to have ‘debugCallbackFunction’ called for each
 * SSL protocol handshake state change */
cb.callback = debugCallbackFunction;
cb.data = NULL;
err = SslLibSet_InfoInterest(lib, sslInfoHandshake);
err = SslLibSet_InfoCallback(lib,(void *)&cb);

See Also SslLibGetLong(), SslLibSetLong(), SslLibGetPtr()

SslLibSleep Function
Purpose SSL library’s shared library sleep function.

Declared In SslLib.h

Prototype status_t SslLibSleep (void)

Parameters None.

Returns

SslLibWake Function
Purpose SSL library’s shared library wake function.

Declared In SslLib.h

Prototype status_t SslLibWake (void)

Parameters None.

Returns

SSL Library
SslOpen

368 Exploring Palm OS: Security and Cryptography

SslOpen Function
Purpose Initializes the passed SslContext.

Declared In SslLib.h

Prototype status_t SslOpen (SslContext *ctx, uint16_t mode,
uint32_t timeout)

Parameters ↔ ctx
The SslContext to start a SSL Handshake with.

→ mode
How we should ‘start’ this connection. A combination of the
values listed under “SSL Open Mode Flags” on page 338.

→ timeout
Optional timeout (in system ticks).

Returns Returns errNone if the operation completed successfully.
Otherwise, this function returns one of the error codes listed under
“SSL Library Errors” on page 351.

Comments Depending on the mode, SslOpen() may or may not actually send
the handshake messages during this function call, but may delay
the handshake until the first SslSend()/SslReceive(). It may
not even use the SSL protocol. The mode values can be logically
OR’ed together, and their values affect the functionality of the
SslOpen() call. If non-fatal network errors occur (timeouts), the
function can be re-called. When the function finally returns
errNone, the SSL handshake will have completed and any
SslContext will be able to return a valid SslSession structure.
If one re-calls SslOpen(), make sure to not have either of
sslOpenModeClear or SslOpenModeSsl set or the connection
will be reset.

Quite a few of the mode parameters set flags against the
SslContext.

Returns SslClose(), SslContextSetLong(), SslContextSetPtr()

SSL Library
SslPeek

Exploring Palm OS: Security and Cryptography 369

SslPeek Function
Purpose Obtains a pointer into the buffered data that is located in the

SslContext.

Declared In SslLib.h

Prototype status_t SslPeek (SslContext *ctx,
void **buffer_ptr, int32_t *availableBytes,
int32_t readSize)

Parameters → ctx
The SslContext to operate on.

← buffer_ptr
The location to place the data pointer.

← availableBytes
The location to place the number of bytes available in
*buffer_ptr.

→ readSize
The maximum number of bytes to return.

Returns Returns errNone if the operation completed successfully.
Otherwise, this function returns one of the error codes listed under
“SSL Library Errors” on page 351.

Comments This function returns a pointer to available data bytes and assigns
the number available to availableBytes. This function does not
copy any data bytes from the SslContext, rather it returns a
pointer into the buffered data that is located in the SslContext. If
there were no data bytes in the SslContext, data will be read from
the network until there are data bytes available. Repeated calls to
SslPeek() will return the same buffer_ptr value until a
SslConsume() call is done to indicate that bytes no longer need to
be buffered. readSize is the maximum number of available bytes
that will be reported as being available.

This is a more advanced function but is used internally, along with
SslConsume(), to build the SslRead() and SslReceive()
functions. Its main use is for ‘streaming’ input data where the
application does not need to allocate it’s own data storage buffers
since it can read directly from the SslContext buffers. Once a
quantity of data is reported as available in *availableBytes, the

SSL Library
SslRead

370 Exploring Palm OS: Security and Cryptography

total will not increase until that number of bytes has been
‘consumed’.

See Also SslConsume(), SslRead()

SslRead Function
Purpose Receives data.

Declared In SslLib.h

Prototype int32_t SslRead (SslContext *ctx, void *buffer,
int32_t bufferLen, status_t *errRet)

Parameters → ctx
The SslContext to read from.

← buffer
Buffer into which read data will be placed.

→ bufferLen
Size of buffer (max bytes read).

← errRet
This will contain an error code if return is -1.

Returns Returns the number of bytes successfully received, or -1 if an error
occurred.

Comments Performs the same functionality as SslReceive(). This call will
use the timeout set earlier against the SslContext.

See Also SslWrite(), SslSend()

SslReceive Function
Purpose Receives data.

Declared In SslLib.h

Prototype int16_t SslReceive (SslContext *ctx, void *buffer,
uint16_t bufferLen, uint16_t flags,
void *fromAddr, uint16_t *fromLen,
int32_t timeout, status_t *errRet)

Parameters → ctx
The SslContext to use.

SSL Library
SslReceive

Exploring Palm OS: Security and Cryptography 371

← buffer
Buffer into which received data will be placed.

→ bufferLen
Size of buffer (max bytes received).

→ flags
One or more MSG_xxx flags (defined in sys/socket.h).

← fromAddr
Buffer to hold address of sender (sockaddr).

↔ fromLen
On entry, size of fromAddr buffer. On exit, actual size of
returned address in fromAddr buffer

→ timeout
Max timeout in system ticks. -1 means wait forever.

← errRet
This will contain an error code if return is -1.

NOTE: In Palm OS Cobalt the flags and timeout parameter
values are ignored.

Returns Returns the number of bytes successfully received, or -1 if an error
occurred.

Comments The function returns either the number of bytes successfully
received or -1. If -1, there was an error. In that case, an error code
will be deposited at the address given by errRet.

See Also SslSend(), read()

SSL Library
SslSend

372 Exploring Palm OS: Security and Cryptography

SslSend Function
Purpose Sends data over the network.

Declared In SslLib.h

Prototype int16_t SslSend (SslContext *ctx,
const void *buffer, uint16_t bufferLen,
uint16_t flags, void *toAddr, uint16_t toLen,
int32_t timeout, status_t *errRet)

Parameters → ctx
The SslContext to use.

→ buffer
Buffer containing data to send.

→ bufferLen
Length, in bytes, of data to send.

→ flags
One or more MSG_xxx flags (defined in sys/socket.h).

→ toAddr
Address to send to. See the sendto() manpage.

→ toLen
Size of toAddr buffer

→ timeout
Max timeout in system ticks. -1 means wait forever.

← errRet
This will contain an error code if return is -1.

NOTE: In Palm OS Cobalt the flags and timeout parameter
values are ignored.

Returns Returns the number of bytes successfully sent, or -1 if an error
occurred.

Comments This function mirrors the sendto() function and has similar
arguments and semantics.

The function returns either the number of bytes successfully sent or
-1. If -1, there was an error. In that case, an error code will be
deposited at the address given by errRet. The other parameters

SSL Library
SslCallbackFunc

Exploring Palm OS: Security and Cryptography 373

are the same as for sendto() and are used when the data bytes are
written to the network.

See Also SslReceive(), sendto()

SslWrite Function
Purpose Sends data over the network.

Declared In SslLib.h

Prototype int32_t SslWrite (SslContext *ctx,
const void *buffer, int32_t bufferLen,
status_t *errRet)

Parameters ← ctx
The SslContext to write to.

→ buffer
Buffer containing data to write.

→ bufferLen
Length, in bytes, of data to write.

← errRet
This will contain an error code if return is -1.

Returns Returns the number of bytes successfully sent, or -1 if an error
occurred.

Comments Performs the same functionality as SslSend(). This call will use
the timeout set earlier against the SslContext.

See Also SslRead(), SslSend()

Application-Defined Functions

SslCallbackFunc Function
Purpose A function that the application supplies to SslLib that will be called

when specific situations occur during the SSL protocol. The
callbacks are specific to the particular SslContext or SslLib they are
registered with.

SSL Library
SslCallbackFunc

374 Exploring Palm OS: Security and Cryptography

Declared In SslLib.h

Prototype int32_t (*SslCallbackFunc) (SslCallback *cb,
int32_t command, int32_t argi, void *argv)

Parameters → cb
The SslCallback structure itself.

→ command
A command which specifies the reason for the callback. A
single callback structure can be used to handle several
different types of SslLib callbacks. In this case, the function
must have conditional logic to distinguish between the
different commands. The command is used to interpret the
remaining two parameters, argi and argv.

→ argi
A command-specific 32-bit integer, normally used to specify
more information about the reason for the callback.

↔ argv
Pointer to a value that is normally determined by the
command and/or the argi arguments.

Returns Returns errNone if the callback command was process without
error, or a command-specific error code value otherwise.

Comments An application will supply an SslCallback structure to the SslLib
library. When SslLib needs to then invoke the callback, the callback
function is called with four arguments.

When an SslCallback is passed into SslLib, a copy is taken of the
structure. This means that the structure passed in can be thought of
as a template. It is important to remember that the data field will be
copied, so if the object this element points to must be destroyed,
additional logic will be required. When a SslContext is created, the
SslCallback structures supplied to the SslLib are copied into the
SslContext. This could cause problems if not handled correctly if the
data pointed to by the data field is dynamic memory.

There are several general ‘commands’ that all callbacks should
expect to receive; these commands are listed under “SSL Callback
Commands” on page 342. There are normally related to creation
and destruction of the structure that holds the callback. If the
callback does need to perform any action due to these conditions,
return 0.

SSL Library
SslCallbackFunc

Exploring Palm OS: Security and Cryptography 375

Example If a callback returns a non-zero value, the SSL library will treat this
as an error and return this value back out to the application. This
can be used to implement abort functionality. While in the callback,
any SslLib functions can be called to retrieve further information. If
an sslCmdInfoAlert command is being processed,
SslContextGet_LastAlert() can be called to retrieve the alert
message that was received as shown here:

alert=SslContextGet_LastAlert(cb->ssl);

The alert values that can be returned are listed under “SSL Server
Alerts” on page 350.

There are two defined callbacks currently used by SslLib: “Info” and
“Verify.”

The Info Callback

For the Info callback, the command parameter is set to sslCmdInfo.
The argi, and argv values passed are as follows:

See “Info Callbacks” on page 345 for more information on these
argi values.

This wealth of information makes it possible for the application to
receive notification of state changes in the SSL protocol, receive any
SSL protocol alert messages, and track the I/O operation that the
SSL protocol is performing. This callback is primarily intended to

argi argv type

sslArgInfoHandshake NULL

sslArgInfoAlert NULL

sslArgInfoReadBefore SslIoBuf

sslArgInfoReadAfter SslIoBuf

sslArgInfoWriteBefore SslIoBuf

sslArgInfoWriteAfter SslIoBuf

sslArgCert SslExtendedItems - the
certificate sent by the server.

SSL Library
SslCallbackFunc

376 Exploring Palm OS: Security and Cryptography

aid in debugging applications or to provide visual feedback to the
progress of the SSL protocol.

The Verify Callback

For the Verify callback, the command parameter is set to
sslCmdVerify. The argi, and argv values passed are as follows:

During the SSL handshake the server side sends a certificate to the
client. This certificate contains the server’s public key. SslLib
attempts to verify that the certificate is valid. During this certificate
verification process, if there are any errors, the Verify callback is
called.

The application can, through this callback, override any of the error
conditions reported during verification. If there is no Verify callback
associated with an SslContext, any errors will immediately be
returned to the application.

The Verify callback will be called as each certificate in the certificate
chain is verified with any error values encountered passed in argi
until the certificate is verified. If the certificate verifies ok, the 0
value is passed. This process is repeated for each certificate. This
means that even if the certificate chain verifies without an error, the
callback will be called once for each certificate (with a 0 argi
value). If an Info callback is also registered, it would be called once
after the certificate chain has been verified with the server’s
certificate. If there is no verification callback, and an error occurs,

argi argv type

CertMgrVerifyFailSignature SslVerify

CertMgrVerifyFailUnknownIssuer SslVerify

CertMgrVerifyFailNotAfter SslVerify

CertMgrVerifyFailNotBefore SslVerify

CertMgrVerifyFailBasicConstraints SslVerify

CertMgrVerifyFailCriticalExtension SslVerify

errNone SslVerify

SSL Library
SslCallbackFunc

Exploring Palm OS: Security and Cryptography 377

the application can ‘clear’ the error and re-call the relevant SslLib
function. The verification will proceed from where it was up to.

The SslVerify Structure

The SslVerify structure is defined as follows:

typedef struct SslVerify_st {
 SslExtendedItems *certificate;
 SslExtendedItems *fieldItems; /* Problem field base */
 UInt32 field; /* Problem field */
 SslExtendedItems *ex; /* Extension */
 UInt32 depth; /* Certificate depth */
 UInt32 state; /* Verification state */
} SslVerify;

NOTE: The SslVerify structure is not declared in the Palm
OS header files. In order to use it you’ll have to declare it yourself.

certificate is a pointer to a structure containing the certificate
currently being processed. fieldItems is a pointer to a structure
that contains the data element that is currently causing a problem.
field is the index into fieldItems of the erroneous data element.
The ex field, if there is an error in extension processing, contains the
data element that makes up the X509 extension that just failed.
depth is the level of the certificate being processed, where 0 is the
server’s certificate, and higher numbers are certificates being used
to chain to a trusted root certificate.

The following #defines represent the possible values of the state
field. They indicate which section of the certificate verification
failed.

#define sslVerifyFindParent 1
#define sslVerifySignature 2
#define sslVerifyNotBefore 3
#define sslVerifyNotAfterFindParent 4
#define sslVerifyExtensions 5
#define sslVerifyDone 6

SSL Library
SslCallbackFunc

378 Exploring Palm OS: Security and Cryptography

NOTE: The above #defines are not declared in the Palm OS
header files. In order to use them you’ll have to declare them
yourself.

fieldItems will not always be the same pointer as certificate.
This is especially true during extension errors. If we have an error
in an extension, and the extension has been “decomposed,” the
“decomposed” elements will be in the ex field. The object identifier
that identifies the extension “decomposed” in ex would be
verify->fieldItems.item[verify->field].

The following table lists the elements identified by the fieldItems
and field values.

See the following section, “Extensions and Critical Extensions,” for
background on the cases of the returned field being the
“asn1ExItemTypeX509Ex start location.”

Extensions and Critical Extensions

A certificate can have zero or more extensions. These extensions
specify extra information to be used during evaluation of a
certificate. Each extension consists of an “Object identifier,” an
optional Boolean “critical extension” flag, and the data bytes. The

sslErrCertBadSignature The server’s certificate, which contains
the public key entries.

SslErrCertNoTrustedRoot NULL

SslErrCertNotAfter sslExItemTypeX509,
asn1FldX509NotAfter

SslErrCertNotBefore sslExItemTypeX509,
asn1FldX509NotBefore

sslErrCertConstraintViolation asn1ExItemTypeX509Ex start
location

sslErrCertUnknownCriticalExtensi
on

asn1ExItemTypeX509Ex start
location

SslErrOk NULL

SSL Library
SslCallbackFunc

Exploring Palm OS: Security and Cryptography 379

fieldItems->item[field] values in this case points to the
SslExtendedItem that contains the “Object identifier” for that
extension. field+1 will reference either the optional Boolean field
that flags the extension as critical or the data bytes.

SslVerify *verify;
SslExtendedItem *oid,*critical,*data;

oid= &(verify->fieldItems[verify->field]);
if (verify->fieldItems[verify->field+1].data_type ==
asn1Boolean)
 {
 critical=(verify->fieldItems[verify->field+1]);
 data=(verify->fieldItems[verify->field+2]);
 }
else
 {
 critical=NULL;
 data= &(verify->fieldItems[verify->field+1]);
 }
/* The data bytes for the ‘data’ is located at
 * ((Uint8 *)verify->fieldItems)+data->offset;

SslLib attempts to interpret only critical extensions, so the critical
field should always be present. If a critical extension is not
understood, the certificate should be rejected. These callback values
allow the application to accept a certificate with critical extensions
that the application SslLib does not understand.

SslLib recognizes three extensions at this point in time, taken from
the X.509 standard:

If any of these constraints are flagged as critical, an error will not
occur (assuming they are valid).

2.5.29.15 KeyUsage

2.5.29.37 ExtKeyUsage

2.5.29.19 BasicConstraints

SSL Library
SslCallbackFunc

380 Exploring Palm OS: Security and Cryptography

IMPORTANT: In Palm OS Cobalt version 6.1 and earlier, the
SSL library does not process the BasicConstraints or
KeyUsage extensions. If the SSL library finds a critical extension
of any type, CertMgrVerifyFailCriticalExtension is
returned to the application. For more information, see “Critical
Extensions” on page 58.

BasicConstraints is the only extension currently verified. It
specifies if a certificate can be used for signing other certificates. If
the certificate is being used incorrectly, an
sslErrCertConstraintViolation error will be generated. For
this error, the ex field of the SslVerify structure will potentially
contain

asn1ExItemTypeX509ExData, asn1FldX509ExBasicConstraintsCa
asn1ExItemTypeX509ExData, asn1FldX509ExBasicConstraintsPathLenConstraint

Note that if these optional fields are not in the certificate, they will
not be present in the SslExtendedItems. The
PathLenConstraint will also not contain any data bytes; rather,.
the numeric value this field contains will be encoded in the len
field of the SslExtendedItem. If this was not the case, the
application would have to learn all about decoding ASN.1 integers.
The depth field relates to this certificate.

If this error occurs, the application should not override the error,
due to its serious nature.

The SslExtendedItems Structure

The SslExtendedItems structure is defined as follows:

typedef struct SslExtendedItems_st {
 UInt32 length;
 UInt32 num;
 SslExtendedItem eitem[1];
} SslExtendedItems;

SSL Library
SslCallbackFunc

Exploring Palm OS: Security and Cryptography 381

NOTE: The SslExtendedItems structure is not declared in
the Palm OS header files. In order to use it you’ll have to declare
it yourself.

The SslExtendedItems structure is used to hold a set of
SslExtendedItem structures. The eitem field, while defined as a
size of one, is actually large enough to hold num entries. The
length field is the total size of the structure. The structure can be
copied by allocating length bytes and then copying length bytes
from the SslExtendedItems pointer into the new location. An
SslExtendedItems structure is used to hold sets of related data
elements. A set of such values may contain a RSA public key, a
certificate, and a certificate extension all in the same
SslExtendedItems structure.

