7N\
palmsource
) g

Multimedia

Exploring Palm OS®

Written by Christopher Bey
Edited by Jean Ostrem
Technical assistance from Eric Moon and Marco Nelissen

Copyright © 1996-2004, PalmSource, Inc. and its affiliates. All rights reserved. This technical documentation contains
confidential and proprietary information of PalmSource, Inc. (“PalmSource”), and is provided to the licensee (“you”)
under the terms of a Nondisclosure Agreement, Product Development Kit license, Software Development Kit license
or similar agreement between you and PalmSource. You must use commercially reasonable efforts to maintain the
confidentiality of this technical documentation. You may print and copy this technical documentation solely for the
permitted uses specified in your agreement with PalmSource. In addition, you may make up to two (2) copies of this
technical documentation for archival and backup purposes. All copies of this technical documentation remain the
property of PalmSource, and you agree to return or destroy them at PalmSource’s written request. Except for the
foregoing or as authorized in your agreement with PalmSource, you may not copy or distribute any part of this
technical documentation in any form or by any means without express written consent from PalmSource, Inc., and
you may not modify this technical documentation or make any derivative work of it (such as a translation,
localization, transformation or adaptation) without express written consent from PalmSource.

PalmSource, Inc. reserves the right to revise this technical documentation from time to time, and is not obligated to
notify you of any revisions.

THIS TECHNICAL DOCUMENTATION IS PROVIDED ON AN “AS IS” BASIS. NEITHER PALMSOURCE NOR ITS
SUPPLIERS MAKES, AND EACH OF THEM EXPRESSLY EXCLUDES AND DISCLAIMS TO THE FULL EXTENT
ALLOWED BY APPLICABLE LAW, ANY REPRESENTATIONS OR WARRANTIES REGARDING THIS TECHNICAL
DOCUMENTATION, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION
ANY WARRANTIES IMPLIED BY ANY COURSE OF DEALING OR COURSE OF PERFORMANCE AND ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT,
ACCURACY, AND SATISFACTORY QUALITY. PALMSOURCE AND ITS SUPPLIERS MAKE NO
REPRESENTATIONS OR WARRANTIES THAT THIS TECHNICAL DOCUMENTATION IS FREE OF ERRORS OR IS
SUITABLE FOR YOUR USE. TO THE FULL EXTENT ALLOWED BY APPLICABLE LAW, PALMSOURCE, INC. ALSO
EXCLUDES FOR ITSELF AND ITS SUPPLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR TORT
(INCLUDING NEGLIGENCE), FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL,
EXEMPLARY OR PUNITIVE DAMAGES OF ANY KIND ARISING OUT OF OR IN ANY WAY RELATED TO THIS
TECHNICAL DOCUMENTATION, INCLUDING WITHOUT LIMITATION DAMAGES FOR LOST REVENUE OR
PROFITS, LOST BUSINESS, LOST GOODWILL, LOST INFORMATION OR DATA, BUSINESS INTERRUPTION,
SERVICES STOPPAGE, IMPAIRMENT OF OTHER GOODS, COSTS OF PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES, OR OTHER FINANCIAL LOSS, EVEN IF PALMSOURCE, INC. OR ITS SUPPLIERS HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR IF SUCH DAMAGES COULD HAVE BEEN
REASONABLY FORESEEN.

PalmSource, Palm OS, and certain other trademarks and logos are trademarks or registered trademarks of
PalmSource, Inc. or its affiliates in the United States, France, Germany, Japan, the United Kingdom, and other
countries. These marks may not be used in connection with any product or service that does not belong to
PalmSource, Inc. (except as expressly permitted by a license with PalmSource, Inc.), in any manner that is likely to
cause confusion among customers, or in any manner that disparages or discredits PalmSource, Inc., its licensor, its
subsidiaries, or affiliates. All other product and brand names may be trademarks or registered trademarks of their
respective owners.

IF THIS TECHNICAL DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE SOFTWARE AND OTHER
DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT TO THE LICENSE AGREEMENTS
ACCOMPANYING THE SOFTWARE AND OTHER DOCUMENTATION.

Exploring Palm OS: Multimedia PalmSource, Inc.
Document Number 3112-002 1240 Crossman Avenue
November 9, 2004 Sunnyvale, CA 94089
For the latest version of this document, visit USA

http://www.palmos.com/dev/support/docs/. www.palmsource.com

http://www.palmos.com/dev/support/docs/
http://www.palmsource.com

Table of Contents

About This Document Xi
Who Should Read ThisBook xi
What This Book Contains xi
Changes to ThisBook xii
The Exploring Palm OS Series. Xiii
Additional Resources xiii

Part I: Sound Manager

1 Sound Manager 3
SimpleSoundo 0oL L 3
Sampled Soundo o000 0oL 4
Simple vs. Sampled Sound.00 L 4
Sound Preferenceso L 5
Standard MIDI Files. 6
Creating a Sound Streem 9
Summary of Sound Manager. 10

2 Sound Manager Reference 11
Sound Manager Structuresand Types 11

SndCallbackInfoType. 11
SndCommandType 12
SndMidiListltemType 12
SndMidiRecHdrType 13
SndPtro 14
SndSampleType 14
SndSmfCallbacksType 14
SndSmfChanRangeType 15
SndSmfOptionsType 15
SndStreamRef 000000 16
Sound Manager Constants. 17
audio_type_to 17
Simple Sound Amplitudeso L. 18

Exploring Palm OS: Multimedia iii

SndCmdIDTypeo 18

SndFormatType 19
sndMidiNameLength 20
sndMidiRecHdrSize 20
sndMidiRecSignature 0L oL 20
sndSmfPlayAllMilliSec 20
SndSmfCmdEnum L. 21
SndStreamMode L. ..o L L. 21
SndStreamWidth 21
SndSysBeepType 22
Sound ErrorCodes 23
Sound Resource Playback Flags 24
Sound Stream Feature Constants 24
Stereo PanConstants 24
Volume Constants 25
Sound Manager Functions and Macros 26
SndCreateMidilist 26
SndDoCmd 26
SndGetDefaultVolume 29
SndPlayResource. 29
SndPlaySmfo 000 31
SndPlaySmfResource L. 33
SndPlaySystemSound. 0oL L 34
SndSetDefaultVolume. 35
SndStreamCreate. 36
SndStreamCreateExtended 39
SndStreamDelete., 41
SndStreamGetPan L L. 41
SndStreamGetVolume. L L. 42
SndStreamPause 42
SndStreamSetPan L. 43
SndStreamSetVolume L. 44
SndStreamStart 45
SndStreamStopo 00000 oL 46
Application-Defined Functions 46

iv Exploring Palm OS: Multimedia

SndBlockingFuncType 46

SndComplFuncType 47
SndStreamBufferCallback 48
SndStreamVariableBufferCallback 49

Part Il: Multimedia Library

3 Multimedia Applications 53
Overviewo 0000 53
Sessions. L0 54
Sourceso Lo 55
Destinations. 55
Streams.o 55
Trackso o000 oo 56
Codecso Lo 56
Formats.o 57
PropertySets00 58
Using the Multimedia Library 58
Working with Sessions0 0L 59
Working with Properties 60
Working with Enumerations. 61
Working with the URL Scheme. 62
Example Playback Session 63
Creating the Session 64
Adding Source Content 64
Adding Trackso 64
Finalizing the Session. 65
Playing the File 65
Example Recording Session 66
4 Multimedia Library Definitions 69
Multimedia Definitions Structures and Types. 69
MMCodecClassID 69
MMDestIDo 69

Exploring Palm OS: Multimedia v

MMEvent. oo 70

MMFilterID 70
MMSessionClassID 70
MMSessionlDo Lo 70
MMSourcelD oL L Lo 70
MMStreamID L. 71
MMTrackIDo 71
Multimedia Definitions Constants 71
Complex Property Values 71
Enumerations oL L. 71
Miscellaneous Constants 72
MMPropInfoType 72
MMSeekOrigin00 73
MMTypeCode 73
Object Property Key Bases 74
PropertyBaseo 75
Property Key Base Values 75
Session EventCauses 76
Session Notifications 77
Multimedia Definitions Functions and Macros 77
MM_TYPE_CODE 77

5 Multimedia Codecs 79
Multimedia Codec Constants. 79
Codec Class Properties 79
Multimedia Codec Functions and Macros 80
MMCodecClassEnumerate 80
MMFileFormatEnumerate. 81

6 Multimedia Formats 83
Multimedia Format Structures and Types 83
MMFormato L. 83
MMFormatType L. 83
Multimedia Format Constants 84
Format Key Constants 84
fmtAudioChannelUsage 86

vi Exploring Palm OS: Multimedia

fmtMPEG12AudioChannelMode 87

fmtMPEG12AudioEmphasis 87
fmtMPEG12AudioLayer 88
fmtMPEG12AudioRevision 88
tmtMPEG4AudioObjectProfile 88
fmtMPEG4AudioTFCoding 90
fmtRawAudioType. 90
fmtVideoOrientation 91
formatFamily 91
formatTypeo 93
Miscellaneous Constants 98
Multimedia Format Functions and Macros. 98
_MMFORMATTYPE 98
MMFormatCopy 99
MMFormatCreate 99
MMFormatDelete 100
MMFormatEnumerateTerms. 100
MMFormatGetTerm 101
MMFormatGetTermInt32 102
MMPFormatGetTermType 103
MMPFormatGetType 103
MMFormatRawAudio 104
MMFormatRawStillo 0oL 104
MMFormatRawVideo.o 104
MMFormatsCompatible. 105
MMFormatSetTerm. 105
MMFormatSetTermInt32 106
MMFormatSetType. 107
7 Multimedia Properties 109
Multimedia Property Functions and Macros 109
MMPropertyEnumerate. L. 109
MMPropertyGet00 0L 110
MMPropertylnfo.o 111
MMPropertySet00 L0 113

Exploring Palm OS: Multimedia vii

8 Multimedia Sessions 115

Multimedia Session Structures and Types 115
MMSessionEvent 115
Multimedia Session Constants 116
Camera Flash Mode Values 116
Camera FocusValues 117
Camera Property Key Constants 117
Camera White Balance Values 118
Default SessionClassIDs 118
Default URLs 119
Destination Property Key Constants 120
ISO Sensitivity Value 120
Miscellaneous Session Constants 120
MMSessionControlOpcode 121
MMSessionState L L. L L. 121
SessionClassConstants. 122
Session Class Properties 122
Session Creation Constants 123
Session Default Property Key Constants 123
Session Property Key Constants 124
Source Property Key Constants 125
Stream ContentKeys 126
Stream Property Key Constants 127
Multimedia Session LaunchCodes 127
sysAppLaunchCmdMultimediaEvent 127
Multimedia Session Functions and Macros. 128
MMDestEnumerateStreams 128
MMDestFinalize 129
MMSessionAcquireOwnership. 129
MMSessionAddDefaultTracks 130
MMSessionAddDest 131
MMSessionAddSource L. L. 132
MMSessionAddTrack 132
MMSessionClassEnumerate 133
MMSessionControl 134

viii

Exploring Palm OS: Multimedia

MMSessionCreate 135

MMSessionDelete 135
MMSessionEnumerate 136
MMSessionEnumerateDests 137
MMSessionEnumerateSources 137
MMSessionEnumerateTracks 138
MMSessionFinalize. 139
MMSessionGetState L. ... L L L L. 140
MMSessionRegisterCallback. 140
MMSessionRegisterLaunch 141
MMSessionReleaseOwnership 142
MMSessionRemoveAll 142
MMSessionRemoveTracks. 143
MMSessionSeek L. L. 144
MMSessionUnregisterCallback. 145
MMSessionUnregisterLaunch 145
MMSourceEnumerateStreams 146
MMSourceFinalize 147
Application-Defined Functions 147
MMSessionCallbackFn 147

9 Multimedia Tracks 149
Multimedia Track Structures and Types 149
FilterCallbackInfo 149
Multimedia Track Constants 150
Track Property Key Constants 150
Multimedia Track Functions and Macros. 151
MMTrackInsertCallbackFilter 151
MMTrackRemoveCallbackFilter 152
Application-Defined Functions 153
MMFilterCallbackFn 153
Glossary 155
Index 157

Exploring Palm OS: Multimedia ix

x Exploring Palm OS: Multimedia

About This
Document

This book describes the portions of Palm OS® that provide
multimedia capabilities. This includes the Sound Manager and the
Multimedia Library.

IMPORTANT: The Exploring Palm OS series is intended for
developers creating native applications for Palm OS Cobalt. If you
are interested in developing applications that work through PACE
and that also run on earlier Palm OS releases, read the latest
versions of the Palm OS Programmer’s APl Reference and Palm
OS Programmer’s Companion instead.

Who Should Read This Book

You should read this book if you are a Palm OS software developer
and you want to do one of the following:

¢ Play simple, monophonic sounds such as beeps or alerts in
an application.

* Play or record stereo, sampled sounds in an application.

¢ Write an application that plays or records audio-visual
media.

Beginning Palm OS developers may want to delay reading this book
until they gain a better understanding of the fundamentals of Palm
OS application development. Instead, consider reading Exploring
Palm OS: Programming Basics to gain a good understanding of event
management and Exploring Palm OS: User Interface to learn about
events generated by standard UI controls. Come back to this book
when you find you need to use the sound and multimedia services.

What This Book Contains

This book contains the following information:

Exploring Palm OS: Multimedia xi

About This Document

Changes to This Book

e Part [, “Sound Manager,” contains information on the Sound

Manager:

Chapter 1, “Sound Manager,” on page 3, describes how to

use the Sound Manager to play and record sound.

Chapter 2, “Sound Manager Reference,” on page 11,
describes the Sound Manager API.

e PartIl, “Multimedia Library,” contains information on the

Multimedia Library:

Chapter 3, “Multimedia Applications,” on page 53,
describes how to use the Multimedia Library to play and
record multimedia content.

Chapter 4, “Multimedia Library Definitions,” on page 69,
describes common Multimedia Library API elements.

Chapter 5, “Multimedia Codecs,” on page 79, describes
the Multimedia Library API related to codecs.

Chapter 6, “Multimedia Formats,” on page 83, describes
the Multimedia Library API related to formats.

Chapter 7, “Multimedia Properties,” on page 109,
describes the Multimedia Library API related to
properties.

Chapter 8, “Multimedia Sessions,” on page 115, describes
the Multimedia Library API related to sessions.

Chapter 9, “Multimedia Tracks,” on page 149, describes
the Multimedia Library API related to tracks.

* “Glossary” on page 155, is a glossary of multimedia terms.

Changes to This Book
3112-002

¢ Minor bug fixes.
3112-001

¢ Initial version.

Xii Exploring Palm OS: Multimedia

About This Document
Additional Resources

The Exploring Palm OS Series

This book is a part of the Exploring Palm OS series. Together, the
books in this series document and explain how to use the APIs
exposed to third-party developers by the fully ARM-native versions
of Palm OS, beginning with Palm OS Cobalt. Each of the books in
the Exploring Palm OS series explains one aspect of the Palm
operating system and contains both conceptual and reference
documentation for the pertinent technology.

As of this writing, the complete Exploring Palm OS series consists of
the following titles:

* Exploring Palm OS: Programming Basics

* Exploring Palm OS: Memory, Databases, and Files
* Exploring Palm OS: User Interface

* Exploring Palm OS: User Interface Guidelines (coming soon)
* Exploring Palm OS: System Management

* Exploring Palm OS: Text and Localization

* Exploring Palm OS: Input Services

* Exploring Palm OS: High-Level Communications

* Exploring Palm OS: Low-Level Communications

* Exploring Palm OS: Telephony and SMS

* Exploring Palm OS: Multimedia

* Exploring Palm OS: Security and Cryptography

» Exploring Palm OS: Creating a FEP (coming soon)
* Exploring Palm OS: Application Porting Guide

Additional Resources

¢ Documentation

PalmSource publishes its latest versions of this and other
documents for Palm OS developers at

http:/ /www.palmos.com/dev/support/docs/

Exploring Palm OS: Multimedia xiii

http://www.palmos.com/dev/support/docs/

About This Document
Additional Resources

¢ Training

PalmSource and its partners host training classes for Palm OS
developers. For topics and schedules, check

http://www.palmos.com /dev/training
* Knowledge Base

The Knowledge Base is a fast, web-based database of
technical information. Search for frequently asked questions
(FAQs), sample code, white papers, and the development
documentation at

http://www.palmos.com/dev/support/kb/

Xiv Exploring Palm OS: Multimedia

http://www.palmos.com/dev/training
http://www.palmos.com/dev/support/kb/

7N\
palmsource
) g

Part |
Sound Manager

The Sound Manager plays and records sound.

Sound Manager

Sound Manager Reference

Sound Manager

The Palm OS® Sound Manager controls two independent sound
facilities:

* Simple sound: Single voice, monophonic, square-wave
sound synthesis, useful for system beeps and the like. This
works on all version of Palm OS.

¢ Sampled sound: Stereo, multi-format, sampled data
recording and playback. Sampled sounds can be generated
programmatically or read from a sound file.

These facilities are independent of each other. Although you can
play a simple sound and a sampled sound at the same time, their
respective APIs have no effect on each other. For example, you can’t
use the sampled sound volume-setting function
(SndStreamSetVolume ()) to change the volume of a simple

sound.

The following sections take a look at the concepts introduced by the
Sound Manager. For detailed API descriptions, and for more
guidance with regard to the sampled data concepts presented here,
see Chapter 2, “Sound Manager Reference.”

Note that the Multimedia Library documented in Part II,
“Multimedia Library,” can also play sounds. Compared to the
Sound Manager, the Multimedia Library is more complex to use,
but provides more robust features and supports more sound
formats, such as MP3, which is not supported by the current Sound
Manager implementation. The Sound Manager is probably better to
use if you want to play short or frequent sounds with a lightweight
facility.

Simple Sound

There are three ways to play a simple sound:

Exploring Palm OS: Multimedia 3

Sound Manager
Sampled Sound

* You can play a single tone of a given pitch, amplitude, and

duration by calling SndDoCmd ().

* You can play a pre-defined system sound (“Information,”
“Warning,” “Error,” and so on) with
SndPlaySystemSound().

* You can play a tune by passing in a Level 0 Standard MIDI
File (SMF) through the SndPlaySmf () function. For
example, the alarm sounds used in the built-in Date Book
application are MIDI records stored in the System MIDI
database. For information on MIDI and the SMF format, go
to the official MIDI website, http://www.midi.org/ .

Sampled Sound

In the sampled sound facilities, there are two fundamental
functions:

* SndStreamCreate () opens and configures a new sampled
sound “stream” from/into which you record/playback
buffers of “raw” data. An alternate function,
SndStreamCreateExtended (), lets you use variable-
sized buffers.

* SndPlayResource () plays sound data that’s read from a
(formatted) sound file. The function configures the playback
stream for you, based on the format information in the sound
file header. Currently, only uncompressed WAV and IMA
ADPCM WAV formats are recognized. (Note that IMA
ADPCM is also known as DVI ADPCM).
SndPlayResource() is only used to play back sound; it
can’t be used for recording.

The Sound Manager also provides functions that let you set the

volume (SndStreamSetVolume ()) and stereo panning
(SndstreamSetPan ()) for individual recording and playback

streams.

Simple vs. Sampled Sound

Comparing the two facilities, simple sound is easy to understand
and requires very little programming: In most cases, you load up a
structure, call a function, and out pops a beep. Unfortunately, the

4 Exploring Palm OS: Multimedia

http://www.midi.org/

Sound Manager
Sound Preferences

sound itself is primitive. (An example of simple sound
programming is given in “Sound Preferences,” below.)

Sampled sound, on the other hand, is (or can be) much more
satisfying, but requires more planning than simple sound. How
much more depends on what you're doing. Playing samples from a
sound file isn’t much more difficult than playing a simple sound,
but you have to supply a sound file. Generating samples
programmatically—and recording sound—requires more work: You
have to implement a callback function that knows something about
sound data.

IMPORTANT: One significant difference between simple
sounds and sampled sounds is that they use different volume
scales: Simple sound volumes are in the range [0, 64]; sampled
sound volumes are in the range [0, 1024].

Sound Preferences

If you're adding short, “informative” sounds to your application,
such as system beeps, alarms, and the like, you should first consider
using the (simple) system sounds that are defined by Palm OS in the
SndSysBeepType enum and played by

SndPlaySystemSound ().

If you want to create your own system-like sounds, you should at
least respect the user’s preferences settings with regard to sound
volume. There are three sound preference constants:

* prefSysSoundVolume is the default system volume.
* prefGameSoundVolume is used for game sounds.
e prefAlarmSoundVolume is used for alarms.

To apply a sound preference setting to a simple sound volume, you
have to retrieve the setting and apply it yourself. For example, in
Listing 1.1 we retrieve the alarm sound and use it to set the volume
of a simple sound.

Exploring Palm OS: Multimedia 5

Sound Manager
Standard MIDI Files

Listing 1.1 Playing a simple sound with the alarm volume

// Create a ‘sound command’ structure. This will encode the parameters of the
// tone we want to generate.
SndCommandType sndCommand;

// Ask for the ‘play a tone’ command.
sndCommand.cmd = sndCmdFregDurationAmp;

// Set the frequency and duration.
sndCommand.paraml = 1760;
sndCommand.param2 = 500;

// Now get the alarm volume and set it in the struct.
sndCommand.param3 = PrefGetPreference (prefAlarmSoundVolume);

// Play the tone.
SndDoCmd(0, &sndCommand, true);

The sampled sound API, on the other hand, provides volume
constants (sndSystemvVolume, sndGameVolume, and
sndSysVolume) that look up a preference setting for you, as shown

in Listing 1.2.

Listing 1.2 Playing a sampled sound with the alarm volume

// Point our sound data pointer to a record that contains WAV data (record
// retrieval isn’t shown).
SndPtr soundData = MemHandleLock(...);

// Play the data using the default alarm volume setting.
SndPlayResource(soundData, sndAlarmVolume, sndFlagNormal);

// Unlock the data.
MemPtrUnlock (soundData);

Standard MIDI Files

Although you can use a Level 0 Standard MIDI File to control
simple sound generation, this doesn’t imply broad support for MIDI
messages; only key down, key up, and tempo change messages are
recognized.

6 Exploring Palm OS: Multimedia

Sound Manager
Standard MIDI Files

You can store your MIDI data in a MIDI database:

¢ The database type sysFileTMidi identifies MIDI record
databases.

* The system MIDI database is further identified by the creator
sysFileCSystem. The database holds a number of system
alarm sounds.

You can add MIDI records to the system MIDI database, or you can
store them in your own.

Each record in a MIDI database is a concatenation of a PalmSource-
defined MIDI record header, the human-readable name of the MIDI
data, and then the MIDI data itself. Figure 1.1 depicts a complete
Palm OS MIDI record.

Figure 1.1 Palm OS Midi Record

signature (4 bytes)

SndMidiRecHdrType bDataOffset (1 byte) —
reserved (1 byte)

Track name (1+ bytes)

MIDI data -

To get to the track name, use an expression like this:

pName = (char*)hdrP + sndMidiRecHdrSize;

The MIDI track name is null-terminated, even if it’s empty. It’s at
least one byte long and at most sndMidiNameLength bytes long.

The code in Listing 1.3 creates a new MIDI record and adds it to the
system MIDI database.

Listing 1.3 Adding a new MIDI record

// We need three things: A header, a name, and some data. We’ll get the name
// and data from somewhere, and create the header ourselves.

char *midiName = ...;

MemHandle midiData = ...;

SndMidiRecHdrType midiHeader;

Exploring Palm OS: Multimedia 7

Sound Manager
Standard MIDI Files

// Database and record gadgetry.
DmOpenRef database;

MemHandle record;

uintl6é_t *recordIndex = dmMaxRecordIndex;
uint8_t* recordPtr;

uint8 t* midiPtr;

// MIDI header values: Always set the signature to sndMidiRecSignature, and
// reserved to 0. bDataOffset is an offset from the beginning of the header to
// the first byte of actual MIDI data. The name includes a null-terminator,
// hence the ‘+ 1'.
midiHeader.signature = sndMidiRecSignature;
midiHeader.reserved = 0;
midiHeader.bDataOffset = sizeof(SndMidiRecHdrType) + StrLen(midiName) + 1;
// Open the database and allocate a record.
database = DmOpenDatabaseByTypeCreator(sysFileTMidi, sysFileCSystem,
dmModeReadWrite | dmModeExclusive);
record = DmNewRecord(database, &recordIndex,
midiHeader.bDataOffset + MemHandleSize(midiData));

// Lock the data and the record.
midiDataPtr = MemHandleLock(midiData);
recordPtr = MemHandleLock(record);

// Write the MIDI header.
DmWrite(recordPtr, 0, &smidiHeader, sizeof(midiHeader));

// Write the track name.
DmStrCopy(recordPtr, sndMidiRecHrdSize, midiName);

// Write the MIDI data.
DmWrite(recordPtr, midiHeader.bDataOffset, midiDataPtr, MemHandleSize(midiData));

// Unlock the handles, release the record, close the database.
MemHandleUnlock(midiData);

MemHandleUnlock(record);

DmReleaseRecord(database, recordIndex, 1);

DmCloseDatabase(database);

To retrieve a MIDI record, you can use the SndCreateMidiList ()
function if you know the record’s creator, or you can use the Data
Manager functions to iterate through all MIDI records.

8 Exploring Palm OS: Multimedia

Sound Manager
Creating a Sound Stream

Creating a Sound Stream

The sound stream API, part of the sampled sound facility, is the
most flexible part of the Sound Manager. A sound stream sends
sampled data to or reads sampled data from the sound hardware.
There are several sound output streams and one input stream, all
running (or potentially running) concurrently.

NOTE: The maximum number of output streams is dependent
on system resources. The default number is 18, but device
manufacturers can change that.

To use a sound stream, you have to tell it what sort of data you're
going to give it or that you expect to get from it. All of the sound
format information that you need to supply to set up the stream—
data quantization, sampling rate, channel count, and so on—is
passed in the SndStreamCreate () or
SndStreamCreateExtended () function.

You also have to pass the function a pointer to a callback function
(see SndStreamBufferCallback() or
SndStreamVariableBufferCallback()); implementing this
function is where you'll be doing most of your work. When you tell
your stream to start running (SndStreamStart ()), the callback
function is called automatically, once per buffer of data. If you're
operating on an input stream (in other words, if you're recording),
your callback function can do something with the data and then
should return before the next buffer shows up. Output stream
callbacks do the opposite—they fill the buffer with data.

Because of the real-time nature of audio playback, the callbacks
must operate as quickly as possible. There can be more than one
stream competing for attention. Note that all callbacks run in their
own threads.

The formats that are supported by the sampled sound functions are
described in the functions themselves.

Exploring Palm OS: Multimedia 9

Sound Manager

Summary of Sound Manager

Summary of Sound Manager

Simple Sound Functions

SndCreateMidilList () SndPlaySmfResource ()
SndDoCmd () SndPlaySystemSound ()
SndGetDefaultVolume () SndGetDefaultVolume ()
SndPlaySmf () SndSetDefaultVolume ()
Sampled Sound Functions

SndPlayResource () SndStreamPause ()
SndStreamCreate() SndStreamSetPan ()
SndStreamCreateExtended () SndStreamSetVolume ()
SndStreamDelete () SndStreamStart ()
SndStreamGetPan () SndStreamStop ()

SndStreamGetVolume ()

10 Exploring Palm OS: Multimedia

Sound Manager
Reference

This chapter describes the Sound Manager API. It covers:

Sound Manager Structures and Types 11
Sound Manager Constants 17
Sound Manager Functions and Macros 26
Application-Defined Functions 46

The header files SoundMgr .h and AudioTypes.h declare the API
that this chapter describes.

For more information on the Sound Manager, see Chapter 1, “Sound

Manager.”

Sound Manager Structures and Types

Purpose

Declared In
Prototype

Fields

SndCallbackinfoType Struct

Encapsulates a callback function and its argument data.
SndCallbackInfoType is used by the SndSmfCallbacksType
structure, which is used to list the callback functions that are called
during SMF playback.

SoundMgr.h

typedef struct SndCallbackInfoType {
MemPtr funcP;
uint32 t dwUserData;

} SndCallbackInfoType

funcP
A pointer to the callback function.

Exploring Palm OS: Multimedia 11

Sound Manager Reference

SndCommandType

Purpose

Declared In
Prototype

Fields

Purpose

dwUserData
Data that’s passed as an argument to the callback function.

SndCommandType Struct

Encapsulates a sound synthesis operation and its associated
parameters. It is used by the SndDoCmd () function.

SoundMgr.h

typedef struct SndCommandType {
SndCmdIDType cmd;
uint8 t reserved;
uintlé t padding;
int32_t paraml;
uintl6é_ t param2;
uintl6_t param3;
} SndCommandType
typedef SndCommandType *SndCommandPtr

cmd
Constant that represents a sound operation. The operations
are listed and described in SndDoCmd ().

reserved
Reserved for future use.

padding
Padding bytes.

paraml, param2, param3
Operation-specific parameters. The parameters’ meanings

are described in SndDoCmd ().

