

Programming Basics

Exploring Palm OS

®

Written by Greg Wilson
Edited by Jean Ostrem
Technical assistance from Jesse Donaldson, Dianne Hackborn, Joe Onorato, Jie Su

Copyright © 1996–2004, PalmSource, Inc. and its affiliates. All rights reserved. This technical documentation contains
confidential and proprietary information of PalmSource, Inc. (“PalmSource”), and is provided to the licensee (“you”)
under the terms of a Nondisclosure Agreement, Product Development Kit license, Software Development Kit license
or similar agreement between you and PalmSource. You must use commercially reasonable efforts to maintain the
confidentiality of this technical documentation. You may print and copy this technical documentation solely for the
permitted uses specified in your agreement with PalmSource. In addition, you may make up to two (2) copies of this
technical documentation for archival and backup purposes. All copies of this technical documentation remain the
property of PalmSource, and you agree to return or destroy them at PalmSource’s written request. Except for the
foregoing or as authorized in your agreement with PalmSource, you may not copy or distribute any part of this
technical documentation in any form or by any means without express written consent from PalmSource, Inc., and
you may not modify this technical documentation or make any derivative work of it (such as a translation,
localization, transformation or adaptation) without express written consent from PalmSource.

PalmSource, Inc. reserves the right to revise this technical documentation from time to time, and is not obligated to
notify you of any revisions.

THIS TECHNICAL DOCUMENTATION IS PROVIDED ON AN “AS IS” BASIS. NEITHER PALMSOURCE NOR ITS
SUPPLIERS MAKES, AND EACH OF THEM EXPRESSLY EXCLUDES AND DISCLAIMS TO THE FULL EXTENT
ALLOWED BY APPLICABLE LAW, ANY REPRESENTATIONS OR WARRANTIES REGARDING THIS TECHNICAL
DOCUMENTATION, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION
ANY WARRANTIES IMPLIED BY ANY COURSE OF DEALING OR COURSE OF PERFORMANCE AND ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT,
ACCURACY, AND SATISFACTORY QUALITY. PALMSOURCE AND ITS SUPPLIERS MAKE NO
REPRESENTATIONS OR WARRANTIES THAT THIS TECHNICAL DOCUMENTATION IS FREE OF ERRORS OR IS
SUITABLE FOR YOUR USE. TO THE FULL EXTENT ALLOWED BY APPLICABLE LAW, PALMSOURCE, INC. ALSO
EXCLUDES FOR ITSELF AND ITS SUPPLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR TORT
(INCLUDING NEGLIGENCE), FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL,
EXEMPLARY OR PUNITIVE DAMAGES OF ANY KIND ARISING OUT OF OR IN ANY WAY RELATED TO THIS
TECHNICAL DOCUMENTATION, INCLUDING WITHOUT LIMITATION DAMAGES FOR LOST REVENUE OR
PROFITS, LOST BUSINESS, LOST GOODWILL, LOST INFORMATION OR DATA, BUSINESS INTERRUPTION,
SERVICES STOPPAGE, IMPAIRMENT OF OTHER GOODS, COSTS OF PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES, OR OTHER FINANCIAL LOSS, EVEN IF PALMSOURCE, INC. OR ITS SUPPLIERS HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR IF SUCH DAMAGES COULD HAVE BEEN
REASONABLY FORESEEN.

PalmSource, Palm OS, Palm Powered, Graffiti, HotSync, and certain other trademarks and logos are trademarks or
registered trademarks of PalmSource, Inc. or its affiliates in the United States, France, Germany, Japan, the United
Kingdom, and other countries. These marks may not be used in connection with any product or service that does not
belong to PalmSource, Inc. (except as expressly permitted by a license with PalmSource, Inc.), in any manner that is
likely to cause confusion among customers, or in any manner that disparages or discredits PalmSource, Inc., its
licensor, its subsidiaries, or affiliates. All other product and brand names may be trademarks or registered trademarks
of their respective owners.

IF THIS TECHNICAL DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE SOFTWARE AND OTHER
DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT TO THE LICENSE AGREEMENTS
ACCOMPANYING THE SOFTWARE AND OTHER DOCUMENTATION.

Exploring Palm OS: Programming Basics
Document Number 3107-003
November 9, 2004
For the latest version of this document, visit
http://www.palmos.com/dev/support/docs/.

PalmSource, Inc.
1240 Crossman Avenue
Sunnyvale, CA 94089
USA
www.palmsource.com

http://www.palmos.com/dev/support/docs/
http://www.palmsource.com

Exploring Palm OS: Programming Basics

iii

Table of Contents

About This Document xv

The

Exploring Palm OS

 Series xv
Additional Resources xvi
Changes to This Document xvi

3107-002 . xvi
3107-001 .xvii

Part I: Concepts

1 Programming Palm OS in a Nutshell 3

Why Programming for Palm OS Is Different 3
Screen Size . 4
Quick Turnaround Expected 4
PC Connectivity . 5
Input Methods . . 5
Power . 5
Memory . 6
File System . 6
Backward Compatibility 6

Palm OS Programming Concepts 6
API Naming Conventions 8
Integrating Programs with the Palm OS Environment 9
Writing Robust Code 10

Uniquely Identifying Your Palm OS Application 11
Making Your Application Run on Different Devices 13

Processor Differences 13
Running New Applications on an Older Device 14
Compiling Older Applications with the Latest SDK 15

Programming Tools . 16
Where to Go from Here 16

2 Application Start and Stop 21

Launch Codes and Launching an Application 21

iv

 Exploring Palm OS: Programming Basics

Responding to Launch Codes 22
Responding to Normal Launch. 26
Responding to Other Launch Codes 28

Launching Applications Programmatically 29
Sublaunching in Another Process 31
Creating Your Own Launch Codes 32

Stopping an Application 32
Launch Code Summary 33
Application Manager Function Summary 41

3 Events and the Event Loop 43

Palm OS Events . 43
The Structure of an Event 44
The Application Event Loop 45

Retrieving Events 48
Handling System Events 49
Handling Menu Events 49
Handling Form Load Events: the AppHandleEvent() Function 50
Handling Form-Specific Events 51

Using Events to Communicate Between Threads 53
Communicating Between Threads in a Single Process 53
Communicating Between Threads in Different Processes . . 53

Palm OS-Generated Events 54
Summary of Event APIs 56

4 Notifications 59

Notification Overview. 59
Registering for a Notification 60
Writing a Notification Handler 62
Sleep and Wake Notifications. 63
Helper Notifications 66

When to Use the Helper API 67
Requesting a Helper Service 67
Implementing a Helper 70

Notification Summary. 72
Notification Function Summary 75

Exploring Palm OS: Programming Basics

v

Part II: Reference

5 Application Manager 79

Application Manager Structures and Types. 79
ARMAppLaunchPrefsType 79
ImportExportRecordParamsType 80
SysAppLaunchCmdCardType 82
SysAppLaunchCmdFailedAppNotifyType 82
SysAppLaunchCmdHandleSyncCallAppType 83
SysAppLaunchCmdInitDatabaseType 85
SysAppLaunchCmdOpenDBType 86
SysAppLaunchCmdPnpsType 86
SysAppLaunchCmdSaveDataType 87
SysAppLaunchCmdSyncCallApplicationTypeV10 87
SysAppLaunchCmdSystemResetType 88
PilotMainType . 88

Application Manager Constants 89
Expansion Card Launch Flags 89
Launch Preference Flags 89
Launch Preferences Structure Versions 90
Miscellaneous Application Manager Constants 90

Application Manager Functions and Macros 91
PilotMain . 91
SysAppLaunch . 92
SysAppLaunchLocal 93
SysAppLaunchRemote 94
SysAppLaunchV40 95
SysBroadcastActionCode 97
SysCurAppDatabase 97
SysCurAppDatabaseV40 98
SysGetStackInfo . 98
SysReset . 99
SysUIAppSwitch . 99
SysUIAppSwitchV40 100

vi

 Exploring Palm OS: Programming Basics

6 Common Launch Codes 103

Common Launch Codes Structures and Types 103
GoToParamsType 103

Common Launch Codes Constants 105
Launch Flags . 105
Miscellaneous Common Launch Codes Constants 107

