

Input Services

Exploring Palm OS

®

Written by Jean Ostrem
Edited by Greg Wilson
Engineering contributions by Grant Glouser, Joe Onorato, Chris Bark, Greg Wilson, and Ezekiel Sanborn
de Asis.

Copyright © 2003, 2004, PalmSource, Inc. and its affiliates. All rights reserved. This technical documentation contains
confidential and proprietary information of PalmSource, Inc. (“PalmSource”), and is provided to the licensee (“you”)
under the terms of a Nondisclosure Agreement, Product Development Kit license, Software Development Kit license
or similar agreement between you and PalmSource. You must use commercially reasonable efforts to maintain the
confidentiality of this technical documentation. You may print and copy this technical documentation solely for the
permitted uses specified in your agreement with PalmSource. In addition, you may make up to two (2) copies of this
technical documentation for archival and backup purposes. All copies of this technical documentation remain the
property of PalmSource, and you agree to return or destroy them at PalmSource’s written request. Except for the
foregoing or as authorized in your agreement with PalmSource, you may not copy or distribute any part of this
technical documentation in any form or by any means without express written consent from PalmSource, Inc., and
you may not modify this technical documentation or make any derivative work of it (such as a translation,
localization, transformation or adaptation) without express written consent from PalmSource.

PalmSource, Inc. reserves the right to revise this technical documentation from time to time, and is not obligated to
notify you of any revisions.

THIS TECHNICAL DOCUMENTATION IS PROVIDED ON AN “AS IS” BASIS. NEITHER PALMSOURCE NOR ITS
SUPPLIERS MAKES, AND EACH OF THEM EXPRESSLY EXCLUDES AND DISCLAIMS TO THE FULL EXTENT
ALLOWED BY APPLICABLE LAW, ANY REPRESENTATIONS OR WARRANTIES REGARDING THIS TECHNICAL
DOCUMENTATION, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION
ANY WARRANTIES IMPLIED BY ANY COURSE OF DEALING OR COURSE OF PERFORMANCE AND ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT,
ACCURACY, AND SATISFACTORY QUALITY. PALMSOURCE AND ITS SUPPLIERS MAKE NO
REPRESENTATIONS OR WARRANTIES THAT THIS TECHNICAL DOCUMENTATION IS FREE OF ERRORS OR IS
SUITABLE FOR YOUR USE. TO THE FULL EXTENT ALLOWED BY APPLICABLE LAW, PALMSOURCE, INC. ALSO
EXCLUDES FOR ITSELF AND ITS SUPPLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR TORT
(INCLUDING NEGLIGENCE), FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL,
EXEMPLARY OR PUNITIVE DAMAGES OF ANY KIND ARISING OUT OF OR IN ANY WAY RELATED TO THIS
TECHNICAL DOCUMENTATION, INCLUDING WITHOUT LIMITATION DAMAGES FOR LOST REVENUE OR
PROFITS, LOST BUSINESS, LOST GOODWILL, LOST INFORMATION OR DATA, BUSINESS INTERRUPTION,
SERVICES STOPPAGE, IMPAIRMENT OF OTHER GOODS, COSTS OF PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES, OR OTHER FINANCIAL LOSS, EVEN IF PALMSOURCE, INC. OR ITS SUPPLIERS HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR IF SUCH DAMAGES COULD HAVE BEEN
REASONABLY FORESEEN.

PalmSource, the PalmSource logo, BeOS, Graffiti, HandFAX, HandMAIL, HandPHONE, HandSTAMP, HandWEB,
HotSync, the HotSync logo, iMessenger, MultiMail, MyPalm, Palm, the Palm logo, the Palm trade dress, Palm
Computing, Palm OS, Palm Powered, PalmConnect, PalmGear, PalmGlove, PalmModem, Palm Pack, PalmPak,
PalmPix, PalmPower, PalmPrint, Palm.Net, Palm Reader, Palm Talk, Simply Palm and ThinAir are trademarks of
PalmSource, Inc. or its affiliates. All other product and brand names may be trademarks or registered trademarks of
their respective owners.

IF THIS TECHNICAL DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE SOFTWARE AND OTHER
DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT TO THE LICENSE AGREEMENTS
ACCOMPANYING THE SOFTWARE AND OTHER DOCUMENTATION.

Exploring Palm OS: Input Services
Document Number 3114-003
November 9, 2004
For the latest version of this document, visit
http://www.palmos.com/dev/support/docs/.

PalmSource, Inc.
1240 Crossman Avenue
Sunnyvale, CA 94089
USA
www.palmsource.com

http://www.palmos.com/dev/support/docs/
http://www.palmsource.com

Exploring Palm OS: Input Services

iii

Table of Contents

About This Document ix

Who Should Read This Book ix
What This Book Contains x
Changes to This Book xi
The

Exploring Palm OS

 Series xii
Additional Resources xii

Part I: Concepts

1 Receiving Input 3

Pen Taps. . 3
Input Area . . 5
Hardware Controls . 6

2 Working with the Dynamic Input Area 7

Checking the Dynamic Input Area Features 7
Programmatically Opening and Closing the Input Area 8
Interacting with Pinlets 10

Changing the Active Pinlet 12
Querying Alternative Input Systems 13
Setting the Pinlet Input Mode 14

Summary . 16

3 Customizing the Dynamic Input Area 17

How Pinlets Work . 17
Building Pinlets and Handwriting Recognition Engines 19
Starting Up and Shutting Down a Pinlet 20

Startup . 20
Starting up the Handwriting Recognition Engine 21
Shutdown . 22

Presenting a User Interface. 22
Main Pinlet Form. 22
Pinlet Style . 23

iv

 Exploring Palm OS: Input Services

Internal Pinlet Name 23
Status Bar Icons and Name 24
FEP Creator ID. 24
Help Dialog . 24
Input Mode Indicator 25

Interpreting Pen Strokes 25
Receiving Pen Events 25
Sending Results to Pen Input Manager 26
Considering the Input Modes 27
Handling Multistroke Characters 28
Implementing Live Ink 33

Specifying the Default Pinlet 33
Guidelines for Default Pinlets 34
User Interface Considerations 34

Summary . 35

4 Customizing Hardware Input 37

Replacing a Built-in Application 37
Remapping the Hard Keys 38
Disabling the Hard Keys. 40
Summary . 41

Part II: Reference

5 Low-Level Events Reference 45

Event Constants . 45
Key Modifier Constants 45

Events. 46
keyDownEvent . 46
keyHoldEvent . 47
keyHoldEvent5 . 47
keyUpEvent . 49
keyUpEvent5 . 49
penDownEvent . 50

Exploring Palm OS: Input Services

v

penMoveEvent . 51
penUpEvent . 52

6 Graffiti 2 Reference 53

Graffiti 2 Reference Functions and Macros 53
SysGraffitiReferenceDialog 53

7 Handwriting Recognition Engine 55

Handwriting Recognition Engine Structures and Types 55
CharData . 55
HWRConfig . 56
HWRConfigModeArea 57
HWRResult . 58

Handwriting Recognition Engine Constants 60
Ink Hint Constants 60
Maximum Value Constants 60

Handwriting Recognition Engine Functions and Macros 61
HWRClearInputState 61
HWRGetInputMode 61
HWRInit . 62
HWRProcessStroke 62
HWRSetInputMode 63
HWRShowReferenceDialog 63
HWRShutdown . 64
HWRTimeout . 64

8 Hard Keys Reference 65

Hard Key Constants. 65
Key State Values . 65
Key Rate Constants 67

Hard Key Functions and Macros 67
KeyCurrentState . 67
KeyRates . 68
KeySetMask . 69

vi

 Exploring Palm OS: Input Services

9 Keyboard 71

Keyboard Functions and Macros 71
SysKeyboardDialog 71

10 Pen Input Manager 73

Pen Input Manager Constants 73
Default Pinlet Constants 73
Input Area States 74
Error Codes . 74
Feature and Version Constants 75
Input Area Flags Constants 75
Pinlet Input Modes 76
Pinlet Information Constants 77
Pinlet Styles . 78
Virtual Character Flag 78

Pen Input Manager Launch Codes 79
sysAppLaunchCmdPinletLaunch 79
sysPinletLaunchCmdLoadProcPtrs 79

Pen Input Manager Notifications 79
sysNotifyAltInputSystemDisabled 79
sysNotifyAltInputSystemEnabled 80

Pen Input Manager Functions and Macros 80
PINAltInputSystemEnabled 80
PINClearPinletState 81
PINCountPinlets . 81
PINGetCurrentPinletName 82
PINGetDefaultPinlet 82
PINGetInputAreaState 83
PINGetInputMode 83
PINGetPinletInfo. 84
PINSetDefaultPinlet 84
PINSetInputAreaState 85
PINSetInputMode 86
PINShowReferenceDialog 86
PINSwitchToPinlet 87

Exploring Palm OS: Input Services

vii

11 Pinlet 89

Pinlet Structures and Types 89
PinletAPIType . 89

Pinlet Functions and Macros 90
PINFeedChar . 90
PINFeedString . 91

Pinlet-Defined Functions 91
PinletClearStateProcPtr 91
PinletGetInputModeProcPtr 92
PinletSetInputModeProcPtr 92
PinletShowReferenceDialogProcPtr 93

12 Shift Indicator 95

Shift Indicator Constants 95
Dimension Constants 95
GsiShiftState . 95
Lock Flag Constants 96
Temporary Shift State Constants 97

Shift Indicator Events 97
gsiStateChangeEvent 97

Shift Indicator Functions and Macros 98
GsiEnable . 98
GsiEnabled . 98
GsiInitialize . 98
GsiSetLocation . 99
GsiSetShiftState . 99

Index 101

viii

 Exploring Palm OS: Input Services

Exploring Palm OS: Input Services

ix

About This

Document

This book describes the portions of Palm OS

®

 that receive user input
and send it to your application. There are several ways that a user
provides input:

• Writing letters, numbers, or symbols in the input area

• Pressing a hardware button on the device

• Tapping the pen (or stylus) on the digitizer

This book covers the Palm OS managers that receive the button
presses, pen strokes, and pen taps and translate them into the events
that your application receives.

This book focuses on the low-level managers. It does not cover UI
controls that receive user input. For information on UI controls, see

Exploring Palm OS: User Interface

. It also does not cover how an
application should respond to textual input. See

Exploring Palm OS:
Text and Localization

 for information on receiving text-based input.

IMPORTANT:

The

Exploring Palm OS

 series is intended for
developers creating native applications for Palm OS Cobalt. If you
are interested in developing applications that work through PACE
and that also run on earlier Palm OS releases, read the latest
versions of the

Palm OS Programmer’s API Reference

 and

Palm

OS Programmer’s Companion

 instead.

Who Should Read This Book

You should read this book if you are a Palm OS software developer
and you want to do one of the following:

• Write an application that works on devices that have a

dynamic input area

 (one that the user can collapse and
expand) and has some level of control over the input area.

• Write a

pinlet

, which is an executable that displays its user
interface in the dynamic input area. The pinlet’s job is to

About This Document

What This Book Contains

x

 Exploring Palm OS: Input Services

receive pen events in the input area and translate them into
character input.

• Write a game or some other application that needs input
from the hardware buttons.

• Replace the handwriting recognition engine with one of your
own.

You can write a full-featured application without using any of the
API described in this book. Beginning Palm OS developers may
want to delay reading this book until they gain a better
understanding of the fundamentals of Palm OS application
development. Instead, consider reading

Exploring Palm OS:
Programming Basics

 to gain a good understanding of event
management and

Exploring Palm OS: User Interface

 to learn about
events generated by standard UI controls. Come back to this book
only when you find you need more control than the higher level
managers provide.

What This Book Contains

This book contains the following information:

• Part I contains conceptual information and how-to
information.

– Chapter 1, “Receiving Input,” on page 3 introduces you to
how a Palm Powered

™

 device receives user input and
sends it to your application.

– Chapter 2, “Working with the Dynamic Input Area,” on
page 7 explains how an application may interact with the
dynamic input area or the pinlet that runs in the dynamic
input area.

– Chapter 3, “Customizing the Dynamic Input Area,” on
page 17 describes how to create a pinlet that runs in the
dynamic input area and how you can replace the
handwriting recognition engine if you want to.

– Chapter 4, “Customizing Hardware Input,” on page 37
describes how you might customize the hard keys for
your application’s use.

About This Document

Changes to This Book

Exploring Palm OS: Input Services

xi

• Part II contains reference information organized into the
following chapters:

– Chapter 5, “Low-Level Events Reference,” on page 45
describes the lowest level events that an application
works with: the key events and the pen events.

– Chapter 6, “Graffiti 2 Reference,” on page 53 describes the
function that displays the Graffiti

®

 2 reference dialog.

– Chapter 7, “Handwriting Recognition Engine,” on
page 55 describes the APIs for the handwriting
recognition engine.

– Chapter 8, “Hard Keys Reference,” on page 65 describes
the APIs that control the hardware buttons.

– Chapter 9, “Keyboard,” on page 71 describes the APIs for
the standard keyboard dialog.

– Chapter 10, “Pen Input Manager,” on page 73 describes
the APIs for the Pen Input Manager, which controls the
pinlet and the dynamic input area.

– Chapter 11, “Pinlet,” on page 89 describes the APIs that
you must implement if you write a pinlet.

– Chapter 12, “Shift Indicator,” on page 95 describes the
APIs for the shift indicator.

Changes to This Book

3114-003

• Clarified how to change shift indicator location in

GsiSetLocation()

 description.

3114-002

• Minor editorial corrections.

3114-001

• Initial version.

About This Document

The Exploring Palm OS Series

xii

 Exploring Palm OS: Input Services

The

Exploring Palm OS

 Series

This book is a part of the

Exploring Palm OS

 series. Together, the
books in this series document and explain how to use the APIs
exposed to third-party developers by the fully ARM-native versions
of Palm OS, beginning with Palm OS Cobalt. Each of the books in
the

Exploring Palm OS

 series explains one aspect of the Palm
operating system, and contains both conceptual and reference
documentation for the pertinent technology.

As of this writing, the complete

Exploring Palm OS

 series consists of
the following titles:

•

Exploring Palm OS: Programming Basics

•

Exploring Palm OS: Memory, Databases, and Files

•

Exploring Palm OS: User Interface

•

Exploring Palm OS: User Interface Guidelines

 (coming soon)

•

Exploring Palm OS: System Management

•

Exploring Palm OS: Text and Localization

•

Exploring Palm OS: Input Services

•

Exploring Palm OS: High-Level Communications

•

Exploring Palm OS: Low-Level Communications

•

Exploring Palm OS: Telephony and SMS

•

Exploring Palm OS: Multimedia

•

Exploring Palm OS: Security and Cryptography

•

Exploring Palm OS: Creating a FEP

 (coming soon)

•

Exploring Palm OS: Porting Applications to Palm OS Cobalt

Additional Resources

• Documentation

PalmSource publishes its latest versions of documents for
Palm OS developers at

http://www.palmos.com/dev/support/docs/

http://www.palmos.com/dev/support/docs/

About This Document

Additional Resources

Exploring Palm OS: Input Services

xiii

• Training

PalmSource and its partners host training classes for Palm OS
developers. For topics and schedules, check

http://www.palmos.com/dev/training

• Knowledge Base

The Knowledge Base is a fast, web-based database of
technical information. Search for frequently asked questions
(FAQs), sample code, white papers, and the development
documentation at

http://www.palmos.com/dev/support/kb/

http://www.palmos.com/dev/training
http://www.palmos.com/dev/support/kb/

About This Document

Additional Resources

xiv

 Exploring Palm OS: Input Services

Part I
Concepts

This part contains conceptual information for the input services
managers. It covers:

Receiving Input 3

Working with the Dynamic Input Area 7

Customizing the Dynamic Input Area 17

Customizing Hardware Input 37

Exploring Palm OS: Input Services 3

1
Receiving Input
Users send input to an application by tapping the pen inside an
application’s form, in the input area, or in the status bar, by pressing
hardware buttons on the device, and by writing letters, numbers, or
symbols in the input area (see Figure 1.1).

Figure 1.1 Receiving input

This chapter describes what happens when the user performs any of
the above actions. It covers:

Pen Taps . 3

Input Area . 5

Hardware Controls 6

Pen Taps
When the user taps the pen on the device’s display, the following
happens:

• A penDownEvent is generated specifying where the user
tapped the pen.

Tap anywhere on screen

Press a hardware button

Write in input area

Receiving Input
Pen Taps

4 Exploring Palm OS: Input Services

• A penUpEvent is generated for the same location.

When the user drags the pen on the device’s display, one or more
penMoveEvents are generated in between the penDownEvent and
penUpEvent.

Your application, however, often does not care about these events.
Instead, they are converted into other events that your application is
more likely to handle.