SndMidiListltemType Struct

Locates a MIDI file. This structure is used by the
SndCreateMidiList () function.

12 Exploring Palm OS: Multimedia

Sound Manager Reference
SndMidiRecHdrType

Declared In
Prototype

Fields

Purpose
Declared In
Prototype

Fields

SoundMgr.h

typedef struct SndMidilListItemType {
char name[sndMidiNameLength];
uint32_t uniqueRecID;
DatabaseID dbH;

} SndMidiListItemType

name
The null-terminated name of the MIDI file.

uniqueRecID
The ID of the record that holds the MIDI file.

dbH
Database ID of the database that holds the record.

SndMidiRecHdrType Struct

Encapsulates the header of a MIDI record.
SoundMgr.h

typedef struct SndMidiRecHdrType {
uint32 t signature;
uint8_t bDataOffset;
uint8_ t reserved;
uintlé_t padding;
} SndMidiRecHdrType

signature

The MIDI record signature. Always set this field to
sndMidiRecSignature.

bDataOffset

Offset, in bytes, from the beginning of the record to the first
byte of the MIDI data.

reserved
Reserved for future use. Always set this field to 0.

padding
Padding bytes (not counted toward the record size).

Exploring Palm OS: Multimedia 13

Sound Manager Reference
SndPtr

SndPir Typedef

Purpose Used to cast a pointer to the sound data used by
SndPlayResource().

Declared In SoundMgr.h
Prototype typedef void *SndPtr

SndSampleType Typedef

Purpose Used to specify the sample format (size, data type, endianness) of a
sampled sound stream. Used by SndStreamCreate(). See
“audio type t” on page 17 for the set of values that this type can
contain.

Declared In SoundMgr.h
Prototype typedef audio type t SndSampleType

SndSmfCallbacksType Struct

Purpose Contains a set of application-defined functions that are called
during MIDI playback. To register your callback functions, call
SndPlaySmf ().

Declared In SoundMgr.h

Prototype typedef struct SndSmfCallbacksType {
SndCallbackInfoType completion;
SndCallbackInfoType blocking;
SndCallbackInfoType reserved;

} SndSmfCallbacksType

Fields completion
Completion function; see SndComplFuncType ().

blocking
Blocking function; see SndBlockingFuncType().

reserved
Reserved. Set this field to 0.

14 Exploring Palm OS: Multimedia

Sound Manager Reference
SndSmfOptionsType

SndSmfChanRangeType Struct

Purpose Defines the range of enabled MIDI channels. Events on MIDI
channels outside the enabled range are ignored. By default, no
channels are enabled.

Declared In SoundMgr.h

Prototype typedef struct SndSmfChanRangeType {
uint8 t bFirstChan;
uint8 t bLastChan;
} SndSmfChanRangeType

Fields bFirstChan
The first enabled channel in the range [0, 15].

bLastChan
The last enabled channel in the range [0, 15].

IMPORTANT: The sndSmfChanRangeType structure expects
MIDI channels to be in the range [0, 15]; real MIDI channel values
are in the range [1, 16]. Thus, PalmSource MIDI channel O is real
MIDI channel 1, PaimSource MIDI channel 1 is real MIDI channel
2, and so on.

SndSmfOptionsType Struct
Purpose Defines MIDI performance parameters.
Declared In SoundMgr.h

Prototype typedef struct SndSmfOptionsType {
uint32 t dwStartMilliSec;
uint32_t dwEndMilliSec;
uintl6_t amplitude;

Boolean interruptible;
uint8 t reservedl;
uint32_t reserved;

} SndSmfOptionsType

Fields dwsStartMilliSec
The “beginning of performance” marker, measured in
milliseconds from the beginning of the track. A value of 0
plays the track from the beginning. The time difference

Exploring Palm OS: Multimedia 15

Sound Manager Reference
SndStreamRef

between dwStartMilliSec and the performance time of
the first subsequent MIDI event is respected. For example, if
dwStartMilliSec is 2000 and the first (subsequent) note-
on event is at 3000, there will be a 1000 millisecond “pause”
before the note is played.

dwEndMilliSec

The “end of performance” marker, measured in milliseconds
from the beginning of the track. To play to the end of the
track, set this to sndSmfPlayAllMilliSec.

amplitude
The volume of the track, in the range [0, sndMaxAmp]. The
default is sndMaxAmp. If set to 0, the MIDI file isn’t played.

interruptible

If true (the default), MIDI playback is interrupted if the user
interacts with the controls (digitizer, buttons, etc.), even if the
interaction doesn’t generate a sound command. If false,
playback is not interrupted.

reservedl
Reserved.

reserved
Reserved. Set this field to 0.

Comments This structure is used with the SndPlaySmf () function to establish
new parameter settings or to return the currently set values,
depending on how the function is called. In the case where the
structure returns values, only the “performance marker” fields
(dwStartMilliSec and dwEndMilliSec) are valid.

SndStreamRef Typedef

Purpose Represents a sampled stream. You create an SndStreamRef with
SndStreamCreate().

Declared In SoundMgr.h
Prototype typedef uint32 t SndStreamRef

16 Exploring Palm OS: Multimedia

Sound Manager Reference
audio_type_t

Sound Manager Constants

Purpose

Declared In
Constants

audio_type_t Enum

Defines a set of constants that represent the sample format (size,
data type, endianness) of a sampled sound stream. These constant
values are used with SndStreamCreate () and
SndStreamCreateExtended(), as the value of the type
SndSampleType.

The lower four bits of these constants gives the size (in bytes) of a
single sample, as shown here:

uint8 t byteSize = formatConstant & 0x0f

AudioTypes.h

sndInt8 = 0x01
Signed 8-bit data.

sndUInt8 = 0x11
Unsigned 8-bit data.

sndIntl6Big = 0x02
Signed 16-bit integer data in big-endian format.

sndIntléLittle = 0x12
Signed 16-bit integer data in little-endian format.

sndInt32Big = 0x04
Signed 32-bit integer data in big-endian format.

sndInt32Little = 0x14
Signed 32-bit integer data in little-endian format.

sndFloatBig = 0x24
Signed floating-point data in big-endian format.

sndFloatLittle 0x34
Signed floating-point data in little-endian format.

sndIntl6 = sndIntléLittle
Signed 16-bit integer data in the device’s native endianness.

Exploring Palm OS: Multimedia 17

Sound Manager Reference
Simple Sound Amplitudes

Comments

Purpose

Declared In
Constants

Purpose

sndIntl60Opposite = sndIntl6Big
Signed 16-bit integer data in the endianness opposite to that
of the device.

sndInt32 = sndInt32Little
Signed 32-bit integer data in the device’s native endianness.

sndInt320pposite = sndInt32Big
Signed 32-bit integer data in the endianness opposite to that
of the device.

sndFloat = sndFloatLittle
Signed floating-point data in the device’s native endianness.

sndFloatOpposite = sndFloatBig
Signed floating-point data in the endianness opposite to that
of the device.
In the current implementation the 32-bit and floating point formats
aren’t supported.

Simple Sound Amplitudes

These constants can be supplied to the simple sound functions (such
as SndDoCmd ()) when an amplitude value is required. Note that
these values are not compatible with the sampled sound amplitude
range and thus shouldn’t be used with the sampled sound
functions.

SoundMgr.h

#define sndDefaultAmp sndMaxAmp
The maximum amplitude (full volume).

#define sndMaxAmp 64
The default amplitude.

SndCmdIDType Enum

Contains constants that represent specific sound operations used in
simple sound playback with SndDoCmd ().

18 Exploring Palm OS: Multimedia

Sound Manager Reference
SndFormatType

Declared In
Constants

Purpose

Declared In
Constants

SoundMgr.h

sndCmdFregDurationAmp = 1
Play a tone. SndDoCmd () blocks until the tone has finished.

sndCmdNoteOn
Initiate a MIDI-defined tone. SndDoCmd () returns
immediately while the tone plays in the background.
Subsequent sound playback requests interrupt the tone.

sndCmdFrgOn
Initiate a tone. SndDoCmd () returns immediately while the
tone plays in the background. Subsequent sound playback
requests interrupt the tone.

sndCmdQuiet
Stop the playback of the currently generated tone.

SndFormatType Enum

Defines a set of constants that represent various sound data
encoding formats. Pass one of these constants as the format
argument to SndStreamCreateExtended ().

SoundMgr.h

sndFormatPCM = 0
Pulse Code Modulation format. This is the “no encoding”
format; the data is a series of samples that are linear with
regard to amplitude quantization and regular with regard to
sampling rate.

sndFormatIMA ADPCM = 'APCM'
The Interactive Multimedia Association’s implementation of
“adaptive delta” encoding. The sampling rate is constant, but
the quantization is non-linear.

sndFormatDVI ADPCM = 'DPCM'
Microsoft’s adaptive delta implementation. This is the same
as IMA ADPCM.

sndFormatMP3 = 'MPG3'
Motion Picture Group Audio Layer III

sndFormatAAC = 'DAAC'

Dolby Advanced Audio Coding.

Exploring Palm OS: Multimedia 19

Sound Manager Reference
sndMidiNameLength

sndFormatOGG = 'OGGV'
OGG Vorbis encoding.

Comments The implementation of SndStreamCreateExtended () supports
sndFormatPCM data only. To play ADPCM data, use
SndPlayResource().

sndMidiNameLength

Purpose Defines the maximum string length, including the null terminator,
for the name of a MIDI file or MIDI track.

Declared In SoundMgr.h
Constants #define sndMidiNameLength 32

sndMidiRecHdrSize

Purpose Defines the header size of a MIDI record.

Declared In SoundMgr.h
Constants #define sndMidiRecHdrSize 6

sndMidiRecSignature

Purpose Tagsa MIDIrecord. It is used as the value of the signature field of
the SndMidiRecHdrType structure.

Declared In SoundMgr.h
Constants #define sndMidiRecSignature 'PMrc'

sndSmfPlayAllMilliSec

Purpose Represents the (temporal) far end of a MIDI file. You can use this
constant as the value of the dwEndMilliSec field of the

20 Exploring Palm OS: Multimedia

Sound Manager Reference
SndStreamWidth

Declared In
Constants

Purpose

Declared In
Constants

Purpose

Declared In
Constants

Purpose

SndSmfOptionsType structure before passing the structure to
sndPlaySmf (). This setting tells the function to play the entire file.

SoundMgr.h
#define sndSmfPlayAllMilliSec OxXFFFFFFFFUL

SndSmfCmdEnum Enum

Defines a set of commands that tell SndPlaySmf () whether it
should play the file or simply return the duration of the file in
milliseconds.

SoundMgr.h

sndSmfCmdPlay = 1
Play the specified Standard MIDI File.

sndSmfCmdDuration

Return the duration, in milliseconds, of the specified
Standard MIDI File.

SndStreamMode Enum

Defines constants that represent the “direction” (input or output) of
a sampled sound stream. Use these constants with the
SndStreamCreate () function.

SoundMgr.h

sndInput
Input stream used for recording.

sndOutput
Output stream used for playback.

SndStreamWidth Enum

Defines constants that represent mono and stereo sampled data
streams. Use these constants with the SndStreamCreate()
function.

Exploring Palm OS: Multimedia 21

Sound Manager Reference

SndSysBeepType
Declared In SoundMgr.h
Constants sndMono
Mono (one channel) stream.
sndStereo
Stereo (two channel) stream.
SndSysBeepType Enum
Purpose Defines a set of constants that represent pre-defined system beeps.
In order to play one of these sounds, pass the corresponding value
to SndPlaySystemSound().
Declared In SoundMgr.h
Constants sndInfo = 1

Signals non-crucial information.

sndWarning
Grabs the user’s attention.

sndError
Indicates an illegal operation.

sndStartUp
Played at device start up time.

sndAlarm

Generic alarm sound; note that this is not the Datebook’s
alarm sound.

sndConfirmation
Indicates approval or acceptance.

sndClick
The button click sound.

sndCardInserted
Played when a card is inserted.

sndCardRemoved
Played when a card is removed.

22 Exploring Palm OS: Multimedia

Sound Manager Reference
Sound Error Codes

Purpose
Declared In
Constants

Sound Error Codes

Error codes returned by various Sound Manager functions.

SoundMgr.h

#define sndErrBadChannel (sndErrorClass | 2)
Invalid sound channel.

#define sndErrBadParam (sndErrorClass | 1)
Invalid parameter passed to a function.

#define sndErrBadStream (sndErrorClass | 8)
Invalid data stream.

#define sndErrFormat (sndErrorClass | 7)
Unsupported data format.

#define sndErrInterrupted (sndErrorClass | 9)
Play was interrupted.

#define sndErrInvalidStream (sndErrorClass | 11)
Invalid stream identifier.

#define sndErrMemory (sndErrorClass | 3)
Insufficient memory.

#define sndErrNotImpl (sndErrorClass | 10)
Function not implemented

#define sndErrOpen (sndErrorClass | 4)
Tried to open a channel that’s already open.

#define sndErrQEmpty (sndErrorClass | 6)
Internal error.

#define sndErrQFull (sndErrorClass | 5)
The sound queue is full.

Exploring Palm OS: Multimedia 23

Sound Manager Reference
Sound Resource Playback Flags

Purpose

Declared In
Constants

Purpose

Declared In
Constants

Purpose

Sound Resource Playback Flags

Use these flags when calling SndPlayResource () to specify
various settings. Currently, the only setting is function
synchronization.

SoundMgr.h

#define sndFlagSync 0x00000000
Tells SndPlayResource () to wait until all sound data has
been fed to the DAC before returning (meaning that the
function will return just a bit before the sound has finished
playing).

#define sndFlagAsync 0x00000001

Tells SndPlayResource () to return immediately while
playback continues in a separate thread.

#define sndFlagNormal sndFlagSync
A shorthand for the set of “normal” flag settings.

Sound Stream Feature Constants

Used to retrieve the Sound Manager version number from the
Feature Manager.

SoundMgr.h

#define sndFtrIDVersion 0
The feature number to supply to FtrGet (), along with a
creator ID of sysFileCSoundMgr, when attempting to
obtain the version of the Sound Manager.

#define sndMgrVersionNum (100)
The current version of the Sound Manager. Note that in Palm
OS Cobalt version 6.0, this is set incorrectly to 100 (indicating
version 1.00). The Sound Manager is actually version 1.01 in
this release.

Stereo Pan Constants

Define the extremes and the midpoint when altering the stream’s
stereo balance with SndStreamSetPan(). SndStreamSetPan|()

24 Exploring Palm OS: Multimedia

Sound Manager Reference
Volume Constants

Declared In
Constants

Purpose

Declared In
Constants

allows you to set the balance to one of these values, or any integral

value between sndPanFullLeft and sndPanFullRight.
SoundMgr.h

#define sndPanCenter (0)
The stereo balance is centered.

#define sndPanFullLeft (-1024)
The stereo balance is panned completely to the left.

#define sndPanFullRight (1024)
The stereo balance is panned completely to the right.

Volume Constants Enum

Use the volume constants defined in this enum with
SndStreamSetVolume () and SndPlayResource (). The
constants tell the functions to retrieve the named sound volume
preference (as set by the user) and apply it as a volume setting.

SoundMgr.h

sndSystemVolume = -1
The user’s system sound preference.

sndGameVolume = -2
The user’s game sound preference.

sndAlarmVolume = -3
The user’s alarm sound preference.

Exploring Palm OS: Multimedia 25

Sound Manager Reference
Sound Manager Functions and Macros

Sound Manager Functions and Macros

Purpose
Declared In
Prototype

Parameters

Returns

Purpose

Declared In
Prototype

Parameters

SndCreateMidiList Function

Generates a list of MIDI records.
SoundMgr.h

Boolean SndCreateMidilist (uint32 t creator,
Boolean multipleDBs, uintlé_t #*wCountP,
MemHandle *entHP)

— creator
Creator ID of the database in which the function looks for
MIDI records. Pass 0 to search all databases.

— multipleDBs
Pass true to search multiple databases for MIDI records.
Pass false to search only in the first database that meets the
search criteria.

< wCountP
Returns the number of MIDI records that were found.

<— entHP
Returns a pointer to an array of SndMidiListItemType
structures, one structure for each record that was found.

true if records were found, false otherwise.

SndDoCmd Function

Asks the Sound Manager to perform a simple sound synthesis
operation.

SoundMgr.h

status_t SndDoCmd (void *channelP,
SndCommandPtr cmdP, Boolean noWait)

— channelP
Pointer to the sound channel on which you want to perform
the operation. Pass NULL for the “shared” sound channel.

26 Exploring Palm OS: Multimedia

Sound Manager Reference
SndDoCmd

Returns

Comments

IMPORTANT: The Sound Manager only supports one channel
of sound synthesis: You must pass NULL as the value of
channelP.

— cmdP
Pointer to a SndCommandType structure that describes the
operation and contains any associated parameters. See the
Comments section below for the set of sound commands and
their associated parameters.

— noWait
Sets the function to be asynchronous (true) or synchronous
(false) with respect to the caller.

IMPORTANT: sSndDoCmd () is always synchronous: The
noWait value is currently ignored.

errNone if the operation completed successfully, or one of the
following if an error occurs:

sndErrBadParam
Invalid parameter.

sndErrBadChannel
Invalid channel pointer.

sndErrQFull
The sound queue is full.

The sound operations that are performed by SndDoCmd () are
encapsulated in the SndCommandType structure. The cmd field
represents the operation, while the param fields are data that’s
passed to the operation. The operations and data that SndDoCmd ()
supports are described in the following table.

Exploring Palm OS: Multimedia 27

Sound Manager Reference

SndDoCmd
Table 2.1 SndDoCmd() commands and parameters
Command Function Parameters
sndCmdFreqgDurationAmp Plays a tone. paraml is the tone’s
SndDoCmd () blocks frequency in Hertz.
qn’.al the tone has param?2 is its duration in
finished. 1
milliseconds.
param3 is its amplitude in
the range [0, sndMaxAmp]. If
the amplitude is 0, the sound
isn’t played and the function
returns immediately.
sndCmdFrgOn Initiates a tone. paraml is the tone’s
SndDoCmd () returns frequency in Hertz.
immediately while the . S
) param?2 is its duration in
tone plays in the 1
milliseconds.
background. Subsequent o ' '
sound playback requests param3 1s 1ts amphtude mn
interrupt the tone. the range [0, sndMaxAmp]. If
the amplitude is 0, the sound
isn’t played and the function
returns immediately.
sndCmdNoteOn Initiates a MIDI-defined paraml is the tone’s pitch
tone. SndDoCmd () given as a MIDI key number
returns immediately in the range [0, 127].
while the tone plays in param?2 is the tone’s duration
the background. . 1
in milliseconds.
Subsequent sound
playback requests param3 is its amplitude
interrupt the tone. given as MIDI velocity [0,
127].
sndCmdQuiet Stops the playback of the All parameter values are
currently generated ignored.
tone.
See Also SndPlaySmf ()

28 Exploring Palm OS: Multimedia

Sound Manager Reference
SndPlayResource

Purpose

Declared In
Prototype

Parameters

Returns
Comments

See Also

Purpose
Declared In
Prototype

Parameters

SndGetDefaultVolume Function

Returns volume levels cached by the Sound Manager. This function
is deprecated and should not be used.

SoundMgr.h

void SndGetDefaultVolume (uintlé_ t *alarmAmpP,
uintlé t #*sysAmpP, uintl6é_t *masterAmpP)

< alarmAmpP
Pointer to the alarm amplitude.

< sysAmpP
Pointer to the system sound amplitude.

<— masterAmpP
Pointer to the master amplitude.

Nothing.
Pass NULL for those settings that you don’t care about.

Never call this function. To retrieve default volume levels, you
should ask for the user’s preferences settings.

SndSetDefaultVolume ()

SndPlayResource Function
Plays formatted sound data read from a resource or file.
SoundMgr.h

status_t SndPlayResource (SndPtr sndP,
int32 t volume, uint32_t flags)

— sndP
A pointer to the beginning of the formatted sound (including
the header). Currently, only WAV data is recognized (see the
Comments section, below); in this case, sndP must point to
the “RIFF” ID (byte 0 in a simple .wav file).

— volume
Amplitude scalar, in the range [0, 32k]. See
SndStreamSetVolume () for information on how

amplitude scalar values are applied.

Exploring Palm OS: Multimedia 29

Sound Manager Reference
SndPlayResource

— flags
One of the “Sound Resource Playback Flags” on page 24.
Currently, the only setting is function synchronization: use
sndFlagSync to have the function wait until all sound data
has been fed to the DAC before returning, or sndFlagAsync
flag to have the function return immediately while playback
continues in a separate thread.

Returns errNone if the operation completed successfully, or one of the
following if an error occurs:

sndErrBadParam
The specified resource or file contains no data.

sndErrFormat
The data is in an unsupported format.

sndErrMemory
The function couldn’t allocate sufficient memory.

other errors
The device couldn’t allocate system resources for the sound.

Comments The supported WAVE parameters are:

¢ Uncompressed (PCM) or IMA 4-bit adaptive differential
(IMA ADPCM). The ADPCM type is also known as DVI
ADPCM; in a WAV file, it’s known as format 0x11.

¢ One or two-channels
* Any sampling rate

You can’t interrupt or abort a resource playback once it’s been
initiated. The resource always plays to the end of the data.

Example The following code excerpt shows how to use this function to play a
sound resource.

SndPtr soundP;
MemHandle recordH;
recordH = DmGetResource (myOpenDb, sysResTSound, TestWaveSound) ;
soundP = (SndPtr) MemHandleLock(recordH) ;
SndPlayResource(soundP,1024,sndFlagSync);

// 1024 is 0dB (unity) gain
MemHandleUnlock(recordH) ;

30 Exploring Palm OS: Multimedia

Sound Manager Reference
SndPlaySmf

Purpose
Declared In
Prototype

Parameters

The above code first gets the resource from an open database. It then
locks the memory associated with the resource and converts the
result to a pointer to a sound resource.

The call to the SndPlayResource () function plays the sound. The
second parameter is the sound level, which varies from 0 to 32767. A
value of 1024 specifies unity gain. Higher values indicate higher
gain. The third parameter specifies whether the function returns
immediately or waits until after the sound has finished playing. You
should avoid using sndFlagAsync, which causes the function to
return immediately without waiting for the sound to finish, if you
use this code because you'll unlock the sound resource before the
system finishes with it. In fact, you should always specify
sndFlagSync unless you can guarantee two things:

1. Your resource memory remains locked for the duration of the
sound.

2. Your application does not exit for the duration of the sound.

Remember that you cannot stop a sound played with
SndPlayResource().

SndPlaySmf Function
Performs a Standard MIDI File, or returns the duration of the file.
SoundMgr.h

status_t SndPlaySmf (void #*chanpP,
SndSmfCmdEnum cmd, uint8 t #*smfP,
SndSmfOptionsType *selP,
SndsmfChanRangeType *chanRangeP,
SndsmfCallbacksType #*callbacksP,
Boolean bNoWait)

— chanP
A pointer to the sound channel on which you want to
perform the MIDI file. Pass NULL for the “shared” sound
channel.

Exploring Palm OS: Multimedia 31

Sound Manager Reference
SndPlaySmf

IMPORTANT: The Sound Manager only supports one channel
of sound synthesis: You must pass NULL as the value of
channel.

— cmd
One of the SndSmfCmdEnum values: either
SndsmfCmdPlay (play the file) or SndSmfCmdDuration
(return the duration of the file in milliseconds).

— smfP
The MIDI data; this can point to a SndMidiRecHdrType
structure, or it can point directly to the actual MIDI data
bytes in memory.

— selP
A pointer to a SndSmfOptionsType structure that defines
performance parameters, such as volume, starting offset, and
interruption tolerance. For default behavior, pass NULL. For
more information, including default settings, see
SndSmfOptionsType.

— chanRangeP
A pointer to a SndSmfChanRangeType structure that
specifies the range of MIDI channels (in the SMF data) to use
during playback. To play all channels, pass NULL.

— callbacksP
A pointer to a SndSmfCallbacksType structure that holds

your callback functions. Pass NULL if you don’t want any
callbacks.

— bNoWait
This value is ignored. This function always finishes playing
the SMF selection before returning (but see the Comments
section, below).

Returns errNone if the operation completed successfully, or one of the
following if an error occurs:

sndErrBadParam
Invalid value passed to this function.

sndErrBadChannel
Invalid sound channel.

32 Exploring Palm OS: Multimedia

Sound Manager Reference
SndPlaySmfResource

Comments

Purpose
Declared In
Prototype

Parameters

sndErrMemory
Insufficient memory.

sndErrOpen
Tried to open channel that’s already open.

sndErrQFull
Can’t accept more notes.

sndErrFormat
Unsupported data format.

sndErrBadStream
Invalid data stream.

sndErrInterrupted
Play was interrupted.

Although this call is always synchronous, you can register a
“blocking” function that’s called periodically as the MIDI file is
playing. See SndBlockingFuncType () for more information.

Normally, playback is halted by events generated by user
interaction with the screen, digitizer, or hardware-based buttons.
You can override this behavior by setting the interruptible
tield of the selP parameter to false.

This function waits until any currently-playing simple sound has
tinished before starting playback of the requested MIDI data.

SndPlaySmfResource Function
Plays a MIDI track read out of an open resource database.

SoundMgr.h

status_t SndPlaySmfResource (uint32 t resType,
DmOpenRef dbRef, intl6 t resID,
SystemPreferencesChoice volumeSelector)

— resType
SMF resource type.

— dbRef
Pointer to an open database. You can pass 0 to search all open
resource databases for the specified resource type and ID.

Exploring Palm OS: Multimedia 33

Sound Manager
SndPlaySystemSound

Reference

Returns

Comments

Purpose
Declared In
Prototype
Parameters

Returns
Comments

— resID
SMEF resource ID.

— volumeSelector
Volume setting; one of prefSysSoundvolume,
prefGameSoundvVolume, or prefAlarmSoundVolume (all
defined in Preferences.h).

errNone if the track was played successfully, or one of the
following if an error occurs:

sndErrBadParam
The volumeSelector parameter is invalid or the SMF
resource has invalid data.

dmErrCantFind
The specified resource doesn’t exist.

other values
See SndPlaySmf ().

This function plays the entire MIDI file using all MIDI channels.
Playback is interrupted by a key down or digitizer event. No
callbacks are specified.

This function waits until any currently playing simple sound has
finished before starting playback of the requested MIDI data.

SndPlaySystemSound Function

Plays a pre-defined (simple) system sound.

SoundMgr.h

void SndPlaySystemSound (SndSysBeepType beepID)

— beepID
One of the system beep sound constants defined in the
SndSysBeepType enum.

Nothing.

If you're playing an alarm (sndAlarm), the user’s alarm volume
preference setting is used. For all other system sounds, the system
volume preference is used.

34 Exploring Palm

OS: Multimedia

Sound Manager Reference
SndSetDefaultVolume

Purpose
Declared In
Prototype

Parameters

Returns
Comments

See Also

Alarm sounds (sndAlarm) are played synchronously:
SndPlaySystemSound () blocks until the sound has been played.
All other sounds are played asynchronously.

SndSetDefaultVolume Function
Sets the default sound volume levels cached by the Sound Manager.
SoundMgr.h

void SndSetDefaultVolume (uintlé t *alarmAmpP,
uintlé_t #*sysAmpP, uintl6é_t *defAmpP)

— alarmAmpP
Pointer to the alarm amplitude.
— SsysAmpP
Pointer to the system sound amplitude.

— defAmpP
Pointer to the default amplitude for other sounds.

Nothing.

Any of the parameters may be NULL. In that case, the corresponding
setting is not altered.

NOTE: Itis usually not appropriate for an application to be
setting the default sound volume levels. Accordingly, this function
is rarely used by applications.

SndGetDefaultVolume ()

Exploring Palm OS: Multimedia 35

Sound Manager Reference

SndStreamCreate
SndStreamCreate Function
Purpose Creates a new audio data stream that can be used to record or play
back uncompressed, sampled audio data.
Declared In SoundMgr.h
Prototype status t SndStreamCreate (SndStreamRef *channel,
SndStreamMode mode, uint32 t samplerate,
SndSampleType type, SndStreamWidth width,
SndStreamBufferCallback func, void *userdata,
uint32 t buffsize)
Parameters < channel

Token that represents the newly created stream.

— mode
One of the SndStreamMode constants that represents the
“direction” of the data stream. Either sndInput (for
recording), or sndOutput (for playback).

— samplerate

Sampling rate, in frames-per-second. Specify the native rate
of the data, such as 22050, 44100, or 48000.

— type
Sample quantization and endianness (but see the section on
“Data Formats,” below). Supply one of the values
documented under “audio type t” on page 17.

— width
One of the constants documented under “SndStreamWidth”
on page 21 that represents the number of channels of data in
the stream.