The SslExtendedItem Structure

Each SslExtendedItem belongs to a type that is predefined for
each of these objects.

Currently defined values are:

The SslExtendedItem structure is defined as follows:

sslExItemTypeX509 X.509 Certificate.

SslExItemTypeRSA RSA public key.

sslExItemTypeRDN An X.509 Relative Distinguished
Name (RDN). This is a complex way
of saying a certificate name. Each
certificate contains two names, the
Subject of the certificate and the
Issuer of the certificate. Both are
encoded as RDNs which contain
multiple fields.

sslExItemTypeX509Ex X.509 certificates can contain what
are called Extensions. A certificate
can contain multiple extensions.
This type is used to specify
extensions.

SslExItemTypeE509ExDataUsed to group ‘decomposed’ X.509
extensions.

SSL Library
SslCallbackFunc

382 Exploring Palm OS: Security and Cryptography

typedef struct SslExtendedItem_st {
 UInt16 type;
 UInt16 field;
 UInt16 dataType;
 UInt16 len;
 UInt32 offset;
} SslExtendedItem;

NOTE: The SslExtendedItem structure is not declared in the
Palm OS header files. In order to use it you’ll have to declare it
yourself.

An SslExtendedItem structure is a single data element. The type
field values (as specified in the preceding table) are used to group
related items. A single SslExtendedItems structure can contain
multiple SslExtendedItem structures with different type values.
In this way a single structure can contain elements referring to both
a certificate and an RSA public key.

The field field contains a type-specific value that is used to
identify the SslExtendedItem. The values for this field are
defined specifically for each type.

The dataType field specifies the encoding type of the data. For the
cases being used by SslLib, the value is the ASN.1 encoding type.
These values are defined in the SslLibAsn1.h header file. They
are relevant primarily if the application is attempting to display the
data bytes.

The len field is the length of the data in the SslExtendedItem

The offset field is the offset from the start of the parent
SslExtendedItems to the data field.

To access all the data bytes in an SslExtendedItems structure:

SslExtendedItems *ei;
UInt16 i,j;
UInt8 *p;

for (i=0; i<ei->num; i++) {
 p=((Uint8 *)ei)+ei->eitem[i].offset;

 for (j=0; j<ei->eitem[i].len; j++)

SSL Library
SslCallbackFunc

Exploring Palm OS: Security and Cryptography 383

 doSomething(p[j]);
}

An SslExtendedItems structure will often contain multiple
types. When SslLib returns an SslExtendedItems structure for a
certificate, it will usually contain the types sslExItemTypeX509,
sslExItemTypeRSA, and sslExItemTypeRDN (for the subject
name).

Example Following is an example of usage from the SslLib, for the
‘information’ callback:

Int32 info_callback(SslCallback *cb,Int32 command,
 Int32 argi,void *argv);

SslCallback infoCB;

infoCB.callback=info_callback;
SslContextSet_InfoCallback(ssl,&infoCB);
SslContextSet_InfoInteresrt(ssl,
 sslFlgInfoAlert|
 sslFlgInfoHandshake|
 sslFlgInfoIo);

/* We have now configured the SslContext so that
 * info_callback will be called when ‘interesting’ events
 * occur. */

Int32 info_callback(SslCallback *cb,Int32 command,
 Int32 argi, void *argv)
 {
 UInt32 alert;

 switch (command){
 case sslCmdInfo:
 /* We have received an ‘info’ call */
 switch (argi){
 case sslArgInfoHandshake:
 /* The SslContext is in the handshake stage
 of connection establishment. */
 break;
 case sslArgInfoAlert:
 /* An Alert message was received by the SslContext*/
 alert=SslContextGet_LastAlert(cb->ssl);
 break;
 case sslArgInfoReadBefore:

SSL Library
SslCallbackFunc

384 Exploring Palm OS: Security and Cryptography

 case sslArgInfoReadAfter:
 case sslArgInfoWriteBefore:
 case sslArgInfoWriteAfter:
 /* The SslContext is doing network operations */
 break;
 }
 break;
 case sslCmdNew: /* Called when we are ‘copied in’ */
 case sslCmdFree: /* Called when we are ‘finished’ */
 case sslCmdReset: /* Called instead of ‘sslCmdNew’ to
 reset the settings */
 case sslCmdSet: /* Set a value */
 case sslCmdGet: /* Get a value */
 break;
 }
 return(0);
}

Exploring Palm OS: Security and Cryptography 385

17
SSL Library Macros
This chapter provides reference documentation for the macros that
your application uses to set and get SslLib and SslContext
attribute values. As well, the constants representing those attributes
are listed in this chapter.

This chapter is divided into the following sections:

SSL Library Macro Constants 385

SSL Library Macros 388

The header file SslLibMac.h declares the API that this chapter
describes.

Documentation for the functions that these macros employ can be
found in Chapter 16, “SSL Library,” on page 331. A detailed
description of each attribute can be found under “Attributes” on
page 59.

SSL Library Macro Constants

Attribute Values
Purpose These constants represent the attributes that you can set or get by

calling SslContextGet...(), SslContextSet...(),
SslLibGet...(), or SslLibSet...(). The macros documented
in “SSL Library Macros” on page 388 call the appropriate function
and supply the proper attribute value. Accordingly, applications
should use these macros instead of calling the set or get functions
directly.

Complete documentation for the attributes that these values
represent can be found in Chapter 2, “SSL Concepts,” on page 55.

Declared In SslLibMac.h

Constants #define sslAttrAppInt32 0x0F0A0A13

SSL Library Macros
Attribute Values

386 Exploring Palm OS: Security and Cryptography

#define sslAttrAppPtr 0x0F090911

#define sslAttrAutoFlush 0x0F070712

#define sslAttrBufferedReuse 0x0F080812

#define sslAttrCertPeerCert 0x0100FF01

#define sslAttrCertPeerCertInfoType 0x0102FF01

#define sslAttrCertPeerCommonName 0x0180FF01

#define sslAttrCertSslVerify 0x0101FF04

#define sslAttrCertVerifyChain 0x0103FF01

#define sslAttrClientCertRequest 0x0F20FF12

#define sslAttrCompat 0x0F010113

#define sslAttrCspCipherSuite 0x0001FF01

#define sslAttrCspCipherSuiteInfo 0x0082FF01

#define sslAttrCspCipherSuites 0x00008101

#define sslAttrCspSslSession 0x00808001

#define sslAttrDelayReadServerFinished 0x0F232312

#define sslAttrDontSendShutdown 0x0F212112

#define sslAttrDontWaitForShutdown 0x0F222212

#define sslAttrError 0x0F111113

#define sslAttrErrorState 0x0F05FF14

#define sslAttrHelloVersion 0x0F242412

#define sslAttrHsState 0x0F12FF13

#define sslAttrInfoCallback 0x0F0E0E15

#define sslAttrInfoInterest 0x0F020213

#define sslAttrIoFlags 0x04030303

#define sslAttrIoSocket 0x04010103

#define sslAttrIoStruct 0x04008001

#define sslAttrIoTimeout 0x04020203

#define sslAttrLastAlert 0x0F131313

SSL Library Macros
Attribute Values

Exploring Palm OS: Security and Cryptography 387

#define sslAttrLastApi 0x0F1FFF12

#define sslAttrLastIo 0x0F1EFF12

#define sslAttrLibAppInt32 0x0F0F0F03

#define sslAttrLibAppPtr 0x0F0E0E01

#define sslAttrLibAutoFlush 0x0F0C0C02

#define sslAttrLibBufferedReuse 0x0F0D0D02

#define sslAttrLibCompat 0x0F010103

#define sslAttrLibDelayReadServerFinished
0x0F141402

#define sslAttrLibDontSendShutdown 0x0F121202

#define sslAttrLibDontWaitForShutdown 0x0F131302

#define sslAttrLibHelloVersion 0x0F151503

#define sslAttrLibInfoCallback 0x0F080805

#define sslAttrLibInfoInterest 0x0F020203

#define sslAttrLibMode 0x0F040403

#define sslAttrLibProtocolSupport 0x0F161603

#define sslAttrLibProtocolVersion 0x0F030303

#define sslAttrLibRbufSize 0x0F101003

#define sslAttrLibReadStreaming 0x0F0B0B02

#define sslAttrLibVerifyCallback 0x0F0A0A05

#define sslAttrLibWbufSize 0x0F111103

#define sslAttrMode 0x0F048013

#define sslAttrProtocolSupport 0x0F252512

#define sslAttrProtocolVersion 0x0F030313

#define sslAttrRbufSize 0x0F1B8113

#define sslAttrReadBufPending 0x0F16FF13

#define sslAttrReadOutstanding 0x0F18FF13

#define sslAttrReadRecPending 0x0F17FF13

#define sslAttrReadStreaming 0x0F060612

SSL Library Macros
SSL Library Macros

388 Exploring Palm OS: Security and Cryptography

#define sslAttrSessionReused 0x0F14FF12

#define sslAttrStreaming 0x0F1DFF12

#define sslAttrVerifyCallback 0x0F101015

#define sslAttrWbufSize 0x0F1C8213

#define sslAttrWriteBufPending 0x0F15FF13

SSL Library Macros

SslContextGet_AppInt32 Macro
Purpose Obtain the value of the AppInt32 attribute, an arbitrary 32-bit

value that an application can attach to an SslContext.

Declared In SslLibMac.h

Prototype #define SslLibGet_AppInt32 (lib)

Parameters → lib
The SslContext from which the value is to be retrieved.

Returns Returns the 32-bit value.

Comments SslContextDestroy() does not modify this attribute, so if the
data pointed to by this attribute needs to be disposed of, the
application must do this itself.

See Also “AppInt32” on page 67, SslContextSet_AppInt32(),
SslLibGet_AppInt32()

SslContextGet_AppPtr Macro
Purpose Obtain the value of the AppPtr attribute, an arbitrary pointer value

that an application can attach to an SslContext.

Declared In SslLibMac.h

Prototype #define SslLibGet_AppPtr (lib, v)

Parameters → lib
The SslContext from which the value is to be retrieved.

SSL Library Macros
SslContextGet_BufferedReuse

Exploring Palm OS: Security and Cryptography 389

→ v
The address of a pointer variable into which the AppPtr
attribute value is written.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

Comments SslContextDestroy() does not modify this attribute, so if the
data pointed to by this attribute needs to be disposed of, the
application must do this itself.

See Also “AppPtr” on page 67, SslContextSet_AppPtr(),
SslLibGet_AppPtr()

SslContextGet_AutoFlush Macro
Purpose Determine whether SslSend() and SslWrite() attempt to

immediately send the supplied data bytes to the network.

Declared In SslLibMac.h

Prototype #define SslContextGet_AutoFlush (ssl)

Parameters → ssl
The SslContext from which the value is to be retrieved.

Returns Returns 0 if data is buffered, or 1 if the data is sent immediately.

Comments It is very important to remember to use SslFlush() when
AutoFlush is disabled.

See Also “AutoFlush” on page 61, SslContextSet_AutoFlush(),
SslLibGet_AutoFlush()

SslContextGet_BufferedReuse Macro
Purpose Determine if the last message in an SslSession-reused handshake

should be buffered instead of being sent over the network.

Declared In SslLibMac.h

Prototype #define SslContextGet_BufferedReuse (ssl)

Parameters → ssl
The SslContext from which the value is to be retrieved.

SSL Library Macros
SslContextGet_CertChain

390 Exploring Palm OS: Security and Cryptography

Returns Returns 0 if the last message is not buffered, or a non-zero value if it
is.

See Also “BufferedReuse” on page 75,
SslContextSet_BufferedReuse(),
SslLibGet_BufferedReuse()

SslContextGet_CertChain Macro
Purpose

Declared In SslLibMac.h

Prototype #define SslContextGet_CertChain (ssl, v)

Parameters → ssl
The SslContext from which the value is to be retrieved.

→ v

Returns

SslContextGet_CipherSuite Macro
Purpose Identify the cipher suite being used by the current connection.

Declared In SslLibMac.h

Prototype #define SslContextGet_CipherSuite (ssl, v)

Parameters → ssl
The SslContext from which the value is to be retrieved.

→ v
Pointer to a pointer variable; upon return the pointer variable
points to two bytes which identify the cipher suite being
used by the current connection. If these two bytes are both set
to zero, no cipher suite is being used. Otherwise, see “Cipher
Suites” on page 344 for the list of possible cipher suites.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

See Also “CipherSuite” on page 68

SSL Library Macros
SslContextGet_CipherSuites

Exploring Palm OS: Security and Cryptography 391

SslContextGet_CipherSuiteInfo Macro
Purpose Obtain information relevant to the current cipher suite. This macro

populates a SslCipherSuiteInfo structure that must have been
allocated by the caller.

Declared In SslLibMac.h

Prototype #define SslContextGet_CipherSuiteInfo (ssl, v)

Parameters → ssl
The SslContext from which the value is to be retrieved.

→ v
Pointer to the SslCipherSuiteInfo structure that is to be
filled in.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

See Also “CipherSuiteInfo” on page 68, SslContextGet_CipherSuite()

SslContextGet_CipherSuites Macro
Purpose Obtain the list of cipher suites that the SSL protocol is attempting to

use.

Declared In SslLibMac.h

Prototype #define SslContextGet_CipherSuites (ssl, v)

Parameters → ssl
The SslContext from which the value is to be retrieved.

→ v
Supply the address of a pointer variable; upon return the
pointer variable will point to a series of bytes, where the first
two bytes indicate the number of bytes that follow, and each
pair of bytes after that is one of the values listed under
“Cipher Suites” on page 344. See “CipherSuites” on page 61
for more details on this attribute.

SSL Library Macros
SslContextGet_ClientCertRequest

392 Exploring Palm OS: Security and Cryptography

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

See Also “CipherSuites” on page 61, SslContextSet_CipherSuites(),
SslLibGet_CipherSuites()

SslContextGet_ClientCertRequest Macro
Purpose Determine whether or not the SSL server requested a client

certificate.

Declared In SslLibMac.h

Prototype #define SslContextGet_ClientCertRequest (ssl)

Parameters → ssl
The SslContext from which the value is to be retrieved.

Returns Returns 0 if the server did not request a client certificate, or 1 if the
server did request one.

See Also “ClientCertRequest” on page 68

SslContextGet_Compat Macro
Purpose Determine which SSL protocol compatibility flags are set. These

flags enable compatibility with certain incorrect SSL protocol
implementations.

Declared In SslLibMac.h

Prototype #define SslContextGet_Compat (ssl)

Parameters → ssl
The SslContext from which the value is to be retrieved.

Returns Returns a 32-bit integer value that is the logical OR of those
compatibility flags that have been set. See “Compatibility Flags” on
page 342 for the defined constants that correspond to the
compatibility flags.

See Also “Compat” on page 69, SslContextSet_Compat(),
SslLibGet_Compat()

SSL Library Macros
SslContextGet_DontWaitForShutdown

Exploring Palm OS: Security and Cryptography 393

SslContextGet_DelayReadServerFinished
Macro

Purpose

Declared In SslLibMac.h

Prototype #define SslContextGet_DelayReadServerFinished
(ssl)

Parameters → ssl
The SslContext from which the value is to be retrieved.

Returns

SslContextGet_DontSendShutdown Macro
Purpose Determine whether or not an SslClose() will send a shutdown

message to the server.

Declared In SslLibMac.h

Prototype #define SslContextGet_DontSendShutdown (ssl)

Parameters → ssl
The SslContext from which the value is to be retrieved.

Returns Returns zero if SslClose() does send a shutdown message to the
server, or a non-zero value if it doesn’t.

See Also “DontSendShutdown” on page 76,
SslContextSet_DontSendShutdown(),
SslLibGet_DontSendShutdown(),
SslContextGet_DontWaitForShutdown()

SslContextGet_DontWaitForShutdown Macro
Purpose Determine whether or not the SslContext will wait for a

shutdown message in SslClose().

Declared In SslLibMac.h

Prototype #define SslContextGet_DontWaitForShutdown (ssl)

Parameters → ssl
The SslContext from which the value is to be retrieved.

SSL Library Macros
SslContextGet_Error

394 Exploring Palm OS: Security and Cryptography

Returns Returns zero if the SslContext waits for a shutdown message, or a
non-zero value if it doesn’t.

See Also “DontWaitForShutdown” on page 76,
SslLibGet_DontWaitForShutdown(),
SslContextGet_DontSendShutdown(),
SslContextSet_DontWaitForShutdown()

SslContextGet_Error Macro
Purpose Obtain the error value produced when a fatal error occurs while

using an SslContext.

Declared In SslLibMac.h

Prototype #define SslContextGet_Error (ssl)

Parameters → ssl
The SslContext from which the value is to be retrieved.

Returns Returns 0 if there was no error, or one of the error codes listed under
“SSL Library Errors” on page 351 if an error did occur.

Comments Once the error attribute is set, the SslLib network APIs will continue
to return this error (unless the error is a non-fatal error) until either
an SSL Reset is performed on the SslContext or the error is
cleared.

See Also “Error” on page 62, SslContextSet_Error()

SslContextGet_HelloVersion Macro
Purpose

Declared In SslLibMac.h

Prototype #define SslContextGet_HelloVersion (ssl)

Parameters → ssl
The SslContext from which the value is to be retrieved.

Returns

SSL Library Macros
SslContextGet_InfoCallback

Exploring Palm OS: Security and Cryptography 395

SslContextGet_HsState Macro
Purpose Determine the state that the SSL protocol is currently in.

Declared In SslLibMac.h

Prototype #define SslContextGet_HsState (ssl)

Parameters → ssl
The SslContext from which the value is to be retrieved.

Returns One of the values are defined under “SSL Protocol States” on
page 349 to indicate the SSL protocol handshake.

See Also “HsState” on page 69

SslContextGet_InfoCallback Macro
Purpose Obtain a pointer to the callback function called when various

situations occur during the usage of an SslContext. This callback
is primarily intended for debugging and feedback purposes.

Declared In SslLibMac.h

Prototype #define SslContextGet_InfoCallback (ssl, v)

Parameters → ssl
The SslContext from which the value is to be retrieved.