If the user has tapped inside of a form, the FrmHandleEvent()
checks the coordinates and sends them to the user interface element
that was tapped. For example, if the user taps a command button,
FrmHandleEvent() calls CtlHandleEvent(), which enqueues a
ctlSelectEvent for that button. If the user taps in a text field,
FrmHandleEvent() calls FldHandleEvent(), which enqueues a
fldEnterEvent and so on.

Your application only receives events intended for it. If the user has
tapped an area of the display that is outside of the bounds of your
application’s forms, your application does not receive the pen
events. For example, if the user has tapped the status bar or in a
window that is displayed by the status bar, the Status Bar Manager
passes the event to the appropriate part of the system.

If the pen events are within the input area, the currently active
pinlet receives and handles the events (see “Input Area” on page 5)
by converting them into keyDownEvents. Each keyDownEvent
contains a character. This character may either be text input, such as
a letter or number, or a virtual character. A virtual character is a
character that performs an action, such as moving to the next field
or launching a new application.

Most applications do not need to receive or handle pen events. Of
course, there are exceptions. If you want to write a drawing
application, you need to receive pen events to capture what the user
has drawn. You might also want to directly receive pen events if
you’re writing a game.

If you want to capture pen events, you simply need to check for
them in your form’s event handler, which is called before
FrmHandleEvent() is called. (FrmDispatchEvent() calls
FrmHandleEvent().) See Exploring Palm OS: Programming Basics
for more information about the event loop.

Receiving Input
Input Area

Exploring Palm OS: Input Services 5

Input Area
The input area is the area of the display where the user enters
textual data. There are two kinds of input areas: static and dynamic.
A static input area is one that is silk-screened onto the device, such
as the input area on the Palm V handheld. A dynamic input area is
one that is implemented in software. On most devices with a
dynamic input area, users can collapse a dynamic input area when
they want to see more of the application and expand it when they
want to enter more data (see Figure 1.2).

Figure 1.2 Dynamic input area

In either case, when the user taps or drags the pen in the input area,
those pen events are turned into a series of keyDownEvents
representing textual input that is sent to the active window. The
user interface elements handle displaying that data on the screen.
You typically do not have to write any extra code to display the text
the user has entered.

If your application is running on a device with a dynamic input
area, it is strongly recommended that you set up constraint
resources for each form so that they can respond by expanding and
contracting or by moving as the user opens and closes the input
area. Doing so is described in Exploring Palm OS: User Interface.

Resizing is the only interaction with the input area that most
applications have. It is possible to open and close the input area

Open/close
toggle

Receiving Input
Hardware Controls

6 Exploring Palm OS: Input Services

programmatically and to have some interaction with the pinlet that
runs in the dynamic input area. See Chapter 2, “Working with the
Dynamic Input Area,” on page 7.

Hardware Controls
All Palm Powered™ devices have a power button and some of the
following:

• One or more application buttons. Most handhelds have four
application buttons for Datebook, Address Book, and so on.

• Scroll buttons that scroll text fields and some forms up or
down.

• Contrast/brightness controls.

• A thumb wheel used for form navigation.

• A five-way rocker used for form navigation.

• A built-in keyboard.

Hardware controls or buttons are often called hard keys. When a
hard key is pressed, Palm OS® generates a keyDownEvent
containing a virtual character specifying which button was pressed.
When a hard key is released, a keyUpEvent containing the same
information is sent.

Most applications should let the system handle the virtual
characters. For hard keys that are intended for form navigation
(such as the scroll buttons, thumb wheels, or rocker keys), you may
have to write code to perform the navigation. See Exploring Palm OS:
User Interface for more information.

Sometimes, you may want to have special handling for a hard key. If
so, see the chapter Chapter 4, “Customizing Hardware Input,” on
page 37. It describes how to respond to the virtual characters, remap
the hard keys, and intercept them entirely.

Exploring Palm OS: Input Services 7

2
Working with the
Dynamic Input Area
This chapter describes how applications may interact with the
dynamic input area. It covers:

Checking the Dynamic Input Area Features 7

Programmatically Opening and Closing the Input Area. . 8

Interacting with Pinlets 10

Although dynamic input areas are not new to Palm Powered™
devices, Palm OS® Cobalt version 6.0 provides the first built-in
support for dynamic input areas.

This chapter does not cover how an application’s windows should
resize when the user opens and closes the input area; it covers how
an application might want to control the input area itself. See
Exploring Palm OS: User Interface for information about resizing your
application.

Checking the Dynamic Input Area Features
Before you can use any of the API described in this chapter, you
must make sure that the dynamic input area API is available. Test
the pinFtrAPIVersion feature as shown in Listing 2.1.

Listing 2.1 Checking the dynamic input area feature

err = FtrGet(pinCreator, pinFtrAPIVersion, &version);
if (!err && version) {
 //dynamic input area exists
}

Working with the Dynamic Input Area
Programmatically Opening and Closing the Input Area

8 Exploring Palm OS: Input Services

If this feature is defined, a manager called the Pen Input Manager
controls the input area and notifies the application of any changes in
the input area state.

Do not assume that if this feature is not present, the device has a
static input area. Some devices have no input area at all. For
example, the Handspring Treo has a built-in keyboard and thus
forgoes having any input area altogether. All textual user input is
typed. On devices that don’t have the dynamic input area, the API
described in this chapter has no effect.

If you need more information, the sysFtrNumInputAreaFlags
feature indicates the device-specific capabilities of the input area
(see Listing 2.2). “Input Area Flags Constants” on page 75 defines
the flags that may be set in this feature constant.

Listing 2.2 Checking the input area capabilities

err = FtrGet(sysFtrCreator, sysFtrNumInputAreaFlags,
 &inputAreaFlags);
if (!err) {
 if (inputAreaFlags & grfFtrInputAreaFlagDynamic)
 // device has dynamic input area
 if (inputAreaFlags & grfFtrInputAreaFlagLiveInk)
 // device supports live ink
 if (inputAreaFlags & grfFtrInputAreaFlagCollapsible)
 // dynamic input area is collapsible.
}

Programmatically Opening and Closing the Input
Area

In rare cases, it may be beneficial for a form to open the input area
when the form itself is opened. For example, a password dialog
might open the input area while the form is opened to save the user
a tap. If your application has a form that requires text input (rather
than simply having the ability to receive text input), you might also
want to open the input area when the form is opened. Only do this
if you’re certain the user is always going to use the form for text
input and never to read what was previously entered.

Working with the Dynamic Input Area
Programmatically Opening and Closing the Input Area

Exploring Palm OS: Input Services 9

Opening and closing the input area is controlled by setting the input
area state. The function PINSetInputAreaState() sets the input
area state. Call this function in response to the
winFocusGainedEvent. Be sure to preserve the previous input
area state and restore it when your form is closed. See Listing 2.3.

Listing 2.3 Example of a form controlling input area state

uint16_t userInputAreaState = 0;
case winFocusGainedEvent:
 if (eventP->data.winFocusGained.window ==
 FrmGetWindowHandle(frmP)) {
 //First, preserve the current input area state,
 //which is likely to be the one the user prefers.
 userInputAreaState = PINGetInputAreaState();
 PINSetInputAreaState(pinInputAreaOpen);
 }
 break;

case frmCloseEvent:
 PINSetInputAreaState(userInputAreaState);
 break;

IMPORTANT: Be careful not to set the input area state too
much. If the input area is opened and closed automatically in too
many instances, the result may be a jumpy user interface that
produces a jarring user experience. It is best to let your users
decide what they want to do.

You should open the input area in response to
winFocusGainedEvent to allow for the possibility that a dialog
displayed by another process, such as a system dialog or a slip
window, might close it. When the dialog is dismissed and control
returns to your application, you then might need to reopen (or
reclose) the input area. You won’t receive a frmLoadEvent or
frmOpenEvent because your form is already loaded and opened.
Instead, you’ll get the winFocusGainedEvent. Well-behaved
dialogs that enforce a certain input state should restore the input
area state when they are closed (as shown in Listing 2.3), so you
should never encounter a situation where you need to re-open the

Working with the Dynamic Input Area
Interacting with Pinlets

10 Exploring Palm OS: Input Services

input area after a dialog is displayed; however, to be on the safe
side, open the input area in winFocusGainedEvent.

Interacting with Pinlets
A pinlet is a module with a user interface that displays in the input
area. A pinlet’s purpose is to receive pen events in the input area
and translate them into character data.

There are two basic types of pinlets. A handwriting recognition
pinlet converts user pen strokes to characters using either the
Graffiti® 2 engine or some other handwriting recognition software
(see Figure 2.1).

Figure 2.1 Handwriting recognition pinlet

A keyboard pinlet provides a set of buttons that the user taps to
enter a corresponding character (see Figure 2.2).

Working with the Dynamic Input Area
Interacting with Pinlets

Exploring Palm OS: Input Services 11

Figure 2.2 Keyboard pinlet

On devices with a dynamic input area, there is at least one pinlet
available, and there may be several others. The button on the status
bar that controls whether the input area is opened or closed also
controls which pinlet is active. If the user holds the pen down on
that button, it displays a menu from which the user can choose a
new pinlet (see Figure 2.3).

Figure 2.3 Changing the active pinlet

Users can also switch between the default handwriting recognition
pinlet and the default keyboard pinlet by pressing the buttons

Tap and hold this icon to
display the pop-up list.

Working with the Dynamic Input Area
Interacting with Pinlets

12 Exploring Palm OS: Input Services

shown on the right side of the PalmSource-provided handwriting
recognition and keyboard pinlets.

Applications typically do not need to interact with the pinlet. Your
application receives the character data that the pinlet produces in
the form of keyDownEvents. If your application does need
information from or about a pinlet, it uses calls to Pen Input
Manager to obtain that information. The next several sections
describe how an application might interact with the pinlet through
the Pen Input Manager:

Changing the Active Pinlet 12

Querying Alternative Input Systems 13

Setting the Pinlet Input Mode 14

Changing the Active Pinlet
An application might want to control which pinlet is active. To do
so, it can call PINSwitchToPinlet(). Before it can do so, it must
know which pinlets are available. Applications can use the
following functions:

• PINGetCurrentPinletName() returns the name of the
currently active pinlet.

• PINGetPinletInfo() returns the name or the kind of a
specific pinlet. This function references a pinlet by its index
in the Pen Input Manager’s pinlet list. An application can call
PINCountPinlets() to obtain the upper limit for the pinlet
list.

Suppose an application wants to ensure that the pinlet used with it
is a keyboard pinlet. It might contain code similar to that shown in
Listing 2.4.

Listing 2.4 Switching to a keyboard pinlet

uint16_t index = 0;
uint32_t info;
char *activePinlet;
Boolean found = false;

// First find a keyboard pinlet.
while (!found && (index < PINCountPinlets())) {

Working with the Dynamic Input Area
Interacting with Pinlets

Exploring Palm OS: Input Services 13

 PINGetPinletInfo(index, pinPinletInfoStyle, &info);
 if (info == pinPinletStyleKeyboard) {
 found = true;
 } else {
 index++;
 }
}
// We now need to see if we need to change pinlets.
if (found) {
 PINGetPinletInfo(index, pinPinletInfoComponentName,

&info);
 activePinlet = PINGetCurrentPinletName();
 if (strcmp((char *)info, activePinlet)) {
 // If the names are different, we need to switch.
 PINSwitchToPinlet((const char *)info,
 pinInputModeNormal);
 }
}

Querying Alternative Input Systems
Many Palm Powered devices come with hardware solutions for text
entry. These solutions are called alternative input systems because
they are not controlled using the Pen Input Manager.

The primary example of an alternative input system is a detachable
keyboard that is sold separately from the device, like the keyboards
available for many Palm handhelds. The alternative input system is
not required to be a keyboard. In the future, it may be some other
sort of device such as a speech recognizer. The requirements for an
input system to be considered an “alternative input system” are:

• It must be a way for the user to enter textual data. A jog dial
is not an alternative input system.

• It must be on a device with an input area. The keyboard on a
Handspring Treo is not an alternative input system because
there is no other input system available on that device.

Applications might want to decide to open or close the input area
based on whether an alternative is available. For example, a
password dialog might want to open the dynamic input area to
ensure that the user has a means of entering the password, but
before it does so, it could check for an alternative input system
using PINAltInputSystemEnabled(). If that function returns

Working with the Dynamic Input Area
Interacting with Pinlets

14 Exploring Palm OS: Input Services

true, it could leave the input area state closed because the user
already has a means of entering data.

If you use PINAltInputSystemEnabled() to decide when to
open or close the input area, you should also register to receive the
notifications sysNotifyAltInputSystemEnabled and
sysNotifyAltInputSystemDisabled to account for the fact that
users might attach or detach this alternative input system while
your dialog is being displayed. See Listing 2.5.

Listing 2.5 Registering for alternative input system
notifications

uint32_t PilotMain(uint16_t cmd, MemPtr, cmdPBP,
 uint16_t launchFlags)
{
 ...
 case sysAppLaunchCmdNormalLaunch:
 SysNotifyRegister(appDBID,
 sysNotifyAltInputSystemEnabled, NULL,
 sysNotifyNormalPriority, NULL, 0);
 SysNotifyRegister(appDBID,
 sysNotifyAltInputSystemDisabled, NULL,
 sysNotifyNormalPriority, NULL, 0);
 ...
 break;
 case sysAppLaunchCmdNotify:
 if (cmdPBP->notify->notifyType ==
 sysNotifyAltInputSystemEnabled)
 PINSetInputAreaState(pinInputAreaClosed);
 else if (cmdPBP->notify->notifyType ==
 sysNotifyAltInputSystemDisabled)
 PINSetInputAreaState(pinInputAreaOpen);
 ...
 break;
}

Setting the Pinlet Input Mode
The input mode specifies how the pinlet converts the next set of
strokes into characters. For example, in the normal input mode on
an ISO Latin device, strokes are converted to lowercase letters. If the
mode is set to shift, the next stroke is converted into an uppercase
letter as if the user has pressed the Shift key on a keyboard. For

Working with the Dynamic Input Area
Interacting with Pinlets

Exploring Palm OS: Input Services 15

Japanese systems, the input mode indicates whether the input is in
Hiragana or Katakana characters.

Note that the input mode is different from the FEP mode. The
Graffiti 2 handwriting recognition engine does not use Hiragana or
Katakana input modes; however, on some Japanese devices writing
Graffiti 2 strokes generates Hiragana or Katakana character, but that
is dependent on the FEP mode, not the pinlet input mode. The same
devices might have a Japanese keyboard pinlet that does use the
Hiragana and Katakana input modes.

The function PINSetInputMode() sets the pinlet input mode, and
PINGetInputMode() retrieves the current input mode.

The user interface elements use PINSetInputMode() to set the
shift state automatically. On most ISO Latin 1 devices, the state is set
automatically to Shift mode after a period or other sentence
terminator followed by a space.

Note that the auto-shifting rules are language-specific, since
capitalization differs depending on the region. These rules depend
on the version of the ROM, the market into which the device is
being sold, and so on.

Earlier releases of Palm OS used something called the shift state for
the same purpose for which the input mode is now used. You
placed a shift indicator (GSI) on all forms that contained an editable
text field to show the shift state. If there is a dynamic input area, the
pinlet displays its own indication of what the input mode is.
However, your forms should still define a GSI to allow for devices
with static input areas or no input areas. The GSI is disabled for you
if a dynamic input area is present.

Working with the Dynamic Input Area
Summary

16 Exploring Palm OS: Input Services

Summary
Pen Input Manager Functions

PINAltInputSystemEnabled()
PINCountPinlets()
PINGetCurrentPinletName()
PINGetPinletInfo()
PINSetInputMode()
PINShowReferenceDialog()

PINClearPinletState()
PINGetInputAreaState()
PINGetInputMode()
PINSetInputAreaState()
PINSwitchToPinlet()

Exploring Palm OS: Input Services 17

3
Customizing the
Dynamic Input Area
The dynamic input area is simply a window that displays the user
interface of a separate executable called a pinlet. A pinlet receives
user input in the form of pen taps or pen strokes and converts that
input into character data that an application can use.

Pinlets come in two general types. Keyboard pinlets offer a user
interface where users tap the characters they want to enter.
Handwriting recognition pinlets interpret pen strokes as
handwriting. Handwriting recognition pinlets typically use a
handwriting recognition engine. You may use the provided Graffiti®
2 engine or replace it with one of your own.

A single device may have more than one pinlet installed on it, and
users may control which pinlet they want to use.

This chapter provides guidelines for implementing pinlets. It
covers:

How Pinlets Work 17

Starting Up and Shutting Down a Pinlet 20

Presenting a User Interface 22

Interpreting Pen Strokes 25

Specifying the Default Pinlet 33

How Pinlets Work
In most cases, pinlets interact only with the Pen Input Manager. The
Pen Input Manager provides a window into which the pinlet draws
its user interface. Through this window, the pinlet receives all pen
events. The pinlet converts the pen events to character data and
passes that back to the Pen Input Manager. Handwriting recognition

Customizing the Dynamic Input Area
How Pinlets Work

18 Exploring Palm OS: Input Services

pinlets may also use a handwriting recognition engine to interpret
pen strokes. (See Figure 3.1.)