— func
A callback function that gets called when another buffer is
needed. See SndStreamBuffercCallback() fora

description of the callback function that you must
implement.

— userdata
Caller-defined data that is passed to the callback function.

— buffsize

Preferred size (in frames) for the buffers that are passed to the
callback function, func. Note that the actual buffer size (as

36 Exploring Palm OS: Multimedia

Sound Manager Reference
SndStreamCreate

Returns

Comments

allocated by the Sound Manager) may be different from this
request.

errNone if the operation completed successfully, or one of the
following if an error occurs:

sndErrBadParam
channel is invalid, func is NULL, the sampling rate is too
high (greater than 96000), or the device doesn’t support some
other specified sound parameter value.

sndErrMemory
All streams are being used (there is a maximum of 16), or
memory for this stream couldn’t otherwise be allocated.

other errors
The device couldn’t allocate system resources for the stream.

This function creates a new audio stream into which you can write
(playback) or from which you can read (record) buffers of
uncompressed, sampled audio data. The stream’s “direction”—
whether it will be used for recording or playback—is described by
the mode argument.

You can create one input stream and as many as 15 output streams.
The “active” end of a stream is hardwired to read from or write to
the device’s sound driver. This means you can’t “redirect” an input
stream to read from a file (for example), nor can you connect one
output stream to another output stream in an attempt to create a
filter chain. You can, however, collect data from the input stream,
manipulate it, and then write it to an output stream.

Data Formats

The format of the data that flows through the stream is described by
the sampleRate, type, and width arguments. If you're using an
“extended” stream (see SndStreamCreateExtended()), you can
also declare the data’s encoding.

If you look at the audio _type t constants, you'll see four flavors for
each quantization type: a big-endian version, a little-endian version,
a native-endian version (defined as one of the other two), and an
“opposite” version, which has endianness opposite that of the
native version. In general, you should use the native-endian version
when choosing a value for the type parameter.

Exploring Palm OS: Multimedia 37

Sound Manager Reference

SndStreamCreate

See Also

Running the Stream

The new stream starts running when you pass the channel token
returned by this function to the SndStreamStart () function. This
initiates a series of calls to your callback function (the func
parameter), which is where the action is: Each callback invocation is
passed a buffer into which you write or from which you read a
chunk of audio data. The callback function is also passed the
userdata parameter that you supply here. See
SndStreamBufferCallback () for more information on the
callback function.

Buffering and Latency

Currently, audio streams are double-buffered. With regard to
playback, this means that while one buffer (buffer A) is being
played, your callback function is placing data in the other buffer (B).
When A is “empty,” the Sound Manager seamlessly starts playing
buffer B, and passes buffer A back to your callback; when B is
empty, it starts playing A, and passes back B, and so on. It’s
important that your callback function fills the data buffers as
quickly as possible—certainly no longer than it takes to play a
buffer of data. This same double-buffer scheme is also applied to
sound recording although, of course, for recording you're emptying
each buffer (and doing something with the data) in your callback
function.

Regarding latency, you can use the buffsize argument to suggest
a buffer size and thereby increase or decrease latency, but you can’t
change the number of buffers. Keep in mind that the actual buffer
size that’s used may not be the same as the size you suggest;
hardware and memory limitations may enforce a maximum or
minimum buffer size. Also keep in mind that the buffer size is
measured in frames (not bytes).

SndStreamStart (), SndStreambDelete(),
SndStreamBufferCallback()

38 Exploring Palm OS: Multimedia

Sound Manager Reference
SndStreamCreateExtended

Purpose

Declared In
Prototype

Parameters

SndStreamCreateExtended Function

Creates a new audio data stream that can be used to record or play
back audio data.

SoundMgr.h

status_t SndStreamCreateExtended
(SndStreamRef #*channel, SndStreamMode mode,
SndFormatType format, uint32 t samplerate,
SndSampleType type, SndStreamWidth width,
SndStreamVariableBufferCallback func,
void *userdata, uint32_t buffsize)

<— channel
Token that represents the newly created stream.

— mode
One of the SndStreamMode constants that represents the
“direction” of the data stream. Either sndInput (for
recording), or sndOutput (for playback).

— format
Constant that represents the encoding format of the data that
you propose to pour through the stream. See
“SndFormatType” on page 19, for a list of eligible values.
Currently, only sndFormatPCM is supported.

— gsampleRate
Sampling rate, in frames-per-second. Specify the native rate
of the data, such as 22050, 44100, or 48000. The maximum
rate is 96000.

— type
Sample quantization and endianness (see “Data Formats” on
page 37 for advice on choosing this value). Supply one of the
values documented under “audio type t” on page 17.

— width
One of the constants documented under “SndStreamWidth”
on page 21 that represents the number of channels of data in
the stream.

— func
A callback function that gets called when another buffer of
data is needed. As implied by the name of the data type, the
function accepts variable-sized buffers. See
SndStreamVariableBufferCallback() fora

Exploring Palm OS: Multimedia 39

Sound Manager Reference
SndStreamCreateExtended

Returns

Comments

description of the callback function that you must
implement.

— userdata
Caller-defined data that is passed to the callback function.

— buffsize
Preferred size (in frames) for the buffers that are passed to the
callback function, func. Note that the actual buffer size (as
allocated by the Sound Manager) may be different from this
request.

errNone if the operation completed successfully, or one of the
following if there an error occurs:

sndErrBadParam
channel is invalid, func is NULL, the sampling rate is too
high (greater than 96000), or the device doesn’t support some
other specified sound parameter value.

sndErrMemory
All streams are being used (there is a maximum of 16), or
memory for this stream couldn’t otherwise be allocated.

other errors
The device couldn’t allocate system resources for the stream.

With a few minor exceptions, this function is equivalent to
SndStreamCreate (); see that function’s Comments section for a
description of how the stream creation functions generally work.

One difference between standard and extended streams: If you're
using an extended stream, you can also declare the data’s encoding.
When selecting that encoding, be aware of the following;:

¢ The data format that you specify for an input stream must
match the data that’s produced by the audio hardware.

¢ For an output stream, you can specify any of the formats that
the Sound Manager supports; the data is automatically
converted to the output hardware’s native audio format.
Whether your stream’s format setting actually affects the
hardware is undefined. For example, if you set an output
stream to use a 48k sampling rate, that doesn’t mean that the
DAC will be set to 48k.

¢ Currently, only sndFormatPCM is supported.

40 Exploring Palm OS: Multimedia

Sound Manager Reference
SndStreamGetPan

Purpose
Declared In
Prototype
Parameters

Returns

Comments

Purpose
Declared In
Prototype

Parameters

Extended streams also allow for variable-sized buffers, as opposed
to the fixed-sized buffers used by SndStreamCreate().This
enables support for variable-length encoded data (such as MP3). To
accommodate the variable-sized buffer, the callback function’s
prototype changes slightly for an extended stream: see
SndStreamVariableBufferCallback() for a full description
of the callback function you use with
SndStreamCreateExtended ().

SndStreamDelete Function

Stops the stream and deletes it.

SoundMgr.h

status_t SndStreamDelete (SndStreamRef channel)

— channel

Stream token, as returned from SndStreamCreate() or
SndStreamCreateExtended().

errNone if the operation completed successfully. Returns
sndErrBadParam if the channel argument is invalid.

SndStreamDelete () calls SndStreamStop () before deleting
the stream. You should never call SndStreamDelete () from
within your callback function.

SndStreamGetPan Function
Retrieves a stream’s stereo balance.
SoundMgr.h

status_t SndStreamGetPan (SndStreamRef channel,
int32 t *panposition)
— channel

Stream token, as returned from SndStreamCreate() or
SndStreamCreateExtended().

< panposition
Pan value in the range [-1024 (extreme left), 1024 (extreme
right)]. Center balance is 0.

Exploring Palm OS: Multimedia 41

Sound Manager Reference

SndStreamGetVolume
Returns errNone if the operation completed successfully. Returns
sndErrBadParamif channel is invalid or panpositionis NULL.
See Also SndStreamSetPan()
SndStreamGetVolume Function
Purpose Retrieves the amplitude scalar for a sound stream.
Declared In SoundMgr.h
Prototype status_t SndStreamGetVolume
(SndStreamRef channel, int32_t #*volume)
Parameters — channel
Stream token, as returned from SndStreamCreate() or
SndStreamCreateExtended ().
< volume
Amplitude scalar, in the range [0, 32k]. See
SndStreamSetVolume () for more information.
Returns errNone if the operation completed successfully. Returns
sndErrBadParam if channel is invalid or volume is NULL.
See Also SndStreamSetVolume ()
SndStreamPause Function
Purpose Pauses or resumes a sample stream.
Declared In SoundMgr.h
Prototype status t SndStreamPause (SndStreamRef channel,
Boolean pause)
Parameters — channel

Stream token, as returned from SndStreamCreate() or
SndStreamCreateExtended ().

— pause
If true, the function pauses the stream; if false, it resumes
the stream

42 Exploring Palm OS: Multimedia

Sound Manager Reference
SndStreamSetPan

Returns

Comments

Purpose
Declared In
Prototype

Parameters

Returns

Comments

errNone if the operation completed successfully (which includes
the situation where the stream is already in the requested state).
Returns sndErrBadParamif channel is invalid.

Currently, SndStreamPause () simply calls SndStreamStop ()
(if pauseis true) or SndStreamStart () (if pauseis false). See
those functions for details about “pausing” and “resuming” a sound
stream.

You can’t nest pauses; a single resume request is effective,
regardless of the number of times the stream has been told to pause.

SndStreamSetPan Function
Sets a stream’s stereo balance.
SoundMgr.h

status_t SndStreamSetPan (SndStreamRef channel,
int32 t panposition)
— channel

Stream token, as returned from SndStreamCreate() or
SndStreamCreateExtended ().

— panposition
Pan value in the range [-1024 (full left), 1024 (full right)].
Center balance is 0. As a convenience, you can use the values
described in “Stereo Pan Constants” on page 24.” Note that
values outside of the valid range may yield unexpected
results (but don’t generate an error).

errNone if the operation completed successfully. Returns
sndErrBadParamif channel is invalid.

The pan value is used as a scalar on a channel’s volume such that a
channel increases from 0 (inaudible) to full volume as the pan value
moves from an extreme to 0. Graphically, it looks like this:

Exploring Palm OS: Multimedia 43

Sound Manager Reference

SndStreamSetVolume
left right
1.0
s
(4]
?
[«F]
s
2
B
g
(¢}
0.0
-1024 0 1024
pan value
See Also SndStreamGetPan()

Purpose
Declared In
Prototype

Parameters

Returns

Comments

SndStreamSetVolume Function
Sets the amplitude scalar for a sound stream.
SoundMgr.h

status_t SndStreamSetVolume
(SndStreamRef channel, int32_t volume)

— channel
Stream token, as returned from SndStreamCreate() or
SndStreamCreateExtended ().

— volume
Amplitude scalar in the range [0, 32k]. Values less than 0 are
converted to 1024 (unity gain).

errNone if the operation completed successfully. Returns
sndErrBadParam if channel is invalid.

The volume value is applied as an amplitude scalar on the samples
that this stream’s callback function produces. The scalar is in the
range [0, 32k], where 1024 is unity gain (that is, the samples are
multiplied by 1.0). The mapping of volume to a scalar is linear; thus
a volume of 512 scales the samples by ~0.5, and 2048 scales by ~2.0,
and so on.

44 Exploring Palm OS: Multimedia

Sound Manager Reference
SndStreamStart

See Also

Purpose
Declared In
Prototype
Parameters

Returns

Comments

See Also

To specify a user preference volume setting, supply one of the
constants documented under “Volume Constants” on page 25.
These values are guaranteed to be less than unity gain.

If the stream is stereo, both channels are scaled by the same
amplitude scalar. To adjust the balance between the channels, use
SndStreamSetPan ().

SndStreamGetVolume ()

SndStreamStart Function

Starts a sample stream running.

SoundMgr.h

status_t SndStreamStart (SndStreamRef channel)

— channel
Stream token, as returned from SndStreamCreate() or
SndStreamCreateExtended().

errNone if the operation completed successfully (errNone is
returned even if the stream is already running). Returns
sndErrBadParam if channel is invalid.

If the stream is already running, SndStreamStart () returns
immediately (with errNone). If it isn’t running, the function starts
the stream by initiating invocations of its callback function. If the
stream is paused (through SndStreamPause()), the stream is
resumed.

You can call this function from within another stream’s callback
function. This allows one stream to tell another stream to start

playing.
SndStreamSto

Exploring Palm OS: Multimedia 45

Sound Manager Reference

SndStreamStop
SndStreamStop Function
Purpose Stops a sample stream from running.
Declared In SoundMgr.h
Prototype status t SndStreamStop (SndStreamRef channel)

Parameters — channel
Stream token, as returned from SndStreamCreate() or
SndStreamCreateExtended().

Returns errNone if the operation completed successfully (errNone is
returned even if the stream is already stopped). Returns
sndErrBadParamif channel is invalid.

Comments Stops a running sound stream by neglecting to call the stream’s

callback function. The stream remains in this suspended state until

you call SndStreamStart ().

You can call this function from the stream’s own callback function.
In other words, a stream can stop itself.

Application-Defined Functions

Purpose

Declared In
Prototype

Parameters

SndBlockingFuncType Function

A callback function that is invoked periodically during SMF
playback.

SoundMgr.h

Boolean SndBlockingFuncType (void #*chanP,
uint32_t dwUserData,
int32 t sysTicksAvailable)

typedef SndBlockingFuncType *SndBlockingFuncPtr

— chanP
A pointer to the sound channel on which the file is being
played. Currently always NULL.

— dwUserData
Application-defined data that’s specified when the callback
function is registered.

46 Exploring Palm OS: Multimedia

Sound Manager Reference
SndComplFuncType

Returns

Comments

See Also

Purpose

Declared In
Prototype

Parameters

Returns
Comments

— gsysTicksAvailable
The amount of time, in milliseconds, available for completion
of this function.

Return true from your callback function if playback is to continue.
Return false if playback is to be aborted.

Your application’s blocking callback is called whenever the MIDI
parser is “between notes.” Your application can do whatever it
wants during this period, as long as it doesn’t take more than
sysTicksAvailable milliseconds.

Specify your blocking callback function using the blocking field of
the SndSmfCallbacksType structure that you pass to
SndPlaysmf (). Note that the blocking field is a
SndCallbackInfoType structure; it contains a pointer to your
callback function and a 32-bit value that is passed, as-is, to your
callback.

SndComplFuncType ()

SndComplFuncType Function

A callback function that is invoked immediately after a MIDI file
(SMF) finishes playing.

SoundMgr.h

void SndComplFuncType (void *chanpP,
uint32_t dwUserData)
typedef SndComplFuncType *SndComplFuncPtr

— chanP
A pointer to the sound channel on which the file was playing.
Currently always NULL.

— dwUserData
Application-defined data that’s specified when the callback
function is registered.

Return nothing.

Specity your blocking callback function using the completion
tield of the SndSmfCallbacksType structure that you pass to
SndPlaySmf (). Note that the completion field is a
SndCallbackInfoType structure; it contains a pointer to your

Exploring Palm OS: Multimedia 47

Sound Manager Reference
SndStreamBufferCallback

callback function and a 32-bit value that is passed, as-is, to your
callback.

See Also SndBlockingFuncType ()

SndStreamBufferCallback Function

Purpose Ininput mode, delivers a data buffer to your application. In output
mode, allows your application to supply the next buffer’s worth of
data.

Declared In SoundMgr.h

Prototype status t (*SndStreamBufferCallback)
(void *userdata, SndStreamRef channel,
void *buffer, uint32_t numberofframes)

Parameters — userdata

Caller-defined data, as provided in the userdata parameter
to SndStreamCreate().

— channel
Token that represents the stream to which this buffer belongs.

— buffer
The data buffer.

— numberofframes
Number of sample frames the buffer contains.

Returns Currently, the return value is ignored.

Comments The SndStreamBufferCallback() function that you create is
invoked in input (recording) mode when the Sound Manager wants
to deliver a new buffer of sound data to your application. In output
(playback) mode, it is invoked when the Sound Manager needs
another buffer of sound data. You associate your callback function
with a given stream when you call SndStreamCreate().

In input mode, your callback function should read the data from the
data buffer. In output mode, your callback function should write
data into the data buffer (and it must fill the entire buffer with data).
In either case, you want to do this as quickly as possible to avoid
data underflow.

48 Exploring Palm OS: Multimedia

Sound Manager Reference
SndStreamVariableBufferCallback

See Also

Purpose

Declared In
Prototype

Parameters

Returns
Comments

Note that the arguments passed to your callback function tell you
nothing about the format of the data. You can use the userdata
argument to pass that information into the function.

SndStreamVariableBufferCallback()

SndStreamVariableBufferCallback Function

In input mode, delivers a variable-length data buffer to your
application. In output mode, allows your application to supply the
next buffer’s worth of data.

SoundMgr.h

status_t (*SndStreamVariableBufferCallback)
(void *userdata, SndStreamRef channel,
void *buffer, uint32_t *bufferSizeP)

— userdata
Caller-defined data, as provided in the userdata parameter
to SndStreamCreateExtended().

— channel
Token that represents the stream that this buffer belongs to.

— buffer
The data buffer.

<> bufferSizeP
Size of the buffer, in bytes.

Currently, the return value is ignored.

The SndStreamVariableBufferCallback() function that you
create is invoked in input (recording) mode when the Sound
Manager wants to deliver a new buffer of sound data to your
application. In output (playback) mode, it is invoked when the
Sound Manager needs another buffer of sound data. You associate
your callback function with a given stream when you call
SndStreamCreateExtended().

In input mode, your callback function should read the data from the
data buffer. In output mode, your callback function should write
data into the data buffer and then reset the value in buffersSizep
to the amount of data that was actually written. Unlike

SndStreamBufferCallback(), your callback function is not

Exploring Palm OS: Multimedia 49

Sound Manager Reference
SndStreamVariableBufferCallback

required to fill the entire buffer with data. Moreover, the data that it
writes to the buffer doesn’t have to meet any other threshold or
requirement—for example, the buffer doesn’t have to represent a
certain amount of playback time. This flexibility is provided in
order to support variable-length encoded data (such as MP3).

Whether your callback is reading from the buffer or writing to it, it
should do this as quickly as possible to avoid data underflow.

Note that the arguments passed to your callback function tell you
nothing about the format of the data. You can use the userdata
argument to pass this information into the function.

50 Exploring Palm OS: Multimedia

7N\
palmsource
) g

Part Il
Multimedia Library

The Multimedia Library controls the playback and recording of
audio-visual media on Palm OS® devices.

Multimedia Applications 53
Multimedia Library Definitions 69
Multimedia Codecs 79
Multimedia Formats 83
Multimedia Properties 109
Multimedia Sessions 115

Multimedia Tracks. 149

Multimedia
Applications

The Multimedia Library is an application-level API used to control
the playback and recording of audio-visual media on Palm OS®
devices. It provides a standard means for applications to reference
media content stored locally on the device, stored on a network, or
accessible from some attached hardware device such as a
microphone or camera. The Multimedia Library also provides a
means for applications to query and configure codecs and devices.

Multiple concurrent playback and recording sessions may be
configured, and the processing of playback or recording sessions
may continue in the background as the user uses other applications.
Multiple components may interact with a session simultaneously.

The Multimedia Library does not provide a means for developers to
write file format handlers or codecs.

Overview. o000 53
Using the Multimedia Library. 58
Example Playback Session 63
Example Recording Session. 66

Overview

This section provides an architectural overview of the Multimedia
subsystem.

Figure 3.1 shows the portions of the system that bring multimedia to
the device.

Exploring Palm OS: Multimedia 53

Multimedia Applications

Overview

Figure 3.1 Multimedia architecture

Multimedia client
application

Multimedia Library

Movie Server Session

Device drivers and
hardware

The multimedia client application is an application that a
third-party developer may write; it runs in the Application
process. The Media Player is an example of such an
application.

The Multimedia Library provides the public APIs that
multimedia clients use to access multimedia features.

The Movie Server runs in the System process and provides
all multimedia functionality. It spawns sessions that usually
run in the Background process. Applications can control
sessions via Multimedia Library function calls.

Device drivers enable the use of specific multimedia
hardware components such as cameras, microphones,
speakers, and so forth.

The multimedia subsystem consists of several different kinds of
objects that are described in the following sections.

Sessions

A multimedia session represents a recording or playback request,
and controls the data transport. To use the Multimedia Library for
playback, for example, you create a session, tell it where to find the
data to play back, and then tell the session to start playing. The
session automatically sends the data to the appropriate media
output device such as the screen and/or the audio mixer.

54 Exploring Palm OS: Multimedia

Multimedia Applications
Overview

For more information about using sessions, see “Working with
Sessions” on page 59.

Sources

A source represents a source device. For a recording session, the
source device might be a camera or a microphone. For a playback
session, the source device might be a file or a network stream.

A source contains one or more streams of data from the source
device. The stream defines the media format produced by the
source device and is used to connect with the track. You connect
each stream to a different track so that each stream’s data goes to a
different destination.

Destinations

A destination represents a destination device. For a recording
session, the destination device might be a file or network stream.
For a playback session, the destination might be the screen or the
speakers.

Like sources, destinations contain one or more streams that specify
the media format the destination expects, and they connect to a
track.

Streams

A stream object represents multimedia data of a particular format.
Each source and destination has at least one stream, which
represents a single kind of data it produces or consumes. For
example, a movie file source might have an audio stream and a
video stream.

A stream object is created when you finalize a source or destination.
You can enumerate the streams in sources and destinations by
calling MMSourceEnumerateStreams () and

MMDestEnumerateStreams ().

Exploring Palm OS: Multimedia 55

Multimedia Applications
Overview

Tracks

A track represents a route for one type of media data from a source
device to a destination device. For example, to play a movie would
require two tracks: an audio track and a video track.

Tracks are responsible for encoding or decoding data as it is
recorded or played.

Tracks sometimes use a track callback filter, which is usually
supplied by the application. A multimedia application can set a
track callback filter if it wants to handle the data itself. If so, the
track ensures that data is passed from the source device to the track
tilter, which forwards it to the callback function and then passes it
on to the destination.

To register a track callback filter, call
MMTrackInsertCallbackFilter().

Codecs

In order to play from and capture to encoded media files, the
Multimedia Library uses software components called codecs (an
abbreviation for encoder/decoder.) A codec translates media data
from one format to another. Each codec supports a particular
encoding algorithm, such as MP3 or MS-ADPCM.

A stream uses a codec during playback. During recording, the
stream uses an encoder before writing to the file stream.

Applications can enumerate the available codecs with
MMCodecClassEnumerate (), and can enumerate the available
tile formats with MMFileFormatEnumerate (). File formats are
distinct from codecs because a file format may encapsulate many
kinds of encoded data.

File formats are described by an MMFormatType value. Codecs are
represented by an MMCodecClassID, and the MMPropertyGet ()
function may be used to obtain more information about a given
codec (such as name, creator, and source or destination format.) All
codec properties are read-only.

PalmSource provides several built-in codecs:
* MS-ADPCM Audio Decoder

56 Exploring Palm OS: Multimedia

Multimedia Applications
Overview

e DVI-ADPCM Audio Decoder

* MPEG Audio Layer I/II Decoder
e MPEG-1 Video Decoder

e MS-ADPCM Audio Encoder

¢ AVI Extractor

e MPEG Audio Extractor

¢ MPEG-1 Extractor

e WAV Extractor

e WAV Composer

Different codecs, such as MP3 and MPEG-4, might be available
depending on the device manufacturer.

Formats

Formats are used to specify what multimedia formats an object can
work with.

An object that can handle both audio and video data typically has
two format objects: one specifying its audio constraints and one
specifying its video constraints. Format objects themselves are made
up of key/value pairs specifying one value for one attribute. For
example, a raw audio format has keys for sample type, frame rate,
channel count, and so on.

A format object is referenced by an MMFormat. Formats may be
retrieved as property values by MMPropertyGet () or returned by
MMFormatCreate (), and in every case must be explicitly deleted
by the application when it has finished using them. An MMFormat
has a type, MMFormatType, which describes the basic kind of
media such as P FORMAT RAW AUDIO,P FORMAT MPEG4 VIDEO,
etc. Every format type has an associated set of format keys, which
are documented in MMFormatDefs . h. See Chapter 6, “Multimedia
Formats,” for a list of the keys and values that formats use.

During format negotiation, two formats are inspected to see if they
are compatible, and any wild values are replaced with actual values.

A format object stores a value for each format key. Values are typed
by an MMTypeCode, allowing formats to contain a wide range of

Exploring Palm OS: Multimedia 57

Multimedia Applications
Using the Multimedia Library

data. Some common value types are P_MM INT32_TYPE,

P_MM BOOL_TYPE, and P_ MM _WILD TYPE. The last type simply
means that any value is acceptable for the key; the library assigns
that key an appropriate value when a session is finalized, and no
data is stored.

Property Sets

Property sets expose configurable parameters, or properties, which
control an object’s behavior. For example, an audio-renderer
supports the P_MM_TRACK_PROP_VOLUME property to allow
control of output volume.

A property consists of a key/value pair, where the key is a 32-bit
constant identifier and the value is a typed chunk of data with a
given size. Property values are generally either 32-bit integers or
character strings, though some properties may have more complex
values (such as those that represent dimensions, regions, or media
formats).

All objects that support properties are identified by 32-bit ID values,
which identify both the object instance and its type.

For more information on properties, see “Working with Properties”
on page 60.

Using the Multimedia Library

The Multimedia Library is a shared library that the system
automatically loads when needed and unloads when not needed.
You don’t need to do anything to load or initialize the library.

This section covers these topics:

* Working with Sessions

* Working with Properties

¢ Working with Enumerations
* Working with the URL Scheme

58 Exploring Palm OS: Multimedia

Multimedia Applications
Using the Multimedia Library

Working with Sessions

A session provides a context for an application’s media playback or
recording tasks. Before using the Multimedia Library to play or
record, you must create a session by calling MMSessionCreate().
In this function, you specify the session class, which indicates if the
session is for playback or recording (capture).

A session is described in terms of sources, destinations, streams,
and tracks. Sources and destinations represent the files, network
streams, and devices used to get multimedia data into and out of the
media-processing engine. Each source and destination has at least
one stream, which represents a single kind of data it produces or
consumes. For example, a movie file source might have an audio
stream and a video stream.

A track represents a route for media data in the session. Tracks take
data from a source stream, apply some processing (such as
decoding and filtering), and send it to a destination stream.

To configure a session, your application must first add whichever
sources and destinations it requires by calling
MMSessionAddSource () and MMSessionAddDest (). Then
tinalize the sources and destinations by calling
MMSourceFinalize() and MMDestFinalize() (if there are
destinations). Then, enumerate the available streams by calling

MMSourceEnumerateStreams () and

MMDestEnumerateStreams ().

Finally, add tracks for the streams you wish to play back or capture.
You can add tracks manually one at a time with
MMSessionAddTrack (), or automatically by using
MMSessionAddDefaultTracks (). When you have added all the
desired tracks to the session, call MMSessionFinalize() to
prepare it for performance. After calling this function, no new
sources, destinations, or tracks may be added.

To reconfigure a session after it has been finalized, you must first
call MMSessionRemoveAll ().

To start, stop, pause, or otherwise control the playback or capture
process, call MMSessionControl (). This call exposes the various
transport operations such as run, pause, stop, prefetch, grab a still
image, and refresh the display.

Exploring Palm OS: Multimedia 59

Multimedia Applications
Using the Multimedia Library

For playback sessions you can also call MMSessionSeek (), which
instructs the decoder to jump to a new position in the content
stream. Note that seek functionality may not always be available,
depending on the kind of content and on the location it’s being
streamed from.

You can determine the current state of the session by calling
MMSessionGetState().

If you want your application to receive multimedia event
notifications from a session, call
MMSessionRegisterCallback() to register a callback function.
If you want your application to receive multimedia event
notifications of a persistent session even when the application is no
longer running, call MMSessionRegisterLaunch (). Then, when
session events occur, the application is sublaunched with the launch
code sysAppLaunchCmdMultimediaEvent.

Working with Properties

All objects that support properties are identified by 32-bit ID values,
which identify both the object instance and its type. This allows a
single set of property functions to operate on any kind of property-
bearing object. There are four property functions:

* MMPropertySet (): sets a property value

* MMPropertyGet (): returns a property value

* MMPropertyInfo(): returns various information about a
property, such as its minimum, maximum, and default
values, whether it is readable and /or writable, and its type

* MMPropertyEnumerate (): lists the potential values of a
property

Not all of these operations are applicable to all properties, or to all
entities that have associated properties; for example,
MMPropertyEnumerate () may return sysErrNotAllowed if
the specified MMPropInfoType parameter does not apply. For
example, some properties, such as P_MM_TRACK_PROP_VOLUME,
have continuous values with a well-defined minimum and
maximum, but have such a wide range of possible values that it
doesn’t make sense for MMPropertyEnumerate () to list them.
These are referred to as “continuous-valued” properties. Other

60 Exploring Palm OS: Multimedia

Multimedia Applications
Using the Multimedia Library

properties, such as P_ MM TRACK_PROP_CODEC_CLASS, allow a
discrete set of values for which the concepts of minimum and
maximum do not apply, and are thus termed “discrete-valued”
properties.