Common Launch Codes 107
sysAppLaunchCmdAddRecord 107
sysAppLaunchCmdAntennaUp 109
sysAppLaunchCmdCardLaunch 109
sysAppLaunchCmdCountryChange 110
sysAppLaunchCmdDeleteRecord 110
sysAppLaunchCmdEventHook 111
sysAppLaunchCmdExportRecord 111
sysAppLaunchCmdExportRecordGetCount 112
sysAppLaunchCmdFailedAppNotify 112
sysAppLaunchCmdFepPanelAddWord 112
sysAppLaunchCmdFinalizeUI 113
sysAppLaunchCmdFind 113
sysAppLaunchCmdGoTo 114
sysAppLaunchCmdGoToURL 115
sysAppLaunchCmdHandleSyncCallApp 115
sysAppLaunchCmdImportRecord 116
sysAppLaunchCmdInitDatabase 116
sysAppLaunchCmdInitializeUI 117
sysAppLaunchCmdLookup 117
sysAppLaunchCmdLookupWord 118
sysAppLaunchCmdMoveRecord 119
sysAppLaunchCmdMultimediaEvent 119
sysAppLaunchCmdNormalLaunch 119
sysAppLaunchCmdNotify 120
sysAppLaunchCmdOpenDB 120
sysAppLaunchCmdPanelCalledFromApp 120
sysAppLaunchCmdPinletLaunch 121
sysAppLaunchCmdReturnFromPanel 121

Exploring Palm OS: Programming Basics

vii

sysAppLaunchCmdRun68KApp 122
sysAppLaunchCmdSaveData 122
sysAppLaunchCmdSlipLaunch 123
sysAppLaunchCmdSyncCallApplicationV10 123
sysAppLaunchCmdSyncNotify 123
sysAppLaunchCmdSyncRequest 124
sysAppLaunchCmdSyncRequestLocal 124
sysAppLaunchCmdSyncRequestRemote 125
sysAppLaunchCmdSystemLock 125
sysAppLaunchCmdSystemReset 125
sysAppLaunchCmdTimeChange 126
sysAppLaunchCmdURLParams 126
sysAppLaunchNppiNoUI 127
sysAppLaunchNppiUI 127
sysAppLaunchPnpsPreLaunch 128
sysAppLaunchPreDelete 128
sysCncPluginLaunchCmdGetPlugins 128
sysCncPluginLaunchCmdRegister 129
sysCncPluginLaunchCmdUnregister 129
sysCncWizardLaunchCmdEdit 130
sysDialLaunchCmdDial 130
sysDialLaunchCmdHangUp 130
sysIOSDriverInstall 131
sysIOSDriverRemove 131
sysLaunchCmdAppExited 131
sysLaunchCmdBoot 132
sysLaunchCmdFinalize 132
sysLaunchCmdGetGlobals 132
sysLaunchCmdGetModuleID 133
sysLaunchCmdGraphicsAccelInit 133
sysLaunchCmdInitialize 134
sysLaunchCmdInitRuntime 134
sysLibLaunchCmdGet68KSupportEntry 135
sysLaunchCmdProcessDestroyed 135
sysPackageLaunchAttachImage 135

viii

 Exploring Palm OS: Programming Basics

sysPackageLaunchGetInstantiate 136
sysPinletLaunchCmdLoadProcPtrs 136
sysSvcLaunchCmdGetQuickEditLabel 136
sysSvcLaunchCmdGetServiceID 137
sysSvcLaunchCmdGetServiceInfo 137
sysSvcLaunchCmdGetServiceList 137
sysSvcLaunchCmdSetServiceID 138

7 Event 139

Event Structures and Types 139
EventType . 139
EvtQueueHandle 141
SysAppLaunchCmdBackgroundType 141

Event Constants . 142
Event Flags . 142
Event Dispatch Types 142
Event Error Codes 142
Miscellaneous Event Constants 143

Event Launch Codes 144
sysAppLaunchCmdBackground 144

Event Functions and Macros 144
EvtAcquireEventQueue 144
EvtAddEventToEventQueue 145
EvtAddEventToQueue 146
EvtAddEventToQueueAtTime 146
EvtAddUniqueEventToEventQueue 147
EvtAddUniqueEventToQueue 148
EvtAddUniqueEventToQueueAtTime. 149
EvtCreateBackgroundThread 150
EvtDequeueKeyEvent 151
EvtDequeuePenPoint 152
EvtDequeuePenStrokeInfo. 152
EvtEnqueueKey . 153
EvtEventAvail . 153
EvtEventToString 154

Exploring Palm OS: Programming Basics

ix

EvtFinishLastEvent 154
EvtFlushKeyQueue 155
EvtFlushNextPenStroke 155
EvtFlushPenQueue 155
EvtGetEvent . . 156
EvtGetEventDescriptor 156
EvtGetFocusWindow 157
EvtGetPen. . 158
EvtGetPenNative. 158
EvtGetReplyEventQueue 159
EvtGetThreadEventQueue. 159
EvtKeydownIsVirtual 160
EvtKeyQueueEmpty 160
EvtLookupEventQueue 161
EvtPublishEventQueue 161
EvtReleaseEventQueue 162
EvtSetNullEventTick 163
EvtSetPenDispatchFunc 163
EvtSysEventAvail 164
EvtWakeup . 164
EvtWakeupWithoutNilEvent. 165

Application-Defined Functions 165
EvtPenDispatchFunc 165

8 Event Codes 169

Event Codes Structures and Types 169
eventsEnum . . 169

Event Codes Constants 170
Miscellaneous Event Codes Constants 170

Event Codes Events 171
appStopEvent . 171
nilEvent . 171
prgMakeCallback 172
prgUpdateDialog 172

x

 Exploring Palm OS: Programming Basics

9 Helper 173

Helper Structures and Types 173
HelperNotifyActionCodeType 173
HelperNotifyEnumerateListType 173
HelperNotifyEventType 175
HelperNotifyExecuteType 176
HelperNotifyValidateType 177

Helper Constants . . 178
Action Codes . 178
Miscellaneous Helper Constants 178

Helper Notifications 179
sysNotifyHelperEvent 179

10 Helper Service Class 181

Helper Service Class Structures and Types 181
HelperServiceEMailDetailsType 181
HelperServiceSMSDetailsType 182

Helper Service Class Constants 182
Helper Service Class IDs 182

11 Notification Manager 185

Notification Manager Structures and Types 185
SleepEventParamType 185
SysNotifyAppLaunchOrQuitType 186
SysNotifyDBAddedType 187
SysNotifyDBChangedType 188
SysNotifyDBCreatedType 190
SysNotifyDBDeletedType 191
SysNotifyDBDirtyType 192
SysNotifyDBInfoType 193
SysNotifyDisplayChangeDetailsType 194
SysNotifyLocaleChangedType 194
SysNotifyParamType 195
SysNotifyPenStrokeType 196
SysNotifyVirtualCharHandlingType 196

Chapter 5, “Low-Level Events Reference,”Notification Manager

Exploring Palm OS: Programming Basics

xi

Constants . 197
Reasons for Device Sleep 197
Database Changed Flags 198
Miscellaneous Notification Manager Constants 199