Figure 3.1 Flow of data through pinlets

Some systems use a Front-End Processor (FEP) to convert
characters. For example, many existing Japanese devices use
handwriting recognition engines to convert pen strokes to Romaji
(the Roman alphabet). On these devices, text fields send sequences
of characters to the FEP, which converts the characters to Hiragana
or Katakana characters. The user can perform a further translation
from these alphabets into Kanji. The character recognition
performed by the Pen Input Manager is completely separate from
the FEP. If you were to add the Pen Input Manager and pinlets to a
device with a FEP, the Pen Input Manager still sends its events to
Palm OS®, and the text field code in Palm OS sends those characters
to the FEP (see Figure 3.2).

Applications

Handwriting
Engine

Palm OS

Pen Input Manager

User Pen
Strokes

Pinlet

Text

pen events

keyDownEvents

characters

pen events

strokes

characters

characters

Customizing the Dynamic Input Area
Building Pinlets and Handwriting Recognition Engines

Exploring Palm OS: Input Services 19

Figure 3.2 Flow of data with a FEP

In rare circumstances, a pinlet depends so much on a FEP that it
should only be made active if that FEP is active. For this reason, the
pinlet has a FEP class attribute to specify which FEPs the pinlet
works with. If the FEP class attribute is defined, the status bar does
not advertise the pinlet as available unless it works with a FEP that
is currently enabled.

A pinlet represents a single means of receiving pen input, and only
one pinlet is active at a time. Writing characters is one means of
receiving input that is controlled by one pinlet. Tapping characters
on an on-screen keyboard is another means of receiving input and
thus is controlled by another pinlet. You may have more than one
means of receiving input within one pinlet if one pinlet can use
multiple FEPs, but in all other cases, you should design one pinlet
per character input system.

Building Pinlets and Handwriting Recognition
Engines

To build a pinlet, create a shared library of type 'pnlt' (defined by
the constant sysFileTPinletApp).

A handwriting recognition engine is also a shared library. If your
pinlet is a handwriting recognition pinlet, link it with the engine
you want to use. If you want to use the Graffiti 2 engine, link with
the Graffiti2Lib library, which is included in the SDK.

Applications

Handwriting
Engine

Palm OS

Pen Input Manager

User Pen
Strokes

Pinlet

Text

pen events

keyDown
Events

keyDown
Events

characters

pen events

strokes

characters

characters

F
E
P

Customizing the Dynamic Input Area
Starting Up and Shutting Down a Pinlet

20 Exploring Palm OS: Input Services

If you want to replace the Graffiti 2 engine with your own, create a
shared library project with type 'libr' for the engine and export
all of the functions described in Chapter 7, “Handwriting
Recognition Engine,” on page 55. Then link your pinlet with this
library.

You do not have to separate your handwriting recognition code
from your pinlet. You can interpret strokes in the pinlet directly if
you don’t intend to reuse or share your handwriting recognition
engine.

Starting Up and Shutting Down a Pinlet
Programmatically, a pinlet looks very similar to a Palm OS
application: it starts up by receiving and responding to launch
codes, and it has an identical event loop that receives the same types
of events that an application does.

Startup
The Pen Input Manager starts up a pinlet when the user selects that
pinlet from the status bar or an application calls the
PINSwitchToPinlet() function.

To start up the pinlet, the Pen Input Manager sends launch codes to
the pinlet’s PilotMain() function:

uint32_t PilotMain(uint16_t cmd, void *cmdPBP,
uint16_t launchFlags)

The pinlet must respond to the following launch codes:

sysPinletLaunchCmdLoadProcPtrs
The Pen Input Manager calls pinlet functions to set and
retrieve the input mode, display a help dialog, and clear the
input state. The Pen Input Manager sends this launch code to
retrieve pointers to those pinlet functions. The pinlet should
return its function pointers in a PinletAPIType structure
and pass it back as the cmdPBP parameter. (The rest of this
chapter describes how and when those functions are called.)

sysAppLaunchCmdPinletLaunch
The pinlet has become the active pinlet, and it should
initialize itself.

Customizing the Dynamic Input Area
Starting Up and Shutting Down a Pinlet

Exploring Palm OS: Input Services 21

When the pinlet is launched, it should:

• Initialize its state.

• Display its user interface.

• If it is a handwriting recognition pinlet, it should start up the
engine it uses as described in “Starting up the Handwriting
Recognition Engine.”

• Start its event loop.

The event loop is identical to the event loop used in an
application.

Starting up the Handwriting Recognition
Engine
To start up the handwriting recognition engine, you call HWRInit()
and pass it a HWRConfig structure. This structure identifies the
following:

• The number of horizontal and vertical pixels per inch.

• The bounds of the area into which the user is allowed to
draw strokes.

• The number and bounds of any special areas for special input
modes, excluding the writing area for the normal input
mode.

For example, the Graffiti 2 engine in normal mode translates
strokes into lowercase letters. The virtual silkscreen pinlet
has two writing areas: one for letters and one for numbers. It
specifies only one mode area in its HWRInit() call because
one of its writing areas is for the normal mode.

Note that much of this information is dependent on the size of the
pinlet’s form. In Palm OS Cobalt, you do not know a form’s size
until runtime when your pinlet receives the winResizedEvent.
Therefore, you may have to wait until you receive that event before
you can start up the handwriting recognition engine. This is
acceptable as long as you call HWRInit() before you call any other
handwriting function.

Customizing the Dynamic Input Area
Presenting a User Interface

22 Exploring Palm OS: Input Services

Shutdown
When the user switches to a new pinlet, the Pen Input Manager
sends the appStopEvent to your pinlet. In response to this event,
the pinlet must shut down its event loop, clear all state, and exit. If
your pinlet works with a handwriting recognition engine, you
should call HWRShutdown() to shut down the engine.

You don’t have to worry that you’re getting an appStopEvent
intended for some other application or process. The pinlet runs in its
own thread and has its own event queue. It only receives events that
are intended for it.

Presenting a User Interface
You create a pinlet’s user interface in a resource file in the same way
that you create a user interface for an application. The pinlet’s user
interface consists of one or more forms containing one or more user
interface controls.

The resource file must also contain the following resources that are
unique to pinlets:

Main Pinlet Form 22

Pinlet Style . 23

Internal Pinlet Name 23

Status Bar Icons and Name 24

FEP Creator ID 24

Help Dialog. . 24

Input Mode Indicator 25

Main Pinlet Form
The main form for your pinlet must be update-based. That is, it
must contain a WINDOW_CONSTRAINTS_RESOURCE that does not
have the back-buffer attribute set. Palm OS places the pinlet form in
the appropriate window layer. If you try to specify the window
layer or any other window creation attributes in the
WINDOW_CONSTRAINTS_RESOURCE, they are ignored.

Customizing the Dynamic Input Area
Presenting a User Interface

Exploring Palm OS: Input Services 23

Try to design this form so that a minimum and preferred size of 65
standard coordinates high or less works well. This allows the
application to be 160 coordinates high, which is the height used by
all legacy application windows. Users prefer to see as much of the
application as possible, so your pinlet should be as small as possible
while still being usable.

IMPORTANT: Pinlets cannot display other windows. This
means that you cannot include a pop-up list in a pinlet because a
pop-up list is a window.

Remember that in Palm OS Cobalt, the system controls the size of
each window. You cannot guarantee that your pinlet is a specific
size. The form’s event handler must respond to the
winResizedEvent to find out what size it actually is, and you
must only draw the pinlet’s form in response to the
frmUpdateEvent.

NOTE: When the Pen Input Manager closes the input area, the
pinlet receives a winResizedEvent specifying a size of 0.

Pinlet Style
The Pen Input Manager needs to know the style of the pinlet. This
pinlet style is used as a possible return value to
PINGetPinletInfo(). Include in your pinlet’s resource file a
SOFT_CONSTANT_RESOURCE with ID 1000. Use one of the constants
described in “Pinlet Styles” on page 78 for its value.

Internal Pinlet Name
The Pen Input Manager uses an internal pinlet name to identify
each pinlet. Create a STRING_RESOURCE of ID 1001 and specify a
name of the form:

com.companyName.pinlet.pinletName

where companyName is the name of your organization and could be
used for all pinlets that you write. pinletName is the unique name
for your pinlet.

Customizing the Dynamic Input Area
Presenting a User Interface

24 Exploring Palm OS: Input Services

This name is returned by the functions
PINGetCurrentPinletName() and PINGetPinletInfo() and
used as input to PINSwitchToPinlet(). It is never shown
externally, so there is no need to localize this name.

Status Bar Icons and Name
The status bar displays an icon and name for all pinlets installed on
the device. If the user holds the pen down on the input area icon, a
list of the names and icons of all pinlets are displayed. This is how
the user switches between pinlets.

Use the APP_ICON_BITMAP_RESOURCE resource type with ID 1001
to specify the status bar icon. This icon should be 15 standard
coordinates wide by 11 coordinates high.

The external pinlet name is contained in an
APP_ICON_NAME_RESOURCE with ID 1000. Ideally, the width of this
name is no more than 100 coordinates, but it can be as wide as the
screen if necessary. Because the status bar displays this name, it is
localizable.

FEP Creator ID
If the pinlet is associated with a FEP, you must supply an
SOFT_CONSTANT_RESOURCE with ID 1001 that gives the creator ID
of the FEP.

Help Dialog
The function PINShowReferenceDialog() calls
PinletShowReferenceDialogProcPtr() to display a help
dialog that specifies how to enter characters.

Pinlets that use a handwriting recognition engine can call through
to HWRShowReferenceDialog(), which displays the help for you.
If you’re not using a handwriting recognition engine, you should
supply a help dialog in your resource file.

In the WINDOW_CONSTRAINTS_RESOURCE for the help dialog,
specify winLayerPriority as the window layer. This ensures that
the help dialog appears on top of the application form if necessary.

Customizing the Dynamic Input Area
Interpreting Pen Strokes

Exploring Palm OS: Input Services 25

The Edit menu used in most Palm OS applications has a Graffiti 2
Help menu item that displays help for the Graffiti 2 engine only. If
you use a different handwriting recognition engine and want to
display help for it, include a control on the pinlet that does so.

IMPORTANT: Pinlets cannot display more than one window. To
launch a help dialog, you must spawn a separate thread, give that
thread a user interface context, and then display the dialog in that
thread. See Exploring Palm OS: System Management for more
information on multithreading.

Input Mode Indicator
The pinlet should display some visual indication of the current
input mode. This indication is typically only given for unusual
modes (anything other than normal). See “Considering the Input
Modes” on page 27 for more information.

Interpreting Pen Strokes
The pinlet receives pen events, translates the events into characters,
and passes the characters to the Pen Input Manager. The pinlet must
decide how to interpret the pen strokes. It should respect the input
mode set by the user or application, and it might need to store
internal state or set timers when interpreting the pen events. It
should respond to application requests to clear that internal state.
This section discusses these issues:

Receiving Pen Events 25

Sending Results to Pen Input Manager 26

Considering the Input Modes 27

Handling Multistroke Characters 28

Implementing Live Ink 33

Receiving Pen Events
Your pinlet has a form with its own event handler, just like an
application has a form with an event handler. This event handler

Customizing the Dynamic Input Area
Interpreting Pen Strokes

26 Exploring Palm OS: Input Services

should check for and interpret user input. How it does so depends
on the type of pinlet you are writing and how you’ve designed it. If
you’re doing a keyboard pinlet and each key is implemented as a
button, you’ll receive ctlSelectEvents for each button the user
taps.

If you are implementing a handwriting recognition pinlet, you
should do something like the following:

1. On penDownEvent, check to see if the pen is down within
the writing area. If so, track the pen.

2. On penMoveEvents, record the points sent in the event.

3. On the penUpEvent, call HWRProcessStroke(), sending it
the points you recorded upon each penMoveEvent.

The handwriting recognition engine returns a HWRResult
containing characters, an input mode indication, an inking
hint, and a Boolean that indicates if a timeout should be set.
More details about each of these are given later in this
chapter.

TIP: If you’re using a gadget to track the pen, call
FrmSetPenTracking() in the gadget’s event handler in
response to frmGadgetEnterEvent. See the description of
FormGadgetHandlerType() for more information.

Sending Results to Pen Input Manager
To send the character input to the Pen Input Manager, use the call
PINFeedChar() or PINFeedString(). You must supply UTF8
data to these functions.

If you are writing a handwriting recognition pinlet that uses the
Graffiti 2 engine, that engine returns characters in the device’s
native encoding. Check the flags field of each character that the
engine has returned. If it is pinCharFlagVirtual, the character is
a virtual character and you can pass that directly to
PINFeedChar() without conversion. If no modifiers are set, the
character is textual data. Use TxtConvertEncoding() to convert
it to UTF8.

Customizing the Dynamic Input Area
Interpreting Pen Strokes

Exploring Palm OS: Input Services 27

Considering the Input Modes
As described in the section “Setting the Pinlet Input Mode” on
page 14, the input mode affects how pen events are converted to
characters.

The pinlet receives a call to the function
PinletSetInputModeProcPtr() when the application changes
the input mode. It should also implement
PinletGetInputModeProcPtr(), which is used to retrieve the
current input mode from the pinlet.

If the pinlet uses a handwriting recognition engine, these functions
can simply call through to the functions HWRSetInputMode() and
HWRGetInputMode(). For the set function, it must also invalidate
the display so that it is redrawn in response to the
frmUpdateEvent to indicate the change in mode.

Note that the engine does not have to respect all input modes. Some
modes might not make sense, in which case the engine sets the
mode to a reasonably close value. For example, if a handwriting
recognition engine does not implement caps lock mode, it might set
the mode to shift instead. If the engine interprets the Latin alphabet
and receives a request to switch to Hiragana, it could just remain in
the default mode. For this reason, the pinlet should always call
HWRGetInputMode() after calling HWRSetInputMode() to see if
the change actually took place before invalidating the display.

If the pinlet performs the conversion to character data itself, it
should take the input mode into consideration. It should store the
input mode in such a way that it will be taken into consideration for
the next series of pen events. Like the handwriting recognition
engine, the pinlet does not have to respect all input modes.

Many handwriting recognition pinlets will have multiple “mode
areas,” that is, areas in which the pen stroke is interpreted in a
certain way such as numeric or shifted. The effect of
PinletSetInputModeProcPtr() on these mode areas is
implementation-defined.

In addition to receiving PinletSetInputModeProcPtr(), a
handwriting recognition pinlet may have to change its mode in
response to the return value for HWRProcessStroke(). If the user
has entered a stroke that changes the input mode, the engine sets the

Customizing the Dynamic Input Area
Interpreting Pen Strokes

28 Exploring Palm OS: Input Services

inputMode field of the returned structure. Pinlets need to check this
value and change their input mode accordingly.

Handling Multistroke Characters
Handwriting recognition pinlets might need to deal with
multistroke characters. Consider the K character in Graffiti 2
writing. This character takes two strokes to draw, and the first stroke
is identical to the stroke for an L character.

If the pinlet is working with a handwriting recognition engine, it
should send each stroke to the engine in separate
HWRProcessStroke() calls. The handwriting recognition engine
determines what to do with the information. It might do either or
both of the following:

• If the first stroke could be interpreted as a character by itself,
the engine might return the character but set the uncertain
field in the structure to indicate that the character may later
have to be erased.

• It might request a timeout value be set by returning true for
the timeout field. The pinlet should set a timeout and if that
time period elapses with no other strokes being received, call
HWRTimeout().

If the handwriting recognition engine uses the uncertain field, it
might process an ambiguous character such as the stroke for the
letter L as described in Table 3.1.

Customizing the Dynamic Input Area
Interpreting Pen Strokes

Exploring Palm OS: Input Services 29

Then, it would process the second potential stroke as described in
Table 3.2. Early versions of the Graffiti 2 engine worked in this
manner.

Table 3.1 Processing an L stroke option 1

User Action Pinlet Action Handwriting Recognition
Engine Action

Draws the
stroke for an L
character

Calls HWRProcessStroke() in
response to the penUpEvent.

Returns an HWRResult
structure with:
• a chars array

containing the L
character

• the uncertain field set
to 1

• the timeout field set to
true

• Stores the L character.
• Calls TimGetTicks() and

records the time.
• Passes a timeout value to
EvtGetEvent().

• Upon each nilEvent,
checks to see if timeout
period has elapsed.

Customizing the Dynamic Input Area
Interpreting Pen Strokes

30 Exploring Palm OS: Input Services

Table 3.2 Processing a stroke after the L stroke option 1

User Action Pinlet Action Handwriting Recognition
Engine Action

Draws the
second stroke
of the K
character

• Cancels the timeout in
response to any pen event.

• Calls
HWRProcessStroke() in
response to the
penUpEvent.

Returns an HWRResult
structure with:
• a chars array

containing the K
character

• the deleteUncertain
field set to 1

• the timeout field set to
false

• Discards the L character.