Here’s an example of retrieving the current value of a property by
calling MMPropertyGet () and passing the key:

err = MMPropertyGet(session, P_MM_CONTENT_PROP_DURATION,
P_MM INT64_ TYPE, &longduration, 0);

Here’s an example of setting the value of a property by calling
MMPropertySet () and passing both the key and the value. The
value must have the same type as the current value of the property:

err = MMPropertySet(session, P_MM SESSION PROP PLAYBACK RATE,
P_MM INT32 TYPE, &rate, 0);

Working with Enumerations

There are several cases in the Multimedia Library where a given

component or object provides access to a set of values or references
to objects. A common iterator-based enumeration scheme is used in
each case. For example, here is the file format enumerator function:

status_t MMFileFormatEnumerate
(int32 t *ioIterator, MMFormatType *outFormat)

The value pointed to by ioIterator must be treated as opaque by
the caller, with two exceptions:

e Before the first call to the enumeration function, the value of
ioIterator mustbe setto P MM ENUM_ BEGIN.

¢ When the set has been exhausted, the enumeration function
will set the value of ioIteratortoP_ MM ENUM_END.

Other values are only guaranteed to be meaningful to the
Multimedia Library. If an enumeration function is called with an
invalid iterator, or an iterator value of P MM ENUM_END, it returns
sysErrBadIndex.

An example of enumerating the tracks in a session is shown in

Listing 3.1.

Exploring Palm OS: Multimedia 61

Multimedia Applications
Using the Multimedia Library

Listing 3.1 Enumerating tracks

status_t err;
MMTrackID outTrack;
int32_t ioIterator = P_MM ENUM BEGIN;
while(true)
{
err = MMSessionEnumerateTracks(session, &iolIterator,
&outTrack);

if(err != errNone)
break;
// do something with each track returned in outTrack

}

Working with the URL Scheme

Files on expansion cards or other VFS volumes can be accessed
using URLs with the following syntax:

FileURL = "file://" ["localhost"] "/" [VolumeLabel] "/" Path

where VolumeLabel can use any characters except for control
codes (unprintable characters), “/”, and “?”; and Path can use any
characters except for control codes and “?”.

You may use or omit the optional server name component of the
URL ("localhost") when using the file scheme. When omitting it, you
must still specify the following slash, so you would write the
scheme like this: file:///...

instead of this: file://locahost/...

The volume label is case-sensitive. The case requirements of the rest
of the URL follow the convention of the file system that this volume
is mounted on.

If no volume label is specified, all volumes are searched for the
given path.

Here’s some URL examples:

file://localhost/MySDCardVolumeName/PALM/Launcher/
Giraffe.prc

file:///OtherCardvolumeName/PALM/Launcher/
Giraffe.prc

62 Exploring Palm OS: Multimedia

Multimedia Applications
Example Playback Session

file:////PALM/Launcher/Giraffe.prc
file:////Audio/mySong.mp3

URL name conflicts are resolved as follows: All volumes matching
the specified name are searched and if multiple databases sharing
the same pathname are found, the most recent is returned. If
multiple selections share the same date, the file-selection behavior is
nondeterministic (this only happens if no volume label is specified).

URLs are also used to access specific devices (such as a camera or a
microphone) using URLs with the scheme palmdev://. For
example, the URL palmdev:///Media/Default/vVideoOut
specifies any video playback device. For more examples of
palmdev:// URLs, see “Default URLs” on page 119.

Example Playback Session

This section describes how to use the Multimedia Library to play
multimedia content.

The basic steps involved in playback are listed here and described in
more detail later:

. “Creating the Session” on page 64.
“Adding Source Content” on page 64.

—_

“Adding Tracks” on page 64.

“Finalizing the Session” on page 65.
“Playing the File” on page 65.

Gl = LD

Exploring Palm OS: Multimedia 63

Multimedia Applications
Example Playback Session

Creating the Session

The first basic step is to create the multimedia session:

1. Call the function MMSessionCreate (), passing
P MM SESSION CLASS DEFAULT PLAYBACK as the
session class (to create a playback session).

This tells the Movie Server to create the session. It publishes
the following keys and values in the session property set:

P MM _SESSION PROP PLAYBACK RATE: 1

P MM _SESSION PROP MARKER: -1

P_MM SESSION DEFAULT AUDIO ENABLE: true
P MM SESSION DEFAULT VIDEO ENABLE: true
P_MM SESSION DEFAULT SOURCE_RECT: null
P_MM_SESSION DEFAULT DEST RECT: null

P MM _SESSION DEFAULT AUDIO VOLUME: 1024

2. Optionally, call MMSessionRegisterCallback() to
register a callback function that will receive event
notifications from the session. This step is not required, but is
quite useful.

Adding Source Content
After creating the session, you need to add source content:

1. Call MMSessionAddSource (), passing it the URL of the
multimedia file to be opened.

2. Call MMSourceFinalize (), which prepares the media
streams for use. One stream is created for each track in the
content; for a movie, there is typically one track for audio and
one track for video.

Adding Tracks

You now need to specify where the multimedia data should go. To
do so, call MMSessionAddDefaultTracks (), passing the session
ID (returned by MMSessionCreate()), the source ID (returned by
MMSessionAddSource()), and the constant

P_MM DEFAULT DEST.

64 Exploring Palm OS: Multimedia

Multimedia Applications
Example Playback Session

Finalizing the Session
Now you need to finalize the session:

1. Call MMSessionFinalize().

2. You may want to call MMSessionReleaseOwnership().
This transfers ownership of the session back to the Movie
Server now that your application has finished creating it.

When the Movie Server owns the session, if the application
exits, the session can continue playing in the background.

3. For video playback, set a destination rectangle of the size
required by the session so that it is ready to display the
content. To do this, call MMPropertySet () to seta
P_MM TRACK_PROP_DEST RECT property for the track, like
this:

MMPropertySet (track, P_MM TRACK PROP _DEST RECT, P_MM RECT TYPE, rect, 0);

The rect parameter is the destination rectangle for the video
content.

Playing the File

Now that the file has been opened and the objects that are required
to play the file have been created, the application can return control
to the user. The user presses the Play button on the device,
specifying that playback should begin. (The Play button can be a
hardware button or a button displayed by the application in its user
interface.)

Call MMSessionControl () with the P MM SESSION CTL_ RUN
control code. This function forwards the control code to the Movie
Server session. It sets its state to P. MM SESSION_RUNNING and
sends an event to notify the application of its change in state.

You can call MMSessionControl () with other control codes to
perform other functions such as pause and stop. To seek forward or
backward in the session, for example, to implement fast forward
and rewind functions, call MMSessionSeek ().

Video and audio playback occur in separate threads.

Exploring Palm OS: Multimedia 65

Multimedia Applications
Example Recording Session

Example Recording Session

This section describes how to use the Multimedia Library to record
audio content.

A recording session begins when the user presses the Record button
in the application. The Record button can be a hardware button or a
button displayed by the application in its user interface, or some
other mechanism that you devise.

1. First, the application must create a name for the file that will
hold the recorded data.

2. Then create the session by calling the function
MMSessionCreate(), passing
P MM SESSION CLASS DEFAULT CAPTURE as the session
class (to create a recording session).

3. Call MMSessionRegisterCallback() to register a
callback function that will receive event notifications from
the session.

4. Add the source by calling MMSessionAddSource(),
specifying P_MM_DEFAULT AUDIO_CAPTURE_URL as the
URL. This source represents the means by which the device
receives audio input, such as a microphone or line-input jack.

Call MMSourceFinalize().

Obtain the source stream ID by enumerating the source
streams (there should be only one) by calling
MMSourceEnumerateStreams ().

Add the destination by calling MMSessionAddDest ().

8. Setthe P_MM DEST PROP_FILE_FORMAT property of the
destination to P_ FORMAT WAV _STREAM (or whatever audio
format you want) by calling MMPropertySet (), like this:

int32_t streamFormat = P_FORMAT WAV_STREAM;
MMPropertySet (dest, P_MM DEST PROP_FILE_ FORMAT, P_MM INT32_ TYPE, &streamFormat,
0);

9. Finalize the destination by calling MMDestFinalize().

10. Obtain the destination stream ID by enumerating the
destination streams (there should be only one) by calling

MMDestEnumerateStreams ().

66 Exploring Palm OS: Multimedia

Multimedia Applications
Example Recording Session

11. Create a media format object and set its type to
P _FORMAT MSADPCM AUDIO, like this:

MMFormat encoding = 0;
MMFormatCreate (&encoding);
MMFormatSetType(encoding, P_FORMAT MSADPCM AUDIO);

12. Add a track to provide a route from the audio source to the
tile destination by calling MMSessionAddTrack (), like this:

err = MMSessionAddTrack(session, sourceStream, 0, destStream, encoding,
&track);

The source stream ID is returned by
MMSourceEnumerateStreams () in step 6. The destination
stream ID is returned by MMDestEnumerateStreams () in
step 10.

13. Finalize the session by calling MMSessionFinalize().

Then the session’s state is set to P MM SESSION READY to
signal that recording can begin.

14. To start recording, call MMSessionControl () with the
P_MM SESSION_CTL_RUN control code.

This function forwards the control code to the Movie Server
session. It sets its state to P MM SESSION RUNNING and
sends an event to notify the application of its change in state.

You can call MMSessionControl () with other control codes to
perform other functions such as pause and stop. Pass the control
code P_MM SESSION_CTL_STOP to stop recording (and write
header data to the file so that it can be used immediately.)

The session is deleted after the application that created it exits,
unless it has called MMSessionReleaseOwnership () to allow
the session to keep running in the background. If the application
does call this function, then it should call MMSessionDelete() or

MMSessionAcquireOwnership () to ensure that the session gets
deleted.

Exploring Palm OS: Multimedia 67

Multimedia Applications
Example Recording Session

68 Exploring Palm OS: Multimedia

4

Multimedia Library
Definitions

This chapter describes the structures and types defined in the
header file MMDefs . h:

Multimedia Definitions Structures and Types 69
Multimedia Definitions Constants 71
Multimedia Definitions Functions and Macros. 77

Multimedia Definitions Structures and Types

MMCodecClassID Typedef

Purpose The class ID of a decoder or encoder object.

Declared In MMDefs.h
Prototype typedef int32 t MMCodecClassID

MMDestID Typedef

Purpose The ID of a multimedia destination object.

Declared In MMDefs.h
Prototype typedef int32 t MMDestID

Exploring Palm OS: Multimedia 69

Multimedia Library Definitions

MMEvent
MMEvent Typedef
Purpose Not currently used.
Declared In MMDefs.h
Prototype typedef int32 t MMEvent
MMFilterID Typedef
Purpose Not currently used.
Declared In MMDefs.h
Prototype typedef int32 t MMFilterID
MMSessionClasslID Typedef
Purpose The class ID of a session subclass.
Declared In MMDefs.h
Prototype typedef int32 t MMSessionClassID
MMSessionID Typedef
Purpose The ID of a session object.
Declared In MMDefs.h
Prototype typedef int32 t MMSessionID
MMSourcelD Typedef
Purpose The ID of a multimedia source object.
Declared In MMDefs.h
Prototype typedef int32 t MMSourceID

70 Exploring Palm OS: Multimedia

Multimedia Library Definitions
Enumerations

Purpose
Declared In
Prototype

Purpose
Declared In
Prototype

MMStreamID Typedef

The ID of a stream object.
MMDefs.h

typedef int32 t MMStreamID

MMTrackID Typedef

The ID of a track object.
MMDefs.h

typedef int32 t MMTrackID

Multimedia Definitions Constants

Purpose
Declared In
Constants

Purpose
Declared In
Constants

Complex Property Values Enum
Specifies a more complex type of value stored in a property set.
MMDefs.h
P MM RECT TYPE = MM _TYPE CODE('Rct')
A RectangleType structure.
P MM FORMAT TYPE = MM TYPE CODE('Fmt')
A MMFormat object.

Enumerations Enum
Specifies the beginning and end of an enumeration.
MMDefs.h

P MM ENUM BEGIN = 0
Tells a function to begin the enumeration.

P MM _ENUM END = -1
Returned by a function when there are no more values to
enumerate.

Exploring Palm OS: Multimedia 71

Multimedia Library Definitions
Miscellaneous Constants

Purpose
Declared In
Constants

Purpose
Declared In
Prototype
Constants

Comments

Miscellaneous Constants
Other constants defined in MMDefs . h.
MMDefs.h

#define P_MM INVALID ID 0
Specifies an invalid ID.

#define P_MM TYPE CODE_MASK 0x7f7£7£00
Mask of all MMTypeCode values.

#define P_MM TYPE CODE_SHIFT 8
Amount to shift to get MMTypeCode values.

MMPropinfoType Typedef

Specifies the type of data to retrieve from a property set.
MMDefs.h

typedef int32 t MMPropInfoType

P_MM_PROP_INFO DEFAULT
Obtain the default value.

P_MM_PROP_INFO MINIMUM
Obtain the minimum value.

P_MM_PROP_INFO MAXIMUM
Obtain the maximum value.

P MM _PROP_INFO READABLE
Returns whether the value is readable.

P_MM PROP_INFO WRITABLE
Returns whether the value is writable.

P MM _PROP_INFO TYPE_ CODE
Returns the type of value stored for the property.

The function MMPropertyInfo () uses these values to obtain
specific information from a property set.

72 Exploring Palm OS: Multimedia

Multimedia Library Definitions
MMTypeCode

Purpose

Declared In
Prototype
Constants

See Also

Purpose
Declared In
Prototype
Constants

MMSeekOrigin Typedef

A multimedia application uses these constants to specify where to
being a seek operation.

MMDefs.h
typedef int8 t MMSeekOrigin

P_MM_SEEK_ORIGIN BEGIN
Start at the beginning of the file.

P MM SEEK_ORIGIN CURRENT
Start at the current location.

P MM SEEK_ORIGIN_ END
Start at the end of the file.

MMSessionSeek ()

MMTypeCode Typedef

Specifies the type of value stored in a property or MMFormat object.
MMDefs.h

typedef int32 t MMTypeCode

P_MM UNDEFINED TYPE = MM TYPE CODE(0)

Not defined.

P MM WILD TYPE = MM _TYPE CODE('wld')
Wild.

P MM RAW TYPE = MM TYPE CODE('raw')
Raw data.

P MM _INT8 TYPE = MM _TYPE CODE('i08')
8-bit integer.

P MM INT16 TYPE
16-bit integer.

P MM _INT32 TYPE
32-bit integer.

P MM INT64 TYPE
64-bit integer.

MM_TYPE CODE('il6')

MM_TYPE_CODE('i32")

MM_TYPE CODE('i64')

Exploring Palm OS: Multimedia 73

Multimedia Library Definitions
Object Property Key Bases

Purpose

Declared In
Constants

P MM BOOL_TYPE = MM _TYPE_ CODE('bol')
Boolean value.

P MM STRING TYPE = MM _TYPE CODE('str')
String value.

Object Property Key Bases Enum

Used to construct base values for the property keys used by
different objects.

MMDefs.h

P_MM_PROP_OBJECT MASK = 0xFF000000L
Mask of all object property key base values.

P_MM PROP_OBJECT SESSION = (1L << 24)
Identifies session object property keys.

P MM PROP_OBJECT CONTENT = (2L << 24)
Identifies multimedia content property keys.

P_MM PROP_OBJECT SOURCE = (3L << 24)
Identifies source object property keys.

P MM _PROP_OBJECT DEST = (4L << 24)
Identifies destination object property keys

P_MM PROP_OBJECT STREAM = (5L << 24)
Identifies stream object property keys.

P_MM_PROP_OBJECT TRACK = (6L << 24)
Identifies track object property keys.

P MM PROP_OBJECT DEVICE = (7L << 24)
Not currently used.

P MM _PROP_OBJECT SESSION CLASS = (8L << 24)
Identifies session subclass properties.

P_MM PROP_OBJECT CODEC_CLASS = (9L << 24)
Identifies codec object property keys.

74 Exploring Palm OS: Multimedia

Multimedia Library Definitions
Property Key Base Values

Property Base Enum
Purpose Used to construct property key constants.
Declared In MMDefs.h

Constants P MM STANDARD PROP BASE = 0x00010000L
Identifies PalmSource-defined property keys.

P MM USER _PROP_BASE = 0x00020000L
Identifies licensee-defined property keys.

P MM _PRIVATE PROP BASE = 0x00030000L
Identifies private property keys.

Property Key Base Values Enum

Purpose Base values for property key constants used by various objects.
Declared In MMDefs.h

Constants P MM SESSION PROP_BASE = P_MM STANDARD PROP_BASE |
P_MM PROP_OBJECT SESSION
Base value for session object property keys.

P MM _CONTENT PROP BASE = P_MM STANDARD PROP BASE |
P MM PROP_OBJECT CONTENT
Base value for content property keys.

P_MM SOURCE_PROP BASE = P_MM STANDARD PROP_BASE |
P_MM PROP_OBJECT SOURCE
Base value for source object property keys.

P_MM DEST PROP_BASE = P_MM STANDARD PROP BASE |
P_MM_PROP_OBJECT DEST
Base value for destination object property keys

P MM STREAM PROP_BASE = P_MM STANDARD PROP_BASE |
P_MM_PROP_OBJECT STREAM
Base value for stream object property keys.

P_MM TRACK PROP BASE = P_MM STANDARD PROP BASE |
P_MM_PROP_OBJECT TRACK
Base value for track object property keys.

Exploring Palm OS: Multimedia 75

Multimedia Library Definitions
Session Event Causes

P MM DEVICE PROP_BASE = P_MM STANDARD PROP_ BASE |
P MM PROP OBJECT DEVICE
Not currently used.

P MM _SESSION CLASS PROP BASE =
P MM STANDARD PROP BASE |
P MM PROP_OBJECT SESSION CLASS
Base value for session subclass properties.

P MM _CODEC_CLASS PROP BASE =
P_MM STANDARD PROP_BASE |
P_MM_PROP_OBJECT CODEC_CLASS
Base value for codec object property keys.

Session Event Causes Enum
Purpose Values for the MMSessionEvent eventCause field.

DeclaredIn MMDefs.h

Constants P MM EVENT CAUSE UNKNOWN = 0x01
The cause is unknown.

P MM _EVENT CAUSE REQUESTED BY APP = 0x02
The application requested that the event occur.

P MM _EVENT CAUSE _END OF STREAM = 0x03
All tracks stopped because there is no more data to write or
to read.

P_MM EVENT CAUSE INVALID STREAM = 0x04
All tracks stopped because bad data was detected in the
stream.

P MM _EVENT CAUSE STORAGE FULL = 0x05
All tracks stopped because the destination storage is full.

P MM _EVENT CAUSE CUSTOM BASE = 0x1000
Base value after which you may add your own custom
events.

76 Exploring Palm OS: Multimedia

Multimedia Library Definitions
MM_TYPE_CODE

Purpose

Declared In
Constants

Session Notifications Enum

Notifications sent by the session when something occurs. These are
used as values for the MMSessionEvent eventCode field.

MMDefs.h

P_MM EVENT SESSION STATE CHANGED = 0x01
Sent to the client process when a session’s state changes such
as from ready to running to stopped.

P MM _EVENT SESSION MARKER EXPIRED = 0x02
Sent to the client process when a marker requested by the
application has been reached on a particular track.

P_MM EVENT SESSION DELETING = 0x03
The session is in the process of being deleted.

P_MM _EVENT SESSION WARNING = 0x04
A recoverable error has occurred during the session.

P MM _EVENT CUSTOM BASE = 0x1000
Base value after which licensees may add their own custom
events.

Multimedia Definitions Functions and Macros

Purpose
Declared In
Prototype
Parameters

Returns

MM_TYPE_CODE Macro

Used to construct MMTypeCode values.
MMDefs.h
#define MM_TYPE CODE (code)

— code
An 8-bit number.

One of the MMTypeCode values.

Exploring Palm OS: Multimedia 77

Multimedia Library Definitions
MM_TYPE_CODE

78 Exploring Palm OS: Multimedia

S

Multimedia Codecs

This chapter describes multimedia constants and functions related

to codecs:

Multimedia CodecConstants79
Multimedia Codec Functions and Macros.80
The header file MMCodecClass . h declares the API that this chapter

describes.

Multimedia Codec Constants

Codec Class Properties

Purpose Defines property keys that can be used to access information in
codec classes.

Declared In MMCodecClass.h

Constants #define P_MM CODEC_CLASS_ PROP_CREATOR
(P_MM _CODEC_CLASS PROP BASE | 0x0003L)
The codec class’s creator ID.

#define P_MM CODEC_CLASS PROP DEST FORMAT
(P_MM _CODEC_CLASS PROP_BASE | 0x0005L)
The codec’s destination format if it is an encoder.

#define P MM CODE C_CLAS S_PROP_NAME
(P_MM CODEC_CLASS PROP BASE | 0x0001L)
The codec’s name.

#define P_MM CODEC_CLASS PROP SOURCE_FORMAT
(P_MM_CODEC_CLASS PROP BASE | 0x0004L)
The codec’s source format if it is a decoder.

#define P_MM CODEC_CLASS PROP_VERSION
(P_MM_CODEC_CLASS_PROP_BASE | 0x0002L)
The codec’s version number.

Exploring Palm OS: Multimedia 79

Multimedia Codecs
Multimedia Codec Functions and Macros

Multimedia Codec Functions and Macros

Purpose
Declared In
Prototype

Parameters

Returns

MMCodecClassEnumerate Function
Iterates through the available codecs, both encoders and decoders.
MMCodecClass.h

status_t MMCodecClassEnumerate (MMFormatType type,
int32 t #*ioIterator,
MMCodecClassID *outCodecClassID)

— type
The type of codecs to enumerate. Specify one of the constants
listed in “formatType” on page 93, or specify
P_FORMAT UNKNOWN to enumerate codecs of all format
types.

<> iolterator
Pointer to the value returned by the previous call to this
function. On the first call to this function, set this value to
P_MM ENUM BEGIN. When the set of iterated values is
exhausted, this function sets this value to P MM_ENUM_END.

< outCodecClassID
Pointer to the ID of the next available codec.

The following result codes:

errNone
No error.

sysErrParamErr
The iterator is invalid or the type doesn’t match previous
calls in the same iteration set.

sysErrBadIndex
The iterator value is invalid or past the last item in the set.

80 Exploring Palm OS: Multimedia

Multimedia Codecs
MMFileFormatEnumerate

Purpose

Declared In
Prototype

Parameters

Returns

MMFileFormatEnumerate Function

Iterates through the supported file formats (these are distinct from
codecs because a file format may encapsulate many kinds of
encoded data).

MMCodecClass.h

status_t MMFileFormatEnumerate
(int32 t *ioIterator, MMFormatType *outFormat)

<> 1olterator
Pointer to the value returned by the previous call to this
function. On the first call to this function, set this value to
P_MM ENUM BEGIN. When the set of iterated values is
exhausted, this function sets this value to P MM_ENUM_END.

<— outFormat
Pointer to the ID of the next available format.

The following result codes:

errNone
No error.

sysErrParamErr
The iterator is invalid or the type doesn’t match previous
calls in the same iteration set.

sysErrBadIndex
The iterator value is invalid or past the last item in the set.

Exploring Palm OS: Multimedia 81

Multimedia Codecs
MMFileFormatEnumerate

82 Exploring Palm OS: Multimedia

6

Multimedia Formats

This chapter describes multimedia structures, types, constants, and
functions related to formats. It covers:

Multimedia Format Structures and Types. 83
Multimedia Format Constants. 84
Multimedia Format Functions and Macros 98

The header files MMFormatDefs.h and MMFormat . h declare the
API that this chapter describes.

Multimedia Format Structures and Types

Purpose
Declared In
Prototype

Purpose
Declared In
Prototype
Comments

MMFormat Typedef

Identifies a multimedia format object.
MMFormat.h

typedef int32 t MMFormat

MMFormatType Typedef

Identifies a multimedia format type.

MMFormat.h

typedef int32 t MMFormatType

Format types are defined by the formatType enum.

Exploring Palm OS: Multimedia 83

Multimedia Formats
Multimedia Format Constants

Multimedia Format Constants

Purpose

Declared In
Constants

Format Key Constants

Values used as keys to format terms. The descriptions below explain
what the value is for each key. Each value is a 32-bit integer unless
otherwise specified.

MMFormatDefs.h

#define P_FORMATKEY BYTE ORDER "byte order"
The byte order for raw audio. Possible values are
LITTLE ENDIAN, BIG_ENDIAN, or HOST ENDIAN.

#define P_FORMATKEY RAW AUDIO TYPE
"raw_audio_ type"
Base type used for raw audio. Possible values are
fmtRawAudioType.

#define P_FORMATKEY RAW AUDIO BITS
"raw_audio bits"
If P FORMATKEY RAW AUDIO TYPEisP AUDIO INT32,

the value for this provides the actual number of bits used in a
given 32-bit sample.

#define P_FORMATKEY CHANNEL USAGE "channel usage"
Number of audio channels for a raw, ADPCM, or MPEG
audio stream. Possible values are fmtAudioChannelUsage.

#define P_FORMATKEY ENCODED BIT RATE
"enc_bit rate"

The audio or video bit rate for MPEG formats.

#define P_FORMATKEY FRAME RATE "frame rate"
A floating-point value specifying the number of frames
processed per second for an audio or video stream.

#define P_FORMATKEY BUFFER FRAMES "buffer frames"
An integer specifying the number of frames per buffer for
audio data.

#define P_FORMATKEY WIDTH "width"
Width in native pixels of a video frame or graphics file.

#define P_FORMATKEY HEIGHT "height"
Height in native pixels of a video frame or graphics file.

84 Exploring Palm OS: Multimedia

Multimedia Formats
Format Key Constants

#define P_FORMATKEY BYTES PER ROW "bytes per row"
An integer specifying the number of bytes per row of a raw
video frame or of a graphics file.

#define P_FORMATKEY PIXEL FORMAT "pixel format"
64-bit integer describing the pixel format of a raw video
frame or of a graphics file.

#define P_FORMATKEY VIDEO ORIENTATION
"video orientation”
Video orientation for graphics still. Possible values are
defined in fmtVideoOrientation.

#define P_FORMATKEY MSADPCM BITS PER SAMPLE
"msadpcm_sample bits"
Number of bits per sample for a mono-channel MS-ADPCM
sound stream.

#define P_FORMATKEY MSADPCM COEFS "msadpcm coefs"
Variable size 16-bit coefficient table in host-endian format.

#define P_FORMATKEY MPEG12 AUDIO REVISION
"mpegl2 audio rev"
The specific version of MPEG audio. Possible values are
defined in fmtMPEG12AudioRevision.

#define P_FORMATKEY MPEG12 AUDIO LAYER
"mpegl2 audio layer"
MPEG-1 or MPEG-2 audio layer. Possible values are in
fmtMPEG12Audiolayer.

#define P_FORMATKEY MPEG12 AUDIO CHANNEL MODE
"mpegl2 audio channel mode"
MPEG-1 or MPEG-2 audio channel mode. Possible values are
defined in fmtMPEG12AudioChannelMode.

#define P_FORMATKEY DVIADPCM BITS PER_SAMPLE
"dviadpcm sample bits"
Number of bits per sample in a mono-channel Intel/DVI
ADPCM audio file.

#define P_FORMATKEY MPEG4AUDIO OBJECT PROFILE
"mpeg4audio object profile"
Type of audio object profile used for MPEG-4 audio. Possible
values are defined in fmtMPEG4AudioObjectProfile.

Exploring Palm OS: Multimedia 85

Multimedia Formats
fmtAudioChannelUsage

Purpose
Declared In
Constants

#define P_FORMATKEY MPEG4AUDIO TF CODING
"mpeg4audio tf coding"
MPEG-4 audio track time/frequency coding format. Possible
values are defined in fmtMPEG4AudioTFCoding.

#define P_FORMATKEY MPEG4AUDIO TF FRAME LENGTH
"mpeg4audio tf frame length"
Frame length for MPEG-4 audio time/frequency coding
format.

#define P FORMATKEY MPEG4AUDIO TF CORE_ CODER DELAY
"mpeg4audio tf core coder delay"
Parameter for MPEG-4 audio (AAC) decoding.

#define P_FORMATKEY MPEG4AUDIO TF LSLAYER LENGTH
"mpeg4audio tf lslayer length"
Parameter for MPEG-4 audio (AAC) decoding.

#define P_FORMATKEY MPEG4AUDIO TF PCE
"mpeg4audio tf pce"
Parameter for MPEG-4 audio (AAC) decoding.