Notification Manager Notifications 200
cncNotifyConnectionStateEvent 200
sysExternalConnectorAttachEvent 200
sysExternalConnectorDetachEvent 201
sysNotifyAltInputSystemDisabled 201
sysNotifyAltInputSystemEnabled 201
sysNotifyAntennaRaisedEvent 202
sysNotifyAppServicesEvent 202
sysNotifyCardInsertedEvent 202
sysNotifyCardRemovedEvent 203
sysNotifyDBAddedEvent 204
sysNotifyDBChangedEvent 204
sysNotifyDBCreatedEvent 205
sysNotifyDBDeletedEvent 206
sysNotifyDBDirtyEvent 207
sysNotifyDeleteProtectedEvent 208
sysNotifyDeviceUnlocked 209
sysNotifyDisplayChangeEvent 209
sysNotifyEarlyWakeupEvent 210
sysNotifyForgotPasswordEvent 210
sysNotifyHostFSInitDone 211
sysNotifyLateWakeupEvent 211
sysNotifyLocaleChangedEvent 212
sysNotifyMenuCmdBarOpenEvent 213
sysNotifyPhoneEvent 213
sysNotifyPOSEMountEvent 214
sysNotifyResetFinishedEvent 214
sysNotifyRetryEnqueueKey 214
sysNotifySecuritySettingEvent 215
sysNotifySleepNotifyEvent 216
sysNotifySleepRequestEvent 217

xii

 Exploring Palm OS: Programming Basics

sysNotifySyncFinishEvent 218
sysNotifySyncStartEvent 218
sysNotifyTimeChangeEvent 218
sysNotifyVolumeMountedEvent 219
sysNotifyVolumeUnmountedEvent 219
Deprecated Notifications 220

Notification Manager Functions and Macros 220
SysNotifyBroadcast. 220
SysNotifyBroadcastDeferred 221
SysNotifyRegister 222
SysNotifyRegisterBackground 225
SysNotifyRegisterV40. 226
SysNotifyUnregister 229
SysNotifyUnregisterV40. 230

Application-Defined Functions 231
SysNotifyProcPtr 231

12 Palm Types 233

Palm Types Structures and Types 233
Boolean . 233
coord . . 233
Coord . 234
Enum16 . 234
Enum8 . 234
fcoord_t . 234
MemHandle . 235
MemPtr . 235
ProcPtr . 235
SignedEnum16 . 235
SignedEnum8 . 236
SysHandle . 236
VAddr . 236
wchar16_t . 236
wchar32_t . 237

Palm Types Constants 237

Exploring Palm OS: Programming Basics

xiii

Time Constants . 237
Boolean Values . 237
Miscellaneous Constants 238

Palm Types Functions and Macros 238
EndianSwap16 . 238
EndianSwap32 . 238
ErrConvertFrom68k 239
ErrConvertTo68k 239
P_MICROSECONDS_TO_NANOSECONDS 240
P_MILLISECONDS_TO_NANOSECONDS 240
P_MS2NS . . 241
P_NANOSECONDS_TO_MICROSECONDS 241
P_NANOSECONDS_TO_MILLISECONDS 241
P_NANOSECONDS_TO_SECONDS 242
P_NS2MS . . 242
P_NS2S . . 243
P_NS2US . 243
P_S2NS . . 243
P_SECONDS_TO_NANOSECONDS 244
P_US2NS . 244
RsrcEndianSwap16 245
RsrcEndianSwap32 245

13 System Event Manager 247

System Event Manager Structures and Types 248
EvtSetAutoOffCmd 248

System Event Manager Constants 248
EvtSetAutoOffTag 248

System Event Manager Functions and Macros 249
EvtEnableGraffiti. 249
EvtResetAutoOffTimer 249
EvtSetAutoOffTimer 250

Index 251

xiv

 Exploring Palm OS: Programming Basics

Exploring Palm OS: Programming Basics

xv

About This

Document

This book documents those aspects of Palm OS programming that
are shared by all Palm OS applications: the basic application
structure, the means by which Palm OS keeps your application
apprised of user actions, and the mechanism by which applications
communicate with one another and with the operating system.

The

Exploring Palm OS

 Series

This book is a part of the

Exploring Palm OS

 series. Together, the
books in this series document and explain how to use the APIs
exposed to third-party developers by the fully ARM-native versions
of Palm OS, beginning with Palm OS Cobalt. Each of the books in
the

Exploring Palm OS

 series explains one aspect of the Palm
operating system, and contains both conceptual and reference
documentation for the pertinent technology.

IMPORTANT:

The

Exploring Palm OS

 series is intended for
developers creating native applications for Palm OS Cobalt. If you
are interested in developing applications that work through PACE
and that also run on earlier Palm OS releases, read the latest
versions of the

Palm OS Programmer’s API Reference

 and

Palm

OS Programmer’s Companion

 instead.

As of this writing, the complete

Exploring Palm OS

 series consists of
the following titles:

•

Exploring Palm OS: Programming Basics

•

Exploring Palm OS: Memory, Databases, and Files

•

Exploring Palm OS: User Interface

•

Exploring Palm OS: User Interface Guidelines

 (coming soon)

•

Exploring Palm OS: System Management

•

Exploring Palm OS: Text and Localization

•

Exploring Palm OS: Input Services

About This Document

Additional Resources

xvi

 Exploring Palm OS: Programming Basics

•

Exploring Palm OS: High-Level Communications

•

Exploring Palm OS: Low-Level Communications

•

Exploring Palm OS: Telephony and SMS

•

Exploring Palm OS: Multimedia

•

Exploring Palm OS: Security and Cryptography

•

Exploring Palm OS: Creating a FEP

 (coming soon)

•

Exploring Palm OS: Porting Applications to Palm OS Cobalt

•

Exploring Palm OS: Palm OS File Formats

 (coming soon)

Additional Resources

• Documentation

PalmSource publishes its latest versions of this and other
documents for Palm OS developers at

http://www.palmos.com/dev/support/docs/

• Training

PalmSource and its partners host training classes for Palm OS
developers. For topics and schedules, check

http://www.palmos.com/dev/training

• Knowledge Base

The Knowledge Base is a fast, web-based database of
technical information. Search for frequently asked questions
(FAQs), sample code, white papers, and the development
documentation at

http://www.palmos.com/dev/support/kb/

Changes to This Document

This section describes the changes made in each version of this
document.

3107-002

Minor editorial corrections.

http://www.palmos.com/dev/support/docs/
http://www.palmos.com/dev/training
http://www.palmos.com/dev/support/kb/

About This Document

Changes to This Document

Exploring Palm OS: Programming Basics

xvii

3107-001

The first release of this document for Palm OS Cobalt, version 6.0.

About This Document

Changes to This Document

xviii

 Exploring Palm OS: Programming Basics

Part I
Concepts

The conceptual material in this part is organized into the following
chapters:

Programming Palm OS in a Nutshell 3

Application Start and Stop 21

Events and the Event Loop 43

Exploring Palm OS: Programming Basics

3

1
Programming Palm
OS in a Nutshell
This chapter is the place to start if you’re new to programming for
Palm OS® devices. It summarizes what’s unique about writing
applications for Palm Powered™ devices and tells you where to go
for more in-depth information. It covers:

Why Programming for Palm OS Is Different. 3

Palm OS Programming Concepts 6

Processor Differences 13

Uniquely Identifying Your Palm OS Application 11

Making Your Application Run on Different Devices . . . 13

Programming Tools 16

Where to Go from Here. 16

Read this chapter for a high-level introduction to Palm OS
programming. The rest of this book provides the details.

Why Programming for Palm OS Is Different
Like most programmers, you have probably written a desktop
application—an application that is run on a desktop computer such
as a PC or a Macintosh computer. Applications written for devices,
specifically Palm Powered devices, are a bit different from those
written for desktop computers because the Palm Powered device is
designed differently than a desktop computer. As well, the way in
which users interact with a device differs from the way they interact
with a desktop computer.

This section describes how these differences affect the design of a
Palm OS® application.

Programming Palm OS in a Nutshell
Why Programming for Palm OS Is Different

4 Exploring Palm OS: Programming Basics

Screen Size
Palm Powered device screens are often only 160x160 or 320x320
pixels, so the amount of information you can display at one time is
limited.

For this reason, you must design your user interface carefully with
different priorities and goals than are used for large screens. Strive
for a balance between providing enough information and
overcrowding the screen. See the book Exploring Palm OS: User
Interface Guidelines for more detailed information on designing the
user interface.

Note that the screen size is not necessarily fixed: some Palm
Powered devices allow the user to rotate the display or to collapse
the input area. If the user collapses the input area, there is more
space available to the application.

Quick Turnaround Expected
On a PC, users don’t mind waiting a few seconds while an
application loads because they usually plan to use the application
for an extended amount of time.