→ v
Pass the address of a pointer variable; upon return this
variable will point to the callback function. The callback
function is of type SslCallbackFunc().

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

Comments See “InfoCallback” on page 69 and SslCallbackFunc()
(documented on page 373) for more on how this callback function is
used.

See Also “InfoCallback” on page 69, SslContextSet_InfoCallback(),
SslLibGet_InfoCallback()

SSL Library Macros
SslContextGet_InfoInterest

396 Exploring Palm OS: Security and Cryptography

SslContextGet_InfoInterest Macro
Purpose Obtain the flags that specify the events for which the Info callback

will be called.

Declared In SslLibMac.h

Prototype #define SslContextGet_InfoInterest (ssl)

Parameters → ssl
The SslContext from which the value is to be retrieved.

Returns The logical OR of the sslFlgInfoxxx values listed under
“InfoInterest Values” on page 347.

See Also “InfoInterest” on page 70, SslContextSet_InfoInterest(),
SslLibGet_InfoInterest()

SslContextGet_IoFlags Macro
Purpose Obtain the flags value that is passed to sys/socket calls.

Declared In SslLibMac.h

Prototype #define SslContextGet_IoFlags (ssl)

Parameters → ssl
The SslContext from which the value is to be retrieved.

Returns The 32-bit flags value that is passed to sys/socket calls.

Comments Since we will normally be using TCP connections with SSL, this
attribute is more included for completeness rather than utility. Read
about this flags value in the sendto() and recvfrom() man
page.

NOTE: The MSG_OOB and MSG_PEEK values are not valid and
will be silently removed.

See Also “IoFlags” on page 70, SslContextSet_IoFlags()

SSL Library Macros
SslContextGet_IoTimeout

Exploring Palm OS: Security and Cryptography 397

SslContextGet_IoStruct Macro
Purpose Obtain the SslContext’s internal SslSocket structure.

Declared In SslLibMac.h

Prototype #define SslContextGet_IoStruct (ssl, v)

Parameters → ssl
The SslContext from which the value is to be retrieved.

→ v
Pass the address of a pointer variable. Upon return the
variable will point to the SslContext’s SslSocket
structure.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

See Also “IoStruct” on page 70, SslContextSet_IoStruct()

SslContextGet_IoTimeout Macro
Purpose Obtain the SslContext’s internal timeout value.

Declared In SslLibMac.h

Prototype #define SslContextGet_IoTimeout (ssl)

Parameters → ssl
The SslContext from which the value is to be retrieved.

Returns The internal timeout value, in seconds.

Comments When a call is made into the SslLib API which does not specify a
timeout, this internal value is used. If the API call has a timeout
value, it overrides this internal value.

By default, the SslContext’s internal timeout value is 10 seconds.

See Also “IoTimeout” on page 71, SslContextSet_IoTimeout()

SSL Library Macros
SslContextGet_LastAlert

398 Exploring Palm OS: Security and Cryptography

SslContextGet_LastAlert Macro
Purpose Obtain the last alert value received from the server.

Declared In SslLibMac.h

Prototype #define SslContextGet_LastAlert (ssl)

Parameters → ssl
The SslContext from which the value is to be retrieved.

Returns One of the values listed under “SSL Server Alerts” on page 350.

Comments Non-fatal alerts have a value of the form 0x01XX, while fatal alerts
have the form 0x02XX. SslLib will fail on fatal alerts and continue
on non-fatal alerts.

See Also “LastAlert” on page 71, SslContextSet_LastAlert()

SslContextGet_LastApi Macro
Purpose Identify the last SslLib API call that was made.

Declared In SslLibMac.h

Prototype #define SslContextGet_LastApi (ssl)

Parameters → ssl
The SslContext from which the value is to be retrieved.

Returns Returns one of the values listed under “LastApi Attribute Values”
on page 347.

See Also “LastApi” on page 71

SslContextGet_LastIo Macro
Purpose Identify the last network operation performed.

Declared In SslLibMac.h

Prototype #define SslContextGet_LastIo (ssl)

Parameters → ssl
The SslContext from which the value is to be retrieved.

SSL Library Macros
SslContextGet_PeerCert

Exploring Palm OS: Security and Cryptography 399

Returns Returns one of the values listed under “LastIO Attribute Values” on
page 348.

See Also “LastIo” on page 71

SslContextGet_Mode Macro
Purpose Obtain the value of the Mode attribute, which controls whether the

SSL protocol is on or off.

Declared In SslLibMac.h

Prototype #define SslContextGet_Mode (ssl)

Parameters → ssl
The SslContext from which the value is to be retrieved.

Returns Returns one of the values listed under “Mode Attribute Values” on
page 339.

See Also “Mode” on page 63, SslContextSet_Mode(),
SslLibGet_Mode()

SslContextGet_PeerCert Macro
Purpose Obtain the certificate supplied by the other end of the SSL

connection, if one is available.

Declared In SslLibMac.h

Prototype #define SslContextGet_PeerCert (ssl, v)

Parameters → ssl
The SslContext from which the value is to be retrieved.

→ v
Pass the address of a pointer variable. Upon return that
variable will reference an SslExtendedItems data
structure internal to the SslContext that contains the peer
certificate.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

SSL Library Macros
SslContextGet_PeerCertInfoType

400 Exploring Palm OS: Security and Cryptography

Comments The returned pointer references an SslExtendedItems data
structure which is internal to the SslContext and will be disposed
of by the SslContext. If a new connection is established with the
SslContext, previously returned PeerCert pointers will become
invalid. If the application wishes to preserve the certificate for an
extended period, it should make a local copy.

See Also “PeerCert” on page 72, “The SslExtendedItems Structure” on
page 380, SslContextGet_PeerCertInfoType(),
SslContextGet_PeerCommonName()

SslContextGet_PeerCertInfoType Macro
Purpose

Declared In SslLibMac.h

Prototype #define SslContextGet_PeerCertInfoType (ssl, v)

Parameters → ssl
The SslContext from which the value is to be retrieved.

→ v

Returns

SslContextGet_PeerCommonName Macro
Purpose Obtain the server certificate’s common name.

Declared In SslLibMac.h

Prototype #define SslContextGet_PeerCommonName (ssl, v)

Parameters → ssl
The SslContext from which the value is to be retrieved.

→ v
Supply the address of a pointer variable. Upon return the
variable will point to an SslExtendedItems structure
containing the common name for the server’s certificate (or, if
there is no common name available, the variable will be set to
NULL.)

SSL Library Macros
SslContextGet_ProtocolSupport

Exploring Palm OS: Security and Cryptography 401

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

Example The following code shows how to access the common name from
within the SslExtendedItem structure:

SslExtendedItems *cert;
SslExtendedItem *commonName;
uint16_t length;
uint8_t *bytes;

SslContextGet_PeerCert(ssl, &cert);
if (cert == NULL) goto err;
SslContextGet_PeerCommonName(ssl,&commonName);
length=commonName->len;
bytes=((Int8 *)cert)+commonName->offset;
// bytes now points to the common name, and length contains
// the length of the common name string.

See Also “PeerCommonName” on page 72, “The SslExtendedItems
Structure” on page 380

SslContextGet_ProtocolSupport Macro
Purpose Determine which variants of the SSL protocol are being used.

Declared In SslLibMac.h

Prototype #define SslContextGet_ProtocolSupport (ssl)

Parameters → ssl
The SslContext from which the value is to be retrieved.

Returns One or more of the values listed under “Protocol Variants” on
page 340, OR’d together.

See Also SslContextGet_ProtocolVersion(),
SslContextSet_ProtocolSupport(),
SslLibGet_ProtocolSupport()

SSL Library Macros
SslContextGet_ProtocolVersion

402 Exploring Palm OS: Security and Cryptography

SslContextGet_ProtocolVersion Macro
Purpose Determine which version of the SSL protocol is being used.

Declared In SslLibMac.h

Prototype #define SslContextGet_ProtocolVersion (ssl)

Parameters → ssl
The SslContext from which the value is to be retrieved.

Returns One of the values listed under “Protocol Versions” on page 340.

See Also “ProtocolVersion” on page 73,
SslContextSet_ProtocolVersion(),
SslLibGet_ProtocolVersion()

SslContextGet_RbufSize Macro
Purpose Obtain the size, in bytes, of the SslContext’s read buffer.

Declared In SslLibMac.h

Prototype #define SslContextGet_RbufSize (ssl)

Parameters → ssl
The SslContext from which the value is to be retrieved.

Returns The read buffer size. This is a value that ranges from 0 to 16384.

See Also “RbufSize” on page 64, SslContextSet_RbufSize(),
SslLibGet_RbufSize()

SslContextGet_ReadBufPending Macro
Purpose Obtains the number of data bytes that are currently buffered for

reading from the SslContext.

Declared In SslLibMac.h

Prototype #define SslContextGet_ReadBufPending (ssl)

Parameters → ssl
The SslContext from which the value is to be retrieved.

Returns The number of buffered read bytes.

SSL Library Macros
SslContextGet_ReadRecPending

Exploring Palm OS: Security and Cryptography 403

Comments The returned number of bytes also includes bytes used for encoding
SSL records.

See Also “ReadBufPending” on page 77

SslContextGet_ReadOutstanding Macro
Purpose Obtain the number of bytes in the current record that have not been

read from the network

Declared In SslLibMac.h

Prototype #define SslContextGet_ReadOutstanding (ssl)

Parameters → ssl
The SslContext from which the value is to be retrieved.

Returns The number of bytes outstanding in current SSL record.

See Also “ReadOutstanding” on page 77

SslContextGet_ReadRecPending Macro
Purpose Obtain the number of application data bytes that are buffered,

awaiting the application to read.

Declared In SslLibMac.h

Prototype #define SslContextGet_ReadRecPending (ssl)

Parameters → ssl
The SslContext from which the value is to be retrieved.

Returns The number of buffered SSL record bytes.

See Also “ReadRecPending” on page 77,
SslContextGet_ReadOutstanding()

SSL Library Macros
SslContextGet_ReadStreaming

404 Exploring Palm OS: Security and Cryptography

SslContextGet_ReadStreaming Macro
Purpose Determine whether data can be returned to the application from the

SSL connection before the full record has been downloaded.

Declared In SslLibMac.h

Prototype #define SslContextGet_ReadStreaming (ssl)

Parameters → ssl
The SslContext from which the value is to be retrieved.

Returns Returns a zero value if data is only returned when the full record
has been downloaded, or a non-zero value otherwise.

See Also “ReadStreaming” on page 77,
SslContextSet_ReadStreaming(),
SslLibGet_ReadStreaming()

SslContextGet_SessionReused Macro
Purpose Determine whether the SSL handshake was able to perform a

truncated handshake by re-using the SSL session values in the
SslContext.

Declared In SslLibMac.h

Prototype #define SslContextGet_SessionReused (ssl)

Parameters → ssl
The SslContext from which the value is to be retrieved.

Returns Returns a non-zero value if the SSL handshake was able to perform
a truncated handshake by re-using the SSL session values in the
SslContext, or zero if it wasn’t.

See Also “SessionReused” on page 74

SSL Library Macros
SslContextGet_SslVerify

Exploring Palm OS: Security and Cryptography 405

SslContextGet_Socket Macro
Purpose Obtain the socket that the SslContext should use to perform its

network I/O operations.

Declared In SslLibMac.h

Prototype #define SslContextGet_Socket (ssl)

Parameters → ssl
The SslContext from which the value is to be retrieved.

Returns The descriptor for the SslContext’s socket.

See Also “Socket” on page 65, SslContextSet_Socket()

SslContextGet_SslSession Macro
Purpose Get the SslContext’s SslSession structure. This is either the

SslSession currently being used, or the SslSession for this
SslContext to use to establish its next connection.

Declared In SslLibMac.h

Prototype #define SslContextGet_SslSession (ssl, v)

Parameters → ssl
The SslContext from which the value is to be retrieved.

→ v
Pass the address of a pointer variable; upon return this
variable will point to the SslContext’s SslSession
structure.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

See Also “SslSession” on page 74, SslContextSet_SslSession()

SslContextGet_SslVerify Macro
Purpose Obtain a pointer to the structure containing the verification state.

This structure can be helpful when attempting to resolve any

SSL Library Macros
SslContextGet_Streaming

406 Exploring Palm OS: Security and Cryptography

problems that SslLib may have encountered during certificate
verification.

Declared In SslLibMac.h

Prototype #define SslContextGet_SslVerify (ssl, v)

Parameters → ssl
The SslContext from which the value is to be retrieved.

→ v
Supply the address of a pointer variable. Upon return the
variable will point to an SslVerify structure containing the
preserved state. See “The SslVerify Structure” on page 377 for
a description of this structure.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

See Also “SslVerify” on page 74

SslContextGet_Streaming Macro
Purpose Determine if the current SslContext is doing read-streaming.

Declared In SslLibMac.h

Prototype #define SslContextGet_Streaming (ssl)

Parameters → ssl
The SslContext from which the value is to be retrieved.

Returns Returns 1 if the current SslContext is doing read-streaming.

See Also “Streaming” on page 78

SSL Library Macros
SslContextGet_WbufSize

Exploring Palm OS: Security and Cryptography 407

SslContextGet_VerifyCallback Macro
Purpose Obtain a pointer to the callback function used to assist with

certificate verification.

Declared In SslLibMac.h

Prototype #define SslContextGet_VerifyCallback (ssl, v)

Parameters → ssl
The SslContext from which the value is to be retrieved.

→ v
Pass the address of a pointer variable; upon return this
variable will point to the callback function. The callback
function is of type SslCallbackFunc().

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

Comments See “VerifyCallback” on page 65 and SslCallbackFunc()
(documented on page 373) for more on how this callback function is
used to verify a certificate.

See Also “VerifyCallback” on page 65,
SslContextSet_VerifyCallback(),
SslLibGet_VerifyCallback()

SslContextGet_WbufSize Macro
Purpose Obtain the size, in bytes, of the SslContext’s write buffer.

Declared In SslLibMac.h

Prototype #define SslContextGet_WbufSize (ssl)

Parameters → ssl
The SslContext from which the value is to be retrieved.

Returns The write buffer size. This is a value that ranges from 0 to 16384.

See Also “WbufSize” on page 66, SslContextSet_WbufSize(),
SslLibGet_WbufSize()

SSL Library Macros
SslContextGet_WriteBufPending

408 Exploring Palm OS: Security and Cryptography

SslContextGet_WriteBufPending Macro
Purpose Obtains the number of bytes in the SslContext’s write buffer

waiting to be sent to the remote machine.

Declared In SslLibMac.h

Prototype #define SslContextGet_WriteBufPending (ssl)

Parameters → ssl
The SslContext from which the value is to be retrieved.

Returns The number of buffered bytes waiting to be sent.

Comments This value will normally be zero unless AutoFlush is disabled and/
or non-blocking I/O is being used.

See Also “WriteBufPending” on page 78, SslContextGet_AutoFlush()

SslContextSet_AppInt32 Macro
Purpose Set the value of the AppInt32 attribute, an arbitrary 32-bit value

that an application can attach to an SslContext.

Declared In SslLibMac.h

Prototype #define SslContextSet_AppInt32 (ssl, v)

Parameters → ssl
The SslContext on which to operate.

→ v
The 32-bit value.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

Comments SslContextDestroy() does not modify this attribute, so if the
data pointed to by this attribute needs to be disposed of, the
application must do this itself.

See Also “AppInt32” on page 67, SslContextGet_AppInt32(),
SslLibSet_AppInt32()

SSL Library Macros
SslContextSet_AutoFlush

Exploring Palm OS: Security and Cryptography 409

SslContextSet_AppPtr Macro
Purpose Set the value of the AppPtr attribute, an arbitrary pointer value that

an application can attach to an SslContext.

Declared In SslLibMac.h

Prototype #define SslContextSet_AppPtr (ssl, v)

Parameters → ssl
The SslContext on which to operate.

→ v
The AppPtr attribute value.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

Comments SslContextDestroy() does not modify this attribute, so if the
data pointed to by this attribute needs to be disposed of, the
application must do this itself.

See Also “AppPtr” on page 67, SslContextGet_AppPtr(),
SslLibSet_AppPtr()

SslContextSet_AutoFlush Macro
Purpose Specify whether SslSend() and SslWrite() should attempt to

immediately send the supplied data bytes to the network.

Declared In SslLibMac.h

Prototype #define SslContextSet_AutoFlush (ssl, v)

Parameters → ssl
The SslContext on which to operate.

→ v
Pass 0 to have the data buffered, or 1 to have the data sent
immediately.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

SSL Library Macros
SslContextSet_BufferedReuse

410 Exploring Palm OS: Security and Cryptography

Comments It is very important to remember to use SslFlush() when
AutoFlush is disabled.

See Also “AutoFlush” on page 61, SslContextGet_AutoFlush(),
SslLibSet_AutoFlush()

SslContextSet_BufferedReuse Macro
Purpose Specify whether the last message in an SslSession-reused handshake

should be buffered instead of being sent over the network.

Declared In SslLibMac.h

Prototype #define SslContextSet_BufferedReuse (ssl, v)

Parameters → ssl
The SslContext on which to operate.

→ v
Supply a value of 0 if the last message should not be buffered,
or a non-zero value if it should.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

See Also “BufferedReuse” on page 75,
SslContextGet_BufferedReuse(),
SslLibSet_BufferedReuse()

SslContextSet_CipherSuites Macro
Purpose Specify the list of cipher suites that the SSL protocol should attempt

to use.

Declared In SslLibMac.h

Prototype #define SslContextSet_CipherSuites (ssl, v)

Parameters → ssl
The SslContext on which to operate.

SSL Library Macros
SslContextSet_Compat

Exploring Palm OS: Security and Cryptography 411

→ v
Pointer to an array of byte pairs. The first two bytes contain
the number of bytes that follow, and each successive pair is
one of the values listed under “Cipher Suites” on page 344.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

See Also “CipherSuites” on page 61, SslContextGet_CipherSuites(),
SslLibSet_CipherSuites()

SslContextSet_Compat Macro
Purpose Determine how compatible the SSL protocol should be with certain

incorrect SSL protocol implementations.