#define
P_FORMATKEY MPEG4VIDEO VOP TIME INC_RESOLUTION
"mpeg4video vop time inc res"
MPEG-4 video object plane temporal resolution.
#define
P_FORMATKEY YCBCR420 PLANAR VIDEO UV_STRIDE

"ycbcr420_uv_stride"
The distance in bytes from one row to the next.

#define P_FORMATKEY YCBCR420 PLANAR VIDEO Y STRIDE
"ycbcr420 y stride”
The distance in bytes from one row to the next.

fmtAudioChannelUsage Enum
Values for the key P_ FORMATKEY CHANNEL_USAGE.
MMFormatDefs.h

P STEREO = 0x02
Stereo.

86 Exploring Palm OS: Multimedia

Multimedia Formats
fmtMPEG12AudioEmphasis

P _MONO = 0x01
Mono.

P_DOLBY PRO LOGIC_ STEREO = 0x12
Dolby digital pro logic stereo.

P DOLBY 5 1 SURROUND = 0x26
Dolby digital 5.1 format stereo.

P DTS _SURROUND = 0x36
Sony DTS surround stereo.

P_CHANNEL COUNT MASK = 0x0f
When you AND a channel usage constant with this mask,
you get the actual number of audio channels.

fMtMPEG12AudioChannelMode Enum

Purpose Values for the key
P_FORMATKEY MPEG12 AUDIO CHANNEL_ MODE.

Declared In MMFormatDefs.h

Constants P MPEG12 AUDIO STEREO = 2
Stereo (2 channels).

P_MPEG12 AUDIO JOINT STEREO = 0x82
Joint stereo.
P_MPEG12 AUDIO DUAL CHANNEL = 0x42

Dual channel.

P_MPEG12 AUDIO MONO = 1
Mono (single channel).

P_MPEG12_ AUDIO CHANNEL COUNT MASK = 0x0f
Mask of all channel mode values.

fmtMPEG12AudioEmphasis Enum
Purpose For internal use only.
Declared In MMFormatDefs.h
Constants P MPEG12 AUDIO EMPHASIS NONE = 0
P_MPEG12 AUDIO EMPHASIS 50 15ms = 1
P_MPEG12 AUDIO EMPHASIS CCITT J17 = 3

Exploring Palm OS: Multimedia 87

Multimedia Formats
fmtMPEG12AudioLayer

Purpose
Declared In
Constants

Purpose
Declared In
Constants

Purpose

Declared In
Constants

fmtMPEG12AudioLayer Enum
Possible audio layers implemented in MPEG-1 and MPEG-2.
MMFormatDefs.h

P_MPEG12 AUDIO LAYER I
Audio layer 1.

P_MPEG12 AUDIO LAYER II
Audio layer 2.

P_MPEG12 AUDIO LAYER III
Audio layer 3 (MP3).

fmtMPEG12AudioRevision Enum
Possible versions when the format is MPEG-1 or MPEG-2.
MMFormatDefs.h

P_MPEG12 AUDIO REV_ MPEG1
MPEG-1.

P_MPEG12_ AUDIO REV_MPEG2
MPEG-2.

P_MPEG12 AUDIO REV_MPEG2 5
MPEG-2.5.

fmtMPEG4AudioObjectProfile Enum

Values for the key
P _FORMATKEY MPEG4AUDIO OBJECT PROFILE.

MMFormatDefs.h

P_MPEG4AUDIO AAC_MAIN = 1
Advanced Audio Coding (AAC) main.

P MPEG4AUDIO_ AAC LC
Low-complexity AAC.

P _MPEG4AUDIO AAC_SSR
Scalable sampling rate.

88 Exploring Palm OS: Multimedia

Multimedia Formats
fmtMPEG4AudioObjectProfile

P _MPEG4AUDIO AAC_LTP
AAC coder including long term prediction.

P_MPEG4AUDIO AAC_SCALABLE = 6
AAC scalable.

P MPEG4AUDIO_ TWINVQ
TwinVQ audio profile.

P_MPEG4AUDIO CELP
CELP speech coder.

P MPEG4AUDIO_ HVXC
HVXC speech coder.

P_MPEG4AUDIO TTSI = 12
Text-to-speech interface.

P MPEG4AUDIO MAIN SYNTHETIC
Synthesis profile.

P_MPEG4AUDIO WAVETABLE
Wavetable synthesis.

P MPEG4AUDIO GENERAL MIDI
General MIDI synthesis.

P_MPEG4AUDIO_ALGORITHMIC
Algorithmic synthesis.

P_MPEG4AUDIO ER AAC_LC
Error-resilient low-complexity AAC.

P _MPEG4AUDIO ER_AAC_LTP
Error-resilient AAC coder including long term prediction.

P_MPEG4AUDIO ER AAC_ SCALABLE
Error-resilient AAC scalable.

P_MPEG4AUDIO ER_TWINVQ
Error-resilient TwinVQ audio profile.

P MPEG4AUDIO ER BSAC
Error-resilient bit-sliced arithmetic coding.

P_MPEG4AUDIO_ER_AAC LD
Error-resilient low-delay AAC.

P MPEG4AUDIO ER_CELP
Error-resilient CELP speech coder.

Exploring Palm OS: Multimedia 89

Multimedia Formats
fmtMPEG4AudioTFCoding

Purpose
Declared In
Constants

Purpose
Declared In
Constants

P _MPEG4AUDIO ER HVXC
Error-resilient HVXC speech coder.

P_MPEG4AUDIO ER_HILN
Error-resilient HILN parametric coding.

P MPEG4AUDIO ER PARAMETRIC
Error-resilient parametric coding.

fmtMPEG4AudioTFCoding Enum
Values for P FORMATKEY MPEG4AUDIO TF CODING.

MMFormatDefs.h

P_MPEG4AUDIO TF AAC_ SCALABLE
AAC scalable.

P_MPEG4AUDIO TF BSAC
Bit-sliced arithmetic coding.

P MPEG4AUDIO TF TWINVQ
Twin VQ.

P_MPEG4AUDIO TF AAC_NON_SCALABLE
AAC non-scalable.

fmtRawAudioType Enum
Values for the key P_ FORMATKEY RAW_AUDIO_TYPE.
MMFormatDefs.h
P_AUDIO INT8 = 0x01

8-bit integer.
P_AUDIO UINT8 = 0x11

8-bit unsigned integer.
P_AUDIO INT16 = 0x02

16-bit integer.
P_AUDIO INT32 = 0x04

32-bit integer.

P_AUDIO FLOAT = 0x24
Floating-point value.

90 Exploring Palm OS: Multimedia

Multimedia Formats
formatFamily

Purpose
Declared In
Constants

Purpose
Declared In
Constants

P _AUDIO SIZE MASK = 0x0f
When you AND a raw audio type constant with this mask,
you get the actual audio sample size in bytes.

fmtVideoOrientation Enum
Values for the key P_ FORMATKEY VIDEO ORIENTATION.
MMFormatDefs.h

P_VIDEO TOP_LEFT RIGHT = 1
Start at the top and move left to right.

P_VIDEO BOTTOM LEFT RIGHT
Start at the bottom and scan left to right.

formatFamily Enum
Values of the first byte in a formatType.
MMFormatDefs.h

P_FORMAT FAMILY MPEG12 = 1
MPEG-1 or MPEG-2 multimedia file.

P_FORMAT FAMILY MPEG4 = 3
MPEG-4 multimedia file.

P_FORMAT FAMILY ATRAC

Adaptive Transform Acoustic Coding for MiniDisc sound
file.

P_FORMAT FAMILY H263
H.263 multimedia format.

P_FORMAT FAMILY 3GPP
3GPP multimedia format file.

P_FORMAT FAMILY AVI
Microsoft’s video for Windows standard.

P _FORMAT FAMILY QUICKTIME
Apple QuickTime video standard.

P_FORMAT FAMILY ASF
Microsoft advanced streaming format multimedia.

Exploring Palm OS: Multimedia 91

Multimedia Formats
formatFamily

P_FORMAT FAMILY WAV
WAV format sound files.

P_FORMAT FAMILY AIFF
Audio Interchange File Format for sampled sound.

P _FORMAT FAMILY JPEG
A JPEG graphic file.

P_FORMAT FAMILY GIF
A GIF graphic file.

P _FORMAT FAMILY BMP
A BMP graphic file.

P_FORMAT FAMILY PNG
A PNG graphic file.

P _FORMAT FAMILY TIFF
A TIFF graphic file.

P_FORMAT FAMILY RAW
Raw format for audio or video.

P _FORMAT FAMILY YCBCR420
YCbCr420 video format.

P_FORMAT FAMILY OGG
Ogg Vorbis format.

P _FORMAT FAMILY AMR
3GPP AMR speech format.

P_FORMAT FAMILY G7XX
CCITT 7xx voice compression formats.

P _FORMAT FAMILY H264
H264 video file.

P_FORMAT FAMILY CINEPAK
SuperMac Cinepak video format.

P_FORMAT FAMILY USER = 0xfd
User-defined format.

P_FORMAT_FAMILY_PRIVATE = 0Oxfe
Private format.

P_FORMAT_FAMILY_PALMOS_INTERNAL = 0Oxff
Internal to Palm OS®.

92 Exploring Palm OS: Multimedia

Multimedia Formats
formatType

Purpose
Declared In
Constants

formatType Enum
Values of format types.
MMFormatDefs.h

P FORMAT UNKNOWN = 0
Unknown format.

P_FORMAT ANY TYPE = Oxff
Matches any format.

P_FORMAT AUDIO TYPE = 0x01
Any audio format.

P_FORMAT VIDEO TYPE = 0x02
Any video format.

P_FORMAT MIDI TYPE = 0x04
Matches any MIDI sound type.

P_FORMAT STILL TYPE = 0x08
Matches any still graphic file.

P FORMAT RAW AUDIO = MMFORMATTYPE (0,
P_FORMAT FAMILY RAW, P_FORMAT AUDIO TYPE),
Raw audio format.

P FORMAT RAW VIDEO = MMFORMATTYPE (0,
P_FORMAT FAMILY RAW, P_FORMAT VIDEO TYPE)
Raw video format.

P _FORMAT MIDI = MMFORMATTYPE(O,
P_FORMAT FAMILY RAW, P_FORMAT MIDI_ TYPE),
Raw MIDI sound file.
P_FORMAT RAW STILL = MMFORMATTYPE (O,
P _FORMAT FAMILY RAW, P_FORMAT STILL TYPE)
Raw graphics file.
P_FORMAT MPEG12 AUDIO = _MMFORMATTYPE (O,

P_FORMAT FAMILY MPEG12, P_FORMAT AUDIO TYPE)
MPEG-1 or MPEG-2 audio track.

P_FORMAT MPEG12 VIDEO = _MMFORMATTYPE (O,
P_FORMAT FAMILY MPEG12, P_FORMAT VIDEO TYPE)
MPEG-1 or MPEG-2 video track.

Exploring Palm OS: Multimedia 93

Multimedia Formats

formatType

P _FORMAT MPEG4 AUDIO TF =
_MMFORMATTYPE (0x01, P_FORMAT FAMILY MPEG4,
P_FORMAT AUDIO TYPE)
MPEG-4 audio track time/frequency coder.

P_FORMAT MPEG4 AUDIO CELP =
_MMFORMATTYPE (0x02, P_FORMAT FAMILY MPEG4,
P_FORMAT AUDIO TYPE)
MPEG-4 audio track code excited linear prediction.

P_FORMAT MPEG4 AUDIO PARAMETRIC =
_MMFORMATTYPE (0x03, P_FORMAT FAMILY MPEG4,
P_FORMAT AUDIO TYPE)

MPEG-4 audio track with parametric coding.

P_FORMAT MPEG4 AUDIO TTS =
_MMFORMATTYPE (0x04, P_FORMAT FAMILY MPEG4,
P_FORMAT AUDIO TYPE)
MPEG-4 audio text-to-speech track.

P_FORMAT MPEG4 AUDIO STRUCTURED =
_MMFORMATTYPE (0x05, P_FORMAT FAMILY MPEG4,
P_FORMAT AUDIO TYPE)

MPEG-4 audio track with structured format.

P_FORMAT MPEG4 VIDEO =
_MMFORMATTYPE(0, P_FORMAT FAMILY MPEG4,
P_FORMAT VIDEO TYPE)
MPEG-4 video track.

P FORMAT ATRAC AUDIO = MMFORMATTYPE(O,
P_FORMAT FAMILY ATRAC, P_FORMAT AUDIO TYPE)
ATRAC audio track.
P_FORMAT H263 VIDEO = _MMFORMATTYPE (O,
P_FORMAT FAMILY H263, P _FORMAT VIDEO TYPE)
H.263 video track.

P_FORMAT MSADPCM AUDIO =
_MMFORMATTYPE (0x02, P_FORMAT FAMILY WAV,
P_FORMAT AUDIO TYPE)
A WAV (MS-ADPCM) audio track.

94 Exploring Palm OS: Multimedia

Multimedia Formats
formatType

P FORMAT DVI ADPCM AUDIO =
_MMFORMATTYPE (0x11, P_FORMAT FAMILY WAV,
P_FORMAT AUDIO TYPE)
Intel/DVI ADPCM audio track.

P_FORMAT JPEG_STILL = _ MMFORMATTYPE(O,
P_FORMAT FAMILY JPEG, P_FORMAT STILL TYPE)
JPEG graphics file.
P FORMAT BMP STILL = MMFORMATTYPE(O,
P_FORMAT FAMILY BMP, P_FORMAT STILL TYPE)
BMP graphics file.
P_FORMAT PNG STILL = MMFORMATTYPE (O,
P FORMAT FAMILY PNG, P_FORMAT STILL TYPE)
PNG graphics file.
P_FORMAT TIFF STILL = _MMFORMATTYPE (O,
P_FORMAT FAMILY TIFF, P_FORMAT STILIL TYPE)
TIFF graphics file.
P_FORMAT YCBCR420 PLANAR VIDEO = _MMFORMATTYPE (O,

P_FORMAT FAMILY YCBCR420, P_FORMAT VIDEO TYPE)
Video track with YCbCr420 planar format.

P_FORMAT OGG_VORBIS AUDIO =
_MMFORMATTYPE (0x01, P_FORMAT FAMILY OGG,
P_FORMAT AUDIO TYPE)
Ogg Vorbis audio format track.

P_FORMAT AMR TS26 071 AUDIO =
_MMFORMATTYPE (0x01, P_FORMAT FAMILY AMR,
P_FORMAT AUDIO TYPE)

GSM AMR speech format audio track.

P_FORMAT AMR TS26 171 AUDIO =
_MMFORMATTYPE (0x02, P_FORMAT FAMILY AMR,
P_FORMAT AUDIO TYPE)

AMR wideband speech format audio track.

P_FORMAT G711 AUDIO = _MMFORMATTYPE (0x01,
P_FORMAT FAMILY G7XX, P_FORMAT AUDIO TYPE)
CCITT G711 voice compression audio track.

P_FORMAT G722 AUDIO = _MMFORMATTYPE (0x02,
P_FORMAT FAMILY G7XX, P_FORMAT AUDIO TYPE)
CCITT G722 voice compression audio track.

Exploring Palm OS: Multimedia 95

Multimedia Formats
formatType

P _FORMAT G723 AUDIO = MMFORMATTYPE(0x03,
P_FORMAT FAMILY G7XX, P_FORMAT AUDIO TYPE)
CCITT G723 voice compression audio track.

P_FORMAT G723 _1 AUDIO = _MMFORMATTYPE (0x04,
P_FORMAT FAMILY G7XX, P_FORMAT AUDIO TYPE),
CCITT G732.1 voice compression audio track.

P_FORMAT G726 AUDIO = _MMFORMATTYPE (0x05,
P _FORMAT FAMILY G7XX, P_FORMAT AUDIO TYPE),
CCITT G726 voice compression audio track.

P_FORMAT G728 AUDIO = _MMFORMATTYPE (0x06,
P_FORMAT FAMILY G7XX, P_FORMAT AUDIO TYPE),
CCITT G728 voice compression audio track.

P_FORMAT G729 AUDIO = _MMFORMATTYPE (0x07,
P_FORMAT FAMILY G7XX, P_FORMAT AUDIO TYPE),
CCITT G729 voice compression audio track.

P_FORMAT_H2 64_VIDEO = MMFORMATTYPE (0,
P_FORMAT FAMILY H264, P_FORMAT VIDEO TYPE)
H264 video track.

P _FORMAT CINEPAK VIDEO = MMFORMATTYPE(O,
P_FORMAT FAMILY CINEPAK, P_FORMAT VIDEO TYPE)
Cinepack video track.

P_FORMAT STREAM TYPE = 0x10
Matches any streaming type.

P_FORMAT MPEG12 STREAM =
_MMFORMATTYPE (0, P_FORMAT FAMILY MPEG12,
P_FORMAT STREAM TYPE)
An MPEG-1 or MPEG-2 streaming video.

P_FORMAT MPEG4 STREAM =
_MMFORMATTYPE(0, P _FORMAT FAMILY MPEG4,
P_FORMAT STREAM TYPE)
An MPEG-4 streaming video.

P_FORMAT MQV STREAM = _MMFORMATTYPE (0x01,
P_FORMAT FAMILY MPEG4, P_FORMAT STREAM TYPE)
An MQV streaming video.

96 Exploring Palm OS: Multimedia

Multimedia Formats
formatType

P _FORMAT ATRAC STREAM = MMFORMATTYPE (O,
P_FORMAT FAMILY ATRAC, P_FORMAT STREAM TYPE)
ATRAC streaming video.

P_FORMAT AVI_STREAM = _MMFORMATTYPE (O,
P _FORMAT FAMILY AVI, P_FORMAT STREAM TYPE)
Microsoft’s video for Windows streaming video.

P_FORMAT QUICKTIME STREAM = MMFORMATTYPE (O,
P FORMAT FAMILY QUICKTIME,
P_FORMAT STREAM TYPE)
QuickTime streaming video.

P_FORMAT ASF STREAM = _MMFORMATTYPE (O,
P_FORMAT FAMILY ASF, P_FORMAT STREAM TYPE)
Advanced streaming format video.

P_FORMAT WAV _STREAM = _MMFORMATTYPE (O,
P_FORMAT FAMILY WAV, P_FORMAT STREAM TYPE)
MS-ADPCM streaming sound.

P_FORMAT AIFF STREAM = MMFORMATTYPE(O,
P _FORMAT FAMILY AIFF, P_FORMAT STREAM TYPE)
AIFF streaming sound.

P_FORMAT BMP STREAM = _MMFORMATTYPE (O,
P_FORMAT FAMILY BMP, P_FORMAT STREAM TYPE)
A BMP streaming video file.

P FORMAT JPEG STREAM = MMFORMATTYPE (O,
P _FORMAT FAMILY JPEG, P_FORMAT STREAM TYPE)
A JPEG streaming video file.

P _FORMAT PNG STREAM = MMFORMATTYPE(O,
P_FORMAT FAMILY PNG, P_FORMAT STREAM TYPE)
A PNG streaming video file.

P FORMAT TIFF STREAM = MMFORMATTYPE (O,
P _FORMAT FAMILY TIFF, P_FORMAT STREAM TYPE)
A TIFF streaming video file.

P_FORMAT OGG_VORBIS STREAM = MMFORMATTYPE(O,
P_FORMAT FAMILY OGG, P_FORMAT STREAM TYPE)
Ogg Vorbis streaming sound.

Exploring Palm OS: Multimedia 97

Multimedia Formats
Miscellaneous Constants

Purpose
Declared In
Constants

Miscellaneous Constants

Other constants.
MMFormatDefs.h, MMFormat.h

#define P_FORMAT MAX KEY LENGTH 64
Maximum length of a format key.

#define P_MM INVALID FORMAT 0
Invalid format.

Multimedia Format Functions and Macros

Purpose

Declared In
Prototype
Parameters

Returns
Comments

_MMFORMATTYPE Macro

Defines a value for a media format type like those in the
formatType enum.

MMFormatDefs.h
#define MMFORMATTYPE (subtype, family, type)

— subtype
An 8-bit integer that describes a family subtype.

— family
An 8-bit integer that describes a format family using one of
the formatFamily constants.

— type
An 8-bit integer that describes the basic media type: audio
track, video track, or stream. Only 5 bits are currently used.
The remaining 3 are reserved for future type expansion.

A 32-bit constant that uniquely identifies a multimedia format.

If you need to define a format type for a proprietary format, use
P_FORMAT FAMILY PRIVATE as the family.

98 Exploring Palm OS: Multimedia

Multimedia Formats
MMFormatCreate

Purpose

Declared In
Prototype

Parameters

Returns

Comments

Purpose
Declared In
Prototype
Parameters

Returns

Comments

MMFormatCopy Function

Creates a new media format object by copying an existing media
format object.

MMFormat.h

status_t MMFormatCopy (MMFormat *outDest,
MMFormat source)

< outDest
Pointer to the newly created media format object that is
identical to source.

— gource
A valid media format object.

errNone if the function was successful, otherwise an appropriate
Multimedia Library error.

The caller is responsible for calling MMFormatDelete () on the
newly created media format object when they no longer need it.

MMFormatCreate Function

Creates a new media format object.

MMFormat.h

status_t MMFormatCreate (MMFormat *outFormat)

< outFormat
Pointer to the newly created media format object.

errNone if the function was successful, otherwise an appropriate
Multimedia Library error.

The caller is responsible for calling MMFormatDelete () on the
newly created media format object when they no longer need it.

Exploring Palm OS: Multimedia 99

Multimedia Formats

MMFormatDelete

Purpose
Declared In
Prototype
Parameters

Returns

Purpose
Declared In
Prototype

Parameters

Returns

MMFormatDelete Function

Deletes a media format object.

MMFormat.h

status t MMFormatDelete (MMFormat format)

— format
A valid media format object.

errNone if the function was successful, otherwise an appropriate
Multimedia Library error.

MMFormatEnumerateTerms Function
Lists the terms in a media format object.
MMFormat.h

status_t MMFormatEnumerateTerms (MMFormat format,
int32 t *ioIterator, char *outKey,
MMTypeCode *outType)

— format
A valid media format object.

<> 1olterator
Pointer to the value returned by the previous call to this
function. On the first call to this function, set this value to
P_MM ENUM BEGIN. When the set of iterated values is
exhausted, this function sets this value to P MM_ENUM_END.

< outKey
Pointer to the key for the current term. This must point to a
buffer of size P_ FORMAT MAX_ KEY LENGTH or larger.

< outType
Pointer to the data type of the current term. Unspecified
wildcard terms may have type P_MM_TYPE_WILD (in which
case they contain no data).

The following result codes:

errNone
No error.

100 Exploring Palm OS: Multimedia

Multimedia Formats
MMFormatGetTerm

Purpose
Declared In
Prototype

Parameters

Returns

sysErrParamErr
The specified format object is invalid.

sysErrBadIndex
The iterator value is invalid or past the last item in the set.

MMFormatGetTerm Function
Returns the value of a term in a media format object.
MMFormat.h

status_t MMFormatGetTerm (MMFormat format,
const char *key, MMTypeCode typeCode,
void *outValue, int32 t *ioLength)

— format

A valid media format object.
— key

Pointer to the key to search for.
— typeCode

Pointer to the expected type of data. Specify one of the
constants listed in “MMTypeCode” on page 73.

<> outValue
On input, a pointer to a buffer capable of storing the specified
type of data. On output, a pointer to the value, if it was found
and enough storage space was provided.

<> ioLength
On input, if typeCode specifies a variable-length value with
no delimiter (P_MM_TYPE_ RAW,), then this is a pointer to the
size of the out Value buffer in bytes; otherwise this may be
NULL. On output, a pointer to the actual size of the value.

The following result codes:

errNone
No error.

sysErrParamErr
The specified format object is invalid.

sysErrBadIndex
The specified key was not found.

Exploring Palm OS: Multimedia 101

Multimedia Formats
MMFormatGetTermInt32

sysErrBadType
The specified typeCode does not match the terms’s type.

memErrNotEnoughSpace
The outValue buffer was filled to capacity with a partial
value and ioLengthis set to indicate the required capacity.

See Also MMFormatGetTermInt32(), MMFormatGetTermTvpe(),
MMFormatSetTerm()

MMFormatGetTermint32 Function

Purpose Returns the value of a term in a media format object asan int32_t
type.
Declared In MMFormat.h

Prototype status t MMFormatGetTermInt32 (MMFormat format,
const char *key, int32_ t *outValue)

Parameters — format
A valid media format object.
— key
Pointer to the key to search for.
<> outValue
On input, a pointer to a buffer capable of storing the
requested value. On output, a pointer to the value, if it was

found and is representable as an int32_t (nota
P_MM TYPE WILD, for example).

Returns The following result codes:

errNone
No error.

sysErrParamErr
The specified format object is invalid.

sysErrBadIndex
The specified key was not found.

sysErrBadType
The terms’s value could not be converted to an int32_t.

See Also MMFormatGetTerm()

102 Exploring Palm OS: Multimedia

Multimedia Formats
MMFormatGetType

Purpose
Declared In
Prototype

Parameters

Returns

See Also

Purpose
Declared In
Prototype

Parameters

Returns

See Also

MMFormatGetTermType Function
Returns the type of a term in a media format object.
MMFormat.h

status_t MMFormatGetTermType (MMFormat format,
const char #*key, MMTypeCode *outType)

— format
A valid media format object.

— key
Pointer to the key to find the type of.

< outType
The term type.

The following result codes:

errNone
No error.

sysErrBadIndex
The specified key was not found.

MMFormatGetTerm()

MMFormatGetType Function
Returns the type of a media format object.
MMFormat.h

status_t MMFormatGetType (MMFormat format,
MMFormatType *outType)

— format
A valid media format object.

< outType
The media format type.

errNone if the function was successful, otherwise an appropriate
Multimedia Library error.

MMFormatSetType ()

Exploring Palm OS: Multimedia 103

Multimedia Formats
MMFormatRawAudio

Purpose
Declared In
Prototype
Parameters
Returns
See Also

Purpose

Declared In
Prototype
Parameters
Returns
See Also

Purpose
Declared In
Prototype
Parameters

Returns
See Also

MMFormatRawAudio Function

Returns the standard media format used to describe raw audio.
MMFormat.h

MMFormat MMFormatRawAudio (void)

None.

The standard media format used to describe raw audio.

MMFormatRawStill (), MMFormatRawVideo ()

MMFormatRawsStill Function

Returns the standard media format used to describe a raw still
image.

MMFormat.h

MMFormat MMFormatRawStill (void)

None.

The standard media format used to describe a raw still image.

MMFormatRawAudio(), MMFormatRawVideo ()

MMFormatRawVideo Function

Returns the standard media format used to describe raw video.
MMFormat.h

MMFormat MMFormatRawVideo (void)

None.

The standard media format used to describe raw video.

MMFormatRawAudio (), MMFormatRawStill ()

104 Exploring Palm OS: Multimedia

Multimedia Formats
MMFormatSetTerm

Purpose

Declared In
Prototype

Parameters

Returns

Purpose

Declared In
Prototype

Parameters

MMFormatsCompatible Function

Tests if two media format objects are compatible by matching their
types and terms.

MMFormat.h

status_t MMFormatsCompatible (MMFormat a,
MMFormat b)

—a

A valid media format object.
—b

A valid media format object.
The following result codes:

errNone
The formats are compatible.

mediaErrFormatMismatch
The formats are not compatible.

sysErrParamErr

One or both of the specified media formats has not been
initialized.

MMFormatSetTerm Function

Sets the value of a term in a media format object, replacing any
existing value for the given key.

MMFormat.h

status_t MMFormatSetTerm (MMFormat format,
const char *key, MMTypeCode typeCode,
const void *value, int32 t Iength)

— format
A valid media format object.
— key
Pointer to the key to set the value for.

— typeCode
The type of data provided in value.

Exploring Palm OS: Multimedia 105

Multimedia Formats

MMFormatSetTermInt32

— value
Pointer to the value to set for the term identified by key-.

— length
If typeCode specifies a variable-length value with no
delimiter (such as P_MM_TYPE_RAW), this parameter should
indicate the size of the value in bytes. Otherwise, this
parameter is ignored and should be set to 0.

Returns The following result codes:

See Also

Purpose

Declared In
Prototype

Parameters

Returns

See Also

errNone
No error.

sysErrParamirr
The specified media format is invalid.

MMFormatGetTerm()

MMFormatSetTermint32 Function

Sets the value of a term in a media format object to the specified
int32_t value, replacing any existing value for the given key.

MMFormat.h

status_t MMFormatSetTermInt32 (MMFormat format,
const char *key, int32 t value)

— format
A valid media format object.

— key
Pointer to the key to set the value for.

— value
Pointer to the value to set for the term identified by key.

The following result codes:

errNone
No error.

sysErrParamErr
The specified media format is invalid.

MMFormatGetTermInt32()

106 Exploring Palm OS: Multimedia

Multimedia Formats
MMFormatSetType

Purpose
Declared In
Prototype

Parameters

Returns

See Also

MMFormatSetType Function
Changes the basic format type of a media format object.
MMFormat.h

status_t MMFormatSetType (MMFormat format,
MMFormatType type)

— format
A valid media format object.