By contrast, the average device user uses a device application 15 to
20 times per day for much briefer periods of time, often just a few
seconds. Speed is therefore a critical design objective for devices and
is not limited to execution speed of the code. The total time needed
to navigate, select, and execute commands can have a big impact on
overall efficiency.

To maximize performance, the user interface should minimize
navigation between windows, opening of dialogs, and so on. The
layout of application screens needs to be simple so that the user can
pick up the product and use it effectively after a short time. It’s
especially helpful if the user interface of your application is
consistent with other applications on the device so users work with
familiar patterns.

The Palm OS development team has put together a set of design
guidelines that were used as the basis for the applications resident
on the device (Memo Pad, Address Book, and so on). These
guidelines are summarized in the book Exploring Palm OS: User
Interface Guidelines.

Programming Palm OS in a Nutshell
Why Programming for Palm OS Is Different

Exploring Palm OS: Programming Basics 5

PC Connectivity
PC connectivity is an integral component of the Palm Powered
device. The device comes with a cradle or cable that connects to a
desktop PC and with software for the PC that provides “one-
button” backup and synchronization of all data on the device to the
user’s PC.

Many Palm OS applications have a corresponding application on
the desktop. To share data between the device’s application and the
desktop’s application, you write a conduit. A conduit is a plug-in to
the HotSync® technology that runs when you press the HotSync
button. A conduit synchronizes data between the application on the
desktop and the application on the device. To write a conduit, you
use the Conduit Developer’s Kit (CDK). See the documentation
provided with the CDK for more information on writing conduits.

Input Methods
Most users of Palm Powered devices don’t have a full-sized
keyboard or mouse. When entering data directly into the device,
depending on the design of the device most users either use a pen—
by writing characters in the input area or by tapping on an on-
screen keyboard—or they type on a miniature “thumb board.”

While pen strokes, the keyboard dialog, or a miniature keyboard are
useful ways of entering data, they are not as convenient as using the
full-sized desktop computer with its keyboard and mouse.
Therefore, you should not require users to enter a lot of data on the
device itself.

Many Palm Powered devices support external keyboards, which are
sold separately. Do not rely on your users having an external
keyboard.

Power
Palm Powered devices run on batteries and thus do not have the
same processing power as a desktop PC. If your application needs
to perform a computationally-intensive task, see if there isn’t a way
to perform that task in the desktop application instead of the device
application.

Programming Palm OS in a Nutshell
Palm OS Programming Concepts

6 Exploring Palm OS: Programming Basics

Memory
Compared to a desktop computer, Palm Powered devices have
limited heap and storage space. Different devices within the family
of Palm Powered devices might have on the order of 16 Mb to 128
Mb of dynamic memory and storage available, in total. The device
does not have a disk drive or PCMCIA support.

File System
Except when working with external storage media (SD cards,
Memory Sticks, and the like), Palm OS does not use a traditional file
system. You store data in memory chunks called records, which are
grouped into databases. A database is analogous to a file. The
difference is that data is broken down into multiple records instead
of being stored in one contiguous chunk. To save space, you edit a
database in place in memory instead of creating it in RAM and then
writing it out to storage.

Applications written specifically for Palm OS Cobalt can take
advantage of the advanced capabilities of the Schema database
format. Schema databases have many of the features of relational
databases and give applications greater power and flexibility in
working with their data.

Backward Compatibility
Not all Palm Powered devices run the same version of Palm OS.
Users are not expected to upgrade their versions of Palm OS as they
would an operating system on a desktop computer. New versions of
the operating system are designed in such a way that applications
that run on a previous version will most likely run on the newer
version as well. This allows you to write applications that can be
deployed on a wider variety of Palm Powered devices, increasing
the potential market for your applications. See “Making Your
Application Run on Different Devices” on page 13 for details.

Palm OS Programming Concepts
Palm OS applications are event-driven programs that are most often
written in C. Although Palm OS Cobalt supports multiple threads

Programming Palm OS in a Nutshell
Palm OS Programming Concepts

Exploring Palm OS: Programming Basics 7

and processes, the user primarily interacts with only one program at
a time. To successfully build a Palm OS application, you have to
understand how the system itself is structured and how to structure
your application.

• Each application has a PilotMain() function that is
equivalent to main in C programs. To launch an application,
the system calls PilotMain() and sends it a launch code.
The launch code may specify that the application is to
become active and display its user interface (called a normal
launch), or it may specify that the application should simply
perform a small task and exit without displaying its user
interface.

The sole purpose of the PilotMain() function is to receive
launch codes and respond to them. (See Chapter 2,
“Application Start and Stop,” on page 21.)

• Palm OS applications are largely event-driven and so contain
an event loop; however, this event loop is only started in
response to the normal launch. Your application may
perform work outside the event loop in response to other
launch codes. Chapter 3, “Events and the Event Loop,” on
page 43, describes the main event loop.

• Most Palm OS applications contain a user interface made up
of forms, which are analogous to windows in a desktop
application. The user interface may contain both predefined
UI elements (sometimes referred to as UI objects), and
custom UI elements. (See Exploring Palm OS: User Interface)

• All applications should use the memory and data
management facilities provided by the system. (See Exploring
Palm OS: Memory, Databases, and Files)

• Applications employ operating system services by calling
Palm OS functions. Palm OS consists of several “managers,”
which are groups of functions that work together to
implement a feature. As a rule, all functions that belong to
one manager use the same prefix and work together to
implement a certain aspect of functionality.

Managers are available to, for example, generate sounds,
send alarms, perform network communication, and beam
information through an infrared port. A good way to find out
the capabilities of the Palm OS is to scan the tables of

Programming Palm OS in a Nutshell
Palm OS Programming Concepts

8 Exploring Palm OS: Programming Basics

contents of the various books that make up the Exploring
Palm OS series.

API Naming Conventions
The following conventions are used throughout most of the Palm
OS API:

• Functions start with a capital letter.

• All functions belonging to a particular manager start with a
short prefix, such as “Ctl” for control functions or “Ftr” for
functions that are part of the Feature Manager.

• Events and other constants start with a lowercase letter.

• Structure elements start with a lowercase letter.

• Typedefs start with a capital letter and end with “Type” (for
example, DateFormatType, found in DateTime.h).

• Notifications start with a prefix (most often, “sys”) followed
by the word “Notify.” For example,
sysNotifyAppLaunchingEvent.

• Launch codes have a prefix followed by “LaunchCmd,” as in
sysAppLaunchCmdNormalLaunch.

• Members of an enumerated type start with a lowercase prefix
followed by a name starting with a capital letter, as follows:

enum formObjects {
 frmFieldObj,
 frmControlObj,
 frmListObj,
 frmTableObj,
 frmBitmapObj,
 frmLineObj,
 frmFrameObj,
 frmRectangleObj,
 frmLabelObj,
 frmTitleObj,
 frmPopupObj,
 frmGraffitiStateObj,
 frmGadgetObj};
 typedef enum formObjects FormObjectKind;

Programming Palm OS in a Nutshell
Palm OS Programming Concepts

Exploring Palm OS: Programming Basics 9

Integrating Programs with the Palm OS
Environment
When users work with a Palm OS application, they expect to be able
to switch to other applications, have a way to enter data right on the
device, access information with the global find, receive alarms, and
so on. Your application will integrate well with others if you follow
the guidelines in this section. Integrate with the system software as
follows:

• Handle sysAppLaunchCmdNormalLaunch

• Handle or ignore other application launch codes as
appropriate. For more information, see Chapter 2,
“Application Start and Stop,” on page 21.

• Be sure your application uses the system preferences for
numeric formats, date, time, and start day of week. See
Chapter 3, “Preferences,” on page 37 of Exploring Palm OS:
System Management for instructions on how to do so.

• Don’t obscure shift indicators.

In addition, follow these rules:

• Store state information in the application preferences
database, not in the application record database. See Chapter
3, “Preferences,” on page 37 of Exploring Palm OS: System
Management for more information on preferences.

• If your application uses the serial port, be sure to close the
port when you no longer need it so that the HotSync
application can use it.