• Calls PINFeedChar() with
the K character.

Draws a
different
character
(instead of the
second stroke
for the K
character)

• Cancels the timeout in
response to any pen event.

• Calls
HWRProcessStroke() in
response to the
penUpEvent.

Returns an HWRResult
structure with:
• a chars array

containing the new
character

• the timeout field set to
false

• Calls PINFeedChar() with
the L character.

• Calls PINFeedChar() with
the new character.

Does nothing
(instead of
drawing a
second stroke)

• Calls PINFeedChar() with
the L character.

• Calls HWRTimeout()

Returns an HWRResult
structure with the timeout
field set to false.

Customizing the Dynamic Input Area
Interpreting Pen Strokes

Exploring Palm OS: Input Services 31

The current Graffiti 2 engine does not use the uncertain field. It
processes the L character as described in Table 3.3.

Then it processes the next stroke as described in Table 3.4.

Table 3.3 Processing an L stroke option 2

User Action Pinlet Action Handwriting Recognition
Engine Action

Draws the
stroke for an L
character

Calls HWRProcessStroke() in
response to the penUpEvent.

Returns an HWRResult
structure with:
• an empty chars array
• the timeout field set to
true

• Calls TimGetTicks() and
records the time.

• Passes a timeout value to
EvtGetEvent().

• Upon nilEvent, check to
see if timeout period has
elapsed.

Table 3.4 Processing a stroke after the L stroke option 2

User Action Pinlet Action Handwriting Recognition
Engine Action

Draws the
second stroke
of the K
character

• Cancels the timeout in
response to any pen event.

• Calls
HWRProcessStroke() in
response to the
penUpEvent.

Returns an HWRResult
structure with:
• a chars array

containing the K
character

• the timeout field set to
false

• Calls PINFeedChar() with
the K character.

Customizing the Dynamic Input Area
Interpreting Pen Strokes

32 Exploring Palm OS: Input Services

Another case that might occur in both scenarios is that the pinlet
may receive a PinletClearStateProcPtr() call indicating all
internal state should be cleared. This occurs when the user has
moved to a new text field, tapped a control, switched applications,
or performed any other action that indicates that the pinlet should
start over when interpreting the next set of events. In response to
this call, the pinlet should:

• Clear its timeout, its input mode, and any other internal state
that it keeps.

Draws a
different
character
(instead of the
second stroke
for the K
character)

• Cancels the timeout in
response to any pen event.

• Calls
HWRProcessStroke() in
response to the
penUpEvent.

Returns an HWRResult
structure with:
• a chars array

containing the L
character and the new
character

• the timeout field set to
false

• Calls PINFeedChar() with
the L character.

• Calls PINFeedChar() with
the new character.

Does nothing
(instead of
drawing a
second stroke)

Calls HWRTimeout(). Returns an HWRResult
structure with:
• a chars array

containing the L
character

• the timeout field set to
false

• Resets the timeout.
• Calls PINFeedChar() with

the L character.

Table 3.4 Processing a stroke after the L stroke option 2

User Action Pinlet Action Handwriting Recognition
Engine Action

Customizing the Dynamic Input Area
Specifying the Default Pinlet

Exploring Palm OS: Input Services 33

• Call HWRClearInputState() to have the handwriting
recognition engine do the same.

Implementing Live Ink
Live ink is a popular feature with handwriting recognition pinlets
in which the user’s pen movement is echoed on the screen. This
feature helps users understand which character their strokes
become.

If you want to implement a live ink feature, do so in the pinlet. The
handwriting recognition engine helps with this feature by returning
information in the inkHint field. The handwriting recognition
engine provides one of the following values:

hwrInkHintNone
The pinlet should erase the last stroke drawn. Any strokes
that were previously kept are still kept. This is the default
behavior.

hwrInkHintEraseAll
The pinlet should erase all strokes currently being displayed.
This is typically sent when the engine has successfully
converted a character.

hwrInkHintKeepAll
The pinlet should retain all strokes currently being displayed.

hwrInkHintKeepLastOnly
The user is in the middle of a multistroke character. The
pinlet should display only the last stroke. It should erase any
previous strokes.

Specifying the Default Pinlet
The PalmSource-provided pinlets have buttons on the right side
that allow the user to switch between the default handwriting
recognition pinlet and the different panes of the default keyboard
pinlet. All other pinlets are only available from the pop-up menu in
the status bar.

Customizing the Dynamic Input Area
Specifying the Default Pinlet

34 Exploring Palm OS: Input Services

Figure 3.3 Default pinlet buttons

If you want users to be able to access your pinlet from these buttons,
you can set your pinlet as either the default handwriting recognition
pinlet or the default keyboard pinlet. To do so, use
PINSetDefaultPinlet().

Guidelines for Default Pinlets
If you want your pinlet to be selected as a default, follow these
guidelines:

• Users should be allowed to decide which pinlets they want to
be the default. You might install a separate application that
allows the user to set preferences for your pinlet and allows
them to specify your pinlet as the default.

• There are only two possible default pinlets, one handwriting
and one keyboard. The three buttons for keyboard pinlets
access different input modes of a single default keyboard
pinlet, as described in Figure 3.3.

• If your pinlet does something other than recognize
handwriting or display a keyboard, do not set it as a default
pinlet. If, for example, your pinlet is written specifically to
work with a certain set of applications, you should have the
applications call PINSwitchToPinlet() to make that pinlet
active. Do not set the default pinlet.

User Interface Considerations
If you want your pinlet to be chosen as a default, its user interface
should include a way to select the other style of default pinlet. That
is, if yours is a handwriting recognition pinlet, it should include a
button that allows the user to switch to the keyboard pinlet. If yours
is a keyboard pinlet, it must include a way to select the default
handwriting recognition pinlet.

Default handwriting recognition pinlet
Default keyboard pinlet, normal mode
Default keyboard pinlet, extended mode
Default keyboard pinlet, numeric mode

Customizing the Dynamic Input Area
Summary

Exploring Palm OS: Input Services 35

On devices with no dynamic input area when the user opens the
keyboard dialog, the default keyboard pinlet is displayed in the
dialog. In this case, the user interface must not include a button that
switches to the default handwriting recognition pinlet. When a
keyboard pinlet is displayed in a dialog, it is opened with the input
mode pinInputAreaNone.

There is no way to replace the images that appear in the buttons
shown in Figure 3.3 on page 34. Therefore, if you are replacing the
default keyboard pinlet, you cannot replace the icons in the default
handwriting recognition pinlet with your own icons.

Summary
Pinlet Functions

PINFeedChar()
PINFeedString()
PINSetDefaultPinlet()
PINGetDefaultPinlet()

PinletClearStateProcPtr()
PinletGetInputModeProcPtr()
PinletSetInputModeProcPtr()
PinletShowReferenceDialogProcPtr()

Handwriting Recognition Engine Functions

HWRShutdown()
HWRInit()
HWRShowReferenceDialog()
HWRSetInputMode()

HWRGetInputMode()
HWRProcessStroke()
HWRClearInputState()
HWRTimeout()

Customizing the Dynamic Input Area
Summary

36 Exploring Palm OS: Input Services

Exploring Palm OS: Input Services 37

4
Customizing
Hardware Input
This chapter describes how to work with the hard keys on the
device. As described in Chapter 1, “Receiving Input,” you typically
let the system handle all hard keys. However, some applications
may want to perform the following tasks:

Replacing a Built-in Application 37

Remapping the Hard Keys 38

Disabling the Hard Keys 40

Replacing a Built-in Application
Palm OS® contains system-wide preferences that the user sets to
have the system work they way he or she likes. There are system
preferences to remap the application hard keys and have them
launch something other than the default applications. You should
respect the user’s preferences, but you are allowed to set the
preference after asking the user if you may do so.

Suppose you are writing a replacement for the built-in Address
Book application. You want to make it more convenient for your
users to remap the Address Book button, so you might display an
alert that asks first-time users if they want the button remapped. If
they tap OK, then you should call PrefSetPreference() with the
new value. See Listing 4.1.

Customizing Hardware Input
Remapping the Hard Keys

38 Exploring Palm OS: Input Services

Listing 4.1 Remapping the hard key to launch your
application

if (PrefGetPreference(prefHard2CharAppCreator !=
 myAppCreatorId)) {
 if (FrmAlert(MakeMeTheDefaultAlert) == 0) {
 /* user said OK to change */
 PrefSetPreference(prefHard2CharAppCreator,
 myAppCreatorId);
 }
}

See Exploring Palm OS: System Management for more information
about setting and getting user preferences.

Remapping the Hard Keys
Sometimes, you want to remap the hard key only while your
application is running. A game might want to remap the hard keys
to perform some special action such as launching missiles or
moving pieces around a board.

As explained previously, when the user presses a hard key, Palm OS
creates a keyDownEvent containing a virtual character that
specifies which key was pressed. The SysHandleEvent()
function handles most of these keyDownEvents. If you want to
remap the hard keys, you must intercept them before
SysHandleEvent(). See Listing 4.2.

Listing 4.2 Intercepting hard key events

void EventLoop (void)
{
 uint16_t error;
 EventType event;
 boolean handled = false;

 do {
 EvtGetEvent(&event, evtWaitForever);

 //If user pressed first hard key, do something special.
 if ((event.eType == keyDownEvent) &&
 (event.data.keyDown.chr == vchrHard1) &&
 (event.data.keyDown.modifiers & commandKeyMask)) {

Customizing Hardware Input
Remapping the Hard Keys

Exploring Palm OS: Input Services 39

 handled = HardKeyHandleEvent(&event);
 }

 //Proceed with normal event loop.
 if (!handled) {
 if (!SysHandleEvent(&event))
 if (!MenuHandleEvent(NULL, &event, &error)
 if (!ApplicationHandleEvent(&event))
 FrmDispatchEvent(&event);
 } while (event.eType != appStopEvent);
}

In general, only games should remap the hard keys. Users expect
the hard keys to behave as they have set them up to behave in the
system preferences.

Table 4.1 lists the virtual characters that map to hardware controls
on many devices. Remember that not all devices support all of these
controls. See Chars.h for a complete list of virtual characters.

Table 4.1 Hard key virtual characters

Character Hard Key

vchrHard1 Usually launch Datebook

vchrHard2 Usually launches Address Book

vchrHard3 Usually launches ToDo

vchrHard4 Usually launches Memo

vchrHardPower Power button

vchrHardCradle Button on cradle

vchrHardCradle2 Button on cradle

vchrHardContrast Contrast button

vchrHardAntenna Antenna switch

vchrHardBrightness Brightness button

vchrHard5 Licensee-specific

vchrHard6 Licensee-specific

Customizing Hardware Input
Disabling the Hard Keys

40 Exploring Palm OS: Input Services

Disabling the Hard Keys
In very rare circumstances, you may want to disable the hard keys
entirely.

WARNING! Do not disable the hard keys unless you have a
very good reason. If you are writing a general-purpose, third-party
consumer application, never disable the hard keys. Do so only if
you are writing an enterprise-level application and your client
insists that the device must never be used as a personal digital
assistant.

There are two approaches to disabling the hard keys:

• Intercept the keyDownEvents containing the virtual
characters of the keys that you want to disable and ensure

vchrHard7 Licensee-specific

vchrHard8 Licensee-specific

vchrHard9 Licensee-specific

vchrHard10 Licensee-specific

vchrRockerUp 5-way rocker up

vchrRockerDown 5-way rocker down

vchrRockerLeft 5-way rocker left

vchrRockerRight 5-way rocker right

vchrRockerCenter 5-way rocker center

vchrThumbWheelUp Thumb-wheel scroll up

vchrThumbWheelDown Thumb-wheel scroll down

vchrThumbWheelPush Thumb-wheel push center

vchrThumbWheelBack Thumb-wheel back button

Table 4.1 Hard key virtual characters (continued)

Character Hard Key

Customizing Hardware Input
Summary

Exploring Palm OS: Input Services 41

that they are never passed to SysHandleEvent(). This
approach is similar to that shown in Listing 4.2 on page 38.

Keep in mind that modal dialogs and alerts run their own
event loops. If the user presses a hard key while an alert is
being displayed, the alert calls SysHandleEvent(), and
allows your application to exit. If you do not want this
behavior, look for and discard the appStopEvent after your
application returns from a dialog or alert handler.

• Use the function KeySetMask() to disable the hard keys
while your application is active. Listing 4.3 shows an
example that disables the four application hard keys while an
application is running.

Listing 4.3 Using KeySetMask()

void StartApplication(void) {
 uint32_t disableKeyMask = keyBitHard1 | keyBitHard2 |
 keyBitHard3 | keyBitHard4;

 KeySetMask(~disableKeyMask);
 ...
}

void StopApplication(void) {
 KeySetMask(keyBitsAll);
}

Keep in mind that KeySetMask() only disables hardware
buttons. You won’t be able to disable the Application
Launcher icon in the status bar, for example.

Summary
Hard Key Functions

KeyCurrentState()
KeyRates()
KeySetMask()

Customizing Hardware Input
Summary

42 Exploring Palm OS: Input Services

Part II
Reference

This part contains reference material for the Input Services
managers. It covers:

Low-Level Events Reference 45

Graffiti 2 Reference 53

Handwriting Recognition Engine 55

Hard Keys Reference 65

Keyboard . . 71

Pen Input Manager 73

Pinlet . 89

Shift Indicator 95

Exploring Palm OS: Input Services 45

5
Low-Level Events
Reference
This chapter describes the lowest level of events that an application
may need to handle. It contains the following sections:

Event Constants 45

Events . 46

Event Constants

Key Modifier Constants
Purpose Used as the modifiers field of a keyDownEvent.

Declared In CmnKeyTypes.h

Constants #define appEvtHookKeyMask 0x0200
System use only.

#define autoRepeatKeyMask 0x0040
Event was generated due to auto-repeat.

#define capsLockMask 0x0002
The handwriting recognition engine is in caps lock mode.

#define commandKeyMask 0x0008
The menu command stroke or a virtual key code.

#define controlKeyMask 0x0020
Not implemented. Reserved.

#define doubleTapKeyMask 0x0080
Not implemented. Reserved.

#define libEvtHookKeyMask 0x0400
System use only.

Low-Level Events Reference
Events

46 Exploring Palm OS: Input Services

#define numLockMask 0x0004
The handwriting recognition engine is in numeric-shift
mode.

#define optionKeyMask 0x0010
Not implemented. Reserved.

#define poweredOnKeyMask 0x0100
The key press caused the system to be powered on.

#define shiftKeyMask 0x0001
No longer used.

#define willGoUpKeyMask 0x0800
Set if a keyUpEvent will be sent.

#define softwareKeyMask 0x1000
Set if the key event was generated by software (such as the
handwriting recognition engine), or clear if it was generated
by pressing an actual hard key.

Events
This section describes the lowest level events that send user input to
an application. Further events are described in other Exploring Palm
OS volumes. See in particular Exploring Palm OS: Programming
Basics and Exploring Palm OS: User Interface.

keyDownEvent
Purpose Sent when the user draws a character in the input area or presses

one of the hard keys on the device.

For this event, the data field of the EventType structure contains
the structure shown in the Prototype section, below.

Low-Level Events Reference
keyHoldEvent5

Exploring Palm OS: Input Services 47

Declared In Event.h

Prototype struct _KeyDownEventType {
 wchar32_t chr;
 uint16_t keyCode;
 uint16_t modifiers;
} keyDown

Fields chr
The character code in the device-specific character encoding.

keyCode
Unused.

modifiers
0, or one or more of the Key Modifier Constants.

Comments The chr field does not necessarily contain a printable character. If
the modifiers field has the commandKeyMask bit set, then the
character is a virtual character. Virtual characters generally
correspond to an action that the system should take, such as
launching a different application or adjusting the contrast.

Example The structure shown in the prototype section is the definition for the
data field of the EventType structure. Access the information
stored in the data field in this way:

wchar32_t chr = eventP->data.keyDown.chr;

keyHoldEvent
Purpose This event is not currently used.

keyHoldEvent5
Purpose Sent when the user holds a hard key on the device.

For this event, the data field of the EventType structure contains
the structure shown in the Prototype section, below.

Low-Level Events Reference
keyHoldEvent5

48 Exploring Palm OS: Input Services

Declared In Event.h

Prototype struct _KeyHoldEventType {
 wchar32_t chr;
 uint16_t keyCode;
 uint16_t modifiers;
} keyHold

Fields chr
The character code.

keyCode
Unused.

modifiers
0, or one or more of the Key Modifier Constants.

Comments This event is sent when a hardware key is held for one second.
(Note that the one-second timing may be modified by a Palm OS®
licensee.)

Unlike keyDownEvent, keyHoldEvent5 is sent for characters
corresponding to hardware buttons only. If the device contains a
hardware keyboard, holding a key results in a keyDownEvent and
then, one second later, a keyHoldEvent5, and, ultimately, a
keyUpEvent. If the user is using a keyboard pinlet, or some other
software keyboard, the application receives only the
keyDownEvent.