Declared In SslLibMac.h

Prototype #define SslContextSet_Compat (ssl, v)

Parameters → ssl
The SslContext on which to operate.

→ v
The logical OR of those compatibility flags that correspond to
the SSL protocol incompatibilities that should be
accommodated. See “Compatibility Flags” on page 342 for
the defined constants that correspond to the compatibility
flags.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

See Also “Compat” on page 69, SslContextGet_Compat(),
SslLibSet_Compat()

SSL Library Macros
SslContextSet_DelayReadServerFinished

412 Exploring Palm OS: Security and Cryptography

SslContextSet_DelayReadServerFinished
Macro

Purpose

Declared In SslLibMac.h

Prototype #define SslContextSet_DelayReadServerFinished
(ssl, v)

Parameters → ssl
The SslContext on which to operate.

→ v

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

SslContextSet_DontSendShutdown Macro
Purpose Specify whether or not an SslClose() should send a shutdown

message to the server.

Declared In SslLibMac.h

Prototype #define SslContextSet_DontSendShutdown (ssl, v)

Parameters → ssl
The SslContext on which to operate.

→ v
Zero if SslClose() should send a shutdown message, or a
non-zero value if it shouldn’t.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

See Also “DontSendShutdown” on page 76,
SslContextGet_DontSendShutdown(),
SslLibSet_DontSendShutdown(),
SslContextSet_DontWaitForShutdown()

SSL Library Macros
SslContextSet_Error

Exploring Palm OS: Security and Cryptography 413

SslContextSet_DontWaitForShutdown Macro
Purpose Specify whether or not the SslContext should wait for a

shutdown message in SslClose().

Declared In SslLibMac.h

Prototype #define SslContextSet_DontSendShutdown (ssl, v)

Parameters → ssl
The SslContext on which to operate.

→ v
Zero if the SslContext waits for a shutdown message, or a
non-zero value if it doesn’t.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

See Also “DontWaitForShutdown” on page 76,
SslContextGet_DontWaitForShutdown(),
SslContextSet_DontSendShutdown(),
SslLibSet_DontWaitForShutdown()

SslContextSet_Error Macro
Purpose Associate a new error value with an SslContext. This value

overrides any error value produced when a fatal error occurs while
using an SslContext.

Declared In SslLibMac.h

Prototype #define SslContextSet_Error (ssl, v)

Parameters → ssl
The SslContext on which to operate.

→ v
The new error value. A value of 0 corresponds to “no error.”

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

Comments Once the error attribute is set, the SslLib network APIs will continue
to return this error (unless the error is a non-fatal error) until either

SSL Library Macros
SslContextSet_HelloVersion

414 Exploring Palm OS: Security and Cryptography

an SSL Reset is performed on the SslContext or the error is
cleared.

See Also “Error” on page 62, SslContextGet_Error()

SslContextSet_HelloVersion Macro
Purpose

Declared In SslLibMac.h

Prototype #define SslContextSet_HelloVersion (ssl, v)

Parameters → ssl
The SslContext on which to operate.

→ v

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

SslContextSet_InfoCallback Macro
Purpose Specify the callback function called when various situations occur

during the usage of an SslContext. This callback is primarily
intended for debugging and feedback purposes.

Declared In SslLibMac.h

Prototype #define SslContextSet_InfoCallback (ssl, v)

Parameters → ssl
The SslContext on which to operate.

→ v
A pointer to a callback function of type
SslCallbackFunc().

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

SSL Library Macros
SslContextSet_IoFlags

Exploring Palm OS: Security and Cryptography 415

Comments See “InfoCallback” on page 69 and SslCallbackFunc()
(documented on page 373) for more on how this callback function is
used.

See Also “InfoCallback” on page 69, SslContextGet_InfoCallback(),
SslLibSet_InfoCallback()

SslContextSet_InfoInterest Macro
Purpose Specify the events for which the Info callback will be called.

Declared In SslLibMac.h

Prototype #define SslContextSet_InfoInterest (ssl, v)

Parameters → ssl
The SslContext on which to operate.

→ v
The logical OR of the sslFlgInfoxxx values listed under
“InfoInterest Values” on page 347.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

See Also “InfoInterest” on page 70, SslContextGet_InfoInterest(),
SslLibSet_InfoInterest()

SslContextSet_IoFlags Macro
Purpose Specify the flags value that is to be passed to sys/socket calls.

Declared In SslLibMac.h

Prototype #define SslContextSet_IoFlags (ssl, v)

Parameters → ssl
The SslContext on which to operate.

→ v
The 32-bit flags value to be passed to sys/socket calls.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

SSL Library Macros
SslContextSet_IoStruct

416 Exploring Palm OS: Security and Cryptography

Comments Since we will normally be using TCP connections with SSL, this
attribute is more included for completeness rather than utility. Read
about this flags value in the sendto() and recvfrom() man
page.

NOTE: The MSG_OOB and MSG_PEEK values are not valid
and will be silently removed.

See Also “IoFlags” on page 70, SslContextGet_IoFlags()

SslContextSet_IoStruct Macro
Purpose Specify the SslSocket structure to be used by an SslContext.

Declared In SslLibMac.h

Prototype #define SslContextSet_IoStruct (ssl, v)

Parameters → ssl
The SslContext on which to operate.

→ v
Pointer to the SslSocket structure.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

See Also “IoStruct” on page 70, SslContextSet_IoStruct()

SslContextSet_IoTimeout Macro
Purpose Specify the SslContext’s internal timeout value.

Declared In SslLibMac.h

Prototype #define SslContextSet_IoTimeout (ssl, v)

Parameters → ssl
The SslContext on which to operate.

→ v
The new internal timeout value, in seconds.

SSL Library Macros
SslContextSet_LastAlert

Exploring Palm OS: Security and Cryptography 417

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

Comments When a call is made into the SslLib API which does not specify a
timeout, this internal value is used. If the API call has a timeout
value, it overrides this internal value.

By default, the SslContext’s internal timeout value is 10 seconds.

See Also “IoTimeout” on page 71, SslContextGet_IoTimeout()

SslContextSet_LastAlert Macro
Purpose Override the last alert value received from the server.

Declared In SslLibMac.h

Prototype #define SslContextSet_LastAlert (ssl, v)

Parameters → ssl
The SslContext on which to operate.

→ v
The new “last alert” value. This should be one of the values
listed under “SSL Server Alerts” on page 350.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

Comments Non-fatal alerts have a value of the form 0x01XX, while fatal alerts
have the form 0x02XX. SslLib will fail on fatal alerts and continue
on non-fatal alerts.

See Also “LastAlert” on page 71, SslContextGet_LastAlert()

SSL Library Macros
SslContextSet_Mode

418 Exploring Palm OS: Security and Cryptography

SslContextSet_Mode Macro
Purpose Specify the value of the Mode attribute, which controls whether the

SSL protocol is on or off.

Declared In SslLibMac.h

Prototype #define SslContextSet_Mode (ssl, v)

Parameters → ssl
The SslContext on which to operate.

→ v
One of the values listed under “Mode Attribute Values” on
page 339.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

See Also “Mode” on page 63, SslContextGet_Mode(),
SslLibSet_Mode()

SslContextSet_ProtocolSupport Macro
Purpose Specify the SSL protocol variants to use.

Declared In SslLibMac.h

Prototype #define SslContextSet_ProtocolSupport (ssl, v)

Parameters → ssl
The SslContext on which to operate.

→ v
One or more of the values listed under “Protocol Variants” on
page 340, OR’d together.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

Comments Use sslSupport_SSLv3, sslSupport_TLSv1, or
sslSupport_Both to enable SSLv3, TLSv1, or both protocols. The
default is sslSupport_Both.

SSL Library Macros
SslContextSet_ProtocolVersion

Exploring Palm OS: Security and Cryptography 419

WARNING! Do not disable things that you don’t know anything
about. Also, do not turn off the Ex512/Ex1024 bits without also
removing the relevant ciphers from the cipher suite list.

See Also SslContextGet_ProtocolSupport(),
SslContextSet_ProtocolVersion(),
SslLibSet_ProtocolSupport()

SslContextSet_ProtocolVersion Macro
Purpose Specify the version of the SSL protocol to use.

Declared In SslLibMac.h

Prototype #define SslContextSet_ProtocolVersion (ssl, v)

Parameters → ssl
The SslContext on which to operate.

→ v
One of the values listed under “Protocol Versions” on
page 340.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

Comments SslLib sends a TLSv1 ClientHello message by default. Note that in
Palm OS Cobalt version 6.0 an attempt to change this protocol
version to SSLv3 has no effect—SslLib continues to send a TLSv1
ClientHello message.

See Also “ProtocolVersion” on page 73,
SslContextGet_ProtocolVersion(),
SslLibSet_ProtocolVersion()

SSL Library Macros
SslContextSet_RbufSize

420 Exploring Palm OS: Security and Cryptography

SslContextSet_RbufSize Macro
Purpose Specify the size, in bytes, of the SslContext’s read buffer.

Declared In SslLibMac.h

Prototype #define SslContextSet_RbufSize (ssl, v)

Parameters → ssl
The SslContext on which to operate.

→ v
The read buffer size. This is a value that ranges from 0 to
16384.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

See Also “RbufSize” on page 64, SslContextGet_RbufSize(),
SslLibSet_RbufSize()

SslContextSet_ReadStreaming Macro
Purpose Specify whether data can be returned to the application from the

SSL connection before the full record has been downloaded.

Declared In SslLibMac.h

Prototype #define SslContextSet_ReadStreaming (ssl, v)

Parameters → ssl
The SslContext on which to operate.

→ v
A zero value if data is only to be returned when the full
record has been downloaded, or a non-zero value otherwise.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

See Also “ReadStreaming” on page 77,
SslContextGet_ReadStreaming(),
SslLibSet_ReadStreaming()

SSL Library Macros
SslContextSet_SslSession

Exploring Palm OS: Security and Cryptography 421

SslContextSet_Socket Macro
Purpose Specify the socket that the SslContext should use to perform its

network I/O operations.

Declared In SslLibMac.h

Prototype #define SslContextSet_Socket (ssl, v)

Parameters → ssl
The SslContext on which to operate.

→ v
The descriptor referencing the socket.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

See Also “Socket” on page 65, SslContextGet_Socket()

SslContextSet_SslSession Macro
Purpose Specify the SslContext’s SslSession structure. This is the

SslSession for this SslContext to use to establish its next
connection.

Declared In SslLibMac.h

Prototype #define SslContextSet_SslSession (ssl, v)

Parameters → ssl
The SslContext on which to operate.

→ v
A pointer to the SslSession structure.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

See Also “SslSession” on page 74, SslContextGet_SslSession()

SSL Library Macros
SslContextSet_VerifyCallback

422 Exploring Palm OS: Security and Cryptography

SslContextSet_VerifyCallback Macro
Purpose Specify the callback function to assist with certificate verification.

Declared In SslLibMac.h

Prototype #define SslContextSet_VerifyCallback (ssl, v)

Parameters → ssl
The SslContext on which to operate.

→ v
A pointer to a callback function of type
SslCallbackFunc().

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

Comments See “VerifyCallback” on page 65 and SslCallbackFunc()
(documented on page 373) for more on how this callback function is
used to verify a certificate.

See Also “VerifyCallback” on page 65,
SslContextGet_VerifyCallback(),
SslLibSet_VerifyCallback()

SslContextSet_WbufSize Macro
Purpose Specify the size, in bytes, of the SslContext’s write buffer.

Declared In SslLibMac.h

Prototype #define SslContextSet_WbufSize (ssl, v)

Parameters → ssl
The SslContext on which to operate.

→ v
The write buffer size. This is a value that ranges from 0 to
16384.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

See Also “WbufSize” on page 66, SslContextGet_WbufSize(),
SslLibSet_WbufSize()

SSL Library Macros
SslLibGet_AppPtr

Exploring Palm OS: Security and Cryptography 423

SslLibGet_AppInt32 Macro
Purpose Obtain the value of the AppInt32 attribute, an arbitrary 32-bit

value that an application can attach to an SslLib.

Declared In SslLibMac.h

Prototype #define SslLibGet_AppInt32 (lib)

Parameters → lib
The SslLib from which the value is to be retrieved.

Returns Returns the 32-bit value.

Comments SslLibDestroy() does not modify this attribute, so if the data
pointed to by this attribute needs to be disposed of, the application
must do this itself.

See Also “AppInt32” on page 67, SslLibSet_AppInt32(),
SslContextGet_AppInt32()

SslLibGet_AppPtr Macro
Purpose Obtain the value of the AppPtr attribute, an arbitrary pointer value

that an application can attach to an SslLib.

Declared In SslLibMac.h

Prototype #define SslLibGet_AppPtr (lib, v)

Parameters → lib
The SslLib from which the value is to be retrieved.

→ v
The address of a pointer variable into which the AppPtr
attribute value is written.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

Comments SslLibDestroy() does not modify this attribute, so if the data
pointed to by this attribute needs to be disposed of, the application
must do this itself.

See Also “AppPtr” on page 67, SslLibSet_AppPtr(),
SslContextGet_AppPtr()

SSL Library Macros
SslLibGet_AutoFlush

424 Exploring Palm OS: Security and Cryptography

SslLibGet_AutoFlush Macro
Purpose Determine whether SslSend() and SslWrite() attempt to

immediately send the supplied data bytes to the network.

Declared In SslLibMac.h

Prototype #define SslLibGet_AutoFlush (lib)

Parameters → lib
The SslLib from which the value is to be retrieved.

Returns Returns 0 if data is buffered, or 1 if the data is sent immediately.

Comments It is very important to remember to use SslFlush() when
AutoFlush is disabled.

See Also “AutoFlush” on page 61, SslLibSet_AutoFlush(),
SslContextGet_AutoFlush()

SslLibGet_BufferedReuse Macro
Purpose Determine if the last message in an SslSession-reused handshake

should be buffered instead of being sent over the network.

Declared In SslLibMac.h

Prototype #define SslLibGet_BufferedReuse (lib)

Parameters → lib
The SslLib from which the value is to be retrieved.

Returns Returns 0 if the last message is not buffered, or a non-zero value if it
is.

See Also “BufferedReuse” on page 75, SslLibSet_BufferedReuse(),
SslContextGet_BufferedReuse()

SSL Library Macros
SslLibGet_Compat

Exploring Palm OS: Security and Cryptography 425

SslLibGet_CipherSuites Macro
Purpose Obtain the list of cipher suites that the SSL protocol is attempting to

use. This list is inherited from the SslLib when an SslContext is
created.

Declared In SslLibMac.h

Prototype #define SslLibGet_CipherSuites (lib, v)

Parameters → lib
The SslLib from which the value is to be retrieved.

→ v
Supply the address of a pointer variable; upon return the
pointer variable will point to a series of bytes, where the first
two bytes indicate the number of bytes that follow, and each
pair of bytes after that is one of the values listed under
“Cipher Suites” on page 344. See “CipherSuites” on page 61
for more details on this attribute.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

See Also “CipherSuites” on page 61, SslLibSet_CipherSuites(),
SslContextGet_CipherSuites()

SslLibGet_Compat Macro
Purpose Determine which SSL protocol compatibility flags are set. These

flags enable compatibility with certain incorrect SSL protocol
implementations.

Declared In SslLibMac.h

Prototype #define SslLibGet_Compat (lib)

Parameters → lib
The SslLib from which the value is to be retrieved.

Returns Returns a 32-bit integer value that is the logical OR of those
compatibility flags that have been set. See “Compatibility Flags” on

SSL Library Macros
SslLibGet_DelayReadServerFinished

426 Exploring Palm OS: Security and Cryptography

page 342 for the defined constants that correspond to the
compatibility flags.

See Also “Compat” on page 69, SslLibSet_Compat(),
SslContextGet_Compat()

SslLibGet_DelayReadServerFinished Macro
Purpose

Declared In SslLibMac.h

Prototype #define SslLibGet_DelayReadServerFinished (lib)

Parameters → lib
The SslLib from which the value is to be retrieved.

Returns

SslLibGet_DontSendShutdown Macro
Purpose Determine whether or not an SslClose() will send a shutdown

message to the server.

Declared In SslLibMac.h

Prototype #define SslLibGet_DontSendShutdown (lib)

Parameters → lib
The SslLib from which the value is to be retrieved.

Returns Returns zero if SslClose() does send a shutdown message to the
server, or a non-zero value if it doesn’t.

See Also “DontSendShutdown” on page 76,
SslLibSet_DontSendShutdown(),
SslContextGet_DontSendShutdown(),
SslLibGet_DontWaitForShutdown()

SSL Library Macros
SslLibGet_InfoCallback

Exploring Palm OS: Security and Cryptography 427

SslLibGet_DontWaitForShutdown Macro
Purpose Determine whether or not the SslLib will wait for a shutdown

message in SslClose().

Declared In SslLibMac.h

Prototype #define SslLibGet_DontWaitForShutdown (lib)

Parameters → lib
The SslLib from which the value is to be retrieved.

Returns Returns zero if the SslLib waits for a shutdown message, or a non-
zero value if it doesn’t.

See Also “DontWaitForShutdown” on page 76,
SslContextGet_DontWaitForShutdown(),
SslLibGet_DontSendShutdown(),
SslLibSet_DontWaitForShutdown()

SslLibGet_HelloVersion Macro
Purpose

Declared In SslLibMac.h

Prototype #define SslLibGet_HelloVersion (lib)

Parameters → lib
The SslLib from which the value is to be retrieved.

Returns

SslLibGet_InfoCallback Macro
Purpose Obtain a pointer to the callback function called when various

situations occur during the usage of an SslLib. This callback is
primarily intended for debugging and feedback purposes.

Declared In SslLibMac.h

Prototype #define SslLibGet_InfoCallback (lib, v)

Parameters → lib
The SslLib from which the value is to be retrieved.

SSL Library Macros
SslLibGet_InfoInterest

428 Exploring Palm OS: Security and Cryptography

→ v
Pass the address of a pointer variable; upon return this
variable will point to the callback function. The callback
function is of type SslCallbackFunc().