• Ensure that your application properly handles the global
find. Generally, searches and sorts aren’t case sensitive.

• If your application supports private records, be sure they are
unavailable to the global find when they should be hidden.

• Integrate with the Launcher application by providing an
application name, two application icons, and a version string
as described in Chapter 11, “Integrating with the Application
Launcher,” on page 167 of Exploring Palm OS: User Interface.

• Follow the guidelines detailed in Exploring Palm OS: User
Interface Guidelines.

Programming Palm OS in a Nutshell
Palm OS Programming Concepts

10 Exploring Palm OS: Programming Basics

• Ensure that your application properly handles system
messages during and after synchronization.

• Ensure that protected records and masked record contents
are not displayed if the user has so indicated.

• Ensure that your application uses a consistent default state
when the user enters it:

– Some applications have a fixed default; for example, the
Date Book always displays the current day when
launched.

– Other applications return to the place the user exited last.
In that case, remember to provide a default if that place is
no longer available. Because of HotSync operations and
Preferences, don’t assume the application data is the same
as it was when the user looked at it last.

• If your application uses sounds, be sure it uses the Warning
and Confirmation sounds properly.

Writing Robust Code
To make your programs more robust and to increase their
compatibility with the widest variety of Palm OS products, it is
strongly recommended that you follow the guidelines and practices
outlined in this section.

• Check assumptions.

You can write defensive code by making frequent use of the
DbgOnlyFatalErrorIf() macro, which enables your
debug builds to check assumptions. Many bugs are caught in
this way, and these “extra” calls don’t weigh down your
shipping application. You can keep more important checks in
the release builds by using the ErrFatalErrorIf()
function.

• Avoid continual polling.

To conserve the battery, avoid continual polling. If
appropriate, take advantage of the keyUpEvent or the
facilities for performing event-based pen tracking to avoid
polling altogether.

Programming Palm OS in a Nutshell
Uniquely Identifying Your Palm OS Application

Exploring Palm OS: Programming Basics 11

• Avoid reading and writing to NULL (or low memory).

In Palm OS Cobalt reading and writing to NULL will cause
your application to crash. When calling functions that
allocate memory, at least make sure that the pointers they
return are non-NULL. (If you can do better validation than
that, so much the better.) Also check that pointers your code
obtains from structures or other function calls are not NULL.
Consider adding to your debug build a #define that
overrides the memory management functions with a version
that validates the arguments passed to it.

• Check result codes when allocating memory.

Because various Palm Powered devices have larger or
smaller amounts of available memory, it is always a good
idea to check result codes carefully when allocating memory.

• Avoid making assumptions about the screen.

The size and shape of the screen, the screen buffer, and the
number of pixels per bit aren’t set in stone—they vary from
one Palm Powered device to another. Don’t hack around the
windowing and drawing functions; the functions provided
are optimized to make best use of the underlying hardware
and to allow multiple applications and system services to
share it.

• Built-in applications can change.

The format and size of the preferences (and data) for the
built-in applications is subject to change. Write your code
defensively, and consider disabling your application if it is
run on an untested version of the OS.

Uniquely Identifying Your Palm OS Application
Each Palm OS application—in fact, each Palm OS database—is
uniquely identified by a combination of its name and a four-byte
creator ID. By assigning the application’s creator ID to all of the
databases related to an application, you associate those databases
with the application. The OS takes advantage of this; for instance,
the Launcher’s Info panel uses the creator ID to calculate the total
memory used by each application.

Programming Palm OS in a Nutshell
Uniquely Identifying Your Palm OS Application

12 Exploring Palm OS: Programming Basics

Each database on the Palm Powered device has a type as well as a
creator ID. The database type allows applications and the OS to
distinguish among multiple databases with the same creator ID. For
applications, set the database type to sysFileTApplication
('appl'). For each database associated with an application, set the
database type to any other value (as long as it isn’t composed
entirely of lowercase letters, since those are reserved by
PalmSource). Certain predefined types—such as 'appl'
(application) or 'libr' (library)—have special meaning to Palm
OS. For instance, the Launcher looks at the database type to
determine which databases are applications.

Types and creator IDs are case-sensitive and are composed of four
ASCII characters in the range 32-126 (decimal). Types and creator
IDs consisting of all lowercase letters are reserved for use by
PalmSource, so any type or creator ID that you choose must contain
at least one uppercase letter, digit, or symbol1.

To protect your application from conflicting with others, you need
to register your creator ID with PalmSource, which maintains a
database of registered IDs. To choose and register a creator ID, see
this web page:

http://dev.palmos.com/creatorid/

Note that you don’t need to register database types as you do
creator IDs. Each creator ID in effect defines a new space of types, so
there is no connection between two databases with type 'Data' but
with different creator IDs.

IMPORTANT: Applications with identical creator IDs cannot
coexist on the same device; during installation the new application
will replace the existing application that possesses the same
creator ID. Further, the new application could well corrupt any
databases that were associated with the preexisting application.
For this reason, all applications should have their own unique
creator ID.

1. Palm has also reserved 'pqa '.

http://dev.palmos.com/creatorid/

Programming Palm OS in a Nutshell
Making Your Application Run on Different Devices

Exploring Palm OS: Programming Basics 13

Finally, creator IDs aren’t used only to identify databases. They are
also used, among other things, when getting or setting application
preferences, to register for notifications, and to identify features.

Making Your Application Run on Different
Devices

There are many different devices that run Palm OS, and each may
have a different version of the operating system installed on it.
Users are not expected to upgrade the Palm OS as they would an
operating system on a desktop computer. This fact makes backward
compatibility more crucial for Palm OS applications.

This section describes how to make sure your application runs on as
many devices as possible by discussing:

• Processor Differences

• Running New Applications on an Older Device

• Compiling Older Applications with the Latest SDK

Processor Differences
The original Palm OS devices—and, as of this writing, the majority
of the installed base—employ a Motorola Dragonball™ processor
that is part of the 68000 family. Palm Powered devices running Palm
OS Garnet and Palm OS Cobalt use an ARM™ processor (available
from a variety of manufacturers). To ensure compatibility, Palm OS
Garnet introduced the Palm OS Application Compatibility
Environment (PACE), which emulates the instruction set from the
earlier class of Palm Powered devices and allows most applications
written for those devices to continue to run on an ARM-based
device. PACE is present in Palm OS Cobalt as well. While Palm OS
Garnet only allowed developers to create applications that worked
through PACE, however, Palm OS Cobalt gives developers the
choice of developing a traditional Palm OS application that runs
through PACE, or developing an application that runs “natively”—
one that is compiled for the ARM processor and that can directly
call the operating system.

Programming Palm OS in a Nutshell
Making Your Application Run on Different Devices

14 Exploring Palm OS: Programming Basics

How you choose to develop your Palm OS applications depends on
a number of factors. Perhaps most important is what devices you
are targeting. If you want to target the largest possible set of
customers you’ll likely want to write your application to be
compatible with a number of earlier versions of Palm OS. If you do
this, however, be aware that:

• Applications written expressly for Palm OS Cobalt will run
faster than those that must work through PACE.

• PACE does not provide full access to many of the new
features introduced in Palm OS Cobalt. Schema databases,
advanced graphics, and multithreading are just some of the
things you give up by not targeting the Palm OS Cobalt
native environment.

IMPORTANT: The Exploring Palm OS series is intended for
developers creating native applications for Palm OS Cobalt. If you
are interested in developing applications that work through PACE
and that also run on earlier Palm OS releases, you should be
reading the latest versions of the Palm OS Programmer’s API
Reference and Palm OS Programmer’s Companion instead.

Running New Applications on an Older Device
PalmSource works hard to maintain binary compatibility between
versions of Palm OS. Even with the switch from the 68K-based
Dragonball processor to an ARM-based one compatibility is largely
maintained through the use of the Palm OS Application
Compatibility Environment (PACE). Because of this, applications
can be written that will run on all versions of the operating system
(provided the application doesn’t use any features specific to one
version of the operating system). In other words, if you wrote your
application using only features available in Palm OS 1.0, then your
application should run on all devices. If you use 2.0 features, your
application won’t run on the earliest Palm Powered devices, but it
will run on all those running Palm OS 2.0 and later.