Only one keyHoldEvent5 is sent for each press-and-hold of the
key. You do not get a keyHoldEvent5 for each additional second
that the key is held.

A keyHoldEvent5 is sent only for the most recently pressed key.
For instance, if a key is pressed and held, and then another key is
pressed within a second and before the first key is released, the
following happens: a keyHoldEvent5 is not sent for the first key,
but a keyHoldEvent5 is sent for the second key if it is held for a full
second. Note that a keyUpEvent will be generated for both the first
and second key as each key is released.

Compatibility By default, Palm OS Cobalt does not generate this event. Some
devices that support a 5-way navigation button—such as the
Handspring Treo 600 Smartphone—generate this event. Consult the
licensee’s developer documentation to see whether this event is
generated by a particular device.

Low-Level Events Reference
keyUpEvent5

Exploring Palm OS: Input Services 49

keyUpEvent
Purpose Sent when the user releases a hard key on the device.

For this event, the data field of the EventType structure contains
the structure shown in the Prototype section, below.

Declared In Event.h

Prototype struct _KeyUpEventType {
 wchar32_t chr;
 uint16_t keyCode;
 uint16_t modifiers;
} keyUp

Fields chr
The character code.

keyCode
Unused.

modifiers
0, or one or more of the Key Modifier Constants.

Comments Unlike the keyDownEvent, the keyUpEvent is sent for characters
corresponding to hardware buttons only. If the device contains a
hardware keyboard, the application receives keyDownEvent and
keyUpEvent for each character typed. If the user is using a
keyboard pinlet or some other software keyboard, the application
only receives the keyDownEvent.

Example The structure shown in the prototype section is the definition for the
data field of the EventType structure. Access the information
stored in the data field in this way:

wchar32_t char = eventP->data.keyUp.chr;

keyUpEvent5
Purpose Sent when the user releases a hard key on the device.

For this event, the data field of the EventType structure contains
the same structure as is shown for the keyUpEvent.

Low-Level Events Reference
penDownEvent

50 Exploring Palm OS: Input Services

Declared In Event.h

Compatibility By default, Palm OS Cobalt does not generate this event. Some
devices that support a 5-way navigation button—such as the
Handspring Treo 600 Smartphone—generate this event. Consult the
licensee’s developer documentation to see whether this event is
generated by a particular device.

penDownEvent
Purpose Sent when the pen first touches the digitizer.

For this event, the data field of the EventType structure contains
the structure shown in the Prototype section, below.

Declared In Event.h

Prototype struct _PenDownMoveEventType {
 uint16_t flags;
 int16_t pressure;
};

Fields flags
If this field contains evtPenPressureFlag, the pressure
field is valid.

pressure
The amount of pressure the user applied to the stylus while
pressing the pen. If 0, no pressure was applied. A value
greater than or equal to 0x1000 is considered heavy pressure.

The following fields in the EventType structure are set for this
event:

penDown
Always true.

tapCount
The number of taps received at this location.

screenX
Draw window-relative position of the pen in standard
coordinates (number of coordinates from the left bound of
the window).

Low-Level Events Reference
penMoveEvent

Exploring Palm OS: Input Services 51

screenY
Draw window-relative position of the pen in coordinates
(number of coordinates from the top of the window).

Comments Note that this information is passed with all events.

penMoveEvent
Purpose Sent when the user drags the pen on the digitizer. Note that several

kinds of UI objects, such as controls and lists, track the movement
directly, and no penMoveEvent is generated.

For this event, the data field of the EventType structure contains
the structure shown in the Prototype section, below.

Declared In Event.h

Prototype struct _PenDownMoveEventType {
 uint16_t flags;
 int16_t pressure;
};

Fields flags
If this field contains evtPenPressureFlag, the pressure
field is valid.

pressure
The amount of pressure the user applied to the stylus while
pressing the pen. If 0, no pressure was applied. A value
greater than or equal to 0x1000 is considered heavy pressure.

The following fields in the EventType structure are set for this
event:

penDown
Always true.

tapCount
The number of taps received at this location.

screenX
Draw window-relative position of the pen in standard
coordinates (number of coordinates from the left bound of
the window).

Low-Level Events Reference
penUpEvent

52 Exploring Palm OS: Input Services

screenY
Draw window-relative position of the pen in coordinates
(number of coordinates from the top of the window).

penUpEvent
Purpose Sent when the pen is lifted from the digitizer. Note that several

kinds of UI objects, such as controls and lists, track the movement
directly, and no penUpEvent is generated.

For this event, the data field of the EventType structure contains
the structure shown in the Prototype section, below.

Declared In Event.h

Prototype struct _PenUpEventType {
 PointType start;
 PointType end;
} penUp

Fields start
Draw window-relative start point of the stroke in standard
coordinates.

end
Draw window-relative end point of the stroke in standard
coordinates.

The following fields in the EventType structure are set for this
event:

penDown
Always false.

tapCount
The number of taps received at this location.

screenX
Draw window-relative position of the pen in standard
coordinates (number of coordinates from the left bound of
the window).

screenY
Draw window-relative position of the pen in coordinates
(number of coordinates from the top of the window).

Exploring Palm OS: Input Services 53

6
Graffiti 2 Reference
This chapter provides reference material for the header file
GraffitiReference.h.

Graffiti 2 Reference Functions and Macros

SysGraffitiReferenceDialog Function
Purpose Displays the Graffiti® 2 help dialog.

Declared In GraffitiReference.h

Prototype void SysGraffitiReferenceDialog
(ReferenceType referenceType)

Parameters → referenceType
Which reference to display. The only valid value is
referenceDefault.

Returns Nothing.

See Also HWRShowReferenceDialog(), PINShowReferenceDialog()

Graffit i 2 Reference
SysGraffitiReferenceDialog

54 Exploring Palm OS: Input Services

Exploring Palm OS: Input Services 55

7
Handwriting
Recognition Engine
This chapter describes the handwriting recognition engine API. It
covers:

Handwriting Recognition Engine Structures and Types . . 55

Handwriting Recognition Engine Constants 60

Handwriting Recognition Engine Functions and Macros . 61

The header file HWREngine.h declares the API that this chapter
describes. For more information on using or implementing the
handwriting recognition engine APIs, see Chapter 3, “Customizing
the Dynamic Input Area,” on page 17.

Handwriting Recognition Engine Structures and
Types

CharData Struct
Purpose Information about a character. This structure is used as an entry in

the chars array of HWRResult.

Declared In HWREngine.h

Prototype typedef struct {
 wchar32_t chr;
 uint32_t flags;
} CharData

Fields chr
A character code. The Graffiti® 2 engine returns characters in
the device-specific encoding.

Handwrit ing Recognit ion Engine
HWRConfig

56 Exploring Palm OS: Input Services

flags
0 or pinCharFlagVirtual if the character is a virtual
character.

HWRConfig Struct
Purpose Information used to initialize the handwriting recognition engine.

Declared In HWREngine.h

Prototype typedef struct {
 uint16_t hDotsPerInch;
 uint16_t vDotsPerInch;
 RectangleType writingBounds;
 uint32_t numModeAreas;
 HWRConfigModeArea modeArea[kMaxHWRModeAreas];
} HWRConfig

Fields hDotsPerInch
The number of horizontal pixels per inch of resolution on the
device. You can use WinGetCoordinateSystem() to
determine this value.

vDotsPerInch
The number of vertical pixels per inch of resolution on the
device. You can use WinGetCoordinateSystem() to
determine this value.

writingBounds
The bounds of the writing area within the pinlet.

The size of a window is not known until runtime. Depending
on how you’ve created your pinlet’s form, the size of its
writing area bounds may change each time the pinlet is
opened.

numModeAreas
The number of areas within the writingBounds for
different input modes.

modeArea
An array of HWRConfigModeArea structures describing each
mode area. A pinlet may provide different areas for different

Handwrit ing Recognit ion Engine
HWRConfigModeArea

Exploring Palm OS: Input Services 57

input modes, such as punctuation, numbers, capital letters,
accented characters, and so on.

The normal input mode is never given a mode area. For
example, if a handwriting recognition engine’s normal mode
is to return lowercase letters and you’ve designed a pinlet
that has an area for entering numbers on the right and
lowercase letters on the left, you would supply only one
entry in this array.

Not all handwriting recognition engines support all input
modes, so these areas should be considered suggestions only.

Comments When you pass points to the engine using HWRProcessStroke(),
use the same coordinate system as you use when you specify the
bounds and the dots per inch. No handwriting recognition engine
should require a particular coordinate system.

See Also HWRInit()

HWRConfigModeArea Struct
Purpose Information about a writing mode area. Used for the modeArea

field within the HWRConfig struct.

Declared In HWREngine.h

Prototype typedef struct {
 uint16_t writingMode;
 uint16_t reserved;
 RectangleType modeBounds;
} HWRConfigModeArea

Fields writingMode
One of the constants described in “Pinlet Input Modes” on
page 76.

reserved
Reserved for future use.

modeBounds
The bounds of the mode area.

Handwrit ing Recognit ion Engine
HWRResult

58 Exploring Palm OS: Input Services

HWRResult Struct
Purpose Provides the character result of the pen stroke. Used as a return

parameter for HWRProcessStroke().

Declared In HWREngine.h

Prototype typedef struct {
 CharData chars[kHWRMaxData];
 uint16_t numChars;
 uint16_t uncertain;
 uint16_t deleteUncertain;
 uint16_t inputMode;
 uint16_t inkHint;
 Boolean timeout;
 uint8_t reserved;
} HWRResult

Fields chars
One or more characters that the user drew. See CharData.

numChars
The number of entries in the chars field.

uncertain
The number of uncertain characters in the chars field. An
uncertain character is one that may be the first stroke of a
multistroke character. The uncertain characters are always at
the end of the chars array, so if the value of uncertain is
three and the chars array has five characters, the uncertain
characters are the last three entries in the array.

deleteUncertain
The number of uncertain characters that were previously sent
and should be deleted before adding any new characters.

For example, suppose the K character is a multistroke
character that begins with a stroke that could also be the L
character. If the user draws the stroke for an L, the engine
might return the L and indicate that it is an uncertain
character. If the next stroke completes the K character, the
engine should return the K and set deleteUncertain to 1

Handwrit ing Recognit ion Engine
HWRResult

Exploring Palm OS: Input Services 59

to indicate that the pinlet should delete the previous L
character.

Engines are not required to return ambiguous characters.
Instead, they may hold them and use the timeout field to
request that a timeout value be set.

inputMode
The engine’s current input mode. This is one of the constants
described in “Pinlet Input Modes” on page 76. The stroke
that was entered may have changed the input mode. If this
value changed, the pinlet should change its display of the
input mode indicator.

inkHint
One of the Ink Hint Constants. Pinlets that provide live ink
(which mirrors the stroke as the user writes it) use this field
to determine when to erase the ink.

timeout
true if the pinlet should set a timeout and wait for more user
input. false otherwise. If the pinlet sets a timeout and that
value is reached, it should call HWRTimeout().

There is no guarantee that a timeout is reached if one is
requested. If the user switches to a new text field or
completes the stroke, the timeout is cancelled and the engine
receives either a HWRClearInputState() call (when the
user switches fields) or HWRProcessStroke() (if the user
completes the stroke).

reserved
Reserved for future use.

Handwrit ing Recognit ion Engine
Handwriting Recognition Engine Constants

60 Exploring Palm OS: Input Services

Handwriting Recognition Engine Constants

Ink Hint Constants
Purpose Used to set the inkHint field of a HWRResult structure.

Declared In HWREngine.h

Constants #define hwrInkHintNone 0
Erase the last stroke drawn but preserve any previous
strokes. This is the default behavior.

#define hwrInkHintEraseAll 1
All inking should be erased because either a full character
was entered or a timeout value was reached.

#define hwrInkHintKeepAll 2
All current inking should remain on the screen.

#define hwrInkHintKeepLastOnly 3
Only the inking for the last stroke should remain on the
screen.

Maximum Value Constants
Purpose Constants used to size the arrays in HWRResult and HWRConfig.

Declared In HWREngine.h

Constants #define kHWRMaxData 32
The maximum number of bytes allowed in the chars field of
HWRResult.

#define kMaxHWRModeAreas 4
The maximum number of input modes allowed in
HWRConfig.

Handwrit ing Recognit ion Engine
HWRGetInputMode

Exploring Palm OS: Input Services 61

Handwriting Recognition Engine Functions and
Macros

HWRClearInputState Function
Purpose Clears the handwriting recognition engine’s internal state.

Declared In HWREngine.h

Prototype status_t HWRClearInputState (void)

Parameters None.

Returns errNone to indicate success or an error code if a failure occurs.

Comments Pinlets should call this function when they receive
PinletClearStateProcPtr(). Pinlets receive
PinletClearStateProcPtr() when the user performs an action
that indicates that the internal state should be cleared. For example,
suppose the user enters the first stroke of a multistroke character
and then taps on the next field in the form. The user clearly intends
not to complete the character. The engine should respond by
clearing the internal state that it keeps to indicate that a character is
in progress.

HWRGetInputMode Function
Purpose Returns the current input mode.

Declared In HWREngine.h

Prototype uint16_t HWRGetInputMode (void)

Parameters None.

Returns One of the constants described in “Pinlet Input Modes” on page 76.

See Also PINGetInputMode(), PinletGetInputModeProcPtr()

Handwrit ing Recognit ion Engine
HWRInit

62 Exploring Palm OS: Input Services

HWRInit Function
Purpose Initializes the handwriting recognition engine.

Declared In HWREngine.h

Prototype status_t HWRInit (const HWRConfig *config)

Parameters → config
Information that should be used to initialize the handwriting
recognition engine. See HWRConfig.

Returns errNone upon success or an error code if a failure occurs.

Comments A pinlet calls this function when it is being launched or at any time
before it begins using the engine. It should open any necessary
databases and allocate global variables.

See Also HWRShutdown()

HWRProcessStroke Function
Purpose Interprets a pen stroke.

Declared In HWREngine.h

Prototype status_t HWRProcessStroke (const PointType *points,
uint32_t numPoints, HWRResult *result)

Parameters → points
An array of PointType structures giving the coordinates of
each area of pen movement.

→ numPoints
The number of points in the points parameter.

← result
An HWRResult structure indicating what characters, if any,
should be sent to Palm OS®.

Returns errNone upon success, hwreErrPointBufferFull if too many
points were specified, or an error if the engine failed to recognize
the stroke.

Comments Pinlets should call this function on a penUpEvent.

The sending of a pen stroke to this function does not always result
in a character being returned. See the description of HWRResult for
more information.

Handwrit ing Recognit ion Engine
HWRShowReferenceDialog

Exploring Palm OS: Input Services 63

HWRSetInputMode Function
Purpose Sets the input mode.

Declared In HWREngine.h

Prototype void HWRSetInputMode (uint16_t inputMode)

Parameters → inputMode
One of the constants described in “Pinlet Input Modes” on
page 76.

Returns Nothing.

Comments The input mode determines how the engine translates the next set of
input from the user. The modes that an engine uses or accepts are up
to the engine. Typically, in the normal or default input mode, the
engine translates user input into lowercase letters. Translation into
any other type of character or symbol requires a different input
mode.

Not all input modes apply to all handwriting recognition engines. If
the engine does not support the specified input mode, it should
choose the closest equivalent that is supported, which could be the
default mode.

See Also PINSetInputMode(), PinletSetInputModeProcPtr()

HWRShowReferenceDialog Function
Purpose Displays a dialog that provides user help for the handwriting

recognition engine.

Declared In HWREngine.h

Prototype void HWRShowReferenceDialog (void)

Parameters None.

Returns Nothing.

Comments This function must display a dialog of some form. If no help is
available, it should display an alert indicating no help is available.

See Also PINShowReferenceDialog(),
PinletShowReferenceDialogProcPtr()

Handwrit ing Recognit ion Engine
HWRShutdown

64 Exploring Palm OS: Input Services

HWRShutdown Function
Purpose Frees the handwriting recognition resources.

Declared In HWREngine.h

Prototype status_t HWRShutdown (void)

Parameters None.

Returns errNone upon success or an error code if a failure occurs.

Comments A pinlet calls this function in response to the appStopEvent. It
should close any open databases and deallocate global variables.

See Also HWRInit()

HWRTimeout Function
Purpose Specifies that a pinlet’s timeout value has been reached.

Declared In HWREngine.h

Prototype status_t HWRTimeout (HWRResult *result)

Parameters ← result
A HWRResult structure indicating what characters, if any,
should be sent to Palm OS.

Returns errNone upon success or an error if a failure occurs.

Comments The result parameter may or may not contain a character when a
timeout value is reached.

For example, consider the Graffiti 2 handwriting recognition engine.
In this engine, some strokes may be strokes for a single character or
they may be the first stroke for a multistroke character. For example,
the letter L could be the first stroke for several characters, such as a
K or an I.