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

Comments See “InfoCallback” on page 69 and SslCallbackFunc()
(documented on page 373) for more on how this callback function is
used.

See Also “InfoCallback” on page 69, SslLibSet_InfoCallback(),
SslContextGet_InfoCallback()

SslLibGet_InfoInterest Macro
Purpose Obtain the flags that specify the events for which the Info callback

will be called.

Declared In SslLibMac.h

Prototype #define SslLibGet_InfoInterest (lib)

Parameters → lib
The SslLib from which the value is to be retrieved.

Returns The logical OR of the sslFlgInfoxxx values listed under
“InfoInterest Values” on page 347.

See Also “InfoInterest” on page 70, SslLibSet_InfoInterest(),
SslContextGet_InfoInterest()

SslLibGet_Mode Macro
Purpose Obtain the value of the Mode attribute, which controls whether the

SSL protocol is on or off.

Declared In SslLibMac.h

Prototype #define SslLibGet_Mode (lib)

Parameters → lib
The SslLib from which the value is to be retrieved.

SSL Library Macros
SslLibGet_ProtocolVersion

Exploring Palm OS: Security and Cryptography 429

Returns Returns one of the values listed under “Mode Attribute Values” on
page 339.

See Also “Mode” on page 63, SslLibSet_Mode(),
SslContextGet_Mode()

SslLibGet_ProtocolSupport Macro
Purpose Determine which variants of the SSL protocol the library supports.

Declared In SslLibMac.h

Prototype #define SslLibGet_ProtocolSupport (lib)

Parameters → lib
The SslLib from which the value is to be retrieved.

Returns One or more of the values listed under “Protocol Variants” on
page 340, OR’d together.

See Also SslContextGet_ProtocolSupport(),
SslLibGet_ProtocolVersion(),
SslLibSet_ProtocolSupport()

SslLibGet_ProtocolVersion Macro
Purpose Determine which version of the SSL protocol is being used.

Declared In SslLibMac.h

Prototype #define SslLibGet_ProtocolVersion (lib)

Parameters → lib
The SslLib from which the value is to be retrieved.

Returns One of the values listed under “Protocol Versions” on page 340.

See Also “ProtocolVersion” on page 73, SslLibSet_ProtocolVersion(),
SslContextGet_ProtocolVersion()

SSL Library Macros
SslLibGet_RbufSize

430 Exploring Palm OS: Security and Cryptography

SslLibGet_RbufSize Macro
Purpose Obtain the size, in bytes, of the read buffer. Read and write buffers

are associated with an SslContext; SslContexts created against
this SslLib will inherit the SslLib’s buffer values.

Declared In SslLibMac.h

Prototype #define SslLibGet_RbufSize (lib)

Parameters → lib
The SslLib from which the value is to be retrieved.

Returns The read buffer size. This is a value that ranges from 0 to 16384.

See Also “RbufSize” on page 64, SslLibSet_RbufSize(),
SslContextGet_RbufSize()

SslLibGet_ReadStreaming Macro
Purpose Determine whether data can be returned to the application from the

SSL connection before the full record has been downloaded.

Declared In SslLibMac.h

Prototype #define SslLibGet_ReadStreaming (lib)

Parameters → lib
The SslLib from which the value is to be retrieved.

Returns Returns a zero value if data is only returned when the full record
has been downloaded, or a non-zero value otherwise.

See Also “ReadStreaming” on page 77,
SslContextGet_ReadStreaming(),
SslLibSet_ReadStreaming()

SSL Library Macros
SslLibGet_WbufSize

Exploring Palm OS: Security and Cryptography 431

SslLibGet_VerifyCallback Macro
Purpose Obtain a pointer to the callback function used to assist with

certificate verification.

Declared In SslLibMac.h

Prototype #define SslLibGet_VerifyCallback (lib, v)

Parameters → lib
The SslLib from which the value is to be retrieved.

→ v
Pass the address of a pointer variable; upon return this
variable will point to the callback function. The callback
function is of type SslCallbackFunc().

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

Comments See “VerifyCallback” on page 65 and SslCallbackFunc()
(documented on page 373) for more on how this callback function is
used to verify a certificate.

See Also “VerifyCallback” on page 65, SslLibSet_VerifyCallback(),
SslContextGet_VerifyCallback()

SslLibGet_WbufSize Macro
Purpose Obtain the size, in bytes, of the write buffer. Read and write buffers

are associated with an SslContext; SslContexts created against
this SslLib will inherit the SslLib’s buffer values.

Declared In SslLibMac.h

Prototype #define SslLibGet_WbufSize (lib)

Parameters → lib
The SslLib from which the value is to be retrieved.

Returns The write buffer size. This is a value that ranges from 0 to 16384.

See Also “WbufSize” on page 66, SslLibSet_WbufSize(),
SslContextGet_WbufSize()

SSL Library Macros
SslLibSet_AppInt32

432 Exploring Palm OS: Security and Cryptography

SslLibSet_AppInt32 Macro
Purpose Set the value of the AppInt32 attribute, an arbitrary 32-bit value

that an application can attach to an SslLib.

Declared In SslLibMac.h

Prototype #define SslLibSet_AppInt32 (lib, v)

Parameters → lib
The SslLib on which to operate.

→ v
The 32-bit value.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

Comments SslLibDestroy() does not modify this attribute, so if the data
pointed to by this attribute needs to be disposed of, the application
must do this itself.

See Also “AppInt32” on page 67, SslLibGet_AppInt32(),
SslContextSet_AppInt32()

SslLibSet_AppPtr Macro
Purpose Set the value of the AppPtr attribute, an arbitrary pointer value that

an application can attach to an SslLib.

Declared In SslLibMac.h

Prototype #define SslLibSet_AppPtr (lib, v)

Parameters → lib
The SslLib on which to operate.

→ v
The AppPtr attribute value.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

SSL Library Macros
SslLibSet_BufferedReuse

Exploring Palm OS: Security and Cryptography 433

Comments SslLibDestroy() does not modify this attribute, so if the data
pointed to by this attribute needs to be disposed of, the application
must do this itself.

See Also “AppPtr” on page 67, SslLibGet_AppPtr(),
SslContextSet_AppPtr()

SslLibSet_AutoFlush Macro
Purpose Specify whether SslSend() and SslWrite() should attempt to

immediately send the supplied data bytes to the network.

Declared In SslLibMac.h

Prototype #define SslLibSet_AutoFlush (lib, v)

Parameters → lib
The SslLib on which to operate.

→ v
Pass 0 to have the data buffered, or 1 to have the data sent
immediately.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

Comments It is very important to remember to use SslFlush() when
AutoFlush is disabled.

See Also “AutoFlush” on page 61, SslContextGet_AutoFlush(),
SslLibSet_AutoFlush()

SslLibSet_BufferedReuse Macro
Purpose Specify whether the last message in an SslSession-reused handshake

should be buffered instead of being sent over the network.

Declared In SslLibMac.h

Prototype #define SslLibSet_BufferedReuse (lib, v)

Parameters → lib
The SslLib on which to operate.

SSL Library Macros
SslLibSet_CipherSuites

434 Exploring Palm OS: Security and Cryptography

→ v
Supply a value of 0 if the last message should not be buffered,
or a non-zero value if it should.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

See Also “BufferedReuse” on page 75, SslLibGet_BufferedReuse(),
SslContextSet_BufferedReuse()

SslLibSet_CipherSuites Macro
Purpose Specify the list of cipher suites that the SSL protocol should attempt

to use. When an SslContext is created, it inherits this list of cipher
suites.

Declared In SslLibMac.h

Prototype #define SslLibSet_CipherSuites (lib, v)

Parameters → lib
The SslLib on which to operate.

→ v
Pointer to an array of byte pairs. The first two bytes contain
the number of bytes that follow, and each successive pair is
one of the values listed under “Cipher Suites” on page 344.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

See Also “CipherSuites” on page 61, SslLibGet_CipherSuites(),
SslContextSet_CipherSuites()

SSL Library Macros
SslLibSet_DelayReadServerFinished

Exploring Palm OS: Security and Cryptography 435

SslLibSet_Compat Macro
Purpose Determine how compatible the SSL protocol should be with certain

incorrect SSL protocol implementations.

Declared In SslLibMac.h

Prototype #define SslLibSet_Compat (lib, v)

Parameters → lib
The SslLib on which to operate.

→ v
The logical OR of those compatibility flags that correspond to
the SSL protocol incompatibilities that should be
accommodated. See “Compatibility Flags” on page 342 for
the defined constants that correspond to the compatibility
flags.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

See Also “Compat” on page 69, SslLibGet_Compat(),
SslContextSet_Compat()

SslLibSet_DelayReadServerFinished Macro
Purpose

Declared In SslLibMac.h

Prototype #define SslLibSet_DelayReadServerFinished (lib,
v)

Parameters → lib
The SslLib on which to operate.

→ v

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

SSL Library Macros
SslLibSet_DontSendShutdown

436 Exploring Palm OS: Security and Cryptography

SslLibSet_DontSendShutdown Macro
Purpose Specify whether or not an SslClose() should send a shutdown

message to the server.

Declared In SslLibMac.h

Prototype #define SslLibSet_DontSendShutdown (lib, v)

Parameters → lib
The SslLib on which to operate.

→ v
Zero if SslClose() should send a shutdown message, or a
non-zero value if it shouldn’t.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

See Also “DontSendShutdown” on page 76,
SslLibGet_DontSendShutdown(),
SslContextSet_DontSendShutdown(),
SslLibSet_DontWaitForShutdown()

SslLibSet_DontWaitForShutdown Macro
Purpose Specify whether or not the SSlLib should wait for a shutdown

message in SslClose().

Declared In SslLibMac.h

Prototype #define SslLibSet_DontWaitForShutdown (lib, v)

Parameters → lib
The SslLib on which to operate.

→ v
Zero if the SslLib waits for a shutdown message, or a non-
zero value if it doesn’t.

SSL Library Macros
SslLibSet_InfoCallback

Exploring Palm OS: Security and Cryptography 437

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

See Also “DontWaitForShutdown” on page 76,
SslLibGet_DontWaitForShutdown(),
SslLibSet_DontSendShutdown(),
SslContextSet_DontWaitForShutdown()

SslLibSet_HelloVersion Macro
Purpose

Declared In SslLibMac.h

Prototype #define SslLibSet_HelloVersion (lib, v)

Parameters → lib
The SslLib on which to operate.

→ v

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

SslLibSet_InfoCallback Macro
Purpose Specify the callback function called when various situations occur

during the usage of an SslLib. This callback is primarily intended
for debugging and feedback purposes.

Declared In SslLibMac.h

Prototype #define SslLibSet_InfoCallback (lib, v)

Parameters → lib
The SslLib on which to operate.

→ v
A pointer to a callback function of type
SslCallbackFunc().

SSL Library Macros
SslLibSet_InfoInterest

438 Exploring Palm OS: Security and Cryptography

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

Comments See “InfoCallback” on page 69 and SslCallbackFunc()
(documented on page 373) for more on how this callback function is
used.

See Also “InfoCallback” on page 69, SslLibGet_InfoCallback(),
SslContextSet_InfoCallback()

SslLibSet_InfoInterest Macro
Purpose Specify the events for which the Info callback will be called.

Declared In SslLibMac.h

Prototype #define SslLibSet_InfoInterest (lib, v)

Parameters → lib
The SslLib on which to operate.

→ v
The logical OR of the sslFlgInfoxxx values listed under
“InfoInterest Values” on page 347.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

See Also “InfoInterest” on page 70, SslLibGet_InfoInterest(),
SslContextSet_InfoInterest()

SslLibSet_Mode Macro
Purpose Specify the value of the Mode attribute, which controls whether the

SSL protocol is on or off.

Declared In SslLibMac.h

Prototype #define SslLibSet_Mode (lib, v)

Parameters → lib
The SslLib on which to operate.

SSL Library Macros
SslLibSet_ProtocolSupport

Exploring Palm OS: Security and Cryptography 439

→ v
One of the values listed under “Mode Attribute Values” on
page 339.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

See Also “Mode” on page 63, SslLibGet_Mode(),
SslContextSet_Mode()

SslLibSet_ProtocolSupport Macro
Purpose Sets the protocol variants supported by the library.

Declared In SslLibMac.h

Prototype #define SslLibSet_ProtocolSupport (lib, v)

Parameters → lib
The SslLib on which to operate.

→ v
One or more of the values listed under “Protocol Variants” on
page 340, OR’d together.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

Comments Use sslSupport_SSLv3, sslSupport_TLSv1, or
sslSupport_Both to enable SSLv3, TLSv1, or both protocols. The
default is sslSupport_Both.

WARNING! Do not disable things that you don’t know anything
about. Also, do not turn off the Ex512/Ex1024 bits without also
removing the relevant ciphers from the cipher suite list.

See Also SslContextSet_ProtocolSupport(),
SslLibGet_ProtocolSupport(),
SslLibSet_ProtocolVersion()

SSL Library Macros
SslLibSet_ProtocolVersion

440 Exploring Palm OS: Security and Cryptography

SslLibSet_ProtocolVersion Macro
Purpose Specify the version of the SSL protocol to use.

Declared In SslLibMac.h

Prototype #define SslLibSet_ProtocolVersion (lib, v)

Parameters → lib
The SslLib on which to operate.

→ v
One of the values listed under “Protocol Versions” on
page 340.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

Comments SslLib sends a TLSv1 ClientHello message by default. Note that in
Palm OS Cobalt version 6.0 an attempt to change this protocol
version to SSLv3 has no effect—SslLib continues to send a TLSv1
ClientHello message.

See Also “ProtocolVersion” on page 73, SslLibGet_ProtocolVersion(),
SslContextSet_ProtocolVersion()

SslLibSet_RbufSize Macro
Purpose Specify the size, in bytes, of the read buffer. Read and write buffers

are associated with an SslContext; SslContexts created against
this SslLib will inherit the SslLib’s buffer values.

Declared In SslLibMac.h

Prototype #define SslLibSet_RbufSize (lib, v)

Parameters → lib
The SslLib on which to operate.

→ v
The read buffer size. This is a value that ranges from 0 to
16384.

SSL Library Macros
SslLibSet_VerifyCallback

Exploring Palm OS: Security and Cryptography 441

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

See Also “RbufSize” on page 64, SslLibGet_RbufSize(),
SslContextSet_RbufSize()

SslLibSet_ReadStreaming Macro
Purpose Specify whether data can be returned to the application from the

SSL connection before the full record has been downloaded.

Declared In SslLibMac.h

Prototype #define SslLibSet_ReadStreaming (lib, v)

Parameters → lib
The SslLib on which to operate.

→ v
A zero value if data is only to be returned when the full
record has been downloaded, or a non-zero value otherwise.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

See Also “ReadStreaming” on page 77,
SslContextSet_ReadStreaming(),
SslLibGet_ReadStreaming()

SslLibSet_VerifyCallback Macro
Purpose Specify the callback function to assist with certificate verification.

Declared In SslLibMac.h

Prototype #define SslLibSet_VerifyCallback (lib, v)

Parameters → lib
The SslLib on which to operate.

→ v
A pointer to a callback function of type
SslCallbackFunc().

SSL Library Macros
SslLibSet_WbufSize

442 Exploring Palm OS: Security and Cryptography

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

Comments See “VerifyCallback” on page 65 and SslCallbackFunc()
(documented on page 373) for more on how this callback function is
used to verify a certificate.

See Also “VerifyCallback” on page 65, SslLibGet_VerifyCallback(),
SslContextSet_VerifyCallback()

SslLibSet_WbufSize Macro
Purpose Specify the size, in bytes, of the write buffer. Read and write buffers

are associated with an SslContext; SslContexts created against
this SslLib will inherit the SslLib’s buffer values.

Declared In SslLibMac.h

Prototype #define SslLibSet_WbufSize (lib, v)

Parameters → lib
The SslLib on which to operate.

→ v
The write buffer size. This is a value that ranges from 0 to
16384.

Returns Returns errNone if the operation completed successfully.
Otherwise, the function that this macro evaluates to returns one of
the error codes listed under “SSL Library Errors” on page 351.