— type
The new type. Specify one of the constants listed in
“formatType” on page 93.

errNone if the function was successful, otherwise an appropriate
Multimedia Library error.

MMFormatGetType ()

Exploring Palm OS: Multimedia 107

Multimedia Formats
MMFormatSetType

108 Exploring Palm OS: Multimedia

Multimedia
Properties

This chapter describes multimedia functions related to properties.

The header file MMProperty.h declares the API that this chapter
describes.

Multimedia Property Functions and Macros

Purpose

Declared In
Prototype

Parameters

MMPropertyEnumerate Function

Iterates through the supported values of a particular property of an
object.

MMProperty.h

status_t MMPropertyEnumerate (int32_t id,
int32 t property, int32 t #*ioIterator,
MMTypeCode typeCode, void *outValue,
int32_t #*ioLength)

— 1id

A valid object ID.
— property
A valid property key.

<> 1olterator
Pointer to the value returned by the previous call to this
function. On the first call to this function, set this value to
P_MM ENUM BEGIN. When the set of iterated values is
exhausted, this function sets this value to P MM_ENUM_END.

— typeCode
The expected type of data. Specify one of the constants listed
in “MMTypeCode” on page 73.

Exploring Palm OS: Multimedia 109

Multimedia Properties

MMPropertyGet

Returns

Purpose
Declared In
Prototype

Parameters

<> outValue
On input, a pointer to a buffer capable of storing the specified
type of data. On output, a pointer to the value, if it was found
and enough storage space was provided.

<> ioLength
On input, if typeCode specifies a variable-length value with
no delimiter (P_MM_TYPE_RAW,), then this is a pointer to the

size of the outValue buffer in bytes; otherwise this may be
NULL. On output, a pointer to the actual size of the value.

The following result codes:

errNone
No error.

sysErrParamErr
The specified object or property is invalid.

sysErrBadIndex
The iterator value is invalid or past the last item in the set.

sysErrBadType
The specified typeCode does not match the property’s type.

sysErrNotAllowed
Cannot enumerate this property.

memErrNotEnoughSpace
The outValue buffer was filled to capacity with a partial
value and ioLengthis set to indicate the required capacity.

MMPropertyGet Function
Returns the value of an object property.
MMProperty.h

status_t MMPropertyGet (int32_ t id,
int32 t property, MMTypeCode typeCode,
void *outValue, int32 t *ioValueLen)

— id

A valid object ID.
— property
A valid property key.

110 Exploring Palm OS: Multimedia

Multimedia Properties
MMPropertylnfo

Returns

See Also

Purpose
Declared In
Prototype

Parameters

— typeCode
The expected type of data. Specify one of the constants listed
in “MMTypeCode” on page 73.

<> outValue
On input, a pointer to a buffer capable of storing the specified
type of data. On output, a pointer to the value, if it was found
and enough storage space was provided.

<> ioLength
On input, if typeCode specifies a variable-length value with
no delimiter (P_MM_TYPE_ RAW,), then this is a pointer to the
size of the out Value buffer in bytes; otherwise this may be
NULL. On output, a pointer to the actual size of the value.

The following result codes:

errNone
No error.

sysErrParamErr
The specified object or property is invalid.

sysErrBadType
The specified typeCode does not match the property’s type.

memErrNotEnoughSpace
The outValue buffer was filled to capacity with a partial
value and ioLengthis set to indicate the required capacity.

MMPropertySet ()

MMPropertyinfo Function
Returns metadata about a property.
MMProperty.h

status_t MMPropertyInfo (int32 t id,
MMPropInfoType infoType, int32 t property,
MMTypeCode typeCode, void *outValue,
int32_t #*ioValueLen)

— id

A valid object ID.

Exploring Palm OS: Multimedia 111

Multimedia Properties

MMPropertylnfo

— infoType
The type of information to return. Specify one of the
constants listed in “MMPropInfoType” on page 72.

— property
A valid property key.

— typeCode
The expected type of data. Specify one of the constants listed
in “MMTypeCode” on page 73.

<> outValue
On input, a pointer to a buffer capable of storing the specified
type of data. On output, a pointer to the value, if it was found
and enough storage space was provided.

<> ioLength
On input, if typeCode specifies a variable-length value with
no delimiter (P_MM_TYPE_RAW,), then this is a pointer to the
size of the out Value buffer in bytes; otherwise this may be
NULL. On output, a pointer to the actual size of the value.

Returns The following result codes:

errNone
No error.

sysErrParamErr
The specified object or property is invalid.

sysErrBadType
The specified typeCode does not match the property’s type.

memErrNotEnoughSpace
The outValue buffer was filled to capacity with a partial
value and ioLengthis set to indicate the required capacity.

See Also MMPropertyGet ()
112 Exploring Palm OS: Multimedia

Multimedia Properties
MMPropertySet

Purpose
Declared In
Prototype

Parameters

Returns

See Also

MMPropertySet Function
Sets an object property value.
MMProperty.h

status_t MMPropertySet (int32 t id,
int32 t property, MMTypeCode typeCode,
const void *value, uint32_ t Iength)

— id

A valid object ID.
— property

A valid property key.
— typeCode

The expected type of data. Specify one of the constants listed
in “MMTypeCode” on page 73.

— value
A pointer to the value to set for the property.

— length
If typeCode specifies a variable-length value with no
delimiter (P_MM_TYPE_RAW,), then this indicates the size of

the value in bytes. Otherwise, 1ength is ignored and should
be set to 0.

The following result codes:

errNone
No error.

sysErrParamErr
The specified object or property is invalid.

sysErrBadType
The specified typeCode does not match the property’s type.

MMPropertyGet ()

Exploring Palm OS: Multimedia 113

Multimedia Properties
MMPropertySet

114 Exploring Palm OS: Multimedia

8

Multimedia Sessions

This chapter describes the session management API in the
Multimedia Library. It covers:

Multimedia Session Structures and Types.

Multimedia Session Constants.

Multimedia Session Launch Codes.

Multimedia Session Functions and Macros

Application-Defined Functions

The header files MMSession.h and MMSessionClass.h declare

the API that this chapter describes.

Multimedia Session Structures and Types

Purpose
Declared In
Prototype

Fields

MMSessionEvent Struct
Defines a notification that an event has occurred.
MMSession.h

typedef struct MMSessionEventTag {
MMSessionID sessionRef;
MMEvent eventCode;
int32_t eventCause;

} MMSessionEvent

sessionRef
The session’s unique identifier.

eventCode

Identifies the event that occurred. This is one of the Session

Notifications.

Exploring Palm OS: Multimedia 115

Multimedia Sessions
Multimedia Session Constants

Comments

eventCause
Identifies the cause of the event. This is one of the Session
Event Causes.

This structure defines the parameter block for the
sysAppLaunchCmdMultimediaEvent launch code and an event
for the MMSessionCallbackFn () callback function.

Multimedia Session Constants

Purpose

Declared In
Constants

Camera Flash Mode Values Enum

Flash modes for a digital camera, used as a value for the

P_MM SOURCE_PROP_CAMERA FLASH_MODE property key. These
constants specify whether the camera uses a flash when taking a
picture.

MMSession.h

P MM FLASH MODE_OFF
Never use flash.

P MM FLASH MODE_AUTO
Automatically detect when a flash is needed.

P MM FLASH MODE_FRONT
Fill flash mode, which illuminates the front part of the image.

P MM FLASH MODE_SLOW
Slow synchronization flash mode, which preserves the
background.

P MM FLASH MODE_REAR
Rear flash mode. Flashes at the end of the picture. Useful for
action shots.

116 Exploring Palm OS: Multimedia

Multimedia Sessions
Camera Property Key Constants

Purpose

Declared In
Constants

Purpose

Declared In
Constants

Camera Focus Values Enum

Specifies the focus for a camera. Values for the
P_MM_SOURCE_PROP_CAMERA FOCUS property key.

MMSession.h
P MM _FOCUS_AUTO = 0
Automatically adjust focus.

P MM _FOCUS_INFINITY = LONG_MAX
Use infinite focus.

Camera Property Key Constants

Constants used to identify properties within a source that
represents a camera. The descriptions below explain the value
stored for the key and give the type for the value.

MMSession.h

#define P_MM SOURCE_ PROP_CAMERA APERTURE
(P_MM_SOURCE_PROP_BASE | 0x0012L)
The camera’s aperture as a 32-bit integer.

#define P_MM SOURCE_PROP CAMERA EXPOSURE
(P_MM_SOURCE_PROP_BASE | 0x0010L)
A 32-bit integer specifying the reciprocal of the exposure in
seconds or the constant P MM_EXPOSURE_AUTO.

#define P_MM SOURCE_PROP_ CAMERA EXPOSURE_SCALE
(P_MM_SOURCE_PROP_BASE | 0x0011L)
A 32-bit integer by which the exposure is modified.

#define P_MM SOURCE_PROP CAMERA FLASH MODE
(P_MM SOURCE_PROP BASE | 0x0013L)
One of the Camera Flash Mode Values.

#define P_MM SOURCE_PROP_CAMERA FOCUS
(P_MM _SOURCE_PROP BASE | 0x0016L)
One of the Camera Focus Values.

#define P_MM SOURCE PROP CAMERA ISO SENSITIVITY
(P_MM_SOURCE_PROP BASE | 0x0018L)
A 32-bit integer specifying an ISO ASA number or the
constant P MM ISO SENSITIVITY AUTO.

Exploring Palm OS: Multimedia 117

Multimedia Sessions
Camera White Balance Values

Purpose

Declared In
Constants

Purpose
Declared In
Constants

#define P_MM SOURCE PROP CAMERA RED EYE REDUCTION
(P_MM_SOURCE_PROP_BASE | 0x0014L)
A Boolean value specifying whether red-eye reduction is on
or off.

#define P_MM SOURCE PROP_ CAMERA WHITE BALANCE

(P_MM_SOURCE_PROP_ BASE | 0x0015L)
One of the Camera White Balance Values.

#define P_MM SOURCE_PROP CAMERA ZOOM
(P_MM_SOURCE_PROP_BASE | 0x0017L)
A 32-bit integer specifying the zoom level.

Camera White Balance Values Enum

White balance values for digital camera, values for the

P_MM SOURCE_PROP CAMERA WHITE_ BALANCE property key.
White balance adjusts the color synchronization for various lighting
conditions.

MMSession.h

P_MM WHITE BALANCE AUTO
Automatically adjust white balance.

P MM WHITE BALANCE INDOOR
Indoor lighting.

P MM WHITE BALANCE OUTDOOR
Outdoor lighting.

P MM WHITE BALANCE FLUORESCENT
Fluorescent lighting.

Default Session Class IDs
Used to identify default session classes within the Movie Server.
MMSessionClass.h

#define P_MM SESSION CLASS DEFAULT CAPTURE
(P_MM_STANDARD SESSION CLASS BASE | 0x0002L)
The class ID for the default recording (capture) session class.

118 Exploring Palm OS: Multimedia

Multimedia Sessions
Default URLs

See Also

Purpose

Declared In
Constants

Comments

See Also

#define P_MM SESSION CLASS DEFAULT PLAYBACK
(P_MM_STANDARD SESSION CLASS BASE | 0x0001L)
The class ID for the default playback session class.

MMSessionCreate()

Default URLs

Default URLs used to instantiate sources or destinations within a
session.

MMSession.h

#define P MM NULL URL "palmdev:///Media/Null"
Represents no device.

#define P_MM DEFAULT AUDIO CAPTURE URL "palmdev://
/Media/Default/AudioIn”
Any audio recording device.

#define P_MM DEFAULT AUDIO RENDER URL "palmdev:///
Media/Default/AudioOut”
Any audio playback device.

#define P_MM DEFAULT STILL CAPTURE URL "palmdev://
/Media/Default/StillIn"
Any still capture input (such as a camera).

#define P_MM DEFAULT VIDEO CAPTURE URL "palmdev://
/Media/Default/VideoIn"
Any video recording device.

#define P_MM DEFAULT VIDEO RENDER URL "palmdev:///
Media/Default/videoOut"
Any video playback device.

The CAPTURE_URLs instantiate a Movie Server object that
represents the source of recorded input, and the RENDER_URLs
instantiate a Movie Server object that represents the destination for
recorded material, within the default recording sessions. In
playback sessions, the RENDER_URLs instantiate a Movie Server
object that represents the destination for played content.

MMSessionAddDest (), MMSessionAddSource ()

Exploring Palm OS: Multimedia 119

Multimedia Sessions
Destination Property Key Constants

Purpose

Declared In
Constants

Purpose
Declared In
Constants

Purpose
Declared In
Constants

Destination Property Key Constants

Constants used to identify properties in a destination object. The
descriptions below explain the value for each key and give the type
for the value.

MMSession.h

#define P_MM DEST PROP FILE_ FORMAT
(P_MM DEST PROP BASE | 0x0002L)
An MMFormat type specifying the format written to the
destination object.

#define P_MM DEST PROP URL (P_MM DEST PROP_BASE |
0x0001L)
A string representing the URL used to create a destination
object.

ISO Sensitivity Value Enum
Possible value for the camera’s ISO sensitivity level.
MMSession.h

P MM ISO SENSITIVITY AUTO = 0
Automatically detect ISO sensitivity.

Miscellaneous Session Constants

Other constants defined in MMSession.h.
MMSession.h

#define P_MM EXPOSURE_AUTO 0
Automatically adjust the exposure for a camera. This is a
possible value for the property
P_MM SOURCE_PROP_CAMERA EXPOSURE.
#define P_MM DEFAULT DEST 0
Specifies a default destination device should be instantiated.

#define P_MM DEFAULT SOURCE 0
Specifies a default source device should be instantiated.

120 Exploring Palm OS: Multimedia

Multimedia Sessions
MM SessionState

Purpose

Declared In
Prototype
Constants

See Also

Purpose
Declared In
Prototype
Constants

MMSessionControlOpcode Typedef

Session control operation codes. A multimedia client application
sends these to the session object to have the session perform an
action.

MMDefs.h

typedef int32 t MMSessionControlOpcode

P MM SESSION CTL RUN = 0x01
Start or continue recording or playback.

P MM SESSION CTL PAUSE = 0x02
Pause recording or playback.

P MM SESSION CTI, STOP = 0x03
Stop recording or playback.

P MM SESSION CTL PREFETCH = 0x04
Begin buffering data from the source.

P MM _SESSION CTL GRAB = 0x05
Grab a still image from a video playback or recording
session.

P MM SESSION CTL REFRESH = 0x06
Refresh the display.

P MM SESSION CTL_ CUSTOM BASE = 0x1000
Base value where a licensee can add its own control op codes.

MMSessionControl ()

MMSessionState Typedef

Constants that describe the session object state.
MMDefs.h

typedef int32 t MMSessionState

P MM SESSION NOT INITIALIZED = 0x01
The session exists but has not been initialized with the
information it needs to playback or record.

P MM SESSION READY = 0x02
The session has been initialized and is ready to begin.
MMSessionFinalize () puts the session in this state.

Exploring Palm OS: Multimedia 121

Multimedia Sessions
Session Class Constants

See Also

Purpose
Declared In
Constants

Comments

Purpose

Declared In

P_MM SESSION PREFETCHING = 0x03
The session is buffering data.

P MM SESSION PAUSED = 0x04
The session has been paused.

P MM SESSION RUNNING = 0x05
The session has begun.

MMSessionGetState()

Session Class Constants Enum
Defines values for the high-order 16 bits of a session class ID.

MMSessionClass.h

P_MM STANDARD SESSION CLASS BASE = 0x10010000L

The high-order bits for a PalmSource-defined session class
ID.

P MM USER SESSION CLASS BASE = 0x10020000L
The high-order bits for a licensee-defined session class ID.

P MM PRIVATE SESSION CLASS BASE = 0x10030000L
A private session class ID defined by either PalmSource or
one of its licensees.

The function MMSessionClassEnumerate () returns a list of all
standard and user sessions. It never enumerates the private classes.
Declaring a session class as private is useful if it is tightly integrated
with the application that uses it.

Session Class Properties

Defines property keys that can be used to access information about
a session class.

MMSessionClass.h

#define P_MM SESSION CLASS PROP_CREATOR
(P_MM_SESSION CLASS PROP BASE | 0x0003L)
The session class’s creator ID.

122 Exploring Palm OS: Multimedia

Multimedia Sessions
Session Default Property Key Constants

Purpose

Declared In
Constants

Purpose

Declared In
Constants

#define P_MM SESSION CLASS PROP_ NAME
(P_MM_SESSION CLASS PROP BASE | 0x0001L)
The session’s name.

#define P_MM SESSION CLASS PROP_VERSION
(P_MM_SESSION CLASS PROP BASE | 0x0002L)
The session’s version number.

Session Creation Constants Enum

Used in the MMSessionCreate() function to determine where to
create the session.

MMSession.h

P MM SESSION CREATE ANY PROCESS
Creates a session in any process. The Movie Server typically
creates the session in the Background process.

P MM SESSION CREATE LOCAL PROCESS
Creates a session in the local process.

Session Default Property Key Constants

Property keys for session default properties. These are passed to a
track when a track is added to a session. The descriptions below
explain the value for each key and give the type for the value.

MMSession.h

#define P_MM SESSION DEFAULT AUDIO ENABLE
(P_MM_SESSION PROP _BASE | 0x0020L)

Boolean that specifies whether an audio track is enabled or
disabled.

#define P_MM SESSION DEFAULT AUDIO VOLUME
(P_MM _SESSION_PROP BASE | 0x0024L)
A 32-bit integer specifying the volume level.

#define P_MM SESSION DEFAULT DEST RECT
(P_MM_SESSION PROP BASE | 0x0023L)
The default destination rectangle to use for a video frame.
The rectangle specifies both the position and the size.

Exploring Palm OS: Multimedia 123

Multimedia Sessions
Session Property Key Constants

Purpose

Declared In
Constants

#define P _MM SESSION DEFAULT SOURCE RECT
(P_MM _SESSION_PROP BASE | 0x0022L)
The default source rectangle to use for a video frame. The
rectangle specifies both the position and the size.

#define P_MM SESSION DEFAULT VIDEO ENABLE
(P_MM_SESSION PROP BASE | 0x0021L)

A Boolean value specifying whether a video track should be
enabled.

Session Property Key Constants

Constants used to identify properties stored in a session. The
descriptions below explain the value for each key and give the type
for the value.

MMSession.h

#define P_MM SESSION PROP_CURRENT TIME
(P_MM SESSION_ PROP BASE | 0x0002L)
Current recording or playback position given in
nanoseconds. The value is a 64-bit signed integer.

#define P_MM SESSION PROP_END TIME
(P_MM SESSION_ PROP BASE | 0x0008L)
Ending playback position given in nanoseconds. The value is
a 64-bit signed integer.

#define P_MM SESSION PROP_IS LOCAL
(P_MM SESSION_ PROP BASE | 0x0005L)
A Boolean specifying if the session is running local to the
application process.

#define P_MM SESSION PROP_MARKER
(P_MM SESSION_ PROP BASE | 0x0006L)
A nsecs_t value specifying a marker within a track.

#define P MM SESSION PROP PLAYBACK RATE
(P_MM SESSION_PROP BASE | 0x0003L)
A 16-bit integer specifying the audio playback rate, where 1
specifies normal speed, 2 double speed, and so on.

#define P MM SESSION PROP PREFETCH TIME
(P_MM SESSION_PROP BASE | 0x0004L)
The amount of data, given in nanoseconds, to buffer.

124 Exploring Palm OS: Multimedia

Multimedia Sessions
Source Property Key Constants

Purpose

Declared In

#define P_MM SESSION PROP PUBLIC
(P_MM _SESSION_PROP BASE | 0x0001L)
A Boolean value of true if the session is public or false if it
is private.
#define P_MM SESSION PROP_REPEAT ENABLE
(P_MM _SESSION_PROP BASE | 0x0009L)

A Boolean that indicates that playback should repeat when
the end time is reached.

#define P MM SESSION PROP_ SESSION_ CLASS

(P_MM_SESSION PROP BASE | 0x000AL)
A 32-bit integer ID of the session class used.

#define P_MM SESSION PROP_START TIME
(P_MM_SESSION PROP BASE | 0x0007L)
Starting playback position given in nanoseconds. The value
is a 64-bit signed integer.

Source Property Key Constants

Constants used to identify properties within a source. The
descriptions below explain the value for each key and give the type
for the value.

MMSession.h

#define P_MM SOURCE PROP FILE_ FORMAT
(P_MM_SOURCE_PROP BASE | 0x0002L)
An MMFormat specifying the format that the source
produces.

#define P_MM SOURCE PROP_ URL
(P_MM_SOURCE_PROP BASE | 0x0001L)
A string representing the URL used to create a source.

Set to the empty string.

Exploring Palm OS: Multimedia 125

Multimedia Sessions

Stream Content Keys

Purpose
Declared In
Constants

Comments

Stream Content Keys
Keys set for an audio or video stream property set.
MMSession.h

#define P_MM CONTENT PROP ALBUM
(P_MM_CONTENT PROP BASE | 0x0006L)
String containing the album or CD for a track.

#define P_MM CONTENT PROP_ARTIST
(P_MM_CONTENT PROP BASE | 0x0003L)
String containing the artist that recorded a track.

#define P_MM CONTENT PROP DURATION
(P_MM_CONTENT PROP BASE | 0x0001L)
An int32_t describing the length of a track in milliseconds.

#define P_MM CONTENT PROP_ GENRE
(P_MM_CONTENT PROP BASE | 0x0005L)
String containing the genre of a track.

#define P_MM CONTENT PROP_ PLAYLIST
(P_MM CONTENT PROP_BASE | 0x0004L)
String containing the play list for a track.

#define P_MM CONTENT PROP_TITLE
(P_MM_CONTENT PROP BASE | 0x0002L)
String containing the title of a track.

#define P_MM CONTENT PROP_TRACK NUMBER
(P_MM_CONTENT PROP_BASE | 0x0007L)

An int32_t giving the track number within the album or
CD.

Both playback and recording sessions in the Movie Server set these
keys, and they are written to encoded output. The descriptions
explain the value for each key and give the type for the value.

A given codec may not support all of these properties. Currently,
only the PalmSource MPEG audio extractor supports these
properties, but other third-party codecs may also support them.

126 Exploring Palm OS: Multimedia

Multimedia Sessions
sysAppLaunchCmdMultimediaEvent

Purpose

Declared In
Constants

Stream Property Key Constants

Constants used to identify properties in a stream object. The
descriptions below explain the value for each key and give the type
for the value.

MMSession.h

#define P_MM STREAM PROP_FORMAT
(P_MM_STREAM PROP BASE | 0x0001L)
An MMFormat specifying the stream’s format.

#define P_MM STREAM PROP IS PREVIEW
(P_MM_STREAM PROP BASE | 0x0003L)
A Boolean value that, if true, identifies the stream as a
preview stream.

#define P_MM STREAM PROP LANGUAGE
(P_MM_STREAM PROP BASE | 0x0002L)
A string specifying the language of the stream.

Multimedia Session Launch Codes

Purpose
Declared In
Prototype
Parameters

Comments

sysAppLaunchCmdMultimediaEvent
Sent when multimedia session events occur.
CmnLaunchCodes.h

#define sysAppLaunchCmdMultimediaEvent 63

The launch code’s parameter block pointer references a
MMSessionEvent structure.

Some applications may need to be informed of events relating to a
persistent session, even when the application is no longer running.
You can use the function MMSessionRegisterLaunch () to
register an application to be associated with a session. When session
events occur, that application is sublaunched with this launch
command.

Exploring Palm OS: Multimedia 127

Multimedia Sessions
Multimedia Session Functions and Macros

Multimedia Session Functions and Macros

Purpose
Declared In
Prototype

Parameters

Returns

Comments

MMDestEnumerateStreams Function
Enumerates the streams available in a destination object.

MMSession.h

status_t MMDestEnumerateStreams (MMDestID dest,
int32 t *ioIterator, MMStreamID *outStream)

— dest
A valid multimedia destination object ID.

<> iolterator
Pointer to the value returned by the previous call to this
function. On the first call to this function, set this value to
P_MM ENUM BEGIN. When the set of iterated values is
exhausted, this function sets this value to P MM_ENUM_END.

<— outStream
Pointer to the ID of the next stream in the set. The stream ID
remains valid until the session is deleted or
MMSessionRemoveAll () is called.

The following result codes:

errNone
No error.

sysErrParamErr
One of input parameters is invalid.

sysErrBadIndex
The iterator value is invalid or past the last item in the set.

Before calling this function, the destination object must be finalized
by calling MMDestFinalize().

128 Exploring Palm OS: Multimedia

Multimedia Sessions
MMSessionAcquireOwnership

Purpose
Declared In
Prototype
Parameters

Returns

Comments

Purpose
Declared In
Prototype

Parameters

Returns

MMDestFinalize Function

Opens the given destination and creates streams.
MMSession.h

status t MMDestFinalize (MMDestID dest)

— dest
A valid multimedia destination object ID.

The following result codes:

errNone
No error.

sysErrParamErr
The destination object is invalid.

Other multimedia errors can also be returned.

On success, the streams may be enumerated with
MMDestEnumerateStreams ().

MMSessionAcquireOwnership Function
Makes the calling process acquire ownership of a session.
MMSession.h

status_t MMSessionAcquireOwnership
(MMSessionID session)

— gession
A valid multimedia session ID, on which
MMSessionReleaseOwnership () was previously called.

The following result codes:

errNone
No error.

sysErrParamErr
The session is invalid.

sysErrNotAllowed
The session is owned by another process.

Exploring Palm OS: Multimedia 129

Multimedia Sessions
MMSessionAddDefaultTracks

Comments

Purpose

Declared In
Prototype

Parameters

Returns

Comments

The session must not be owned by another process.

The session will be deleted automatically when the acquiring
process exits.

MMSessionAddDefaultTracks Function

Adds all tracks applicable to this session, using the given source
and/or destination.

MMSession.h

status_t MMSessionAddDefaultTracks
(MMSessionID session, MMSourcelD source,
MMDestID dest)

— gession
A valid multimedia session ID.

— source
A valid multimedia source ID, or P MM DEFAULT SOURCE.

— dest
A valid multimedia destination ID, or
P_MM DEFAULT DEST.

The following result codes:

errNone
No error.

sysErrParamErr
One of the sessions is invalid.

A playback session can use this function to add all of the tracks that
it can play concurrently.

After a call to this function succeeds, the caller can use
MMSessionEnumerateTracks () toinspect the created tracks and
further configure them prior to calling MMSessionFinalize().

If P MM DEFAULT SOURCE or P_MM DEFAULT DEST are passed
for source or destination, sources and /or destinations will be added
and finalized as necessary. The caller can use
MMSessionEnumerateSources () and

130 Exploring Palm OS: Multimedia

Multimedia Sessions
MM SessionAddDest

See Also

Purpose
Declared In
Prototype

Parameters

Returns

Comments

See Also

MMSessionEnumerateDests () to retrieve source and destination
IDs for those objects.

MMSessionAddTrack (), MMSessionRemoveTracks ()

MMSessionAddDest Function

Adds a data destination to the session.

MMSession.h

status_t MMSessionAddDest (MMSessionID session,
const char #*destURL, MMDestID *outDest)

— session
A valid multimedia session ID.

— destURL
Pointer to a URL of the destination to add to the session.

<— outDest
Pointer to a valid multimedia destination ID, if the function
succeeds.

The following result codes:

errNone
No error.

sysErrParamErr
The session or the URL is invalid.

sysErrUnsupported
No more destinations may be added to this session.

Some session classes may expose additional destination properties
that can be set before calling MMDestFinalize () to open the
destination and create streams.

MMSessionEnumerateDests ()

Exploring Palm OS: Multimedia 131

Multimedia Sessions
MMSessionAddSource

Purpose
Declared In
Prototype

Parameters

Returns

Comments

See Also

Purpose
Declared In
Prototype

Parameters

MMSessionAddSource Function
Adds a data source to the session.
MMSession.h

status_t MMSessionAddSource (MMSessionID session,
const char *sourceURL, MMSourceID #*outSource)

— gession
A valid multimedia session ID.

— sourceURL
Pointer to a URL of the data source to add to the session.

< outSource
Pointer to the multimedia source ID, if the function succeeds.

The following result codes:

errNone
No error.

sysErrParamErr
The session or the URL is invalid.

sysErrUnsupported
No more source may be added to this session.

Some session classes may expose additional source properties that
can be set before calling MMSourceFinalize () to open the source
and create streams.

MMSessionEnumerateSources ()

MMSessionAddTrack Function

Adds a track to the session.

MMSession.h

status_t MMSessionAddTrack (MMSessionID session,
MMStreamID sourceStream,
MMFormat sourceFormat, MMStreamlID destStream,
MMFormat destFormat, MMTrackID *outTrack)

— gession
A valid multimedia session ID.