Programming Palm OS in a Nutshell
Making Your Application Run on Different Devices

Exploring Palm OS: Programming Basics 15

NOTE: As explained in the previous section, this discussion is
aimed at applications written using the “68K” APIs—those APIs
exposed in Palm OS Cobalt via PACE. Applications written to run
natively on the ARM processor will not run on any Palm Powered
device running a version of Palm OS prior to 6.0.

How can you tell which features are available in each version of the
operating system? There are a couple of way to do so:

• The Palm OS Programmer’s API Reference has a “Compatibility
Guide” appendix. This guide lists the features and functions
introduced in each operating system version greater than 1.0.

• The header file CoreTraps.h (SysTraps.h on versions of
Palm OS before 3.5) lists all of the system traps available.
Traps are listed in the order in which they were introduced to
the system, and comments in the file clearly mark where each
operating system version begins.

Programmatically, you can use the Feature Manager to determine
which features are available on the system the application is
running on. Note that you can’t always rely on the operating system
version number to guarantee that a feature exists. For example,
Palm OS version 3.2 introduced wireless support, but not all Palm
Powered devices have that capability. Thus, checking that the
system version is 3.2 (or greater) does not guarantee that wireless
support exists. Consult the “Compatibility Guide” in the Palm OS
Programmer’s API Reference to learn how to check for the existence of
each specific feature.

Compiling Older Applications with the Latest
SDK
As a rule, all Palm OS applications developed with an earlier
version of the Palm OS platform SDK should run error-free on the
latest release. This rule applies to Palm OS Cobalt as long as your
application continues to use the “68K” APIs supported by PACE.
Converting an existing application so that it runs natively on Palm
OS Cobalt is a somewhat more involved task; see Exploring Palm OS:
Porting Applications to Palm OS Cobalt for a complete discussion of
this process.

Programming Palm OS in a Nutshell
Programming Tools

16 Exploring Palm OS: Programming Basics

If you want to compile your older application under the latest
release, you need to watch out for functions with a changed API. For
any of these functions, the old function still exists with a suffix
noting the last release that fully supports it, such as “V40” for Palm
OS 4.0.

When a given function has been so renamed, you have two options:

• Change the function name in your code to keep using the old
API. Your application will then run error free on the newer
and the older devices.

• Update your application to use the new API. The application
will then run error free and have access to some new
functionality; however, it will no longer run on older devices
that use prior releases of the OS.

Programming Tools
Several tools are available that help you build, test, and debug Palm
OS applications. The set of tools you can choose from is large and
growing: see http://www.palmos.com/dev/tools/ for
information about your development language and tool options.

The book Palm OS Programming Development Tools Guide describes
the PalmSource-provided debugging tools available on your
development platform. The Palm OS Developer Suite has extensive
online help. For information on using third-party tools, refer to the
documentation (printed or electronic, depending upon the tool)
supplied with the tool.

Where to Go from Here
This chapter provided you only with a general outline of the issues
involved in writing an application to run on Palm OS Cobalt. To
learn the specifics, refer to the following resources:

• This book

The rest of this book explores some of the most basic Palm
OS programming concepts. Among other things, the next
three chapters cover:

– the way in which applications are started (“launched”),

http://www.palmos.com/dev/tools/

Programming Palm OS in a Nutshell
Where to Go from Here

Exploring Palm OS: Programming Basics 17

– how applications can be instructed to perform a service
on behalf of another,

– the means by which applications are informed of user
actions, and the basic mechanism employed by Palm OS
applications to process those actions,

– how applications can register for and receive notification
of important operating system events.

• Exploring Palm OS: Memory, Databases, and Files

As the title implies, this book covers all aspects of the Palm
OS memory system. This includes the way in which Palm
Powered devices dedicate a portion of their memory to serve
as what in a desktop computer would be secondary, or disk,
storage. On the device, programs and data are stored in
databases; these databases can either be structured, like a
traditional computer database, or more free-form, like a
traditional file. Palm OS doesn’t provide a traditional file
system except when working with “external” storage (which
on a typical Palm OS device takes the form of an SD card or
Memory Stick); this book shows you how to interact with
these storage devices as well.

• Exploring Palm OS: User Interface

Nearly all Palm OS programs have some sort of user
interface, and this book goes into great detail about how you
create such an interface. This book covers the nuts-and-bolts
of constructing and manipulating your user interface: for
more general advice on how best to interact with the user, see
Exploring Palm OS: User Interface Guidelines.

• Exploring Palm OS: System Management

This book discusses all of the “miscellaneous” system
functions: threading, dates and times, floating point, alarms,
features and preferences, and so on. It also covers hardware
interactions: the real-time clock, expansion media, system
boot and reset, battery power, and the like.

• Other books in the Exploring Palm OS series

The remaining books in the series provide more specialized
information that might not be of interest to all Palm OS
application developers. These books include:

– Exploring Palm OS: Text and Localization

Programming Palm OS in a Nutshell
Where to Go from Here

18 Exploring Palm OS: Programming Basics

– Exploring Palm OS: Input Services

– Exploring Palm OS: High-Level Communications

– Exploring Palm OS: Low-Level Communications

– Exploring Palm OS: Multimedia

– Exploring Palm OS: Telephony and SMS

– Exploring Palm OS: Security and Cryptography

– Exploring Palm OS: Creating a FEP

– Exploring Palm OS: Porting Applications to Palm OS Cobalt

– Exploring Palm OS: Palm OS File Formats

– Introduction to Palm OS Tools

– Palm OS Compiler Tools Guide

– Palm OS Compiler Reference

– Palm OS Debugger Guide

– Palm OS Resource Tools Guide

– Palm OS Simulator Guide

– Virtual Phone Guide

• Example applications

The Palm OS Cobalt SDK contains a number of sample
applications that can be a valuable aid when you develop
your own programs. The software development kit provides
a royalty-free license that permits you to use any or all of the
source code from the examples in your application.

• Conduit Development Kit and documentation

If you need to write a conduit for your application, see the
documentation provided with the Conduit Development Kit.

• Training

PalmSource offers training in Palm OS programming. See the
Training portion of the PalmSource website at http://
www.palmos.com/dev/training/.

• PalmSource website

The PalmSource website is an invaluable source of
information about PalmSource, the Palm OS, and Palm OS
application development. From this website you can

http://www.palmos.com/dev/training/
http://www.palmos.com/dev/training/

Programming Palm OS in a Nutshell
Where to Go from Here

Exploring Palm OS: Programming Basics 19

download SDKs, tools, and documentation. You can learn
about the various device manufacturers and the devices they
produce. And you can get help with your programming
questions, either by consulting the PalmSource Knowledge
Base or by posting a question to one of the many Internet
forums dedicated to Palm OS programming. For all of this
and more, go to http://www.palmos.com/dev/.

http://www.palmos.com/dev/

Programming Palm OS in a Nutshell
Where to Go from Here

20 Exploring Palm OS: Programming Basics

Exploring Palm OS: Programming Basics 21

2
Application Start
and Stop
On desktop computers, an application starts up when a user
launches it and stops when the user chooses the Exit or Quit
command. These things occur a little bit differently on a Palm
Powered™ device. A Palm OS application does launch when the
user requests it, but it may also launch in response to some other
user action, such as a request by the global find facility. Palm OS
applications don’t have an Exit command; instead they exit when a
user switches to another application.

This chapter describes how an application launches, how an
application stops, and the code you must write to perform these
tasks properly. This chapter covers:

Launch Codes and Launching an Application 21

Responding to Launch Codes 22

Launching Applications Programmatically 29

Stopping an Application 32

Launch Code Summary 33

Application Manager Function Summary 41

This chapter does not cover the main application event loop. The
event loop is covered in Chapter 3, “Events and the Event Loop.”

Launch Codes and Launching an Application
An application launches when its PilotMain() function is called
with a launch code. Launch codes are a means of communication
between the Palm OS and the application or between two
applications.