See Also “WbufSize” on page 66, SslLibGet_WbufSize(),
SslContextSet_WbufSize()

Exploring Palm OS: Security and Cryptography 443

Index

A
AmApplicationCtxType 86
AmAuthenticateToken() 97
AmAuthenticationDataAccess 95
AmAuthenticationDeviceUnlock 95
AmAuthenticationEnum 95
AmAuthenticationNone 95
AmAuthenticationOther 95
AmAuthenticationTokenModify 95
AmCallMode 119
AmCreateToken() 99
AmDestroyToken() 100
AmEnrollment 119
amErrActionNotSupported 93
amErrAlreadyRegistered 93
amErrAuthenticationFailed 94
amErrBackupInProgress 94
amErrBufferTooSmall 94
amErrInvalidImportBuffer 94
amErrInvalidParam 94
amErrInvalidPlugin 94
amErrInvalidToken 94
amErrLibNotOpen 94
amErrLibStillOpen 94
amErrMaxPlugins 94
amErrMaxTokens 94
amErrMemory 94
amErrNoPluginsAllowed 94
amErrNotFound 94
amErrNotImplemented 95
amErrOutOfMemory 95
amErrResourceNotFound 95
amErrTokenDestroyed 95
amErrTokenExists 95
amErrUnsupportedTokenType 95
amErrUserCancel 95
AmGetPluginInfo() 102
AmGetPluginReferences() 102
AmGetTokenBySystemId() 103
AmGetTokenExtendedInfo() 104
AmGetTokenInfo() 105
AmInitializeUIContext() 120
amInvalidToken 93

AmMemHandle 111
AmMemHandleFree() 120
AmMemHandleLock() 121
AmMemHandleNew() 122
AmMemHandleUnlock() 122
AmModifyToken() 106
AmPluginCodePrintExtInfoType 125
amPluginFriendlyNameLength 93
AmPluginFunctionsType 112
AmPluginInfoType 88
AmPluginPrivType 117
AmPluginSignedCodeExtInfoType 127
AmPluginType 89
amPluginVendorLength 93
AmRegisterPlugin() 107
AmReleaseUIContext() 123
AmRemovePlugin() 108
AmReplacementEnd 119
AmReplacementStart 119
AmServiceName 93
AmTokenAttributesType 89
AmTokenCacheNever 96
AmTokenCacheSettings 96
AmTokenCacheSystem 96
AmTokenCodeFingerprint 96
AmTokenCustom 96
AmTokenDataType 118
AmTokenEnum 96
amTokenFriendlyNameLength 93
AmTokenInfoType 90
AmTokenPassword 96
AmTokenPrivType 118
AmTokenPropertiesType 91
AmTokenPtr 92
AmTokenSignedCode 96
AmTokenStrength 97
AmTokenStrengthHigh 97
AmTokenStrengthLow 97
AmTokenStrengthMedium 97
amTokenSystemIdLength 93
AmTokenType 92
amTokenTypeIdentifierLength 93
AmTokenUnknown 96

444 Exploring Palm OS: Security and Cryptography

AmVerification 119
APAlgorithmEnum 230
apAlgorithmTypeUnspecified 230
apAsymmetricTypeBlumGoldwasser 231
apAsymmetricTypeDSA 231
apAsymmetricTypeECDHC 232
apAsymmetricTypeECDSA 231
apAsymmetricTypeECIES 232
apAsymmetricTypeECMQVC 232
apAsymmetricTypeECNR 232
apAsymmetricTypeElgamal 231
apAsymmetricTypeLUC 231
apAsymmetricTypeLUCELG 231
apAsymmetricTypeNR 231
apAsymmetricTypeRabin 231
apAsymmetricTypeRSA 231
apAsymmetricTypeRW 231
apCertMgrElementDataTypeASN1BitString 149
apCertMgrElementDataTypeASN1BmpString 149
apCertMgrElementDataTypeASN1Boolean 149
apCertMgrElementDataTypeASN1EmbeddedPDV

149
apCertMgrElementDataTypeASN1Enumerated 1

49
apCertMgrElementDataTypeASN1Eoc 149
apCertMgrElementDataTypeASN1External 149
apCertMgrElementDataTypeASN1GenString 149
apCertMgrElementDataTypeASN1GenTime 149
apCertMgrElementDataTypeASN1GraphicString

149
apCertMgrElementDataTypeASN1IA5String 149
apCertMgrElementDataTypeASN1Integer 150
apCertMgrElementDataTypeASN1ISO64String 15

0
apCertMgrElementDataTypeASN1Null 150
apCertMgrElementDataTypeASN1NumericString

150
apCertMgrElementDataTypeASN1ObjDesc 150
apCertMgrElementDataTypeASN1OctetString 15

0
apCertMgrElementDataTypeASN1OID 150
apCertMgrElementDataTypeASN1PrintString 150
apCertMgrElementDataTypeASN1Real 150
apCertMgrElementDataTypeASN1Sequence 150

apCertMgrElementDataTypeASN1Set 150
apCertMgrElementDataTypeASN1T61String 150
apCertMgrElementDataTypeASN1UnivString 150
apCertMgrElementDataTypeASN1UTCTime 150
apCertMgrElementDataTypeASN1UTF8String 15

0
apCertMgrElementDataTypeASN1VideoTexString

150
apCertMgrElementFieldEntireCert 146
apCertMgrElementFieldExtension 146
apCertMgrElementFieldExtensions 146
apCertMgrElementFieldInnerDER 146
apCertMgrElementFieldIssuerID 146
apCertMgrElementFieldIssuerRDN 147
apCertMgrElementFieldIssuerUniqueID 147
apCertMgrElementFieldNotAfter 147
apCertMgrElementFieldNotBefore 147
apCertMgrElementFieldPubKeyBER 147
apCertMgrElementFieldRDNOID 148
apCertMgrElementFieldRDNOIDN() 154
apCertMgrElementFieldRDNValue 148
apCertMgrElementFieldRDNValueN() 154
apCertMgrElementFieldRSAModulus 148
apCertMgrElementFieldRSAPubExpo 148
apCertMgrElementFieldSerialNumber 147
apCertMgrElementFieldSigAlgID 147
apCertMgrElementFieldSignature 147
apCertMgrElementFieldSigOID 147
apCertMgrElementFieldSigParams 147
apCertMgrElementFieldSubjectID 147
apCertMgrElementFieldSubjectRDN 147
apCertMgrElementFieldSubjectUniqueID 147
apCertMgrElementFieldVersion 147
apCertMgrElementFieldX509ExBytes 149
apCertMgrElementFieldX509ExBytesN() 154
apCertMgrElementFieldX509ExCritical 149
apCertMgrElementFieldX509ExCriticalN() 155
apCertMgrElementFieldX509ExOID 149
apCertMgrElementFieldX509ExOIDN() 155
apCertMgrElementTypeRDN 142
apCertMgrElementTypeRSA 142
apCertMgrElementTypeX509Cert 142
apCertMgrElementTypeX509Extensions 142
apCertMgrFieldExtensions 147

Exploring Palm OS: Security and Cryptography 445

apCertMgrFieldIssuerID 147
apCertMgrFieldIssuerRDN 147
apCertMgrFieldIssuerUniqueID 147
apCertMgrFieldNotAfter 147
apCertMgrFieldNotBefore 147
apCertMgrFieldPubKeyBER 147
apCertMgrFieldSerialNumber 147
apCertMgrFieldSignature 148
apCertMgrFieldSigOID 148
apCertMgrFieldSigParams 148
apCertMgrFieldSubjectID 148
apCertMgrFieldSubjectRDN 148
apCertMgrFieldSubjectUniqueID 148
apCertMgrFieldVersion 148
apCertMgrFormatX509 150
apCertMgrFormatXML 150
apCertMgrSearchCert 144
apCertMgrSearchCertID 144
apCertMgrSearchSubjectRDN 144
APCipherInfoPtr 220
APCipherInfoStruct 220
APCipherInfoType 220
apClose 281
APCmdPBPtr 244
APCmdPBType 244
APCmdType 281
APDecrypt 245
apDecrypt 281
APDecryptFinal 246
apDecryptFinal 281
APDecryptInit 247
apDecryptInit 281
APDecryptUpdate 247
apDecryptUpdate 281
APDerivedKeyInfoStruct 221
APDerivedKeyInfoType 221
APDeriveKeyData 248
apDeriveKeyData 281
APDispatchProcPtr() 287
APEncrypt 250
apEncrypt 281
APEncryptFinal 251
apEncryptFinal 281

APEncryptInit 252
apEncryptInit 281
APEncryptUpdate 252
apEncryptUpdate 282
APExportCipherInfo 253
apExportCipherInfo 282
APExportHashInfo 254
apExportHashInfo 282
APExportKeyInfo 255
apExportKeyInfo 282
APExportKeyPairInfo 255
apExportKeyPairInfo 282
APExportMacInfo 256
apExportMACInfo 282
APExportSignInfo 256
apExportSignInfo 282
APExportVerifyInfo 257
apExportVerifyInfo 282
APF_CIPHER 238
APF_HASH 238
APF_HW 238
APF_KEYDERIVE 238
APF_KEYGEN 238
APF_KEYPAIRGEN 238
APF_MAC 238
APF_MP 238
APF_SIGN 238
APF_VERIFY 238
APGenerateKey 258
apGenerateKey 282
APGenerateKeyPair 259
apGenerateKeyPair 283
apGetInfo 283
APGetProviderInfo 259
apGetProviderInfo 283
APHash 260
apHash 283
APHashEnum 232
APHashFinal 261
apHashFinal 283
APHashInfoPtr 222
APHashInfoStruct 222
APHashInfoType 222

446 Exploring Palm OS: Security and Cryptography

APHashInit 262
apHashInit 283
apHashTypeHAVAL 232
apHashTypeMD2 232
apHashTypeMD5 232
apHashTypeNone 232
apHashTypePanama 232
apHashTypeRIPEMD160 232
apHashTypeSHA1 233
apHashTypeSHA256 233
apHashTypeSHA384 233
apHashTypeSHA512 233
apHashTypeTiger 233
apHashTypeUnspecified 233
APHashUpdate 262
apHashUpdate 283
APImportCipherInfo 263
apImportCipherInfo 283
APImportHashInfo 263
apImportHashInfo 283
APImportKeyInfo 264
apImportKeyInfo 284
APImportKeyPairInfo 265
apImportKeyPairInfo 284
APImportMacInfo 265
apImportMACInfo 284
APImportSignInfo 266
apImportSignInfo 284
APImportVerifyInfo 267
apImportVerifyInfo 284
apKeyAgreementTypeDH 232
apKeyAgreementTypeDH2 232
apKeyAgreementTypeLUCDIF 232
apKeyAgreementTypeMQV 232
apKeyAgreementTypeXTRDH 232
APKeyClassEnum 233
apKeyClassPrivate 233
apKeyClassPublic 233
apKeyClassSymmetric 233
apKeyClassUnspecified 233
APKeyDerivationEnum 234
apKeyDerivationTypePKCS12 234
apKeyDerivationTypePKCS5v1 234

apKeyDerivationTypePKCS5v2 234
apKeyDerivationTypePKIX 234
apKeyDerivationTypeTLS 234
apKeyDerivationUnspecified 234
apKeyDerivationUsageEncryption 234
APKeyDerivationUsageEnum 234
apKeyDerivationUsageIV 234
apKeyDerivationUsageMAC 234
apKeyDerivationUsageUnspecified 234
APKeyDerivedKeyInfoPtr 221
APKeyInfoPtr 223
APKeyInfoStruct 223
APKeyInfoType 223
apKeyUsageAll 235
apKeyUsageCertificateSigning 235
apKeyUsageDataEncrypting 235
apKeyUsageEncryption 235
APKeyUsageEnum 235
apKeyUsageKeyEncrypting 235
apKeyUsageMessageIntegrity 235
apKeyUsageSigning 235
apKeyUsageUnspecified 235
apLast 286
APMac 267
apMAC 284
APMACEnum 235
APMacFinal 268
apMACFinal 284
apMACHMAC 235
APMACInfoPtr 225
APMACInfoStruct 225
APMACInfoType 225
APMacInit 269
apMACInit 284
apMACUnspecified 235
APMacUpdate 270
apMACUpdate 285
apModeCounter 236
APModeEnum 236
apModeTypeCBC 236
apModeTypeCBC_CTS 236
apModeTypeCFB 236
apModeTypeECB 236

Exploring Palm OS: Security and Cryptography 447

apModeTypeNone 236
apModeTypeOFB 236
apModeTypeUnspecified 236
apOpen 285
APPaddingEnum 236
apPaddingTypeNone 236
apPaddingTypeOAEP 236
apPaddingTypePKCS1Type1 237
apPaddingTypePKCS1Type2 237
apPaddingTypePKCS5 237
apPaddingTypeSSLv23 237
apPaddingTypeUnspecified 237
Application 287
APProviderContextPtr 225
APProviderContextStruct 225
APProviderContextType 225
APProviderInfoPtr 226
APProviderInfoStruct 226
APProviderInfoType 226
APReleaseCipherInfo 270
apReleaseCipherInfo 285
APReleaseHashInfo 271
apReleaseHashInfo 285
APReleaseKeyInfo 271
apReleaseKeyInfo 285
APReleaseMACInfo 271
apReleaseMACInfo 285
APReleaseSignInfo 272
apReleaseSignInfo 285
APReleaseVerifyInfo 272
apReleaseVerifyInfo 285
APSign 273
apSign 285
APSignFinal 274
apSignFinal 286
APSignInfoPtr 227
APSignInfoStruct 227
APSignInfoType 226
APSignInit 275
apSignInit 286
APSignUpdate 276
apSignUpdate 286
apStatus 286

apSymmetricType3DES_EDE2 230
apSymmetricType3DES_EDE3 230
apSymmetricType3WAY 230
apSymmetricTypeARC4 231
apSymmetricTypeBBS 231
apSymmetricTypeBlowfish 230
apSymmetricTypeCAST128 230
apSymmetricTypeCAST256 231
apSymmetricTypeDES 230
apSymmetricTypeDESX_XDX3 230
apSymmetricTypeDiamond2 230
apSymmetricTypeGOST 230
apSymmetricTypeIDEA 230
apSymmetricTypeMARS 231
apSymmetricTypePanama 231
apSymmetricTypeRC2 230
apSymmetricTypeRC4 230
apSymmetricTypeRC5 230
apSymmetricTypeRC6 230
apSymmetricTypeRijndael 231
apSymmetricTypeSAFER 230
apSymmetricTypeSapphire 231
apSymmetricTypeSEAL 231
apSymmetricTypeSerpent 231
apSymmetricTypeSHARK 230
apSymmetricTypeSkipjack 231
apSymmetricTypeSquare 230
apSymmetricTypeTEA 230
apSymmetricTypeTwofish 231
apSymmetricTypeWAKE 231
APVerify 277
apVerify 286
APVerifyFinal 278
apVerifyFinal 286
APVerifyInfoPtr 228
APVerifyInfoStruct 228
APVerifyInfoType 228
APVerifyInit 279
apVerifyInit 286
APVerifyUpdate 280
apVerifyUpdate 286
apZero 286
azmActionModify 131

448 Exploring Palm OS: Security and Cryptography

AzmActionType 130
AzmAddRule() 134
azmCreator 131
azmErrAlreadyExists 132
azmErrAuthorizationFailed 132
azmErrBackupInProgress 132
azmErrBadParam 132
azmErrInvalidParameter 132
azmErrInvalidReference 133
azmErrInvalidRuleSyntax 133
azmErrInvalidTokenReference 133
azmErrMaxRuleSets 133
azmErrMemory 133
azmErrMgrAlreadyRegistered 133
azmErrMgrNotRegistered 133
azmErrNotFound 133
azmErrNotImplemented 133
azmErrNotOpen 133
azmErrOutOfMemory 133
azmErrRestrictedAPI 133
azmErrStillOpen 133
azmErrTooManyTokensInRule 134
AzmGetSyncBypass() 136
azmInvalidRuleSet 131
azmMaxTokenNodes 131
azmMaxTokensInNode 131
azmMaxTokensInTree 132
AzmNonInteractiveAuthorize() 137
AzmNotificationRuleSetDestroyed 132
AzmNotificationType 130
azmRuleFormatLength 132
azmRuleSetNameMaxLength 132
AzmRuleSetType 131
AzmServiceName 132
AzmSetSyncBypass() 138
azmSyncRuleSet 132

B
BasicConstraints 58

C
CertMgrAddCert() 156
CertMgrCertChainType 142

CertMgrCertElementEnum 142
CertMgrCertFieldEnum 143
CertMgrCertInfoType 143
CertMgrCertSearchEnum 144
CertMgrElementListType 144
CertMgrElementType 145
certMgrErrBackupInProgress 151
certMgrErrBufTooSmall 151
certMgrErrCertNotFound 151
certMgrErrDatabaseFail 151
certMgrErrFieldNotFound 151
certMgrErrInvalidEncoding 151
certMgrErrInvalidParam 151
certMgrErrNotExportable 151
certMgrErrNotImplemented 151
certMgrErrNotRemovable 151
certMgrErrOutOfMemory 152
certMgrErrOutOfResources 152
certMgrErrServiceNotStarted 152
CertMgrExportCert() 158
CertMgrFindCert() 159
CertMgrGetField() 160
CertMgrImportCert() 163
CertMgrReleaseCertInfo() 164
CertMgrRemoveCert() 165
CertMgrServiceName 153
CertMgrVerifyCert() 165
CertMgrVerifyFail 152
CertMgrVerifyFailBasicConstraints 152, 376
CertMgrVerifyFailCriticalExtension 152, 376
CertMgrVerifyFailKeyUsage 152
CertMgrVerifyFailNotAfter 152, 376
CertMgrVerifyFailNotBefore 152, 376
CertMgrVerifyFailSelfSigned 153
CertMgrVerifyFailSignature 153, 376
CertMgrVerifyFailUnknown 153
CertMgrVerifyFailUnknownIssuer 153, 376
CertMgrVerifyFailUnknownSigAlg 153
CertMgrVerifyFailure() 167
CertMgrVerifyResultType 145
CPMAddRandomSeedProcPtr() 288
CPMCallerInfoPtr 244
CPMCallerInfoType 243

Exploring Palm OS: Security and Cryptography 449

cpmCreator 241
CPMDebugOutProcPtr() 288
CPMDispatcherProcPtr() 289
cpmErrAlreadyOpen 239
cpmErrBadData 239
cpmErrBufTooSmall 239
cpmErrKeyExists 240
cpmErrKeyNotFound 240
cpmErrNoAppContext 240
cpmErrNoBaseProvider 240
cpmErrNoProviders 240
cpmErrNotOpen 240
cpmErrOutOfMemory 240
cpmErrOutOfResources 240
cpmErrParamErr 240
cpmErrProviderNotFound 240
cpmErrStillOpen 240
cpmErrUnimplemented 240
cpmErrUnsupported 240
cpmFtrCreator 241
cpmFtrNumVersion 241
CPMGenerateRandomBytesProcPtr() 291
CPMInfoPtr 229
CPMInfoStruct 229
CPMInfoType 229
CPMLibAddRandomSeed() 169
CPMLibClose() 170
CPMLibDecrypt() 170
CPMLibDecryptFinal() 172
CPMLibDecryptInit() 173
CPMLibDecryptUpdate() 174
CPMLibDeriveKeyData() 175
CPMLibEncrypt() 177
CPMLibEncryptFinal() 178
CPMLibEncryptInit() 179
CPMLibEncryptUpdate() 180
CPMLibEnumerateProviders() 181
CPMLibExportCipherInfo() 181
CPMLibExportHashInfo() 182
CPMLibExportKeyInfo() 183
CPMLibExportKeyPairInfo() 184
CPMLibExportMACInfo() 185
CPMLibExportSignInfo() 186