132

Exploring Palm OS: Multimedia

Multimedia Sessions
MM SessionClassEnumerate

Returns

Comments

See Also

Purpose
Declared In
Prototype

Parameters

— sourceStream
A valid multimedia source ID.

— sourceFormat
A valid source media format ID, or
P_MM_INVALID FORMAT.

— destStream
A valid multimedia destination ID.

— destFormat
A valid destination media format ID, or
P_MM INVALID FORMAT.

< outTrack
Pointer to the multimedia track ID for the created track, if the
function succeeds.

The following result codes:

errNone
No error.

sysErrParamErr
One of the parameters is invalid.

A track represents a particular data-processing route, which,
depending on the session class, may be used for playback
(rendering) or capture (storage to a local file or network stream).

MMSessionAddDefaultTracks (),
MMSessionEnumerateTracks (), MMSessionRemoveTracks ()

MMSessionClassEnumerate Function
Iterates through the available session classes.
MMSessionClass.h

status_t MMSessionClassEnumerate
(int32_t *ioIterator,
MMSessionClassID *outSessionClassID)

< ioIterator
Pointer to the value returned by the previous call to this
function. On the first call to this function, set this value to

Exploring Palm OS: Multimedia 133

Multimedia Sessions

MM SessionControl

Returns

Purpose

Declared In
Prototype

Parameters

Returns

See Also

P_MM ENUM BEGIN. When the set of iterated values is
exhausted, this function sets this value to P MM_ENUM_END.

< outSessionClassID
Pointer to the ID of the next available session class.

The following result codes:

errNone
No error.

sysErrParamErr
The iterator is invalid.

sysErrBadIndex
The iterator value is invalid or past the last item in the set.

MMSessionControl Function

Sends control opcodes to the Movie Server for playback, capture,
and preview.

MMSession.h

status_t MMSessionControl (MMSessionID session,
MMSessionControlOpcode sessionCtl)

— session
A valid multimedia session ID.

— sessionCtl
The opcode. Specify one of the constants listed in
“MMSessionControlOpcode” on page 121.

The following result codes:

errNone
No error.

sysErrParamErr
The session is invalid.

sysErrNotAllowed
Operation not allowed for this session.

MMSessionSeek ()

134 Exploring Palm OS: Multimedia

Multimedia Sessions
MM SessionDelete

Purpose
Declared In
Prototype

Parameters

Returns

See Also

Purpose
Declared In
Prototype
Parameters

Returns

MMSessionCreate Function
Creates a new session.
MMSession.h

status_t MMSessionCreate
(MMSessionClassID sessionClass, int32 t flags,
MMSessionID *outSession)

— gsessionClass
A valid multimedia session class ID. Specify one of the
constants listed in “Default Session Class IDs” on page 118.

— flags
Flag that determines in what process to create the session.
Specify one of the constants listed in “Session Creation
Constants” on page 123.

<> outSession
A valid multimedia session ID, if the function succeeds. On
input, this must be 0.

The following result codes:

errNone
No error.

sysErrParamErr
The outSession parameter is not 0 on input.

sysErrNoFreeResource
Operation not allowed for this session.

MMSessionDelete()

MMSessionDelete Function

Deletes a session.

MMSession.h

status_t MMSessionDelete (MMSessionID session)

— session
A valid multimedia session ID.

The following result codes:

Exploring Palm OS: Multimedia 135

Multimedia Sessions
MMSessionEnumerate

Comments
See Also

Purpose

Declared In
Prototype

Parameters

Returns

errNone
No error.

sysErrNoInit
The session is not initialized.

On success, session will no longer be valid.

MMSessionCreate ()

MMSessionEnumerate Function

Iterates through the current public sessions (only the sessions for
which the value of P MM SESSION PROP PUBLIC is nonzero).

MMSession.h

status_t MMSessionEnumerate (int32_ t *ioIterator,
MMSessionID *outSession)

<> iolterator
Pointer to the value returned by the previous call to this
function. On the first call to this function, set this value to
P_MM ENUM BEGIN. When the set of iterated values is
exhausted, this function sets this value to P MM_ENUM_END.

<~ outSession
Pointer to a valid multimedia session ID for the next session
in the set.

The following result codes:

errNone
No error.

sysErrParamErr
The iterator value is 0.

sysErrBadIndex
The iterator value is invalid or past the last item in the set.

136 Exploring Palm OS: Multimedia

Multimedia Sessions
MMSessionEnumerateSources

Purpose
Declared In
Prototype

Parameters

Returns

Purpose
Declared In
Prototype

Parameters

MMSessionEnumerateDests Function
Iterates through the destinations in this session.
MMSession.h

status_t MMSessionEnumerateDests
(MMSessionID session, int32_ t *ioIterator,
MMDestID *outDest)

— session
A valid multimedia session ID.

<> 1olterator
Pointer to the value returned by the previous call to this
function. On the first call to this function, set this value to
P_MM ENUM BEGIN. When the set of iterated values is
exhausted, this function sets this value to P MM_ENUM_END.

<— outDest
Pointer to the next destination in the set. This destination ID
will remain valid until the session is deleted or
MMSessionRemoveAll () is called.

The following result codes:

errNone
No error.

sysErrParamErr
The session is invalid or the iterator value is 0.

sysErrBadIndex
The iterator value is invalid or past the last item in the set.

MMSessionEnumerateSources Function
Iterates through the sources in this session.
MMSession.h

status_t MMSessionEnumerateSources
(MMSessionID session, int32 t *ioIterator,
MMSourceID *outSource)

— session
A valid multimedia session ID.

Exploring Palm OS: Multimedia 137

Multimedia Sessions
MM SessionEnumerateTracks

Returns

Purpose
Declared In
Prototype

Parameters

Returns

< 1olterator
Pointer to the value returned by the previous call to this
function. On the first call to this function, set this value to
P_MM ENUM BEGIN. When the set of iterated values is
exhausted, this function sets this value to P MM_ENUM_END.

< outSource
Pointer to the next source in the set. This source ID will
remain valid until the session is deleted or
MMSessionRemoveAll () is called.

The following result codes:

errNone
No error.

sysErrParamErr
The session is invalid or the iterator value is 0.

sysErrBadIndex
The iterator value is invalid or past the last item in the set.

MMSessionEnumerateTracks Function
Iterates through the tracks in this session.
MMSession.h

status_t MMSessionEnumerateTracks
(MMSessionID session, int32_ t *ioIterator,
MMTrackID *outTrack)

— session
A valid multimedia session ID.

<> 1olterator
Pointer to the value returned by the previous call to this
function. On the first call to this function, set this value to
P_MM ENUM BEGIN. When the set of iterated values is
exhausted, this function sets this value to P MM_ENUM_END.

< outTrack
Pointer to the next track in the set. This track ID will remain
valid until the session is deleted or
MMSessionRemoveAll () is called.

The following result codes:

138 Exploring Palm OS: Multimedia

Multimedia Sessions
MM SessionFinalize

Purpose
Declared In
Prototype
Parameters

Returns

Comments

errNone
No error.

sysErrParamErr
The session is invalid or the iterator value is 0.

sysErrBadIndex
The iterator value is invalid or past the last item in the set.

MMSessionFinalize Function

Finalize the set of tracks for this session.

MMSession.h

status_t MMSessionFinalize (MMSessionID session)

— gession
A valid multimedia session ID.

The following result codes:

errNone
No error.

sysErrParamErr
The session is invalid.

sysErrBadIndex
One or more tracks depends on a source or destination which
could not be added.

Calling this function is the final step in preparing a session to run;
after this call succeeds, the session enters the

P_MM SESSION_READY state and you may call
MMSessionControl () to begin playback or capture.

After MMSessionFinalize() is called, the following functions
may not be called for the session: MMSessionAddDest (),
MMSessionAddSource (), MMSessionAddTrack (), and
MMSessionAddDefaultTracks ().

Exploring Palm OS: Multimedia 139

Multimedia Sessions
MMSessionGetState

MMSessionGetState Function
Purpose Returns the current state of a session.
Declared In MMSession.h

Prototype status t MMSessionGetState (MMSessionID session,
MMSessionState *outState)

Parameters — session
A valid multimedia session ID.

<> outState
The current state of the session. One of the constants listed in
“MMSessionState” on page 121.

Returns The following result codes:

errNone
No error.

sysErrParamErr
The session is invalid or out State is not 0 on input.

MMSessionRegisterCallback Function

Purpose Registers a callback function to monitor this session by handling
events.

DeclaredIn MMSession.h

Prototype status t MMSessionRegisterCallback
(MMSessionID session,
MMSessionCallbackFn callback, void *userdata,
uint32 t eventFlags)

Parameters — session
A valid multimedia session ID.

— callback
Pointer to the callback function (for details, see
MMSessionCallbackFn()).

— userdata
Pointer to arbitrary user-provided data, or NULL. This
pointer is passed to the callback function.

140 Exploring Palm OS: Multimedia

Multimedia Sessions
MM SessionRegisterLaunch

Returns

Comments

See Also

Purpose

Declared In
Prototype

Parameters

Returns

— eventFlags
Unused; must be set to 0.

The following result codes:

errNone
No error.

sysErrParamiErr
One of the parameters is invalid.

sysErrNotAllowed
There are too many callbacks registered for this session.

The Multimedia Library calls your function asynchronously,
meaning that it’s safe to make other multimedia calls from your
function.

You can register multiple callback functions for one session.

MMSessionUnregisterCallback()

MMSessionRegisterLaunch Function

Registers a handler application to be sublaunched when a
multimedia event occurs.

MMSession.h

status_t MMSessionRegisterLaunch
(MMSessionID session, DatabaseID dbID,
uint32 t eventFlags)

— gession
A valid multimedia session ID.

— dbID
Application resource database ID.

— eventFlags
Unused; must be set to 0.

The following result codes:

errNone
No error.

sysErrParamErr
One of the parameters is invalid.

Exploring Palm OS: Multimedia 141

Multimedia Sessions
MMSessionReleaseOwnership

Comments

See Also

Purpose
Declared In
Prototype

Parameters

Returns

Comments

Purpose

Declared In
Prototype
Parameters

Returns

The registered application will be sublaunched with the launch
command sysAppLaunchCmdMultimediaEvent, with a pointer
to aMMSessionEvent.

MMSessionUnregisterLaunch ()

MMSessionReleaseOwnership Function
Makes a multimedia session persist after the calling process exits.
MMSession.h

status_t MMSessionReleaseOwnership
(MMSessionID session)

— session
A valid multimedia session ID, created by or owned by the
current process.

The following result codes:

errNone
No error.

sysErrParamErr
The session is invalid.

When a session is created, and the process that created it exits, the
session is automatically deleted. Call this function to make the
session persist after the calling process exits. The session will persist
in the background, where it is owned by the Movie Server, until it is
explicitly deleted or MMSessionAcquireOwnership () is called.

MMSessionRemoveAll Function

Removes from a session all sources, destinations, and the tracks that
connect them.

MMSession.h
status_t MMSessionRemoveAll (MMSessionID session)

— session
A valid multimedia session ID.

The following result codes:

142

Exploring Palm OS: Multimedia

Multimedia Sessions
MM SessionRemoveTracks

Comments

Purpose
Declared In
Prototype

Parameters

Returns

Comments

See Also

errNone
No error.

sysErrParamErr
The session is invalid.

This function resets the session state to
P_MM SESSION_NOT_ INITIALIZED. Non-content properties
remain unchanged.

MMSessionRemoveTracks Function
Removes all tracks.
MMSession.h

status_t MMSessionRemoveTracks
(MMSessionID session)

— session
A valid multimedia session ID.

The following result codes:

errNone
No error.

sysErrParamErr
The session is invalid.

This function resets the session state to remove sources,
destinations, and the tracks that connect them.

Existing source and destination streams may be used to create new
tracks.

This function resets the session state to
P_MM SESSION_NOT INITIALIZED. Non-content properties
remain unchanged.

MMSessionAddTrack ()

Exploring Palm OS: Multimedia 143

Multimedia Sessions

MM SessionSeek
MMSessionSeek Function
Purpose Seeks to a different location in the current session.
Declared In MMSession.h
Prototype status t MMSessionSeek (MMSessionID session,
MMSeekOrigin origin, int64 t position)
Parameters — session
A valid multimedia session ID.
— origin
Point to seek from; the seek location is measured from this
point. Specify one of the constants listed in “MMSeekOrigin”
on page 73.
— position
The distance to seek, in nanoseconds. A positive value means
to seek forward and a negative value means to seek
backward.
Returns The following result codes:
errNone
No error.
sysErrParamErr
The session is invalid.
sysErrOutOfRange
positionis out of range.
sysErrUnsupported
Seeking is not supported in this session; some streaming
types don’t support seeking, or it is a capture session.
Comments This function skips forward or backward in the media.
After a successful seek operation the session is stopped (it enters the
P_MM_SESSION_READY state), whether or not it was playing
previous to the call.
See Also MMSessionControl()

144 Exploring Palm OS: Multimedia

Multimedia Sessions
MMSessionUnregisterLaunch

Purpose
Declared In
Prototype

Parameters

Returns

Purpose
Declared In
Prototype

Parameters

Returns

MMSessionUnregisterCallback Function
Unregisters a callback function for a session.

MMSession.h

status_t MMSessionUnregisterCallback
(MMSessionID session,
MMSessionCallbackFn callback, void *userdata)

— session
A valid multimedia session ID.

— callback
Pointer to a callback function that was previously registered
by MMSessionRegisterCallback().

— userdata
Unused.

The following result codes:

errNone
No error.

sysErrParamErr
The session is invalid.

sysErrBadData
The specified callback function was not found.

MMSessionUnregisterLaunch Function
Unregisters a registered event handler.
MMSession.h

status_t MMSessionUnregisterLaunch
(MMSessionID session, DatabaseID dbID)

— gession
A valid multimedia session ID.

— dbID
Application resource database ID that was previously
registered by MMSessionRegisterLaunch().

The following result codes:

Exploring Palm OS: Multimedia 145

Multimedia Sessions
MMSourceEnumerateStreams

Purpose
Declared In
Prototype

Parameters

Returns

Comments

errNone
No error.

sysErrParamErr
The session is invalid.

sysErrBadData
A matching registration was not found.

MMSourceEnumerateStreams Function
Iterates through the streams available in a source.
MMSession.h

status_t MMSourceEnumerateStreams
(MMSourceID source, int32 t *ioIterator,
MMStreamID *outStream)

— source
A valid source ID.

<> 1olterator
Pointer to the value returned by the previous call to this
function. On the first call to this function, set this value to
P_MM ENUM BEGIN. When the set of iterated values is
exhausted, this function sets this value to P MM_ENUM_END.

<— outStream
Pointer to the next stream in the set. This stream ID will
remain valid until the session is deleted or
MMSessionRemoveAll () is called.

The following result codes:

errNone
No error.

sysErrParamErr
The session is invalid or the iterator value is 0.

sysErrBadIndex
The iterator value is invalid or past the last item in the set.

The source must be finalized for this call to succeed
(MMSourceFinalize () must have been called).

146 Exploring Palm OS: Multimedia

Multimedia Sessions
MM SessionCallbackFn

Purpose
Declared In
Prototype
Parameters

Returns

Comments

Purpose
Declared In
Prototype

Parameters

Returns
Comments

MMSourceFinalize Function

Opens the given data source and creates streams.
MMSession.h

status_t MMSourceFinalize (MMSourceID source)

— source
A valid multimedia source ID.

The following result codes:

errNone
No error.

sysErrParamErr
The source is invalid.

On success, the streams may be enumerated by

MMSourceEnumerateStreams ().

Application-Defined Functions

MMSessionCallbackFn Function
Called when multimedia events occur.
MMSession.h

void (*MMSessionCallbackFn)
(const MMSessionEvent *event, void *userdata)

— event
A pointer to a multimedia event; see MMSessionEvent.

— userdata
A pointer to the user data block passed to
MMSessionRegisterCallback () when the callback
function was registered.

Nothing.

To register a callback function, call
MMSessionRegisterCallback().

Exploring Palm OS: Multimedia 147

Multimedia Sessions
MM SessionCallbackFn

148 Exploring Palm OS: Multimedia

9

Multimedia Tracks

This chapter describes multimedia structures, constants, and
functions related to tracks:

Multimedia Track Structures and Types 149
Multimedia Track Constants 150
Multimedia Track Functions and Macros 151
Application-Defined Functions 153

The header file MMTrack.h declares the API that this chapter
describes.

Multimedia Track Structures and Types

Purpose

Declared In
Prototype

Fields

FilterCallbackinfo Struct

Holds information about a buffer of data for which
MMFilterCallbackFn () has been called.

MMTrack.h

typedef struct FilterCallbackInfo ({
int64_t timeStamp;
size t bufferSize;

} FilterCallbackInfo

timeStamp
Timestamp of the data in nanoseconds. For a playback
session, this indicates the actual position in the file, counting
from O at the start.

Timestamps in a capture session are generated by the
hardware driver and may be continuously incrementing even
when no data is being captured. In this case, you should treat

Exploring Palm OS: Multimedia 149

Multimedia Tracks
Multimedia Track Constants

the value received in the first callback as the “base” value,
and measure offsets from there.

bufferSize
Size of the buffer passed to the callback function, in bytes.

Multimedia Track Constants

Purpose
Declared In
Constants

Track Property Key Constants

Values used to retrieve track object properties.
MMTrack.h

#define P_MM TRACK PROP_CODEC_CLASS
(P_MM_TRACK PROP BASE | 0x0008L)
The 32-bit ID of the class used for encoding or decoding data
on the track.

#define P_MM TRACK PROP_CURRENT TIME
(P_MM_TRACK PROP BASE | 0x0009L)
The current location in the track stream identified as a time
value in nanoseconds.

#define P_ MM TRACK_PROP DEST (P_MM TRACK_ PROP_BASE
| 0x0006L)
ID of the destination object associated with track’s
destination stream.

#define P_MM TRACK PROP_DEST FORMAT
(P_MM_TRACK PROP_BASE | 0x0002L)
A string specifying the track’s destination format.

#define P_MM TRACK PROP_DEST RECT
(P_MM_TRACK PROP BASE | 0x0031L)
The region of the screen to be drawn in native screen pixels.

#define P_MM TRACK PROP_DEST STREAM
(P_MM TRACK PROP BASE | 0x0007L)
ID of the stream object associated with the track’s
destination.

150 Exploring Palm OS: Multimedia

Multimedia Tracks
MMTrackInsertCallbackFilter

#define P_MM TRACK_PROP_ENABLE
(P_MM_TRACK PROP BASE | 0x0003L)
Boolean that describes whether the track is enabled or
disabled.

#define P_MM TRACK PROP_SOURCE
(P_MM_TRACK PROP BASE | 0x0004L)
ID of the source object associated with the track.

#define P_MM TRACK PROP_SOURCE FORMAT
(P_MM_TRACK PROP_BASE | 0x0001L)
A string specifying the track’s source format.

#define P_MM TRACK PROP_SOURCE_RECT
(P_MM_TRACK PROP BASE | 0x0030L)
The region of the source buffer to be displayed in native
screen pixels.

#define P_MM TRACK PROP_SOURCE STREAM
(P_MM_TRACK PROP BASE | 0x0005L)
ID of the stream object associated with the track’s source.

#define P_MM TRACK PROP_VOLUME
(P_MM TRACK PROP BASE | 0x0020L)
An integer from 0 to 1024 specifying the current volume
level.

Multimedia Track Functions and Macros

Purpose
Declared In
Prototype

Parameters

MMTrackinsertCallbackFilter Function

Registers a callback function to process data for a track.

MMTrack.h

status_t MMTrackInsertCallbackFilter
(MMTrackID track, MMFilterCallbackFn callback,
void *userdata)

— track
A valid track ID.

Exploring Palm OS: Multimedia 151

Multimedia Tracks
MMTrackRemoveCallbackFilter

Returns

Comments
See Also

Purpose
Declared In
Prototype

Parameters

Returns

— callback
Pointer to the callback function (for details, see
MMFilterCallbackFn()).

— userdata
Pointer to arbitrary user-provided data, or NULL. This pointer
is passed to the callback function.

The following result codes:

errNone
No error.

sysErrParamErr
One of the parameters is invalid.

sysErrNotAllowed
There is already a callback registered for this track.

Only one callback may be installed for a track.

MMTrackRemoveCallbackFilter ()

MMTrackRemoveCallbackFilter Function
Unregisters a callback function for a track.
MMTrack.h

status_t MMTrackRemoveCallbackFilter
(MMTrackID track)

— track
A valid track ID for which a callback function has been
registered by MMTrackInsertCallbackFilter ().

The following result codes:

errNone
No error.

sysErrParamErr
The track is invalid.

sysErrBadData
The specified callback function was not found.

152 Exploring Palm OS: Multimedia

Multimedia Tracks
MMFilterCallbackFn

Application-Defined Functions

Purpose
Declared In
Prototype

Parameters

Returns
Comments

MMPFilterCallbackFn Function

Called when the track receives a buffer of data.

MMTrack.h

void (*MMFilterCallbackFn) (MMTrackID track,
void *buffer, FilterCallbackInfo *info,
void *userdata)

— track
Track ID of the track for which the callback function is
registered.

<> puffer
Pointer to a buffer of track data.

— info
Pointer toa FilterCallbackInfo structure.

— userdata
A pointer to the user data block passed to
MMTrackInsertCallbackFilter () when the callback
function was registered.

Nothing.

This function allows an application to customize functionality by
processing track data somehow.

To register a filter callback function, call
MMTrackInsertCallbackFilter ().

Exploring Palm OS: Multimedia 153

Multimedia Tracks
MMFilterCallbackFn

154 Exploring Palm OS: Multimedia

AC97

ADC

ADPCM

Audio sample

Buffer

Channel

DAC

Decoder

Encoder

Frame

Media time

MMLibrary

Glossary

Audio codec 97, an open standard defined by Intel and popular
with many hardware manufacturers.

Analog to digital converter (audio recording).

Adaptive Differential Pulse Code Modulation. A form of PCM that
produces a digital signal with a lower bit rate than standard PCM.

A single number representing the amplitude of a waveform at a
particular time.

A storage area for data.

An audio stream may consist of multiple interleaved channels. A
mono stream has one channel, and a stereo stream has two
channels. There is one sample per channel.

Digital to analog converter (audio playback).

Converts a particular encoded data format, such as MS-ADPCM or
MPEG-1 video into a format that the output device can understand.

Converts one multimedia format (typically a raw format) to another
encoded format for the purposes of storing that format.

For audio, a frame consists of interleaved audio samples (one
sample per channel) that are output during one quantized time unit.
For video, a frame consists of an entire picture.

The temporal position within media data.

A shared library included in the SDK that allows multimedia clients
to access multimedia features provided by the Movie Server.

Exploring Palm OS: Multimedia 155

Glossary
Movie Server

Movie Server

Multimedia
client

Pan

Performance
time

PCM

Property sets

Session

Stream

Track

Track callback
filter

A server that runs in the System process and provides all
multimedia functionality.

An application running in the Application process, that accesses the
Movie Server through the MMLibrary. A media player is an
example of such an application.

Stereo balance between left and right speakers.

The time as specified by an external time source while media data is
recorded or played.

Pulse Code Modulation. A sampling technique for digitizing analog
signals.

Objects that expose configurable parameters, or properties, which
control the object’s behavior. Many of the objects in the Multimedia
Subsystem are property sets that allow the client application to
configure them.

A session provides a context for an application’s media playback or
recording tasks in the Movie Server.

In the audio driver, a sequence of stereo sample pairs. In the Movie
Server library, an object that defines the media format handled by a
source or destination device.

A route for media data from a source device to a destination device.

A function provided in the multimedia client that receives buffers of
data directly from the Movie Server so that the callback can perform
whatever tasks it wants with the data, such as storing it locally,
modifying it, etc.

156 Exploring Palm OS: Multimedia

Index

Sym bols destinations 55
MMFORMATTYPE() 98 Dolby digital 5.1 format stereo 87

B Dolby DTS surround stereo 87

Numerics DVI-ADPCM 57

3GPP 91 E

A enumerations 61

Enumerations enum 71
example playback session 63
example recording session 66

AAC 86, 88,89,90
Adaptive Transform Acoustic Coding for
MiniDisc 91

AIFF 92,97 F
architecture 53

ASF 91 file URL scheme 62
ATRAC 91,94 FilterCallbackInfo 149

fmtAudioChannelUsage 84, 86

audio property keys 126
fmtMPEG12AudioChannelMode 85, 87

audio_type_t 17

AudioTypesh 11 fmtMPEG12AudioEmphasis 87

AVI 57.91,97 fmtMPEG12AudioLayer 85, 88
fmtMPEG12AudioRevision 85, 88

B fmtMPEG4AudioObjectProfile 85, 88

fmtMPEG4AudioTFCoding 86, 90

BIG_ENDIAN 84 fmtRawAudioType 84, 90

BMP 92,95 fmtVideoOrientation 85, 91
C format key constants 84
formatFamily 91, 98

callback function 60, 64, 66 formats 57
camera 55 formatType 91, 93, 98

property keys 117

property values 116,117,118, 119, 120 G
camera flash mode values enum 116
camera focus values enum 117 GIF 92
camera property key constants 117
camera white balance values enum 118 H
codecs 56 H.263 91

class properties 79 HOST_ENDIAN 84
complex property values enum 71

|

D Intel/DVI ADPCM 85, 95
default session class IDs 118 ISO sensitivity value enum 120
default URLs 119 iterations 61
destination devices 55

property keys 120 J
destination property key constants 120 JPEG 92, 95,97

Exploring Palm OS: Multimedia 157

K

keys
audio properties 126
camera properties 117
codec class properties 79
destination properties 120
session class properties 122
session properties 123, 124
source properties 125
stream properties 127
video properties 126

L
line-input jack 66
LITTLE_ENDIAN 84

microphone 55, 66

MIDI 89, 93

MIDI files 6
MM_TYPE_CODEY() 77
MMCodecClass.h 79
MMCodecClassID 69
MMDestEnumerateStreams() 128
MMDestFinalize() 66, 129
MMDestID 69

MMEvent 70
MMFilterCallbackFn() 153
MMFilterID 70

MMFormat 83, 120
MMFormatCopy() 99
MMFormatCreate() 99
MMFormatDelete() 100
MMFormatEnumerateTerms() 100
MMFormatGetTerm() 101
MMFormatGetTermInt32() 102
MMFormatGetTermType() 103
MMFormatGetType() 103
MMFormatRawAudio() 104
MMPFormatRawStill() 104
MMFormatRawVideo() 104
MMFormatsCompatible() 105
MMPFormatSetTerm() 105

MMFormatSetTermInt32() 106
MMFormatSetType() 107
MMFormatType 83

MMLibrary 54

MMProperty.h 109
MMPropertylnfo() 72
MMPropInfoType 72
MMSeekOrigin 73
MMSessionAcquireOwnership() 129
MMSessionAddDefaultTracks() 64, 130
MMSessionAddDest() 66, 131
MMSessionAddSource() 64, 66, 132
MMSessionAddTrack() 67, 132
MMSessionCallbackFn() 147
MMSessionClassEnumerate() 122
MMSessionClassID 70
MMSessionControl() 65,134
MMSessionControlOpcode 121
MMSessionCreate() 64, 66,123, 135
MMSessionDelete() 135
MMSessionEnumerate() 136
MMSessionEnumerateDests() 137
MMSessionEnumerateSources() 137
MMSessionEnumerateTracks() 138
MMSessionEvent 76,77,115
MMSessionFinalize() 65, 67, 121, 139
MMSessionGetState() 140
MMSessionID 70
MMSessionRegisterCallback() 66, 140
MMSessionRegisterLaunch() 141
MMSessionReleaseOwnership() 65, 142
MMSessionRemoveAll() 142
MMSessionRemoveTracks() 143
MMSessionSeek() 65, 144
MMSessionState 121
MMSessionUnregisterCallback() 145
MMSessionUnregisterLaunch() 145
MMSourceEnumerateStreams() 146
MMSourceFinalize() 64, 66, 147
MMSourcelD 70

MMStreamlID 71

MMTrack.h 149

MMTrackID 71

158 Exploring Palm OS: Multimedia

MMTrackInsertCallbackFilter() 151
MMTrackRemoveCallbackFilter() 152
MMTypeCode 72, 73,77