Application Start and Stop
Responding to Launch Codes

22 Exploring Palm OS: Programming Basics

For example, an application typically launches when a user presses
one of the buttons on the device or selects an application icon from
the Application Launcher. When this happens, the system generates
the launch code sysAppLaunchCmdNormalLaunch, which tells
the application to perform a full launch and display its user
interface.

Other launch codes specify that the application should perform
some action but not necessarily become the current application (the
application the user sees). A good example of this is the launch code
used by the global find facility. The global find facility allows users
to search all databases for a certain record, such as a name. In this
case, it would be very wasteful to do a full launch—including
launching the user interface—of each application only to access the
application’s databases in search of that item. Using a launch code
avoids this overhead.

Each launch code may be accompanied by two types of information:

• A parameter block, a pointer to a launch-code-specific
structure that contains several parameters. These parameters
contain information necessary to handle the associated
launch code.

• Launch flags indicate how the application should behave.
For example, a flag could be used to specify whether the
application should display UI or not. See “Launch Flags” on
page 105 for a list of standard Palm OS launch flags.

A complete list of all launch codes is provided at the end of this
chapter in the section “Launch Code Summary.” That section
contains links into where each launch code is fully described.

Responding to Launch Codes
Your application should respond to launch codes in a function
named PilotMain(). PilotMain() is the entry point for all
applications.

When an application receives a launch code, it must first check
whether it can handle this particular code. For example, only
applications that have text data should respond to a launch code
requesting a string search. If an application can’t handle a launch

Application Start and Stop
Responding to Launch Codes

Exploring Palm OS: Programming Basics 23

code, it exits without failure, returning errNone. Otherwise, it
performs the action immediately and returns.

Listing 2.1 shows selected parts of PilotMain() from the
Datebook application as an example.

Listing 2.1 Parts of Datebook’s PilotMain() function

uint32_t PilotMain (uint16_t cmd, MemPtr cmdPBP, uint16_t launchFlags) {
 ExgPassableSocketType* passableSocketP;
 ExgSocketType* socketP;
 DmOpenRef dbP;
 uint32_t cursorID = dbInvalidCursorID;
 uint32_t value;
 uint32_t defaultForm;
 uint16_t mode;
 Boolean launched;
 status_t error = errNone; // the error returned by PilotMain

 // Get application dbP
 if ((error = SysGetModuleDatabase(SysGetRefNum(), &gApplicationDbID,
 &gApplicationDbP)) < errNone)
 return error;

 // Assign the local device time zone
 gettimezone(gDeviceTimeZone, TZNAME_MAX);

 switch (cmd){
 // Launch code sent by the launcher or the datebook button.
 case sysAppLaunchCmdNormalLaunch:
 error = PrvStartApplication ();
 if (error < errNone)
 return (error);

 // If the user previously left the Datebook while viewing the agenda,
 // return there. Otherwise, go to the day view
 error = FtrGet (sysFileCDatebook, recentFormFeature, &value);
 if (error)
 defaultForm = defaultRecentForm;
 else
 defaultForm = value;

 FrmGotoForm(gApplicationDbP, (uint16_t) defaultForm);

 PrvEventLoop ();
 PrvStopApplication ();
 break;

Application Start and Stop
Responding to Launch Codes

24 Exploring Palm OS: Programming Basics

 case sysAppLaunchCmdExgGetData:
 // Handle a get request
 ...

 case appLaunchCmdExgGetFullLaunch:
 ...

 case appLaunchCmdAlarmEventGoto:
 // This action code is a DateBook specific custom launch code.
 // It will always require that the app launches as it is a result
 // of a SysUIAppSwitch call.
 ...

 case sysAppLaunchCmdGoTo:
 // This action code might be sent to the app when it's already running
 // if the use hits the "Go To" button in the Find Results dialog box.
 launched = launchFlags & sysAppLaunchFlagNewGlobals;
 if (launched) {
 // New start
 error = PrvStartApplication ();
 if (error < errNone)
 break;

 PrvGoToItem ((GoToParamsPtr) cmdPBP, launched);

 PrvEventLoop ();
 PrvStopApplication ();
 } else
 // application was already started
 PrvGoToItem ((GoToParamsPtr) cmdPBP, launched);
 break;

 case sysAppLaunchCmdFind:
 // Launch code sent when the user is looking for some text.
 ...

 case sysAppLaunchCmdSyncNotify:
 // Launch code sent by sync application to notify the datebook
 // application that its database was been synced.
 ...

 case sysAppLaunchCmdNotify:
 ...

 case sysAppLaunchCmdSystemReset:
 // This action code is sent after the system is reset.
 ...

Application Start and Stop
Responding to Launch Codes

Exploring Palm OS: Programming Basics 25

 case sysAppLaunchCmdExgAskUser:
 ...

 case sysAppLaunchCmdExgReceiveData:
 // Receive the record. The app will parse the data and add it
 // to the database.
 ...

 case sysAppLaunchCmdExgPreview:
 ...

 case sysAppLaunchCmdInitDatabase:
 // This action code is sent by the DesktopLink server when it creates
 // a new database. We will initialize the new database.
 ...

 case sysAppLaunchCmdAlarmTriggered:
 // Launch code sent by Alarm Manager to notify the datebook
 // application that an alarm has triggered.
 ...

 case sysAppLaunchCmdAttention:
 // Launch Code sent by Attention Manager to let Datebook draw
 // alarmed events.
 ...

 case sysAppLaunchCmdExportRecordGetCount:
 ...

 case sysAppLaunchCmdExportRecord:
 ...

 case sysAppLaunchCmdImportRecord:
 ...

 case sysAppLaunchCmdDeleteRecord:
 ...
 default:
 break;
 }

 return error;
}

Application Start and Stop
Responding to Launch Codes

26 Exploring Palm OS: Programming Basics

NOTE: The above code calls SysGetModuleDatabase() and
gettimezone() for every launch code. Programs should only
call functions like these for those launch codes in which the
values are needed: both of these calls result in an IPC
(interprocess communcation), which should be avoided whenever
possible.

Responding to Normal Launch
When an application receives the launch code
sysAppLaunchCmdNormalLaunch, it begins with a start routine,
then goes into an event loop, and finally exits with a stop routine.
(The event loop is described in Chapter 3, “Events and the Event
Loop.” The stop routine is shown in the section “Stopping an
Application” at the end of this chapter.)

During the start routine, your application should perform these
actions:

1. Get system-wide preferences (for example for numeric or
date and time formats) and use them to initialize global
variables that will be referenced throughout the application.

2. Find the application database. If none exists, create it and
initialize it.

3. Get application-specific preferences and initialize related
global variables.

4. Initialize any other global variables.

As you saw in Listing 2.1, the Datebook application responds to
sysAppLaunchCmdNormalLaunch by calling a function named
PrvStartApplication(). Listing 2.2 shows this function.

Listing 2.2 PrvStartApplication() from Datebook

static status_t PrvStartApplication(void) {
 status_t err;
 uint16_t mode;
 DateTimeType dateTime;
 DatebookPreferenceType prefs;
 int16_t prefsVersion;
 time_t rangeStartTime;

Application Start and Stop
Responding to Launch Codes

Exploring Palm OS: Programming Basics 27

 time_t rangeEndTime;

 // Load the ToDo application as a shared lib. Doing this, the ToDo
 // globals will be kept all along the Datebook execution
 err = SysLoadModule(sysFileTApplication, sysFileCToDo, 0, 0, &ToDoRefNum);
 ErrNonFatalDisplayIf(err < errNone,
 "Unable to load the ToDo application as a shared library");

 // Determime if secret record should be shown.
 PrivateRecordVisualStatus = CurrentRecordVisualStatus =
 (privateRecordViewEnum)PrefGetPreference(prefShowPrivateRecords);

 mode = (PrivateRecordVisualStatus == hidePrivateRecords) ?
 dmModeReadWrite : (dmModeReadWrite | dmModeShowSecret);

 // Get the time formats from the system preferences.
 TimeFormat = (TimeFormatType)PrefGetPreference(prefTimeFormat);