When this engine receives the stroke for an L in a
HWRProcessStroke() call, it stores that stroke and returns true
in the timeout field of the HWRResult structure indicating that the
pinlet should set a timeout. If the timeout value is reached, the
pinlet calls this function. The engine responds by returning in the
result parameter an HWRResult structure that contains the letter
L.

See Also “Handling Multistroke Characters” on page 28

Exploring Palm OS: Input Services 65

8
Hard Keys
Reference
This chapter provides reference material for manipulating the hard
keys. This chapter covers:

Hard Key Constants 65

Hard Key Functions and Macros. 67

For more information on working with the hard keys, see
“Customizing Hardware Input” on page 37.

Hard Key Constants

Key State Values
Purpose Used by KeyCurrentState() and KeySetMask() to specify the

hardware keys.

Declared In CmnKeyTypes.h

Constants #define keyBitsAll 0xFFFFFFFF
A bit mask representing all hard keys.

#define keyBitAntenna 0x00000100
The antenna “key” on wireless devices that allow a user to go
on or off line.

#define keyBitContrast 0x00000200
Contract key.

#define keyBitCradle 0x00000080
HotSync® button on the cradle.

#define keyBitHard1 0x00000008
The leftmost application key. This key often brings up the
Datebook application.

Hard Keys Reference
Key State Values

66 Exploring Palm OS: Input Services

#define keyBitHard2 0x00000010
The second application key from the left. This key often
brings up the Address Book application.

#define keyBitHard3 0x00000020
The third application key from the left. This key often brings
up the ToDo application.

#define keyBitHard4 0x00000040
The fourth application key from the left. This key often
brings up a NotePad or Memo application.

#define keyBitPageDown 0x00000004
The scroll down button.

#define keyBitPageUp 0x00000002
The scroll up button.

#define keyBitPower 0x00000001
The power key.

#define keyBitRockerCenter 0x00100000
The center button within a five-way rocker.

#define keyBitRockerDown 0x00020000
The down button within a five-way rocker.

#define keyBitRockerLeft 0x00040000
The left button within a five-way rocker.

#define keyBitRockerRight 0x00080000
The right button within a five-way rocker.

#define keyBitRockerUp 0x00010000
The up button within a five-way rocker.

#define keyBitThumbWheelBack 0x00008000
On devices with a thumb wheel, the back button below the
wheel.

#define keyBitThumbWheelDown 0x00002000
On devices with a thumb wheel, the thumb wheel has been
turned downward.

#define keyBitThumbWheelPush 0x00004000
On devices with a thumb wheel, the thumb wheel has been
pressed.

Hard Keys Reference
KeyCurrentState

Exploring Palm OS: Input Services 67

#define keyBitThumbWheelUp 0x00001000
On devices with a thumb wheel, the thumb wheel has been
turned upward.

Comments Not all devices support all of these keys.

Key Rate Constants
Purpose Specify special values for the key rate set by KeyRates().

Declared In CmnKeyTypes.h

Constants #define slowestKeyDelayRate 0xff
Represents the slowest possible delay before the key is
recognized as being pressed or before a double-tap is
recognized.

#define slowestKeyPeriodRate 0xff
Represents the slowest possible auto-repeat rate.

Hard Key Functions and Macros

KeyCurrentState Function
Purpose Returns a bit field with bits set for each key that is currently

depressed.

Declared In KeyMgr.h

Prototype uint32_t KeyCurrentState (void)

Parameters None.

Returns A bit mask with bits set for keys that are depressed. See Key State
Values.

Comments Called by applications that need to poll the hardware keys.

If you want to remap the hardware keys, one way to do so is using
this function and KeySetMask(). First use KeySetMask() to
disable the hardware buttons that you want to remap. Then,
periodically poll the keys, possibly in response to the nilEvent in
your event loop, by using KeyCurrentState() to see if a hard key
has been pressed. Then respond accordingly.

Hard Keys Reference
KeyRates

68 Exploring Palm OS: Input Services

NOTE: This function has high overhead because it performs
interprocess-communication. Use it sparingly.

Example To see if the first application hard key has been pressed, do the
following:

if (KeyCurrentState() & keyBitHard1)
 ...

KeyRates Function
Purpose Gets or sets the key repeat rates.

Declared In KeyMgr.h

Prototype status_t KeyRates (Boolean set,
uint16_t *initDelayP, uint16_t *periodP,
uint16_t *doubleTapDelayP, Boolean *queueAheadP)

Parameters → set
If true, settings are changed; if false, current settings are
returned.

↔ initDelayP
Initial delay in ticks for an auto-repeat event.

↔ periodP
Auto-repeat rate specified as period in ticks.

↔ doubleTapDelayP
Maximum double-tap delay, in ticks.

↔ queueAheadP
If true, auto-repeating keeps queueing up key events if the
queue has keys in it. If false, auto-repeat doesn’t enqueue
keys unless the queue is already empty.

Returns Always returns errNone.

Comments This function changes the auto-repeat rate of the hardware buttons.
This might be useful to game applications that want to use the
hardware buttons for control. The current key repeat rates should be
restored before the application exits.

Hard Keys Reference
KeySetMask

Exploring Palm OS: Input Services 69

NOTE: This function has high overhead because it performs
interprocess-communication. Use it sparingly.

Example The following code shows retrieving the default values, setting the
key rates to the slowest possible values for the duration of the game,
and then restoring the values.

uint16_t initDelay, period, doubleTapDelay;
Boolean queueAhead;

//Retrieve old values.
KeyRates(false, &initDelay, &period, &doubleTapDelay,
 &queueAhead);
// set my values
KeyRates(true, slowestKeyDelayRate, slowestKeyPeriodRate,
 slowestKeyPeriodRate, false);
...
//play game.
...
// game is over. Restore previous values.
KeyRates(true, initDelay, period, doubleTapDelay,
 queueAhead);

KeySetMask Function
Purpose Specifies which keys generate keyDownEvents.

Declared In KeyMgr.h

Prototype uint32_t KeySetMask (uint32_t keyMask)

Parameters → keyMask
Mask with bits set for those keys to generate
keyDownEvents for. See Key State Values.

Returns The old key mask.

See Also KeyCurrentState()

Hard Keys Reference
KeySetMask

70 Exploring Palm OS: Input Services

Exploring Palm OS: Input Services 71

9
Keyboard
The chapter describes the API declared in the header file
Keyboard.h.

Keyboard Functions and Macros

SysKeyboardDialog Function
Purpose Pops up the system keyboard if there is a field object with the focus.

Declared In Keyboard.h

Prototype void SysKeyboardDialog (KeyboardType kbd)

Parameters → kbd
One of the following:

kbdAlpha
Show alphabetic characters.

kbdNumbersAndPunc
Show numbers and some advanced punctuation.

kbdAccent
The International character set, made up of Latin
characters with diacritic marks.

kbdDefault
Same as kbdAlpha.

Returns Nothing.

Comments On devices with a dynamic input area, this function switches the
currently active pinlet to the default keyboard style pinlet.

On devices with a static input area (one that is silkscreened onto the
device), this function displays a keyboard dialog with a text field
and keyboard. The current text field’s handle is reassigned to the
keyboard dialog’s text handle while the dialog is active.

Keyboard
SysKeyboardDialog

72 Exploring Palm OS: Input Services

Exploring Palm OS: Input Services 73

10
Pen Input Manager
This chapter provides reference material for the Pen Input Manager
API as declared in the header file PenInputMgr.h. It discusses the
following topics:

Pen Input Manager Constants 73

Pen Input Manager Launch Codes 79

Pen Input Manager Notifications 79

Pen Input Manager Functions and Macros 80

For more information on using the Pen Input Manager, see Chapter
2, “Working with the Dynamic Input Area,” on page 7.

Pen Input Manager Constants

Default Pinlet Constants
Purpose Used in PINGetDefaultPinlet() and

PINSetDefaultPinlet() to specify which default should be
retrieved or set.

Declared In PenInputMgr.h

Constants #define pinDefaultPinletHWR 0
The default handwriting recognition pinlet.

#define pinDefaultPinletKeyboard 1
The default keyboard pinlet.

Pen Input Manager
Input Area States

74 Exploring Palm OS: Input Services

Input Area States
Purpose The states that an input area can have.

Declared In PenInputMgr.h

Constants #define pinInputAreaOpen 0
The dynamic input area is being displayed.

The dynamic input area is in this state after the user taps the
input trigger to open it. An application might also request
that the dynamic input area be opened by calling
PINSetInputAreaState() with this state.

#define pinInputAreaClosed 1
The dynamic input area is not being displayed.

The dynamic input area is in this state after the user taps the
input trigger to close it. An application also might request
that the dynamic input area be closed by calling
PINSetInputAreaState() with this state.

#define pinInputAreaNone 2
The input area is not dynamic, or there is no input area.

See Also PINGetInputAreaState(), PINSetInputAreaState()

Error Codes
Purpose Error codes returned by Pen Input Manager.

Declared In PenInputMgr.h

Constants #define pinErrInvalidParam (pinsErrorClass | 0x01)
An invalid parameter was specified.

#define pinErrNoSoftInputArea (pinsErrorClass |
0x00)

This device does not have a dynamic input area.

#define pinErrPinletNotFound (pinsErrorClass |
0x02)

The specified pinlet does not exist on this device.

Pen Input Manager
Input Area Flags Constants

Exploring Palm OS: Input Services 75

Feature and Version Constants
Purpose Specifies version and creator information.

Declared In PenInputMgr.h

Constants #define pinAPIVersion pinAPIVersion2_0
The current version of the Pen Input Manager API.

#define pinAPIVersion1_0 0x01000000
The first version of the Pen Input Manager API. This version
of the API is used on Palm OS® 5.2 devices that have dynamic
input areas.

#define pinAPIVersion1_1 0x01103000
Version 1.1 of the Pen Input Manager API. This version is
used on Palm OS Garnet version 5.3 devices that have
dynamic input areas.

#define pinAPIVersion2_0 0x02003000
Version 2.0 of the Pen Input Manager API, which is
supported on Palm OS Cobalt version 6.0.

#define pinCreator 'pins'
The creator code with which a system feature is defined
specifying the current Pen Input Manager API version.

#define pinFtrAPIVersion 1
The feature constant that stores the Pen Input Manager
version number.

Input Area Flags Constants
Purpose Flags set in the sysFtrNumInputAreaFlags feature constant to

specify the capabilities of a device’s input area.

Declared In PenInputMgr.h

Constants #define grfFtrInputAreaFlagDynamic 0x00000001
The device has a dynamic input area.

#define grfFtrInputAreaFlagLiveInk 0x00000002
The device supports live ink.

Pen Input Manager
Pinlet Input Modes

76 Exploring Palm OS: Input Services

#define grfFtrInputAreaFlagCollapsible 0x00000004
The dynamic input area is collapsible. Some devices have an
input area that is implement in software but that does not
collapse.

#define grfFtrInputAreaFlagLandscape 0x00000008
The device supports landscape mode.

#define grfFtrInputAreaFlagReversePortrait
0x00000010

The device supports reverse portrait mode.

#define grfFtrInputAreaFlagReverseLandscape
0x00000020

The device supports reverse landscape mode.

#define grfFtrInputAreaFlagLefthanded 0x00000040
The device supports a special left-handed operation mode.

Comments Palm OS Cobalt version 6.0 currently does not support landscape,
reverse portrait, left-handed, or reverse landscape modes. These
constants are defined now to support future releases.

Pinlet Input Modes
Purpose Input modes a pinlet might have.

Declared In PenInputMgr.h

Constants #define pinInputModeNormal 0
The default mode. For the ISO-Latin character encoding, the
normal mode translates strokes into lowercase letters.

#define pinInputModeShift 1
The next stroke will be translated into an uppercase character
rather than the normal lowercase characters.

#define pinInputModeCapsLock 2
All of the characters will be uppercase until the mode is set to
something else.

#define pinInputModePunctuation 3
The next stroke will be interpreted as a punctuation mark or
symbol, and then the mode is reset to normal.

#define pinInputModeNumeric 4
The stroke will be interpreted as a numeric character.

Pen Input Manager
Pinlet Information Constants

Exploring Palm OS: Input Services 77

#define pinInputModeExtended 5
The next stroke is a special symbol or part of the extended
character set. The Graffiti® 2 handwriting recognition engine
uses this mode for special symbols such as the trademark
symbol.

#define pinInputModeHiragana 6
A Japanese pinlet is active and creates Hiragana characters.

#define pinInputModeKatakana 7
A Japanese pinlet is active and creates Katakana characters.

#define pinInputModeCustomBase 128
The first value available for custom input modes specific to a
pinlet.

#define pinInputModeCustomMax 255
The last value available for custom input modes specific to a
pinlet.

#define pinInputModeUnShift 256
Cancels a shift state. This mode is sent in the UI Library’s text
field code to set the pinlet back to normal mode after an auto-
shift. The pinlet may receive this state when it is already in
normal mode.

Comments The input mode is different from the FEP mode. The Graffiti 2
handwriting recognition engine does not use Hiragana or Katakana
input modes; however, on some Japanese devices writing Graffiti 2
strokes generates Hiragana or Katakana characters, but that is
dependent on the FEP mode, not the pinlet input mode. The same
devices might have a Japanese keyboard pinlet that does use the
Hiragana and Katakana input modes.

See Also PINGetInputMode(), PINSetInputMode()

Pinlet Information Constants
Purpose Values you pass to PINGetPinletInfo() to obtain information

about a pinlet.

Declared In PenInputMgr.h

Constants #define pinPinletInfoName 0
The pinlet’s name as it appears in the status bar pop-up
menu is returned in the info parameter as a char *.

Pen Input Manager
Pinlet Styles

78 Exploring Palm OS: Input Services

#define pinPinletInfoStyle 1
The kind of pinlet is returned in the info parameter as an
integer constant. See “Pinlet Styles” for the exact constants
that could be returned.

#define pinPinletInfoFEPAssoc 2
The creator ID of the FEP associated with this pinlet as an
integer constant.

#define pinPinletInfoIcon 3
System use only. Identifies the icon that displays in the status
bar pop-up menu.

#define pinPinletInfoComponentName 4
The name used internally for the pinlet is returned as a
char *.

Pinlet Styles
Purpose Specifies the pinlet style.

Declared In PenInputMgr.h

Constants #define pinPinletStyleHandwriting 0
The pinlet is a handwriting recognition pinlet.

#define pinPinletStyleKeyboard 1
The pinlet is a keyboard pinlet.

#define pinPinletStyleOther 2
The pinlet is some other style of pinlet.

Virtual Character Flag
Purpose Flag used to specify that a character is a virtual character.

Declared In PenInputMgr.h

Constants #define pinCharFlagVirtual 0x00000001
Used to indicate a virtual character when a character is fed to
the Pen Input Manager.

Pen Input Manager
sysNotifyAltInputSystemDisabled

Exploring Palm OS: Input Services 79

Pen Input Manager Launch Codes

sysAppLaunchCmdPinletLaunch
Purpose Sent when a pinlet has become the active pinlet. The pinlet should

respond by initializing itself.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdPinletLaunch 83

Parameters None.

sysPinletLaunchCmdLoadProcPtrs
Purpose Sent to a pinlet before the pinlet is displayed on the screen,

requesting pointers to the functions used by the Pen Input Manager
when interacting with this pinlet.

Declared In CmnLaunchCodes.h

Prototype #define sysPinletLaunchCmdLoadProcPtrs 85

Parameters The launch code’s parameter block pointer references an empty
PinletAPIType structure. Pinlets should fill in the contents of this
structure upon receipt of this launch code.

Pen Input Manager Notifications

sysNotifyAltInputSystemDisabled
Purpose Broadcast when an alternative input device has been disabled. For

example, if the user detaches an external keyboard from the device,
this notification is broadcast.

Declared In NotifyMgr.h

Prototype #define sysNotifyAltInputSystemDisabled 'aisd'

See Also “Notification Manager” in Exploring Palm OS: Programming Basics,
PINAltInputSystemEnabled()

Pen Input Manager
sysNotifyAltInputSystemEnabled

80 Exploring Palm OS: Input Services

sysNotifyAltInputSystemEnabled
Purpose Broadcast when an alternative input device has been enabled. For

example, if the user attaches an external keyboard to the device, this
notification is broadcast.

Declared In NotifyMgr.h

Prototype #define sysNotifyAltInputSystemEnabled 'aise'

See Also “Notification Manager” in Exploring Palm OS: Programming Basics,
PINAltInputSystemEnabled()

Pen Input Manager Functions and Macros

PINAltInputSystemEnabled Function
Purpose Indicates whether an alternative input system is currently available.

Declared In PenInputMgr.h

Prototype Boolean PINAltInputSystemEnabled (void)

Parameters None.

Returns true if an alternative input system is attached and the dynamic
input area is available, or false if no alternative input system is
attached or the dynamic input area is not available.

Comments Applications call this function in rare situations to determine
whether an alternative input system is currently available. An
alternative input system is a text input device or program that is not
controlled using the Pen Input Manager. Applications may want to
close the dynamic input area if the user has an alternate way of
entering data.