CPMLibExportVerifyInfo() 187
CPMLibGenerateKey() 188
CPMLibGenerateKeyPair() 189
CPMLibGenerateRandomBytes() 190
CPMLibGetInfo() 190
CPMLibGetProviderInfo() 191
CPMLibHash() 191
CPMLibHashFinal() 192
CPMLibHashInit() 193
CPMLibHashUpdate() 194
CPMLibImportCipherInfo() 194
CPMLibImportHashInfo() 195
CPMLibImportKeyInfo() 196
CPMLibImportKeyPairInfo() 197
CPMLibImportMACInfo() 198
CPMLibImportSignInfo() 199
CPMLibImportVerifyInfo() 200
CPMLibMAC() 201
CPMLibMACFinal() 202
CPMLibMACInit() 203
CPMLibMACUpdate() 204
CPMLibOpen() 204
CPMLibReleaseCipherInfo() 205
CPMLibReleaseHashInfo() 206
CPMLibReleaseKeyInfo() 206
CPMLibReleaseMACInfo() 207
CPMLibReleaseSignInfo() 207
CPMLibReleaseVerifyInfo() 207
CPMLibSetDebugLevel() 208
CPMLibSetDefaultProvider() 208
CPMLibSign() 209
CPMLibSignFinal() 210
CPMLibSignInit() 211
CPMLibSignUpdate() 212
CPMLibSleep() 213
CPMLibVerify() 213
CPMLibVerifyFinal() 215
CPMLibVerifyInit() 216
CPMLibVerifyUpdate() 217
CPMLibWake() 217
cpmProviderResourceID 287
cpmProviderResourceType 287
critical extensions 58, 378

450 Exploring Palm OS: Security and Cryptography

E
EncDES() 293
EncDigestMD4() 294
EncDigestMD5() 294
entryNumSecSvcsDecodeLockoutTime 302
entryNumSecSvcsEncodeLockoutTime 302
entryNumSecSvcsGetDeviceLockout 302
entryNumSecSvcsGetDevicePolicies 302
entryNumSecSvcsGetDeviceSetting 302
entryNumSecSvcsSetDeviceLockout 302
entryNumSecSvcsSetDeviceSetting 302
entryNumSignGetCertificateByID 316
entryNumSignGetCertificateByIndex 316
entryNumSignGetDigest 316
entryNumSignGetNumCertificates 316
entryNumSignGetNumSignatures 316
entryNumSignGetOverlayCertIdList 316
entryNumSignGetShLibCertIdList 316
entryNumSignGetSignatureByID 316
entryNumSignGetSignatureByIndex 317
entryNumSignVerifySignatureByID 317
entryNumSignVerifySignatureByIndex 317
extensions 378

certificate 378
critical 58

I
IMPORT_EXPORT_TYPE_DER 237
IMPORT_EXPORT_TYPE_RAW 237
IMPORT_EXPORT_TYPE_XML 237

K
KeyUsage 58
kSslDBName 355
kSslLibCreator 355
kSslLibType 355

L
LOG_ALERT 239
LOG_CRIT 239
LOG_DEBUG 239
LOG_EMERG 239
LOG_ERR 239

LOG_INFO 239
LOG_NOTICE 239
LOG_WARNING 239

P
PwdExists() 296
pwdLength 295
PwdRemove() 296
PwdSet() 297
PwdVerify() 297

S
SecSvcsDecodeLockoutTime() 305
SecSvcsDecodeLockoutTimePtrType 300
SecSvcsDeviceLockoutAfter 304
SecSvcsDeviceLockoutAt 304
SecSvcsDeviceLockoutEnum 304
SecSvcsDeviceLockoutNever 304
SecSvcsDeviceLockoutPowerOff 304
SecSvcsDeviceSecurityHigh 304
SecSvcsDeviceSecurityMedium 304
SecSvcsDeviceSecurityNone 304
SecSvcsDeviceSettingEnum 304
SecSvcsEncodeLockoutTime() 306
SecSvcsEncodeLockoutTimePtrType 300
secSvcsErrBufferTooSmall 302
secSvcsErrInvalid 303
secSvcsErrNoPolicies 303
secSvcsErrNotImplemented 303
secSvcsErrOutOfMemory 303
secSvcsErrServiceNotStarted 303
secSvcsErrUnauthorized 303
SecSvcsGetDeviceLockout() 307
SecSvcsGetDeviceLockoutPtrType 300
SecSvcsGetDevicePolicies() 307
SecSvcsGetDevicePoliciesPtrType 300
SecSvcsGetDeviceSetting() 308
SecSvcsGetDeviceSettingPtrType 301
SecSvcsIsDeviceLocked() 309
SecSvcsIsDeviceLockedPtrType 301
SecSvcsServiceName 303
SecSvcsSetDeviceLocked() 309
SecSvcsSetDeviceLockedPtrType 301

Exploring Palm OS: Security and Cryptography 451

SecSvcsSetDeviceLockout() 310
SecSvcsSetDeviceLockoutPtrType 301
SecSvcsSetDeviceSetting() 310
SecSvcsSetDeviceSettingPtrType 302
SignCertificateBlockType 314
SignCertificateIDType 314
signErrBufferTooSmall 317
signErrDigestMismatch 317
signErrIndexOutOfBounds 317
signErrInvalidCertResource 317
signErrInvalidParams 317
signErrInvalidResourceInDB 317
signErrInvalidSignatureBlock 317
signErrInvalidSignResource 317
signErrNoCertResource 317
signErrNoSignResource 318
signErrNotFound 318
signErrOutOfMemory 318
SignGetCertificateByID() 318
SignGetCertificateByIndex() 320
SignGetDigest() 321
SignGetNumCertificates() 322
SignGetNumSignatures() 323
SignGetNumSignaturesPtrType 315
SignGetOverlayCertIdList() 323
SignGetShLibCertIdList() 324
SignGetShLibCertIdListPtrType 315
SignGetSignatureByID() 326
SignGetSignatureByIndex() 327
SignSignatureBlockType 315
SignVerifySignatureByID() 328
SignVerifySignatureByIDPtrType 316
SignVerifySignatureByIndex() 328
SignVerifySignatureByIndexPtrType 316
sslAlertAccessDenied 350
sslAlertBadCertificate 350
sslAlertBadRecordMac 350
sslAlertCertificateExpired 350
sslAlertCertificateRevoked 350
sslAlertCertificateUnknown 350
sslAlertCloseNotify 350
sslAlertDecodeError 350
sslAlertDecompressionFailure 350

sslAlertDecryptError 350
sslAlertDecryptionFailed 350
sslAlertExportRestricion 350
sslAlertHandshakeFailure 350
sslAlertIllegalParameter 350
sslAlertInsufficientSecurity 350
sslAlertInternalError 351
sslAlertNoCertificate 351
sslAlertNoRenegotiation 351
sslAlertProtocolVersion 351
sslAlertRecordOverflow 351
sslAlertUnexpectedMessage 351
sslAlertUnknownCa 351
sslAlertUnsupportedCertificate 351
sslAlertUserCancled 351
sslArgInfoAlert 345
sslArgInfoCert 346
sslArgInfoHandshake 346
sslArgInfoReadAfter 346
sslArgInfoReadBefore 346
sslArgInfoWriteAfter 346
sslArgInfoWriteBefore 346
sslAttrAppInt32 385
sslAttrAppPtr 386
sslAttrAutoFlush 386
sslAttrBufferedReuse 386
sslAttrCertPeerCert 386
sslAttrCertPeerCertInfoType 386
sslAttrCertPeerCommonName 386
sslAttrCertSslVerify 386
sslAttrCertVerifyChain 386
sslAttrClientCertRequest 386
sslAttrCompat 386
sslAttrCspCipherSuite 386
sslAttrCspCipherSuiteInfo 386
sslAttrCspCipherSuites 386
sslAttrCspSslSession 386
sslAttrDelayReadServerFinished 386
sslAttrDontSendShutdown 386
sslAttrDontWaitForShutdown 386
sslAttrError 386
sslAttrErrorState 386
sslAttrHelloVersion 386

452 Exploring Palm OS: Security and Cryptography

sslAttrHsState 386
SslAttribute 331
sslAttrInfoCallback 386
sslAttrInfoInterest 386
sslAttrIoFlags 386
sslAttrIoSocket 386
sslAttrIoStruct 386
sslAttrIoTimeout 386
sslAttrLastAlert 386
sslAttrLastApi 387
sslAttrLastIo 387
sslAttrLibAppInt32 387
sslAttrLibAppPtr 387
sslAttrLibAutoFlush 387
sslAttrLibBufferedReuse 387
sslAttrLibCompat 387
sslAttrLibDelayReadServerFinished 387
sslAttrLibDontSendShutdown 387
sslAttrLibDontWaitForShutdown 387
sslAttrLibHelloVersion 387
sslAttrLibInfoCallback 387
sslAttrLibInfoInterest 387
sslAttrLibMode 387
sslAttrLibProtocolSupport 387
sslAttrLibProtocolVersion 387
sslAttrLibRbufSize 387
sslAttrLibReadStreaming 387
sslAttrLibVerifyCallback 387
sslAttrLibWbufSize 387
sslAttrMode 387
sslAttrProtocolSupport 387
sslAttrProtocolVersion 387
sslAttrRbufSize 387
sslAttrReadBufPending 387
sslAttrReadOutstanding 387
sslAttrReadRecPending 387
sslAttrReadStreaming 387
sslAttrSessionReused 388
sslAttrStreaming 388
sslAttrVerifyCallback 388
sslAttrWbufSize 388
sslAttrWriteBufPending 388
SslCallback 332

SslCallbackFunc() 373
SslCipherSuiteInfo 333
SslClose() 355
sslCloseDontSendShutdown 339
sslCloseDontWaitForShutdown 339
sslCloseUseDefaultTimeout 339
sslCmdFree 343
sslCmdGet 343
sslCmdInfo 343
sslCmdNew 343
sslCmdRead 343
sslCmdReset 343
sslCmdSet 343
sslCmdVerify 343
sslCmdWrite 343
sslCompat1RecordPerMessage 342
sslCompatAll 342
sslCompatBigRecords 342
sslCompatNetscapeCaDnBug 342
sslCompatReuseCipherBug 342
SslConsume() 356
SslContext 334
SslContextCreate() 357
SslContextDestroy() 357
SslContextGet_AppInt32() 388
SslContextGet_AppPtr() 388
SslContextGet_AutoFlush() 389
SslContextGet_BufferedReuse() 389
SslContextGet_CertChain() 390
SslContextGet_CipherSuite() 390
SslContextGet_CipherSuiteInfo() 391
SslContextGet_CipherSuites() 391
SslContextGet_ClientCertRequest() 392
SslContextGet_Compat() 392
SslContextGet_DelayReadServerFinished() 393
SslContextGet_DontSendShutdown() 393
SslContextGet_DontWaitForShutdown() 393
SslContextGet_Error() 394
SslContextGet_HelloVersion() 394
SslContextGet_HsState() 395
SslContextGet_InfoCallback() 395
SslContextGet_InfoInterest() 396
SslContextGet_IoFlags() 396

Exploring Palm OS: Security and Cryptography 453

SslContextGet_IoStruct() 397
SslContextGet_IoTimeout() 397
SslContextGet_LastAlert() 398
SslContextGet_LastApi() 398
SslContextGet_LastIo() 398
SslContextGet_Mode() 399
SslContextGet_PeerCert() 399
SslContextGet_PeerCertInfoType() 400
SslContextGet_PeerCommonName() 400
SslContextGet_ProtocolSupport() 401
SslContextGet_ProtocolVersion() 402
SslContextGet_RbufSize() 402
SslContextGet_ReadBufPending() 402
SslContextGet_ReadOutstanding() 403
SslContextGet_ReadRecPending() 403
SslContextGet_ReadStreaming() 404
SslContextGet_SessionReused() 404
SslContextGet_Socket() 405
SslContextGet_SslSession() 405
SslContextGet_SslVerify() 405
SslContextGet_Streaming() 406
SslContextGet_VerifyCallback() 407
SslContextGet_WbufSize() 407
SslContextGet_WriteBufPending() 408
SslContextGetLong() 358
SslContextGetPtr() 358
SslContextSet_AppInt32() 408
SslContextSet_AppPtr() 409
SslContextSet_AutoFlush() 409
SslContextSet_BufferedReuse() 410
SslContextSet_CipherSuites() 410
SslContextSet_Compat() 411
SslContextSet_DelayReadServerFinished() 412
SslContextSet_DontSendShutdown() 412
SslContextSet_DontWaitForShutdown() 413
SslContextSet_Error() 413
SslContextSet_HelloVersion() 414
SslContextSet_InfoCallback() 414
SslContextSet_InfoInterest() 415
SslContextSet_IoFlags() 415
SslContextSet_IoStruct() 416
SslContextSet_IoTimeout() 416
SslContextSet_LastAlert() 417

SslContextSet_Mode() 418
SslContextSet_ProtocolSupport() 418
SslContextSet_ProtocolVersion() 419
SslContextSet_RbufSize() 420
SslContextSet_ReadStreaming() 420
SslContextSet_Socket() 421
SslContextSet_SslSession() 421
SslContextSet_VerifyCallback() 422
SslContextSet_WbufSize() 422
SslContextSetLong() 359
SslContextSetPtr() 360
sslCs_ExportCiphers 345
sslCs_RSA_3DES_168_SHA1 344
sslCs_RSA_DES_40_SHA1 344
sslCs_RSA_DES_56_SHA1 344
sslCs_RSA_RC4_128_MD5 344
sslCs_RSA_RC4_128_SHA1 345
sslCs_RSA_RC4_40_MD5 345
sslCs_RSA_RC4_56_SHA1 345
sslCs_StrongCiphers 345
sslCs_WeakExportCiphers 345
sslCsiAuthNULL 344
sslCsiAuthRsa 344
sslCsiCipherNull 344
sslCsiCipherRc4 344
sslCsiDigestMd2 344
sslCsiDigestMd5 344
sslCsiDigestNull 344
sslCsiDigestSha1 344
sslCsiKeyExchNull 344
sslCsiKeyExchRsa 344
sslErrBadArgument 351
sslErrBadDecode 351
sslErrBadLength 351
sslErrBadOption 351
sslErrBadPeerFinished 351
sslErrBadSignature 352
sslErrBufferTooSmall 352
sslErrCbAbort 352
sslErrCert 352
sslErrCertDecodeError 352
sslErrCsp 352
sslErrDivByZero 352

454 Exploring Palm OS: Security and Cryptography

sslErrEof 352
sslErrExtraHandshakeData 352
sslErrFailed 352
sslErrFatalAlert 352
sslErrHandshakeEncoding 352
sslErrHandshakeProtocol 353
sslErrInitNotCalled 353
sslErrInternalError 353
sslErrIo 353
sslErrMissingCipherSuite 353
sslErrMissingProvider 353
sslErrNoDmem 353
sslErrNoMethodSet 353
sslErrNoModInverse 353
sslErrNoRandom 353
sslErrNotFound 353
sslErrNotImplemented 353
sslErrNullArg 353
sslErrOk 354
sslErrOutOfMemory 354
sslErrReadAppData 354
sslErrReallocStaticData 354
sslErrRecordError 354
sslErrUnexpectedRecord 354
sslErrUnsupportedCertType 354
sslErrUnsupportedProtocol 354
sslErrUnsupportedSignatureType 354
sslErrVerifyCallback 354
sslErrWrongMessage 354
sslFlgInfoAlert 347
sslFlgInfoCert 347
sslFlgInfoHandshake 347
sslFlgInfoIo 347
SslFlush() 361
sslHsStateCert 349
sslHsStateCertB 349
sslHsStateCertReq 349
sslHsStateCertReqB 349
sslHsStateCkEx 349
sslHsStateCleanup 349
sslHsStateClientCert 349
sslHsStateClientHello 349
sslHsStateClosed 349

sslHsStateDone 349
sslHsStateFinished 349
sslHsStateFlush 349
sslHsStateGenerateKeys 349
sslHsStateHelloRequest 349
sslHsStateNone 349
sslHsStateReadCcs 349
sslHsStateReadFinished 349
sslHsStateReadFinishedB 349
sslHsStateReadFinishedC 349
sslHsStateServerDone 349
sslHsStateServerHello 349
sslHsStateShutdown 349
sslHsStateSkEx 349
sslHsStateSkExAnonDh 349
sslHsStateSkExDh 350
sslHsStateSkExRsa 350
sslHsStateStart 350
sslHsStateWrite 350
sslHsStateWriteCcs 350
sslHsStateWriteClose 350
sslHsStateWriteFlush 350
SslIoBuf 335
sslLastApiFlush 347
sslLastApiNone 347
sslLastApiOpen 347
sslLastApiRead 348
sslLastApiShutdown 348
sslLastApiWrite 348
sslLastIoNone 348
sslLastIoRead 348
sslLastIoWrite 348
SslLib 336
SslLibClose() 362
SslLibCreate() 362
SslLibDestroy() 363
SslLibGet_AppInt32() 423
SslLibGet_AppPtr() 423
SslLibGet_AutoFlush() 424
SslLibGet_BufferedReuse() 424
SslLibGet_CipherSuites() 425
SslLibGet_Compat() 425
SslLibGet_DelayReadServerFinished() 426