Movie Server 54

MPEG 57

MPEG audio 85

MPEG-1 57, 85, 88, 91, 93, 96
MPEG-2 85, 88, 91, 93, 96

MPEG-4 91, 94, 96

MPEG-4 audio 85, 86

MPEG-4 video 86

MS-ADPCM 56, 57, 85, 94, 97
multimedia architecture 53
multimedia client 54

Multimedia Library 54

o)

object property key bases enum 74
Ogg Vorbis 92,95, 97

P

P_AUDIO_FLOAT 90
P_AUDIO_INT16 90
P_AUDIO_INT32 84, 90
P_AUDIO_INTS 90
P_AUDIO_SIZE_MASK 91
P_AUDIO_UINTS 90
P_CHANNEL_COUNT_MASK 87
P_DOLBY_5_1_SURROUND 87
P_DOLBY_PRO_LOGIC_STEREO 87
P_DTS_SURROUND 87
P_FORMAT_AIFF_STREAM 97
P_FORMAT_AMR_TS26_071_AUDIO 95
P_FORMAT_AMR_TS26_171_AUDIO 95
P_FORMAT_ANY_TYPE 93
P_FORMAT_ASF_STREAM 97
P_FORMAT_ATRAC_AUDIO 94
P_FORMAT_ATRAC_STREAM 97
P_FORMAT_AUDIO_TYPE 93
P_FORMAT_AVI_STREAM 97
P_FORMAT_BMP_STILL 95
P_FORMAT BMP_STREAM 97
P_FORMAT_CINEPAK_VIDEO 96

P_FORMAT_DVI_ADPCM_AUDIO 95
P_FORMAT_FAMILY_3GPP 91
P_FORMAT_FAMILY_AIFF 92
P_FORMAT_FAMILY_AMR 92
P_FORMAT_FAMILY_ASF 91
P_FORMAT FAMILY_ ATRAC 91
P_FORMAT FAMILY_AVI 91
P_FORMAT_FAMILY_BMP 92
P_FORMAT_FAMILY_CINEPAK 92
P_FORMAT_FAMILY_G7XX 92
P_FORMAT_FAMILY_GIF 92
P_FORMAT_FAMILY H263 91
P_FORMAT FAMILY H264 92
P_FORMAT_FAMILY_JPEG 92
P_FORMAT_FAMILY_MPEG12 91
P_FORMAT_FAMILY_MPEG4 91
P_FORMAT_FAMILY_OGG 92
P_FORMAT FAMILY PALMOS_INTERNAL 92
P_FORMAT_FAMILY PNG 92
P_FORMAT_FAMILY_PRIVATE 92
P_FORMAT_FAMILY_QUICKTIME 91
P_FORMAT_FAMILY_RAW 92
P_FORMAT_FAMILY_TIFF 92
P_FORMAT_FAMILY USER 92
P_FORMAT FAMILY WAV 92
P_FORMAT_FAMILY_YCBCR420 92
P_FORMAT_G711_AUDIO 95
P_FORMAT_G722_AUDIO 95
P_FORMAT _G723_1_AUDIO 96
P_FORMAT_G723_AUDIO 96
P_FORMAT_G726_AUDIO 96
P_FORMAT_G728_AUDIO 96
P_FORMAT_G729_AUDIO 96
P_FORMAT_H263_VIDEO 94
P_FORMAT_H264_VIDEO 96
P_FORMAT JPEG_STILL 95
P_FORMAT_JPEG_STREAM 97
P_FORMAT_MAX_KEY_LENGTH 98
P_FORMAT_MIDI 93
P_FORMAT_MIDI_TYPE 93
P_FORMAT _MPEG12_AUDIO 93
P_FORMAT MPEG12_STREAM 96
P_FORMAT_MPEG12_VIDEO 93

Exploring Palm OS: Multimedia 159

P_FORMAT_MPEG4_AUDIO_CELP 94
P_FORMAT_MPEG4_AUDIO_PARAMETRIC 94
P_FORMAT_MPEG4_AUDIO_STRUCTURED 94
P_FORMAT_MPEG4_AUDIO_TF 94
P_FORMAT _MPEG4_AUDIO_TTS 94
P_FORMAT MPEG4_STREAM 96
P_FORMAT_MPEG4_VIDEO 94
P_FORMAT_MQV_STREAM 96
P_FORMAT_MSADPCM_AUDIO 94
P_FORMAT_OGG_VORBIS_AUDIO 95
P_FORMAT_OGG_VORBIS_STREAM 97
P_FORMAT_PNG_STILL 95
P_FORMAT_PNG_STREAM 97
P_FORMAT_QUICKTIME_STREAM 97
P_FORMAT_RAW_AUDIO 93
P_FORMAT_RAW_STILL 93
P_FORMAT_RAW_VIDEO 93
P_FORMAT STILL_TYPE 93
P_FORMAT_STREAM_TYPE 96
P_FORMAT_TIFF_STILL 95
P_FORMAT_TIFF_STREAM 97
P_FORMAT_UNKNOWN 93
P_FORMAT_VIDEO_TYPE 93
P_FORMAT WAV_STREAM 97
P_FORMAT_YCBCR420_PLANAR_VIDEO 95
P_FORMATKEY_BUFFER_FRAMES 84
P_FORMATKEY_BYTE_ORDER 84
P_FORMATKEY_BYTES_PER_ROW 85
P_FORMATKEY_CHANNEL_USAGE 684, 86
P_FORMATKEY_DVIADPCM_BITS_PER_SAMP
LE 85
P_FORMATKEY_ENCODED_BIT_RATE 84
P_FORMATKEY_FRAME_RATE 84
P_FORMATKEY_HEIGHT 84
P_FORMATKEY_MPEG12_AUDIO_CHANNEL_
MODE 85, 87
P_FORMATKEY_MPEG12_AUDIO_LAYER 85
P_FORMATKEY_MPEG12_AUDIO_REVISION §
5
P_FORMATKEY_MPEG4AUDIO_OBJECT_PROFI
LE 85, 88
P_FORMATKEY_MPEG4AUDIO_TF_CODING 8
6,90

P_FORMATKEY_MPEG4AUDIO_TF_CORE_CO
DER_DELAY 86
P_FORMATKEY_MPEG4AUDIO_TF_FRAME_LE
NGTH 86
P_FORMATKEY_MPEG4AUDIO_TF_LSLAYER_
LENGTH 86
P_FORMATKEY_MPEG4AUDIO_TF_PCE 86
P_FORMATKEY_MPEG4VIDEO_VOP_TIME_IN
C_RESOLUTION 86
P_FORMATKEY_MSADPCM_BITS_PER_SAMPL
E 8
P_FORMATKEY_MSADPCM_COEEFES 85
P_FORMATKEY_PIXEL_FORMAT 85
P_FORMATKEY_RAW_AUDIO_BITS 84
P_FORMATKEY_RAW_AUDIO_TYPE 84, 90
P_FORMATKEY_VIDEO_ORIENTATION 85,91
P_FORMATKEY WIDTH 84
P_FORMATKEY_YCBCR420_PLANAR_VIDEO_
UV_STRIDE 86
P_FORMATKEY_YCBCR420_PLANAR_VIDEO_Y
_STRIDE 86
P_MM_BOOL_TYPE 74
P_MM_CODEC_CLASS_PROP_BASE 76
P_MM_CONTENT_PROP_ALBUM 126
P_MM_CONTENT_PROP_ARTIST 126
P_MM_CONTENT_PROP_BASE 75
P_MM_CONTENT_PROP_DURATION 126
P_MM_CONTENT_PROP_GENRE 126
P_MM_CONTENT_PROP_PLAYLIST 126
P_MM_CONTENT_PROP_TITLE 126
P_MM_CONTENT_PROP_TRACK_NUMBER 12
6
P_MM_DEFAULT_AUDIO_CAPTURE_URL 66,
119
P_MM_DEFAULT_AUDIO_RENDER_URL 119
P_MM_DEFAULT_DEST 64, 120
P_MM_DEFAULT_SOURCE 120
P_MM_DEFAULT_STILL_CAPTURE_URL 119
P_MM_DEFAULT_VIDEO_CAPTURE_URL 119
P_MM_DEFAULT _VIDEO_RENDER_URL 119
P_MM_DEST_PROP_BASE 75
P_MM_DEST_PROP_FILE_FORMAT 120
P_MM_DEST_PROP_URL 120
P_MM_DEVICE_PROP_BASE 76

160 Exploring Palm OS: Multimedia

P_MM_ENUM_BEGIN 71
P_MM_ENUM_END 71
P_MM_EVENT_CAUSE_CUSTOM_BASE 76
P_MM_EVENT_CAUSE_END_OF_STREAM 76
P_MM_EVENT_CAUSE_INVALID_STREAM 76
P_MM_EVENT _CAUSE_REQUESTED_BY_APP
76
P_MM_EVENT_CAUSE_STORAGE_FULL 76
P_MM_EVENT_CAUSE_UNKNOWN 76
P_MM_EVENT_CUSTOM_BASE 77
P_MM_EVENT_SESSION_DELETING 77

P_MM_EVENT_SESSION_MARKER_EXPIRED 7
7
P_MM_EVENT_SESSION_STATE_CHANGED 77
P_MM_EVENT_SESSION_WARNING 77
P_MM_EXPOSURE_AUTO 120
P_MM_FLASH_MODE_AUTO 116
P_MM_FLASH_MODE_FRONT 116
P_MM_FLASH _MODE_OFF 116
P_MM_FLASH _MODE_REAR 116
P_MM_FLASH_MODE_SLOW 116
P_MM_FOCUS_AUTO 117
P_MM_FOCUS_INFINITY 117
P_MM_FORMAT_TYPE 71
P_MM_INT16_TYPE 73
P_MM_INT32_TYPE 73
P_MM_INT64_TYPE 73
P_MM_INT8_TYPE 73
P_MM_INVALID_FORMAT 98
P_MM_INVALID_ID 72
P_MM_ISO_SENSITIVITY_AUTO 117,120
P_MM_NULL_URL 119
P_MM_PRIVATE_PROP_BASE 75
P_MM_PRIVATE_SESSION_CLASS_BASE 122
P_MM_PROP_INFO_DEFAULT 72
P_MM_PROP_INFO_MAXIMUM 72
P_MM_PROP_INFO_MINIMUM 72
P_MM_PROP_INFO_READABLE 72
P_MM_PROP_INFO_TYPE_CODE 72
P_MM_PROP_INFO_WRITABLE 72
P_MM_PROP_OBJECT_CODEC_CLASS 74
P_MM_PROP_OBJECT_CONTENT 74
P_MM_PROP_OBJECT_DEST 74

P_MM_PROP_OBJECT_DEVICE 74
P_MM_PROP_OBJECT_MASK 74
P_MM_PROP_OBJECT_SESSION 74
P_MM_PROP_OBJECT_SESSION_CLASS 74
P_MM_PROP_OBJECT_SOURCE 74
P_MM_PROP_OBJECT_STREAM 74
P_MM_PROP_OBJECT_TRACK 74
P_MM_RAW_TYPE 73
P_MM_RECT_TYPE 71
P_MM_SEEK_ORIGIN_BEGIN 73
P_MM_SEEK_ORIGIN_CURRENT 73
P_MM_SEEK_ORIGIN_END 73
P_MM_SESSION_CLASS_DEFAULT_CAPTURE
66,118
P_MM_SESSION_CLASS_DEFAULT_PLAYBACK
64,119
P_MM_SESSION_CLASS_PROP_BASE 76
P_MM_SESSION_CREATE_ANY_PROCESS 123
P_MM_SESSION_CREATE_LOCAL_PROCESS 1
23
P_MM_SESSION_CTL_CUSTOM_BASE 121
P_MM_SESSION_CTL_GRAB 121
P_MM_SESSION_CTL_PAUSE 121
P_MM_SESSION_CTL_PREFETCH 121
P_MM_SESSION_CTL_REFRESH 121
P_MM_SESSION_CTL_RUN 65, 67, 121
P_MM_SESSION_CTL_STOP 121
P_MM_SESSION_DEFAULT_AUDIO_ENABLE 6
4,123
P_MM_SESSION_DEFAULT_AUDIO_VOLUME
64,123
P_MM_SESSION_DEFAULT_DEST_RECT 64, 123
P_MM_SESSION_DEFAULT_SOURCE_RECT 64,
124
P_MM_SESSION_DEFAULT_VIDEO_ENABLE 6
4,124
P_MM_SESSION_NOT_INITIALIZED 121
P_MM_SESSION_PAUSED 122
P_MM_SESSION_PREFETCHING 122
P_MM_SESSION_PROP_BASE 75
P_MM_SESSION_PROP_CURRENT_TIME 124
P_MM_SESSION_PROP_END_TIME 124
P_MM_SESSION_PROP_IS LOCAL 124
P_MM_SESSION_PROP_MARKER 64, 124

Exploring Palm OS: Multimedia 161

P_MM_SESSION_PROP_PLAYBACK_RATE 64,
124
P_MM_SESSION_PROP_PREFETCH_TIME 124
P_MM_SESSION_PROP_PUBLIC 125
P_MM_SESSION_PROP_REPEAT_ENABLE 125
P_MM_SESSION_PROP_SESSION_CLASS 125
P_MM_SESSION_PROP_START _TIME 125
P_MM_SESSION_READY 67,121
P_MM_SESSION_RUNNING 65, 67,122
P_MM_SOURCE_PROP_BASE 75
P_MM_SOURCE_PROP_CAMERA_APERTURE
117
P_MM_SOURCE_PROP_CAMERA_EXPOSURE 1
17,120
P_MM_SOURCE_PROP_CAMERA_EXPOSURE_S
CALE 117
P_MM_SOURCE_PROP_CAMERA_FLASH_MO
DE 116, 117
P_MM_SOURCE_PROP_CAMERA_FOCUS 117,
117
P_MM_SOURCE_PROP_CAMERA_ISO_SENSITI
VITY 117
P_MM_SOURCE_PROP_CAMERA_RED_EYE_RE
DUCTION 118
P_MM_SOURCE_PROP_CAMERA_WHITE_BAL
ANCE 118,118
P_MM_SOURCE_PROP_CAMERA_ZOOM 118
P_MM_STANDARD_PROP_BASE 75
P_MM_STANDARD_SESSION_CLASS_BASE 12
2
P_MM_STREAM_PROP_BASE 75
P_MM_STREAM_PROP_FORMAT 127
P_MM_STREAM_PROP_IS PREVIEW 127
P_MM_STREAM_PROP_LANGUAGE 127
P_MM_STRING_TYPE 74
P_MM_TRACK_PROP_BASE 75
P_MM_TRACK_PROP_CODEC_CLASS 150
P_MM_TRACK_PROP_CURRENT_TIME 150
P_MM_TRACK_PROP_DEST 150
P_MM_TRACK_PROP_DEST_FORMAT 150
P_MM_TRACK_PROP_DEST_RECT 150
P_MM_TRACK_PROP_DEST_STREAM 150
P_MM_TRACK_PROP_ENABLE 151
P_MM_TRACK_PROP_SOURCE 151

P_MM_TRACK_PROP_SOURCE_FORMAT 151
P_MM_TRACK_PROP_SOURCE_RECT 151
P_MM_TRACK_PROP_SOURCE_STREAM 151
P_MM_TRACK_PROP_VOLUME 58, 151
P_MM_TYPE_CODE_MASK 72
P_MM_TYPE_CODE_SHIFT 72
P_MM_UNDEFINED_TYPE 73
P_MM_USER_PROP_BASE 75
P_MM_USER_SESSION_CLASS_BASE 122
P_MM_WHITE_BALANCE_AUTO 118
P_MM_WHITE_BALANCE_FLUORESCENT 118
P_MM_WHITE _BALANCE_INDOOR 118
P_MM_WHITE_BALANCE_OUTDOOR 118
P_MM WILD_TYPE 73
P_MONO 87
P_MPEGI12_AUDIO_CHANNEL_COUNT_MASK
87
P_MPEGI12_AUDIO_DUAL_CHANNEL 87
P_MPEGI12_AUDIO_EMPHASIS 50_15ms 87
P_MPEG12_AUDIO_EMPHASIS_CCITT_]J17 87
P_MPEG12_AUDIO_EMPHASIS_NONE 8§87
P_MPEGI12_AUDIO_JOINT_STEREO §7
P_MPEG12_AUDIO_LAYER_I 88
P_MPEGI12_AUDIO_LAYER II 88
P_MPEG12_AUDIO_LAYER III 88
P_MPEGI12_AUDIO_MONO 87
P_MPEG12_AUDIO_REV_MPEGI1 88
P_MPEGI12_AUDIO_REV_MPEG2 88
P_MPEGI12_AUDIO_REV_MPEG2_5 88
P_MPEGI12_AUDIO_STEREO 87
P_MPEG4AUDIO_AAC_LC 88
P_MPEG4AUDIO_AAC_LTP 89
P_MPEG4AUDIO_AAC_MAIN 88
P_MPEG4AUDIO_AAC_SCALABLE 89
P_MPEG4AUDIO_AAC_SSR 88
P_MPEG4AUDIO_ALGORITHMIC §9
P_MPEG4AUDIO_CELP 89
P_MPEG4AUDIO_ER_AAC_LC 89
P_MPEG4AUDIO_ER_AAC_LD 89
P_MPEG4AUDIO_ER_AAC_LTP 89
P_MPEG4AUDIO_ER_AAC_SCALABLE 89
P_MPEG4AUDIO_ER _BSAC §9
P_MPEG4AUDIO_ER_CELP 89

162 Exploring Palm OS: Multimedia

P_MPEG4AUDIO_ER_HILN 90
P_MPEG4AUDIO_ER_HVXC 90
P_MPEG4AUDIO_ER_PARAMETRIC 90
P_MPEG4AUDIO_ER_TWINVQ 89
P_MPEG4AUDIO_GENERAL_MIDI 89
P_MPEG4AUDIO_HVXC 89
P_MPEG4AUDIO_MAIN_SYNTHETIC 89
P_MPEG4AUDIO_TF_AAC_NON_SCALABLE 9
0

P_MPEG4AUDIO_TF_AAC_SCALABLE 90
P_MPEG4AUDIO_TF_BSAC 90
P_MPEG4AUDIO_TF_TWINVQ 90
P_MPEG4AUDIO_TTSI 89
P_MPEG4AUDIO_TWINVQ 89
P_MPEG4AUDIO_WAVETABLE 89
P_STEREO 86
P_VIDEO_BOTTOM_LEFT_RIGHT 91
P_VIDEO_TOP_LEFT_RIGHT 91
palmdev URL scheme 63
playback session example 63
PNG 92,95, 97
prefAlarmSoundVolume 34
preferences

sound 5
prefGameSoundVolume 34
prefSysSoundVolume 34
properties 58, 60
property base enum 75
property key base values enum 75
property keys 126

camera 117

codec class 79

destination devices 120

session 123, 124

session class 122

source devices 125

streams 127
property sets 58

Q

QuickTime 91, 97

R
raw audio 84,92, 93

raw video 92,93
recording session example 66

S

sampled sound 4
screen 55
session class constants enum 122
session creation constants enum 123
session default property key constants 123
session event causes enum 76
session notifications enum 77
session property key constants 124
sessions 54, 59
callback function 60, 64, 66
class 122
class IDs 118
class properties 122
playback sessions 63
property keys 123,124
recording sessions 66
simple sound 3
sndAlarm 22
sndAlarmVolume 25
SndBlockingFuncPtr 46
SndBlockingFuncType() 46
SndCallbackInfoType 11
sndCardInserted 22
sndCardRemoved 22
sndClick 22
sndCmdFreqDurationAmp 19, 28
sndCmdFrqOn 19, 28
SndCmdIDType 18
sndCmdNoteOn 19, 28
sndCmdQuiet 19, 28
SndCommandPtr 12
SndCommandType 12
SndComplFuncPtr 47
SndComplFuncType() 47
sndConfirmation 22
SndCreateMidiList() 26
sndDefaultAmp 18
SndDoCmd() 26
sndErrBadChannel 23
sndErrBadParam 23

Exploring Palm OS: Multimedia 163

sndErrBadStream 23
sndErrFormat 23
sndErrInterrupted 23
sndErrInvalidStream 23
sndErrMemory 23
sndErrNotImpl 23
sndErrOpen 23
sndError 22
sndErrQEmpty 23
sndErrQFull 23
sndFlagAsync 24
sndFlagNormal 24
sndFlagSync 24
sndFloat 18

sndFloatBig 17
sndFloatLittle 17
sndFloatOpposite 18
sndFormatAAC 19
sndFormatDVI_ADPCM 19
sndFormatIMA_ADPCM 19
sndFormatMP3 19
sndFormatOGG 20
sndFormatPCM 19
SndFormatType enum 19
sndFtrIDVersion 24
sndGameVolume 25
SndGetDefaultVolume() 29
sndInfo 22

sndInput 21

sndIntl6 17
sndIntl6Big 17
sndIntl6Little 17
sndInt160pposite 18
sndInt32 18

sndInt32Big 17
sndInt32Little 17
sndInt320pposite 18
sndInt8 17
sndMaxAmp 18
sndMgrVersionNum 24
SndMidiListltemType 12
sndMidiNameLength 20
sndMidiRecHdrSize 20

SndMidiRecHdrType 13
sndMidiRecSignature 20
sndMono 22

sndOutput 21
sndPanCenter 25
sndPanFullLeft 25
sndPanFullRight 25
SndPlayResource() 29
SndPlaySmf() 31
SndPlaySmfResource() 33
SndPlaySystemSound() 34
SndPtr 14, 19
SndSampleType 14,17
SndSetDefaultVolume() 35
SndSmfCallbacksType 14
SndSmfChanRangeType 15
sndSmfCmdDuration 21
SndSmfCmdEnum 21
sndSmfCmdPlay 21
SndSmfOptionsType 15
sndSmfPlayAllMilliSec 20, 21
sndStartUp 22

sndStereo 22
SndStreamBufferCallback() 48
SndStreamCreate() 36
SndStreamCreateExtended() 39
SndStreamDelete() 41
SndStreamGetPan() 41
SndStreamGetVolume() 42
SndStreamMode 21
SndStreamPause() 42
SndStreamRef 16
SndStreamSetPan() 43
SndStreamSetVolume() 44
SndStreamStart() 45
SndStreamStop() 46

SndStreamVariableBufferCallback() 49

SndStreamWidth 21
SndSysBeepType 22
sndSystemVolume 25
sndUInt8 17
sndWarning 22
sound

164 Exploring Palm OS: Multimedia

creating a stream 9

MIDI files 6

preferences 5

sampled 4

simple 3
sound resource playback flags 24
sound stream feature constants 24
SoundMgr.h 11
source devices 55

property keys 125
source property key constants 125
sources 55
speakers 55
stereo pan constants 24
stream

creating a sound stream 9
stream content keys 126
stream property key constants 127
streaming sound 97
streaming video 96, 97
streams 55

property keys 127
sysAppLaunchCmdMultimediaEvent 127

T

TIFF 92,97
track callback filter 56
track property key constants 150

tracks 56
U
URL 120, 125

default 119
source 64, 66
URL scheme 62, 63

\'

video property keys 126
volume constants 25

w
WAV 57,92,94

Y
YCbCr420 92,95

Exploring Palm OS: Multimedia 165

166 Exploring Palm OS: Multimedia

	Multimedia
	Table of Contents
	About This Document
	What This Book Contains
	Changes to This Book
	The Exploring Palm OS Series
	Additional Resources

	Sound Manager
	Sound Manager
	Simple Sound
	Sampled Sound
	Simple vs. Sampled Sound
	Sound Preferences
	Standard MIDI Files
	Creating a Sound Stream
	Summary of Sound Manager

	Sound Manager Reference
	Sound Manager Structures and Types
	SndCallbackInfoType
	SndCommandType
	SndMidiListItemType
	SndMidiRecHdrType
	SndPtr
	SndSampleType
	SndSmfCallbacksType
	SndSmfChanRangeType
	SndSmfOptionsType
	SndStreamRef

	Sound Manager Constants
	audio_type_t
	Simple Sound Amplitudes
	SndCmdIDType
	SndFormatType
	sndMidiNameLength
	sndMidiRecHdrSize
	sndMidiRecSignature
	sndSmfPlayAllMilliSec
	SndSmfCmdEnum
	SndStreamMode
	SndStreamWidth
	SndSysBeepType
	Sound Error Codes
	Sound Resource Playback Flags
	Sound Stream Feature Constants
	Stereo Pan Constants
	Volume Constants

	Sound Manager Functions and Macros
	SndCreateMidiList
	SndDoCmd
	SndGetDefaultVolume
	SndPlayResource
	SndPlaySmf
	SndPlaySmfResource
	SndPlaySystemSound
	SndSetDefaultVolume
	SndStreamCreate
	SndStreamCreateExtended
	SndStreamDelete
	SndStreamGetPan
	SndStreamGetVolume
	SndStreamPause
	SndStreamSetPan
	SndStreamSetVolume
	SndStreamStart
	SndStreamStop

	Application-Defined Functions
	SndBlockingFuncType
	SndComplFuncType
	SndStreamBufferCallback
	SndStreamVariableBufferCallback

	Multimedia Library
	Multimedia Applications
	Overview
	Sessions
	Sources
	Destinations
	Streams
	Tracks
	Codecs
	Formats
	Property Sets

	Using the Multimedia Library
	Working with Sessions
	Working with Properties
	Working with Enumerations
	Working with the URL Scheme

	Example Playback Session
	Creating the Session
	Adding Source Content
	Adding Tracks
	Finalizing the Session
	Playing the File

	Example Recording Session

	Multimedia Library Definitions
	Multimedia Definitions Structures and Types
	MMCodecClassID
	MMDestID
	MMEvent
	MMFilterID
	MMSessionClassID
	MMSessionID
	MMSourceID
	MMStreamID
	MMTrackID

	Multimedia Definitions Constants
	Complex Property Values
	Enumerations
	Miscellaneous Constants
	MMPropInfoType
	MMSeekOrigin
	MMTypeCode
	Object Property Key Bases
	Property Base
	Property Key Base Values
	Session Event Causes
	Session Notifications

	Multimedia Definitions Functions and Macros
	MM_TYPE_CODE

	Multimedia Codecs
	Multimedia Codec Constants
	Codec Class Properties

	Multimedia Codec Functions and Macros
	MMCodecClassEnumerate
	MMFileFormatEnumerate

	Multimedia Formats
	Multimedia Format Structures and Types
	MMFormat
	MMFormatType

	Multimedia Format Constants
	Format Key Constants
	fmtAudioChannelUsage
	fmtMPEG12AudioChannelMode
	fmtMPEG12AudioEmphasis
	fmtMPEG12AudioLayer
	fmtMPEG12AudioRevision
	fmtMPEG4AudioObjectProfile
	fmtMPEG4AudioTFCoding
	fmtRawAudioType
	fmtVideoOrientation
	formatFamily
	formatType
	Miscellaneous Constants

	Multimedia Format Functions and Macros
	_MMFORMATTYPE
	MMFormatCopy
	MMFormatCreate
	MMFormatDelete
	MMFormatEnumerateTerms
	MMFormatGetTerm
	MMFormatGetTermInt32
	MMFormatGetTermType
	MMFormatGetType
	MMFormatRawAudio
	MMFormatRawStill
	MMFormatRawVideo
	MMFormatsCompatible
	MMFormatSetTerm
	MMFormatSetTermInt32
	MMFormatSetType

	Multimedia Properties
	Multimedia Property Functions and Macros
	MMPropertyEnumerate
	MMPropertyGet
	MMPropertyInfo
	MMPropertySet

	Multimedia Sessions
	Multimedia Session Structures and Types
	MMSessionEvent

	Multimedia Session Constants
	Camera Flash Mode Values
	Camera Focus Values
	Camera Property Key Constants
	Camera White Balance Values
	Default Session Class IDs
	Default URLs
	Destination Property Key Constants
	ISO Sensitivity Value
	Miscellaneous Session Constants
	MMSessionControlOpcode
	MMSessionState
	Session Class Constants
	Session Class Properties
	Session Creation Constants
	Session Default Property Key Constants
	Session Property Key Constants
	Source Property Key Constants
	Stream Content Keys
	Stream Property Key Constants

	Multimedia Session Launch Codes
	sysAppLaunchCmdMultimediaEvent

	Multimedia Session Functions and Macros
	MMDestEnumerateStreams
	MMDestFinalize
	MMSessionAcquireOwnership
	MMSessionAddDefaultTracks
	MMSessionAddDest
	MMSessionAddSource
	MMSessionAddTrack
	MMSessionClassEnumerate
	MMSessionControl
	MMSessionCreate
	MMSessionDelete
	MMSessionEnumerate
	MMSessionEnumerateDests
	MMSessionEnumerateSources
	MMSessionEnumerateTracks
	MMSessionFinalize
	MMSessionGetState
	MMSessionRegisterCallback
	MMSessionRegisterLaunch
	MMSessionReleaseOwnership
	MMSessionRemoveAll
	MMSessionRemoveTracks
	MMSessionSeek
	MMSessionUnregisterCallback
	MMSessionUnregisterLaunch
	MMSourceEnumerateStreams
	MMSourceFinalize

	Application-Defined Functions
	MMSessionCallbackFn

	Multimedia Tracks
	Multimedia Track Structures and Types
	FilterCallbackInfo

	Multimedia Track Constants
	Track Property Key Constants

	Multimedia Track Functions and Macros
	MMTrackInsertCallbackFilter
	MMTrackRemoveCallbackFilter

	Application-Defined Functions
	MMFilterCallbackFn

	Glossary
	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