The primary example of an alternative input system is a detachable
keyboard that is sold separately from the device, like the keyboards
available for many Palm handhelds. The alternative input system is
not required to be a keyboard. In the future, it may be some other
sort of device such as a speech recognizer. The requirement for an
input system to be considered an “alternative input system” is that

Pen Input Manager
PINCountPinlets

Exploring Palm OS: Input Services 81

it must be a way for the user to enter textual data. A jog dial is not
an alternative input system.

See Also sysNotifyAltInputSystemEnabled,
sysNotifyAltInputSystemDisabled

PINClearPinletState Function
Purpose Tells the pinlet to clear its internal input state.

Declared In PenInputMgr.h

Prototype void PINClearPinletState (void)

Parameters None.

Returns Nothing.

Comments Applications and pinlets rarely need to make this call. Palm OS
makes this call when the internal state of the pinlet should be
cleared, such as when the insertion point is moved to a different text
field in the application. The internal state can include temporary
shift states, intermediate character results, and so on.

For example, suppose the user has entered the first stroke required
to make the “x” character. Now, instead of completing the character,
the user taps a new text field. This should be interpreted as the
cancellation of the current input mode, so
PINClearPinletState() is called.

PINCountPinlets Function
Purpose Returns the number of pinlets known to the Pen Input Manager.

Declared In PenInputMgr.h

Prototype uint16_t PINCountPinlets (void)

Parameters None.

Returns The number of pinlets registered with the Pen Input Manager.
Returns 0 if there are no registered pinlets.

Comments In rare cases, a pinlet might be closely associated with a front-end
processor (FEP). If the FEP is not active, the Pen Input Manager does
not advertise the pinlet as being available in the status bar’s menu.

Pen Input Manager
PINGetCurrentPinletName

82 Exploring Palm OS: Input Services

This function, however, returns the count of all pinlets, whether
they can be activated or not. Use the PINGetPinletInfo() to
determine if the pinlet relies on an inactive FEP.

See Also PINGetPinletInfo()

PINGetCurrentPinletName Function
Purpose Obtains the internal name of the current pinlet.

Declared In PenInputMgr.h

Prototype const char *PINGetCurrentPinletName (void)

Parameters None.

Returns An ASCII string containing the name of the current pinlet.

Comments The current pinlet is the one in charge of displaying a user interface
in the dynamic input area, receiving any pen strokes or pen taps
made in that area, and translating those into textual input from the
user.

This identifier is used in PINSwitchToPinlet() to change the
input system. Do not confuse this identifier with the external pinlet
name displayed in the status bar.

PINGetDefaultPinlet Function
Purpose Returns a default pinlet.

Declared In PenInputMgr.h

Prototype uint16_t PINGetDefaultPinlet (uint16_t defaultCode)

Parameters → defaultCode
One of the Default Pinlet Constants.

Returns The index of the pinlet used as the specified default. You can pass
this index to PINGetPinletInfo() to obtain more information
about the pinlet.

See Also PINSetDefaultPinlet()

Pen Input Manager
PINGetInputMode

Exploring Palm OS: Input Services 83

PINGetInputAreaState Function
Purpose Returns the current state of the dynamic input area.

Declared In PenInputMgr.h

Prototype uint16_t PINGetInputAreaState (void)

Parameters None.

Returns One of the constants defined in the section “Input Area States” on
page 74.

See Also PINSetInputAreaState()

PINGetInputMode Function
Purpose Returns the current input mode of the pinlet.

Declared In PenInputMgr.h

Prototype uint16_t PINGetInputMode (void)

Parameters None.

Returns One of the input mode constants listed in the “Pinlet Input Modes”
section.

Comments Applications call this function to determine the current pinlet input
mode. The pinlet input mode determines how the pinlet translates
the next set of input from the user. The modes that a pinlet uses or
accepts are up to the pinlet. Typically, in the default input mode, the
pinlet translates user input into lowercase letters. Translation into
any other type of character or symbol requires a different input
mode.

The input mode should be considered a hint that the pinlet can use
to coordinate with the application. The pinlet should have a visible
indication of what its current input mode is.

See Also PINSetInputMode(), “Setting the Pinlet Input Mode” on page 14

Pen Input Manager
PINGetPinletInfo

84 Exploring Palm OS: Input Services

PINGetPinletInfo Function
Purpose Returns the requested information about the pinlet.

Declared In PenInputMgr.h

Prototype status_t PINGetPinletInfo (uint16_t index,
uint16_t infoSelector, uint32_t *info)

Parameters → index
The index number of the pinlet about which you are
requesting information. Valid values are from 0 to
PINCountPinlets() – 1.

→ infoSelector
One of the values described in “Pinlet Information
Constants” on page 77.

← info
Upon return, contains the information requested by the
infoSelector parameter.

Returns errNone upon success or one of the following error codes:

pinErrInvalidParam
An invalid infoSelector parameter was specified.

pinErrPinletNotFound
An invalid index parameter was specified.

PINSetDefaultPinlet Function
Purpose Sets a default pinlet.

Declared In PenInputMgr.h

Prototype status_t PINSetDefaultPinlet (uint16_t defaultCode,
uint16_t index)

Parameters → defaultCode
One of the Default Pinlet Constants.

→ index
The index number of the pinlet that you want to make the
default. Valid values are from 0 to PINCountPinlets() – 1.

Returns errNone upon success or one of the following values:

Pen Input Manager
PINSetInputAreaState

Exploring Palm OS: Input Services 85

pinErrInvalidParam
The defaultCode parameter is invalid.

pinErrPinletNotFound
The index is out of range, or the internal pinlet list has not
been created yet.

sysErrNoInit
The Pen Input Manager has not been initialized.

Comments This function allows you to set the default handwriting recognition
pinlet and the default keyboard pinlet to something other than the
system-supplied defaults. The default controls which pinlet is
selected when the user taps a button on the system-supplied
handwriting recognition and keyboard pinlets.

Before calling this function, you must obtain the index of the pinlet
you want o make the default. To do so, you can iterate through the
pinlet list from 0 to PINCountPinlets() – 1, calling
PINGetPinletInfo() to obtain the pinlet’s name or other
identifying information.

See Also PINGetDefaultPinlet()

PINSetInputAreaState Function
Purpose Sets the state of the input area.

Declared In PenInputMgr.h

Prototype status_t PINSetInputAreaState (uint16_t state)

Parameters → state
The state to which the input area should be set. See “Input
Area States” on page 74 for a list of possible values.

Returns errNone upon success or one of the following error codes:

pinErrNoSoftInputArea
There is no dynamic input area on this device.

pinErrInvalidParam
You have entered an invalid state parameter.

Comments Applications call this function to open or close the input area.

Pen Input Manager
PINSetInputMode

86 Exploring Palm OS: Input Services

After opening or closing the input area, all on-screen transitional
and update-based windows receive the winResizedEvent.

See Also PINGetInputAreaState(), “Programmatically Opening and
Closing the Input Area” on page 8

PINSetInputMode Function
Purpose Sets the pinlet’s input mode.

Declared In PenInputMgr.h

Prototype void PINSetInputMode (uint16_t inputMode)

Parameters → inputMode
The mode to which the pinlet should be set. This is one of the
constants listed in the “Pinlet Input Modes” section.

Returns Nothing.

Comments Applications call this function to set the pinlet input mode.

The pinlet input mode determines how the pinlet translates the next
set of input from the user. The modes that a pinlet uses or accepts
are up to the pinlet. Typically, in the default input mode, the pinlet
translates user input into lowercase letters. Translation into any
other type of character or symbol requires a different input mode.

Not all input modes apply to all pinlets. If the application specifies a
mode that the pinlet does not support, the pinlet chooses the closest
equivalent that is supported, which could be normal mode.

See Also PINGetInputMode(), “Setting the Pinlet Input Mode” on page 14

PINShowReferenceDialog Function
Purpose Displays the reference dialog for the current pinlet.

Declared In PenInputMgr.h

Prototype void PINShowReferenceDialog (void)

Parameters None.

Returns Nothing.

Pen Input Manager
PINSwitchToPinlet

Exploring Palm OS: Input Services 87

Comments Applications call this function to show the reference or help dialog
for the current pinlet.

PINSwitchToPinlet Function
Purpose Changes the currently active pinlet.

Declared In PenInputMgr.h

Prototype status_t PINSwitchToPinlet
(const char *pinletName,
uint16_t initialInputMode)

Parameters → pinletName
The name of the pinlet that you want to make active. You can
also specify one of the following strings instead:

"default:hwr"
Make the default handwriting recognition pinlet
active.

"default:keyboard"
Make the default keyboard pinlet active.

→ initialInputMode
The mode to which the pinlet should initially be set. See
“Pinlet Input Modes” on page 76.

Returns errNone upon success or one of the following error codes:

pinErrPinletNotFound
There is no pinlet with the specified name.

pinErrNoSoftInputArea
There is no dynamic input area on the device.

Comments A user can choose a new pinlet by selecting it from a menu that
pops up when the user holds the pen down on the input area icon in
the status bar. The active pinlet itself might have a button that
switches to another pinlet. For example, if the traditional silkscreen
area were a pinlet, the on-screen keyboard would be another pinlet.
The “abc” button in the silkscreen area switches from the
handwriting pinlet to the on-screen keyboard pinlet.

Pen Input Manager
PINSwitchToPinlet

88 Exploring Palm OS: Input Services

If a pinlet is associated with a FEP, the pinlet will not be activated
unless the FEP itself is active.

See Also PINGetCurrentPinletName(), “Changing the Active Pinlet” on
page 12

Exploring Palm OS: Input Services 89

11
Pinlet
This chapter describes the APIs that must be implemented in a
pinlet. It covers:

Pinlet Structures and Types 89

Pinlet Functions and Macros 90

Pinlet-Defined Functions 91

The header file Pinlet.h declares the API that this chapter
describes.

For more information about implementing pinlets, see Chapter 3,
“Customizing the Dynamic Input Area,” on page 17.

Pinlet Structures and Types

PinletAPIType Struct
Purpose Defines the functions that the pinlet implements.

Declared In Pinlet.h

Prototype typedef struct {
 PinletClearStateProcPtr pinletClearState;
 PinletGetInputModeProcPtr pinletGetInputMode;
 PinletSetInputModeProcPtr pinletSetInputMode;
 PinletShowReferenceDialogProcPtr
 pinletShowReferenceDialog;
} PinletAPIType

Fields pinletClearState
Pointer to the function that clears the pinlet state. See
PinletClearStateProcPtr().

pinletGetInputMode
Pointer to the function that returns the pinlet’s input mode.
See PinletGetInputModeProcPtr().

Pinlet
Pinlet Functions and Macros

90 Exploring Palm OS: Input Services

pinletSetInputMode
Pointer to the function that sets the pinlet’s input mode. See
PinletSetInputModeProcPtr().

pinletShowReferenceDialog
Pointer to the function that displays pinlet help. See
PinletShowReferenceDialogProcPtr().

Comments You pass this structure back to the Pen Input Manager in the
parameter block for the sysPinletLaunchCmdLoadProcPtrs
launch code.

The Pen Input Manager only calls the functions you specify while
the pinlet is running.

Pinlet Functions and Macros

PINFeedChar Function
Purpose Sends a character key to Palm OS®.

Declared In Pinlet.h

Prototype void PINFeedChar (wchar32_t chr, uint32_t flags)

Parameters → chr
The character to be sent. This character must use the UTF8
character encoding.

→ flags
0 or pinCharFlagVirtual if the character is a virtual
character.

Returns Nothing.

Comments The Pen Input Manager expects characters in the UTF8 encoding. If
necessary, use TxtConvertEncoding() to convert a character
from the device’s native encoding to UTF8 before calling this
function. Note that the character gets converted back to the device’s
native encoding before the application receives the keyDownEvent.

See Also PINFeedString()

Pinlet
PinletClearStateProcPtr

Exploring Palm OS: Input Services 91

PINFeedString Function
Purpose Sends a string of characters to Palm OS.

Declared In Pinlet.h

Prototype void PINFeedString (const char *str)

Parameters → str
A string containing the characters to be sent. The characters
must use the UTF8 character encoding.

Returns Nothing.

Comments This function is a convenient way to send more than one character
to the Pen Input Manager at once. A keyDownEvent is created for
each character in the string. You cannot send virtual characters
using this function.

The Pen Input Manager expects characters in the UTF8 encoding. If
necessary, use TxtConvertEncoding() to convert characters from
the device’s native encoding to UTF8 before calling this function.
Note that the characters get converted back to the device’s native
encoding before the application receives the keyDownEvent.

See Also PINFeedChar()

Pinlet-Defined Functions

PinletClearStateProcPtr Function
Purpose Clears the current internal state of the pinlet.

Declared In Pinlet.h

Prototype void (*PinletClearStateProcPtr) (void)

Parameters None.

Returns Nothing.

Comments This function should clear any such internal state and should reset
the input mode back to the normal mode. The Pen Input Manager
calls this function when it receives the PINClearPinletState()
call.

Pinlet
PinletGetInputModeProcPtr

92 Exploring Palm OS: Input Services

As described in “Handling Multistroke Characters” on page 28, a
pinlet may need to keep some internal state while it is running.
PinletClearStateProcPtr() is called when the user has
performed an action, such as switching to a new text field, that
clearly indicates that they are done writing that character, so the
internal state should be cleared.

See Also HWRClearInputState()

PinletGetInputModeProcPtr Function
Purpose Returns the current input mode of the pinlet.

Declared In Pinlet.h

Prototype uint16_t (*PinletGetInputModeProcPtr) (void)

Parameters None.

Returns One of the input mode constants listed in the section “Pinlet Input
Modes” on page 76.

Comments The Pen Input Manager calls this function when it receives the
PINGetInputMode() call. Handwriting recognition pinlets should
call through to the HWRGetInputMode() function.

See Also PinletSetInputModeProcPtr(), “Considering the Input
Modes” on page 27

PinletSetInputModeProcPtr Function
Purpose Sets the pinlet input mode.

Declared In Pinlet.h

Prototype void (*PinletSetInputModeProcPtr) (uint16_t mode)

Parameters → mode
The mode to which the pinlet should be set. This is one of the
constants listed in the “Pinlet Input Modes” section.

Returns Nothing.

Comments The Pen Input Manager calls this function in response to the
PINSetInputMode() function.

Pinlet
PinletShowReferenceDialogProcPtr

Exploring Palm OS: Input Services 93

The pinlet input mode determines how the pinlet translates the next
set of input from the user. The modes that a pinlet uses or accepts
are up to the pinlet. Typically, in the normal or default input mode,
the pinlet translates user input into lowercase letters. Translation
into any other type of character or symbol requires a different input
mode.

The input mode should be considered a hint that the pinlet can use
to coordinate with the application. If the pinlet does respect the
input mode, it should have a visible indication of what its current
input mode is.

Not all input modes apply to all pinlets. If the pinlet does not
support the specified input mode, it should choose the closest
equivalent that is supported, which could be the default mode.

Handwriting recognition pinlets can call through to the function
HWRSetInputMode().

See Also PinletGetInputModeProcPtr(), “Considering the Input
Modes” on page 27

PinletShowReferenceDialogProcPtr Function
Purpose Displays the help or reference dialog for the pinlet.

Declared In Pinlet.h

Prototype void (*PinletShowReferenceDialogProcPtr) (void)

Parameters None.

Returns Nothing.

Comments The Pen Input Manager calls this function in response to the
PINShowReferenceDialog() function.

The pinlet should display a dialog that teaches the user how to use
the pinlet. Handwriting recognition pinlets can call through to
HWRShowReferenceDialog().

Some pinlets may not require a help dialog. For example, keyboard
pinlets rarely need explanatory text. If the pinlet has no help to

Pinlet
PinletShowReferenceDialogProcPtr

94 Exploring Palm OS: Input Services

display, this function should display an alert that says no help is
available for this pinlet.

See Also “Help Dialog” on page 24

Exploring Palm OS: Input Services 95

12
Shift Indicator
This chapter describes the API for the shift indicator. It covers:

Shift Indicator Constants 95

Shift Indicator Events 97

Shift Indicator Functions and Macros 98

The header file GraffitiShift.h declares the API that this
chapter describes.

Shift Indicator Constants

Dimension Constants
Purpose Give the size requirements for the shift indicator.

Declared In GraffitiShift.h

Constants #define kMaxGsiHeight 10
The maximum height for a shift indicator.

#define kMaxGsiWidth 9
The maximum width for a shift indicator.

GsiShiftState Typedef
Purpose Shift states. For system use only.

Declared In GraffitiShift.h

Prototype typedef Enum8 GsiShiftState

Constants gsiShiftNone
The default mode. For the ISO-Latin character encoding, the
normal mode translates strokes into lowercase letters.