Exploring Palm OS: Security and Cryptography 455

SslLibGet_DontSendShutdown() 426
SslLibGet_DontWaitForShutdown() 427
SslLibGet_HelloVersion() 427
SslLibGet_InfoCallback() 427
SslLibGet_InfoInterest() 428
SslLibGet_Mode() 428
SslLibGet_ProtocolSupport() 429
SslLibGet_ProtocolVersion() 429
SslLibGet_RbufSize() 430
SslLibGet_ReadStreaming() 430
SslLibGet_VerifyCallback() 431
SslLibGet_WbufSize() 431
SslLibGetLong() 363
SslLibGetPtr() 364
SslLibName() 365
SslLibOpen() 365
SslLibSet_AppInt32() 432
SslLibSet_AppPtr() 432
SslLibSet_AutoFlush() 433
SslLibSet_BufferedReuse() 433
SslLibSet_CipherSuites() 434
SslLibSet_Compat() 435
SslLibSet_DelayReadServerFinished() 435
SslLibSet_DontSendShutdown() 436
SslLibSet_DontWaitForShutdown() 436
SslLibSet_HelloVersion() 437
SslLibSet_InfoCallback() 437
SslLibSet_InfoInterest() 438
SslLibSet_Mode() 438
SslLibSet_ProtocolSupport() 439
SslLibSet_ProtocolVersion() 440
SslLibSet_RbufSize() 440
SslLibSet_ReadStreaming() 441
SslLibSet_VerifyCallback() 441
SslLibSet_WbufSize() 442
SslLibSetLong() 365
SslLibSetPtr() 366
SslLibSleep() 367
SslLibWake() 367
sslModeClear 339
sslModeFlush 339

sslModeSsl 339
sslModeSslClient 339
SslOpen() 368
sslOpenBufferedReuse 338
sslOpenDelayHandshake 338
sslOpenModeClear 338
sslOpenModeSsl 338
sslOpenNewConnection 338
sslOpenNoAutoFlush 338
sslOpenUseDefaultTimeout 338
SslPeek() 369
SslRead() 370
SslReceive() 370
SslSend() 372
SslSession 336
SslSocket 337
sslSupport_anonDHKeyExchange 340
sslSupport_Both 340
sslSupport_DHKeyExchange 340
sslSupport_DSASign 341
sslSupport_Ex1024 341
sslSupport_Ex512 341
sslSupport_RSAKeyExchange 341
sslSupport_RSASign 341
sslSupport_SSLv2Header 341
sslSupport_SSLv3 341
sslSupport_SSLv3Protocol 341
sslSupport_TLSv1 341
sslSupport_TLSv1Protocol 341
sslVersionSSLv3 340
sslVersionTLSv1 340
SslWrite() 373
SysAdminToken 92
SysEmptyToken 92
SysLockOutToken 92
SysUserToken 92

V
VerifyResultPtr 229
VerifyResultType 229

456 Exploring Palm OS: Security and Cryptography

	Security and Cryptography
	Table of Contents
	About This Document
	The Exploring Palm OS Series
	Additional Resources
	Changes to This Document
	3113-002
	3113-001

	Concepts
	Palm OS Cobalt Security
	Cryptographic Provider Manager (CPM)
	Provider Information and Manipulation
	Key Functions
	Message Digest Functions
	Encryption and Decryption Functions

	Authentication Manager
	Authentication Tokens
	Token Management Functions
	Using the Authentication Manager
	Creating an Authentication Manager Plug-In
	Manipulating Authentication Manager Plug-Ins

	Authorization Manager
	Certificate Manager
	Certificate Store Operations
	Certificate Verification and Parsing
	Certificate Backup and Restore

	Security Services
	Current Security Setting
	Lockout Settings
	Security Policies

	Signature Verification Library
	Signature Verification

	Signing Code
	What can be Signed
	Signing Algorithm
	Signing Tools
	Signed Code and Shared Libraries
	Signed Code and Overlays

	Securing Databases
	Synchronization and Backup of Secure Databases

	SSL Concepts
	SSL Library Architecture
	Critical Extensions
	Attributes
	Always-Used Attributes
	Debugging and Informational Attributes
	Advanced Protocol Attributes

	Sample Code

	Reference
	Authentication Manager
	Authentication Manager Structures and Types
	AmApplicationCtxType
	AmPluginInfoType
	AmPluginType
	AmTokenAttributesType
	AmTokenInfoType
	AmTokenPropertiesType
	AmTokenType

	Authentication Manager Constants
	Well-Known Tokens
	Miscellaneous Authentication Manager Constants
	Authentication Manager Error Codes
	AmAuthenticationEnum
	AmTokenCacheSettings
	AmTokenEnum
	AmTokenStrength

	Authentication Manager Functions and Macros
	AmAuthenticateToken
	AmCreateToken
	AmDestroyToken
	AmGetPluginInfo
	AmGetPluginReferences
	AmGetTokenBySystemId
	AmGetTokenExtendedInfo
	AmGetTokenInfo
	AmModifyToken
	AmRegisterPlugin
	AmRemovePlugin

	AmPlugin
	AmPlugin Structures and Types
	AmMemHandle
	AmPluginFunctionsType
	AmPluginPrivType
	AmTokenDataType
	AmTokenPrivType

	AmPlugin Constants
	AmCallMode

	AmPlugin Functions and Macros
	AmInitializeUIContext
	AmMemHandleFree
	AmMemHandleLock
	AmMemHandleNew
	AmMemHandleUnlock
	AmReleaseUIContext

	AmPluginCodePrint
	AmPluginCodePrint Structures and Types
	AmPluginCodePrintExtInfoType

	AmPluginSignedCode
	AmPluginSignedCode Structures and Types
	AmPluginSignedCodeExtInfoType

	Authorization Manager
	Authorization Manager Structures and Types
	AzmActionType
	AzmNotificationType
	AzmRuleSetType

	Authorization Manager Constants
	Miscellaneous Authorization Manager Constants
	Authorization Manager Error Codes

	Authorization Manager Functions and Macros
	AzmAddRule
	AzmGetSyncBypass
	AzmNonInteractiveAuthorize
	AzmSetSyncBypass

	Certificate Manager
	Certificate Manager Structures and Types
	CertMgrCertChainType
	CertMgrCertElementEnum
	CertMgrCertFieldEnum
	CertMgrCertInfoType
	CertMgrCertSearchEnum
	CertMgrElementListType
	CertMgrElementType
	CertMgrVerifyResultType

	Certificate Manager Constants
	X509Cert Element Fields
	RSA Element Fields
	RDN Element Fields
	X509Extensions Element Fields
	Data Types
	Certificate Formats
	Certificate Manager Error Codes
	Certificate Verification Failure Codes
	Miscellaneous Certificate Manager Constants

	Certificate Manager Element Field Macros
	apCertMgrElementFieldRDNOIDN
	apCertMgrElementFieldRDNValueN
	apCertMgrElementFieldX509ExBytesN
	apCertMgrElementFieldX509ExCriticalN
	apCertMgrElementFieldX509ExOIDN

	Certificate Manager Functions and Macros
	CertMgrAddCert
	CertMgrExportCert
	CertMgrFindCert
	CertMgrGetField
	CertMgrImportCert
	CertMgrReleaseCertInfo
	CertMgrRemoveCert
	CertMgrVerifyCert
	CertMgrVerifyFailure

	CPM Library ARM Interface
	CPM Library ARM Interface Functions and Macros
	CPMLibAddRandomSeed
	CPMLibClose
	CPMLibDecrypt
	CPMLibDecryptFinal
	CPMLibDecryptInit
	CPMLibDecryptUpdate
	CPMLibDeriveKeyData
	CPMLibEncrypt
	CPMLibEncryptFinal
	CPMLibEncryptInit
	CPMLibEncryptUpdate
	CPMLibEnumerateProviders
	CPMLibExportCipherInfo
	CPMLibExportHashInfo
	CPMLibExportKeyInfo
	CPMLibExportKeyPairInfo
	CPMLibExportMACInfo
	CPMLibExportSignInfo
	CPMLibExportVerifyInfo
	CPMLibGenerateKey
	CPMLibGenerateKeyPair
	CPMLibGenerateRandomBytes
	CPMLibGetInfo
	CPMLibGetProviderInfo
	CPMLibHash
	CPMLibHashFinal
	CPMLibHashInit
	CPMLibHashUpdate
	CPMLibImportCipherInfo
	CPMLibImportHashInfo
	CPMLibImportKeyInfo
	CPMLibImportKeyPairInfo
	CPMLibImportMACInfo
	CPMLibImportSignInfo
	CPMLibImportVerifyInfo
	CPMLibMAC
	CPMLibMACFinal
	CPMLibMACInit
	CPMLibMACUpdate
	CPMLibOpen
	CPMLibReleaseCipherInfo
	CPMLibReleaseHashInfo
	CPMLibReleaseKeyInfo
	CPMLibReleaseMACInfo
	CPMLibReleaseSignInfo
	CPMLibReleaseVerifyInfo
	CPMLibSetDebugLevel
	CPMLibSetDefaultProvider
	CPMLibSign
	CPMLibSignFinal
	CPMLibSignInit
	CPMLibSignUpdate
	CPMLibSleep
	CPMLibVerify
	CPMLibVerifyFinal
	CPMLibVerifyInit
	CPMLibVerifyUpdate
	CPMLibWake

	CPM Library Common Definitions
	CPM Library Structures and Types
	APCipherInfoType
	APDerivedKeyInfoType
	APHashInfoType
	APKeyInfoType
	APMACInfoType
	APProviderContextType
	APProviderInfoType
	APSignInfoType
	APVerifyInfoType
	CPMInfoType
	VerifyResultType

	CPM Library Constants
	APAlgorithmEnum
	APHashEnum
	APKeyClassEnum
	APKeyDerivationEnum
	APKeyDerivationUsageEnum
	APKeyUsageEnum
	APMACEnum
	APModeEnum
	APPaddingEnum
	Import/Export Types
	Cryptographic Provider Functionality Flags
	Debug Output Levels
	CPM Library Error Codes
	Miscellaneous CPM Library Constants

	CPM Library Provider
	CPM Library Provider Structures and Types
	CPMCallerInfoType

	CPM Library Provider Function Argument Structures
	APCmdPBType
	APDecrypt
	APDecryptFinal
	APDecryptInit
	APDecryptUpdate
	APDeriveKeyData
	APEncrypt
	APEncryptFinal
	APEncryptInit
	APEncryptUpdate
	APExportCipherInfo
	APExportHashInfo
	APExportKeyInfo
	APExportKeyPairInfo
	APExportMacInfo
	APExportSignInfo
	APExportVerifyInfo
	APGenerateKey
	APGenerateKeyPair
	APGetProviderInfo
	APHash
	APHashFinal
	APHashInit
	APHashUpdate
	APImportCipherInfo
	APImportHashInfo
	APImportKeyInfo
	APImportKeyPairInfo
	APImportMacInfo
	APImportSignInfo
	APImportVerifyInfo
	APMac
	APMacFinal
	APMacInit
	APMacUpdate
	APReleaseCipherInfo
	APReleaseHashInfo
	APReleaseKeyInfo
	APReleaseMACInfo
	APReleaseSignInfo
	APReleaseVerifyInfo
	APSign
	APSignFinal
	APSignInit
	APSignUpdate
	APVerify
	APVerifyFinal
	APVerifyInit
	APVerifyUpdate

	CPM Library Provider Constants
	APCmdType
	Miscellaneous CPM Library Provider Constants

	Application-Defined Functions
	APDispatchProcPtr
	CPMAddRandomSeedProcPtr
	CPMDebugOutProcPtr
	CPMDispatcherProcPtr
	CPMGenerateRandomBytesProcPtr

	Encrypt
	Encrypt Functions and Macros
	EncDES
	EncDigestMD4
	EncDigestMD5

	Password
	Password Constants
	Miscellaneous Password Constants

	Password Functions and Macros
	PwdExists
	PwdRemove
	PwdSet
	PwdVerify

	Security Services
	Security Services Structures and Types
	SecSvcsDecodeLockoutTimePtrType
	SecSvcsEncodeLockoutTimePtrType
	SecSvcsGetDeviceLockoutPtrType
	SecSvcsGetDevicePoliciesPtrType
	SecSvcsGetDeviceSettingPtrType
	SecSvcsIsDeviceLockedPtrType
	SecSvcsSetDeviceLockedPtrType
	SecSvcsSetDeviceLockoutPtrType
	SecSvcsSetDeviceSettingPtrType

	Security Services Constants
	Security Services Entry Points
	Security Services Errors
	Miscellaneous Security Services Constants
	SecSvcsDeviceLockoutEnum
	SecSvcsDeviceSettingEnum

	Security Services Functions and Macros
	SecSvcsDecodeLockoutTime
	SecSvcsEncodeLockoutTime
	SecSvcsGetDeviceLockout
	SecSvcsGetDevicePolicies
	SecSvcsGetDeviceSetting
	SecSvcsIsDeviceLocked
	SecSvcsSetDeviceLocked
	SecSvcsSetDeviceLockout
	SecSvcsSetDeviceSetting

	Signature Verification Library
	Signature Verification Library Structures and Types
	SignCertificateBlockType
	SignCertificateIDType
	SignSignatureBlockType
	SignGetNumSignaturesPtrType
	SignGetShLibCertIdListPtrType
	SignVerifySignatureByIDPtrType
	SignVerifySignatureByIndexPtrType

	Signature Verification Library Constants
	Signature Verification Library Entry Points
	Signature Verification Library Errors

	Signature Verification Library Functions and Macros
	SignGetCertificateByID
	SignGetCertificateByIndex
	SignGetDigest
	SignGetNumCertificates
	SignGetNumSignatures
	SignGetOverlayCertIdList
	SignGetShLibCertIdList
	SignGetSignatureByID
	SignGetSignatureByIndex
	SignVerifySignatureByID
	SignVerifySignatureByIndex

	SSL Library
	SSL Library Structures and Types
	SslAttribute
	SslCallback
	SslCipherSuiteInfo
	SslContext
	SslIoBuf
	SslLib
	SslSession
	SslSocket

	SSL Library Constants
	SSL Open Mode Flags
	SSL Close Mode Flags
	Mode Attribute Values
	Protocol Versions
	Protocol Variants
	Compatibility Flags
	SSL Callback Commands
	Cipher Suite Info Constants
	Cipher Suites
	Ciphers
	Info Callbacks
	InfoInterest Values
	LastApi Attribute Values
	LastIO Attribute Values
	SSL Protocol States
	SSL Server Alerts
	SSL Library Errors
	Miscellaneous SSL Library Constants

	SSL Library Functions
	SslClose
	SslConsume
	SslContextCreate
	SslContextDestroy
	SslContextGetLong
	SslContextGetPtr
	SslContextSetLong
	SslContextSetPtr
	SslFlush
	SslLibClose
	SslLibCreate
	SslLibDestroy
	SslLibGetLong
	SslLibGetPtr
	SslLibName
	SslLibOpen
	SslLibSetLong
	SslLibSetPtr
	SslLibSleep
	SslLibWake
	SslOpen
	SslPeek
	SslRead
	SslReceive
	SslSend
	SslWrite

	Application-Defined Functions
	SslCallbackFunc

	SSL Library Macros
	SSL Library Macro Constants
	Attribute Values

	SSL Library Macros
	SslContextGet_AppInt32
	SslContextGet_AppPtr
	SslContextGet_AutoFlush
	SslContextGet_BufferedReuse
	SslContextGet_CertChain
	SslContextGet_CipherSuite
	SslContextGet_CipherSuiteInfo
	SslContextGet_CipherSuites
	SslContextGet_ClientCertRequest
	SslContextGet_Compat
	SslContextGet_DelayReadServerFinished
	SslContextGet_DontSendShutdown
	SslContextGet_DontWaitForShutdown
	SslContextGet_Error
	SslContextGet_HelloVersion
	SslContextGet_HsState
	SslContextGet_InfoCallback
	SslContextGet_InfoInterest
	SslContextGet_IoFlags
	SslContextGet_IoStruct
	SslContextGet_IoTimeout
	SslContextGet_LastAlert
	SslContextGet_LastApi
	SslContextGet_LastIo
	SslContextGet_Mode
	SslContextGet_PeerCert
	SslContextGet_PeerCertInfoType
	SslContextGet_PeerCommonName
	SslContextGet_ProtocolSupport
	SslContextGet_ProtocolVersion
	SslContextGet_RbufSize
	SslContextGet_ReadBufPending
	SslContextGet_ReadOutstanding
	SslContextGet_ReadRecPending
	SslContextGet_ReadStreaming
	SslContextGet_SessionReused
	SslContextGet_Socket
	SslContextGet_SslSession
	SslContextGet_SslVerify
	SslContextGet_Streaming
	SslContextGet_VerifyCallback
	SslContextGet_WbufSize
	SslContextGet_WriteBufPending
	SslContextSet_AppInt32
	SslContextSet_AppPtr
	SslContextSet_AutoFlush
	SslContextSet_BufferedReuse
	SslContextSet_CipherSuites
	SslContextSet_Compat
	SslContextSet_DelayReadServerFinished
	SslContextSet_DontSendShutdown
	SslContextSet_DontWaitForShutdown
	SslContextSet_Error
	SslContextSet_HelloVersion
	SslContextSet_InfoCallback
	SslContextSet_InfoInterest
	SslContextSet_IoFlags
	SslContextSet_IoStruct
	SslContextSet_IoTimeout
	SslContextSet_LastAlert
	SslContextSet_Mode
	SslContextSet_ProtocolSupport
	SslContextSet_ProtocolVersion
	SslContextSet_RbufSize
	SslContextSet_ReadStreaming
	SslContextSet_Socket
	SslContextSet_SslSession
	SslContextSet_VerifyCallback
	SslContextSet_WbufSize
	SslLibGet_AppInt32
	SslLibGet_AppPtr
	SslLibGet_AutoFlush
	SslLibGet_BufferedReuse
	SslLibGet_CipherSuites
	SslLibGet_Compat
	SslLibGet_DelayReadServerFinished
	SslLibGet_DontSendShutdown
	SslLibGet_DontWaitForShutdown
	SslLibGet_HelloVersion
	SslLibGet_InfoCallback
	SslLibGet_InfoInterest
	SslLibGet_Mode
	SslLibGet_ProtocolSupport
	SslLibGet_ProtocolVersion
	SslLibGet_RbufSize
	SslLibGet_ReadStreaming
	SslLibGet_VerifyCallback
	SslLibGet_WbufSize
	SslLibSet_AppInt32
	SslLibSet_AppPtr
	SslLibSet_AutoFlush
	SslLibSet_BufferedReuse
	SslLibSet_CipherSuites
	SslLibSet_Compat
	SslLibSet_DelayReadServerFinished
	SslLibSet_DontSendShutdown
	SslLibSet_DontWaitForShutdown
	SslLibSet_HelloVersion
	SslLibSet_InfoCallback
	SslLibSet_InfoInterest
	SslLibSet_Mode
	SslLibSet_ProtocolSupport
	SslLibSet_ProtocolVersion
	SslLibSet_RbufSize
	SslLibSet_ReadStreaming
	SslLibSet_VerifyCallback
	SslLibSet_WbufSize

	Index
	A
	B
	C
	E
	I
	K
	L
	P
	S
	V