Shift Indicator
Lock Flag Constants

96 Exploring Palm OS: Input Services

gsiNumLock
The strokes will be interpreted as numeric characters.

gsiCapsLock
All of the characters will be uppercase until the mode is set to
something else.

gsiShiftPunctuation
The next stroke will be interpreted as a punctuation mark or
symbol, and then the mode is reset to normal.

gsiShiftExtended
The next stroke is a special symbol or part of the extended
character set. The Graffiti® 2 handwriting recognition engine
uses this mode for special symbols such as the trademark
symbol.

gsiShiftUpper
The next stroke will be translated into an uppercase character
rather than the normal lowercase characters.

gsiShiftLower
The next stroke will be translated into a lowercase character.

Lock Flag Constants
Purpose Specifies what lock state, if any, the shift state is in.

Declared In GraffitiShift.h

Constants #define glfCapsLock 0x0001
Turn on the caps lock.

#define glfNumLock 0x0002
Turn on the numeric lock.

#define glfForceUpdate 0x8000
Forces the shift indicator to update. If this flag is not used, the
indicator only updates if you are setting it to a new state.

Shift Indicator
gsiStateChangeEvent

Exploring Palm OS: Input Services 97

Temporary Shift State Constants
Purpose Define temporary shift states.

Declared In GraffitiShift.h

Constants #define gsiTempShiftNone 0
The default mode. For the ISO-Latin character encoding, the
normal mode translates strokes into lowercase letters.

#define gsiTempShiftPunctuation 1
The next stroke will be interpreted as a punctuation mark or
symbol, and then the mode is reset to normal.

#define gsiTempShiftExtended 2
The next stroke is a special symbol or part of the extended
character set. The Graffiti 2 handwriting recognition engine
uses this mode for special symbols such as the trademark
symbol.

#define gsiTempShiftUpper 3
The next stroke will be translated into an uppercase character
rather than the normal lowercase characters.

#define gsiTempShiftLower 4
The next stroke will be translated into a lowercase character.

Shift Indicator Events

gsiStateChangeEvent
Purpose Sent when the shift indicator should change state.

Declared In Event.h

Prototype struct gsiStateChange {
 uint16_t lockFlags;
 uint16_t tempShift;
} gsiStateChange

Parameters lockFlags
One of the Lock Flag Constants.

tempShift
One of the Temporary Shift State Constants.

Shift Indicator
Shift Indicator Functions and Macros

98 Exploring Palm OS: Input Services

Shift Indicator Functions and Macros

GsiEnable Function
Purpose Enables or disables the shift indicator.

Declared In GraffitiShift.h

Prototype void GsiEnable (Boolean enableIt)

Parameters → enableIt
true to enable, false to disable.

Returns Nothing.

Comments Enabling the indicator makes it visible, disabling it makes the
insertion point invisible.

GsiEnabled Function
Purpose Returns true if the shift indicator is enabled, or false if it’s

disabled.

Declared In GraffitiShift.h

Prototype Boolean GsiEnabled (void)

Parameters None.

Returns true if enabled, false if not.

GsiInitialize Function
Purpose Initializes the global variables used to manage the shift indicator.

Declared In GraffitiShift.h

Prototype void GsiInitialize (void)

Parameters None.

Returns Nothing.

Shift Indicator
GsiSetShiftState

Exploring Palm OS: Input Services 99

GsiSetLocation Function
Purpose Sets the display-relative position of the shift indicator.

Declared In GraffitiShift.h

Prototype void GsiSetLocation (int16_t x, int16_t y)

Parameters → x, y
Coordinate of left side and top of the indicator.

Returns Nothing.

Comments The indicator is not redrawn by this routine.

Do not use this function in application code. It is used internally by
the Form Manager. If you need to change the shift indicator’s
location, do so using the automatic form layout facility described in
the section “Laying Out a Form or Dialog” on page 23 in the book
Exploring Palm OS: User Interface.

GsiSetShiftState Function
Purpose Sets the shift indicator.

Declared In GraffitiShift.h

Prototype void GsiSetShiftState (uint16_t lockFlags,
uint16_t tempShift)

Parameters → lockFlags
One of the Lock Flag Constants.

→ tempShift
One of the Temporary Shift State Constants.

Returns Nothing.

Comments This function affects only the state of the UI element, not the
underlying handwriting recognition engine.

Shift Indicator
GsiSetShiftState

100 Exploring Palm OS: Input Services

Exploring Palm OS: Input Services 101

Index

A
alternative input systems 13, 79, 80
APP_ICON_BITMAP_RESOURCE 24
APP_ICON_NAME_RESOURCE 24
appEvtHookKeyMask 45
appStopEvent 22, 41, 64
autoRepeatKeyMask 45
auto-shifting 15

C
capsLockMask 45
CharData 55, 58
Chars.h 39
CmnKeyTypes.h 45, 65, 67
commandKeyMask 45, 47
controlKeyMask 45
CtlHandleEvent() 4
ctlSelectEvent 4, 26

D
doubleTapKeyMask 45
dynamic input area ix, 5, 7

E
Edit menu 25
EventType 46, 47, 49, 50, 51, 52
EvtGetEvent() 29, 31
evtPenPressureFlag 50, 51

F
FEP 18–19, 24, 81, 82, 88
FEP mode 15, 77
fldEnterEvent 4
FldHandleEvent() 4
FormGadgetHandlerType() 26
FrmDispatchEvent() 4
frmGadgetEnterEvent 26
FrmHandleEvent() 4
frmOpenEvent 9
FrmSetPenTracking() 26
frmUpdateEvent 23, 27

G
glfCapsLock 96
glfForceUpdate 96
glfNumLock 96
Graffiti 2 17, 21, 26, 55, 64

and pinlets 28–32
GraffitiReference.h 53
GraffitiShift.h 95
grfFtrInputAreaFlagCollapsible 76
grfFtrInputAreaFlagDynamic 75
grfFtrInputAreaFlagLandscape 76
grfFtrInputAreaFlagLefthanded 76
grfFtrInputAreaFlagLiveInk 75
grfFtrInputAreaFlagReverseLandscape 76
grfFtrInputAreaFlagReversePortrait 76
GSI 15
gsiCapsLock 96
GsiEnable() 98
GsiEnabled() 98
GsiInitialize() 98
gsiNumLock 96
GsiSetLocation() 99
GsiSetShiftState() 99
gsiShiftExtended 96
gsiShiftLower 96
gsiShiftNone 95
gsiShiftPunctuation 96
GsiShiftState 95
gsiShiftUpper 96
gsiStateChangeEvent 97
gsiTempShiftExtended 97
gsiTempShiftLower 97
gsiTempShiftNone 97
gsiTempShiftPunctuation 97
gsiTempShiftUpper 97

H
handwriting recognition engine 55
handwriting recognition pinlet 10
hard keys 6, 37
HWRClearInputState() 33, 59, 61
HWRConfig 21, 56, 57, 60
HWRConfigModeArea 56, 57

102 Exploring Palm OS: Input Services

hwreErrPointBufferFull 62
HWREngine.h 55
HWRGetInputMode() 27, 61, 92
HWRInit() 21, 62
hwrInkHintEraseAll 60
hwrInkHintKeepAll 60
hwrInkHintKeepLastOnly 60
hwrInkHintNone 60
HWRProcessStroke() 27–32, 57, 58, 59, 62, 64
HWRResult 28–32, 55, 58, 60, 62, 64
HWRSetInputMode() 27, 63, 93
HWRShowReferenceDialog() 24, 63, 93
HWRShutdown() 22, 64
HWRTimeout() 59, 64

I
input area 5
input area state 83, 85
input mode 14, 86, 92

K
kbdAccent 71
kbdAlpha 71
kbdDefault 71
kbdNumbersAndPunc 71
keyBitAntenna 65
keyBitContrast 65
keyBitCradle 65
keyBitHard1 65
keyBitHard2 66
keyBitHard3 66
keyBitHard4 66
keyBitPageDown 66
keyBitPageUp 66
keyBitPower 66
keyBitRockerCenter 66
keyBitRockerDown 66
keyBitRockerLeft 66
keyBitRockerRight 66
keyBitRockerUp 66
keyBitsAll 65
keyBitThumbWheelBack 66
keyBitThumbWheelDown 66

keyBitThumbWheelPush 66
keyBitThumbWheelUp 67
keyboard pinlet 10
Keyboard.h 71
KeyCurrentState() 65, 67
keyDownEvent 4, 5, 6, 12, 38, 40, 45, 46, 49, 69, 91
keyHoldEvent 47
keyHoldEvent5 47
KeyRates() 67, 68
KeySetMask() 41, 65, 69
keyUpEvent 6, 49
keyUpEvent5 49
kHWRMaxData 60
kMaxGsiHeight 95
kMaxGsiWidth 95
kMaxHWRModeAreas 60

L
libEvtHookKeyMask 45
live ink 33

N
numLockMask 46

O
optionKeyMask 46

P
Pen Input Manager 7, 73
penDownEvent 3, 4, 26, 50
PenInputMgr.h 73
penMoveEvent 4, 26, 51
penUpEvent 4, 26, 52, 62

handwriting recognition pinlets 29–32
PilotMain() 20
PINAltInputSystemEnabled() 13, 80
pinAPIVersion 75
pinAPIVersion1_0 75
pinAPIVersion1_1 75
pinAPIVersion2_0 75
pinCharFlagVirtual 56, 78, 90
PINClearPinletState() 81, 91
PINCountPinlets() 12, 81, 84, 85

Exploring Palm OS: Input Services 103

pinCreator 75
pinDefaultPinletHWR 73
pinDefaultPinletKeyboard 73
pinErrInvalidParam 74, 85
pinErrNoSoftInputArea 74, 85
pinErrPinletNotFound 74, 84, 87
PINFeedChar() 26, 90
PINFeedString() 91
pinFtrAPIVersion 7, 75
PINGetCurrentPinletName() 12, 24, 82
PINGetDefaultPinlet() 73, 82
PINGetInputAreaState() 83
PINGetInputMode() 15, 83, 92
PINGetPinletInfo() 12, 24, 77, 82, 84, 85
pinInputAreaClosed 74
pinInputAreaNone 35, 74
pinInputAreaOpen 74
pinInputModeCapsLock 76
pinInputModeCustomBase 77
pinInputModeCustomMax 77
pinInputModeExtended 77
pinInputModeHiragana 77
pinInputModeKatakana 77
pinInputModeNormal 76
pinInputModeNumeric 76
pinInputModePunctuation 76
pinInputModeShift 76
pinInputModeUnShift 77
pinlet ix, 10, 17, 89
Pinlet.h 89
PinletAPIType 20, 79, 89
PinletClearStateProcPtr() 32, 61, 89, 91
PinletGetInputModeProcPtr() 27, 89, 92
PinletSetInputModeProcPtr() 27, 90, 92
PinletShowReferenceDialogProcPtr() 24, 90, 93
pinPinletInfoComponentName 78
pinPinletInfoFEPAssoc 78
pinPinletInfoIcon 78
pinPinletInfoName 77
pinPinletInfoStyle 78
pinPinletStyleHandwriting 78
pinPinletStyleKeyboard 78
pinPinletStyleOther 78

PINSetDefaultPinlet() 34, 73, 84
PINSetInputAreaState() 9, 74, 85
PINSetInputMode() 15, 86, 92
PINShowReferenceDialog() 24, 86
PINSwitchToPinlet() 12, 20, 24, 34, 82, 87, 93
PointType 62
poweredOnKeyMask 46
PrefSetPreference() 37

R
referenceDefault 53

S
shift indicator 95
shift state 15
shiftKeyMask 46
slowestKeyDelayRate 67
slowestKeyPeriodRate 67
SOFT_CONSTANT_RESOURCE 24
softwareKeyMask 46
static input area 5
STRING_RESOURCE 23
sysAppLaunchCmdPinletLaunch 20, 79
sysFileTPinletApp 19
sysFtrNumInputAreaFlags 8, 75
SysGraffitiReferenceDialog() 53
SysHandleEvent() 38, 41
SysKeyboardDialog() 71
sysNotifyAltInputSystemDisabled 14, 79
sysNotifyAltInputSystemEnabled 14, 80
sysPinletLaunchCmdLoadProcPtrs 20, 79

T
TimGetTicks() 29, 31
TxtConvertEncoding() 26, 90, 91

U
UTF8 26, 90, 91

V
virtual character 4

104 Exploring Palm OS: Input Services

W
willGoUpKeyMask 46
WINDOW_CONSTRAINTS_RESOURCE 22, 24

winFocusGainedEvent 9, 10
WinGetCoordinateSystem() 56
winLayerPriority 24
winResizedEvent 21, 23, 86

	Input Services
	Table of Contents
	About This Document
	Who Should Read This Book
	What This Book Contains
	Changes to This Book

	The Exploring Palm OS Series
	Additional Resources

	Concepts
	Receiving Input
	Pen Taps
	Input Area
	Hardware Controls

	Working with the Dynamic Input Area
	Checking the Dynamic Input Area Features
	Programmatically Opening and Closing the Input Area
	Interacting with Pinlets
	Changing the Active Pinlet
	Querying Alternative Input Systems
	Setting the Pinlet Input Mode

	Summary

	Customizing the Dynamic Input Area
	How Pinlets Work
	Building Pinlets and Handwriting Recognition Engines
	Starting Up and Shutting Down a Pinlet
	Startup
	Starting up the Handwriting Recognition Engine
	Shutdown

	Presenting a User Interface
	Main Pinlet Form
	Pinlet Style
	Internal Pinlet Name
	Status Bar Icons and Name
	FEP Creator ID
	Help Dialog
	Input Mode Indicator

	Interpreting Pen Strokes
	Receiving Pen Events
	Sending Results to Pen Input Manager
	Considering the Input Modes
	Handling Multistroke Characters
	Implementing Live Ink

	Specifying the Default Pinlet
	Guidelines for Default Pinlets
	User Interface Considerations

	Summary

	Customizing Hardware Input
	Replacing a Built-in Application
	Remapping the Hard Keys
	Disabling the Hard Keys
	Summary

	Reference
	Low-Level Events Reference
	Event Constants
	Key Modifier Constants

	Events
	keyDownEvent
	keyHoldEvent
	keyHoldEvent5
	keyUpEvent
	keyUpEvent5
	penDownEvent
	penMoveEvent
	penUpEvent

	Graffiti 2 Reference
	Graffiti 2 Reference Functions and Macros
	SysGraffitiReferenceDialog

	Handwriting Recognition Engine
	Handwriting Recognition Engine Structures and Types
	CharData
	HWRConfig
	HWRConfigModeArea
	HWRResult

	Handwriting Recognition Engine Constants
	Ink Hint Constants
	Maximum Value Constants

	Handwriting Recognition Engine Functions and Macros
	HWRClearInputState
	HWRGetInputMode
	HWRInit
	HWRProcessStroke
	HWRSetInputMode
	HWRShowReferenceDialog
	HWRShutdown
	HWRTimeout

	Hard Keys Reference
	Hard Key Constants
	Key State Values
	Key Rate Constants

	Hard Key Functions and Macros
	KeyCurrentState
	KeyRates
	KeySetMask

	Keyboard
	Keyboard Functions and Macros
	SysKeyboardDialog

	Pen Input Manager
	Pen Input Manager Constants
	Default Pinlet Constants
	Input Area States
	Error Codes
	Feature and Version Constants
	Input Area Flags Constants
	Pinlet Input Modes
	Pinlet Information Constants
	Pinlet Styles
	Virtual Character Flag

	Pen Input Manager Launch Codes
	sysAppLaunchCmdPinletLaunch
	sysPinletLaunchCmdLoadProcPtrs

	Pen Input Manager Notifications
	sysNotifyAltInputSystemDisabled
	sysNotifyAltInputSystemEnabled

	Pen Input Manager Functions and Macros
	PINAltInputSystemEnabled
	PINClearPinletState
	PINCountPinlets
	PINGetCurrentPinletName
	PINGetDefaultPinlet
	PINGetInputAreaState
	PINGetInputMode
	PINGetPinletInfo
	PINSetDefaultPinlet
	PINSetInputAreaState
	PINSetInputMode
	PINShowReferenceDialog
	PINSwitchToPinlet

	Pinlet
	Pinlet Structures and Types
	PinletAPIType

	Pinlet Functions and Macros
	PINFeedChar
	PINFeedString

	Pinlet-Defined Functions
	PinletClearStateProcPtr
	PinletGetInputModeProcPtr
	PinletSetInputModeProcPtr
	PinletShowReferenceDialogProcPtr

	Shift Indicator
	Shift Indicator Constants
	Dimension Constants
	GsiShiftState
	Lock Flag Constants
	Temporary Shift State Constants

	Shift Indicator Events
	gsiStateChangeEvent

	Shift Indicator Functions and Macros
	GsiEnable
	GsiEnabled
	GsiInitialize
	GsiSetLocation
	GsiSetShiftState

	Index
	A
	C
	D
	E
	F
	G
	H
	I
	K
	L
	N
	O
	P
	R
	S
	T
	U
	V
	W