 // Get the date formats from the system preferences.
 LongDateFormat = (DateFormatType)PrefGetPreference(prefLongDateFormat);
 ShortDateFormat = (DateFormatType)PrefGetPreference(prefDateFormat);

 // Get the starting day of the week from the system preferences.
 StartDayOfWeek = (uint16_t) PrefGetPreference(prefWeekStartDay);

 // Get today's date.
 TimSecondsToDateTime (TimGetSeconds(), &dateTime);
 Date.year = dateTime.year - firstYear;
 Date.month = dateTime.month;
 Date.day = dateTime.day;

 // Find the application's data file. If it don't exist create it.
 err = DateDBOpenDatabase (&ApptDB, mode);
 if (err < errNone)
 return err;

 // Create initial cursor based on current date and a 1-day range (day /
agenda view)
 CalculateStartEndRangeTimes(&Date, 1, &rangeStartTime, &rangeEndTime, NULL);
 err = ApptDBOpenOrRequeryWithNewRange(ApptDB, &gApptCursorID,
 rangeStartTime, rangeEndTime, true);
 if (err < errNone)
 return err;

 PIMAppProfilingBegin("PrvStartApplication, TimeZoneToAscii")

 // Get the devivce localized time zone name

Application Start and Stop
Responding to Launch Codes

28 Exploring Palm OS: Programming Basics

 TimeZoneToAscii(gDeviceTimeZone, gLocalizedTimeZomeName);

 PIMAppProfilingEnd();

 // Read the preferences / saved-state information
 prefsVersion = DatebookLoadPrefs (&prefs);
 DayStartHour = prefs.dayStartHour;
 DayEndHour = prefs.dayEndHour;
 AlarmPreset = prefs.alarmPreset;
 SaveBackup = prefs.saveBackup;
 ShowTimeBars = prefs.showTimeBars;
 CompressDayView = prefs.compressDayView;
 ShowTimedAppts = prefs.showTimedAppts;
 ShowUntimedAppts = prefs.showUntimedAppts;
 ShowDailyRepeatingAppts = prefs.showDailyRepeatingAppts;
 AlarmSoundRepeatCount = prefs.alarmSoundRepeatCount;
 AlarmSoundRepeatInterval = prefs.alarmSoundRepeatInterval;
 AlarmSoundUniqueRecID = prefs.alarmSoundUniqueRecID;
 ApptDescFont = prefs.apptDescFont;
 AlarmSnooze = prefs.alarmSnooze;

 // Get the previous current category
 PrvLoadCurrentCategories(&DateBkCurrentCategoriesCount,
 &DateBkCurrentCategoriesP);

 // Reset selection
 TopVisibleAppt = 0;

 // Set initial active tab for the details dialog in day view
 DetailsSetDefaultEventDetailsTab(DetailsBookOptionsTabId);

 return errNone;
}

Responding to Other Launch Codes
If an application receives a launch code other than
sysAppLaunchCmdNormalLaunch, it decides if it should respond
to that launch code. If it responds to the launch code, it does so by
implementing a launch code handler, which is invoked from its
PilotMain() function.

If your application receives a launch code other than
sysAppLaunchCmdNormalLaunch or sysAppLaunchCmdGoTo,
you can find out if it is the current application by checking the

Application Start and Stop
Launching Applications Programmatically

Exploring Palm OS: Programming Basics 29

launch flags that are sent with the launch code. If the application is
the currently running application, the
sysAppLaunchFlagSubCall flag is set. This flag is set by the
system and isn’t (and shouldn’t be) set by the sender of a launch
code.

Boolean appIsActive = launchFlags & sysAppLaunchFlagSubCall;

Launching Applications Programmatically
Applications can send launch codes to each other, so your
application might be launched from another application or it might
be launched from the system. An application can use a launch code
to request that another application perform an action or modify its
data. For example, a data collection application could instruct an
email application to queue up a particular message to be sent.

TIP: There are other ways for applications to communicate. See
“When to Use the Helper API” on page 67 to help you decide
which method to use.

Sending a launch code to another application is like calling a
specific subroutine in that application: the application responding to
the launch code is responsible for determining what to do given the
launch code constant passed on the stack as a parameter.

To send a launch code to another application, use one of the
SysAppLaunch...() functions from the Application Manager.
You use these functions when you want to make use of another
application’s functionality and eventually return control to your
application. The process of calling another application as a
subroutine is sometimes referred to as a sublaunch.

The Application Manager defines the following
SysAppLaunch...() functions:

SysAppLaunch(): Launches an application as a subroutine of the
caller in the caller’s process. This function can only be called
from the main UI thread. Use with care: most applications
will want to use one of the other SysAppLaunch...()
functions instead.

Application Start and Stop
Launching Applications Programmatically

30 Exploring Palm OS: Programming Basics

SysAppLaunchLocal(): Launch an application as a subroutine of
the caller in the caller’s process, unless the application being
launched is already running in another process. In this case,
the launch code and parameters are sent to the running
application. This function can only be called from the main
UI thread.

SysAppLaunchRemote(): Launch an application as a subroutine
of the caller in a separate, newly-created process, unless the
application being launched is already running in another
process in which case the launch code and parameters are
sent to the running application. Remote launching allows
applications to execute untrusted code without
compromising their own security. This function can only be
called from the main UI thread.

NOTE: The parameter block you pass in to any of the above
cannot contain pointers to other data or objects.

For example, you could use SysAppLaunchLocal() to request
that the built in Address Book application search its databases for a
specified phone number and return the results of the search to your
application.

An alternative, simpler method of sending launch codes is the
SysBroadcastActionCode() call. This function automatically
finds all other user-interface applications and calls the appropriate
SysAppLaunch...() function to send the launch code to each of
them.

When an application is launched using one of the
SysAppLaunch...() functions, the system considers that
application to be the current application even though the
application has not switched from the user’s perspective. Thus, if
your application is called from another application, it can still use
the function SysGetModuleDatabase() to get the database ID of
its own database.

If you want to actually close your application and open another
application, use SysUIAppSwitch() instead. This function
notifies the system which application to launch next and feeds an
appStopEvent event into the event queue. If and when the current

Application Start and Stop
Launching Applications Programmatically

Exploring Palm OS: Programming Basics 31

application responds to the quit event and returns, the system
launches the new application.

WARNING! Do not use the SysUIAppSwitch() or
SysAppLaunch...() functions to open the Application
Launcher application. If another application has replaced the
default launcher with one of its own, this function will open the
system-supplied launcher instead of the custom one. To open the
correct Launcher reliably, enqueue a keyDownEvent that
contains a launchChr.

When you launch an application using SysUIAppSwitch() you
have the option to pass a parameter block (using the cmdPBP
parameter) containing application-specific information to the
application being launched. To create this parameter block, allocate
a block of memory using MemPtrNew() and then call
MemPtrSetOwner() to set the block’s owner ID to 0. This assigns
ownership of the block to the system; memory blocks owned by the
system aren’t automatically freed when the calling application exits.
Once ownership of the block has been assigned to the system,
neither the launching nor the launched application need worry
about freeing the block since the operating system will do this itself
after the launched application exits.

Note that your parameter block must be self contained. That is, it
must not have pointers to anything on the stack or to memory
blocks that are owned by an application. If you don’t need to pass a
parameter block to the application being launched, pass NULL for
the cmdPBP parameter.

Sublaunching in Another Process
Each sublaunch takes place in its own transient process, except
when the currently running application receives a request to
sublaunch itself, in which case the sublaunch takes place in the
Application Process. The sublaunched thread, whether in the main
Application process or a sublaunched process, effectively becomes
the Application process and thread for the duration of the
sublaunch. In other words, the thread requesting the sublaunch is
effectively suspended while the sublaunched thread executes. Once
the sublaunched application exits, the sublaunched process that was

Application Start and Stop
Stopping an Application

32 Exploring Palm OS: Programming Basics

created to accommodate the sublaunch is then completely torn
down.

See “Processes and Applications” on page 87 of Exploring Palm OS:
System Management for a diagram showing all of the Palm OS Cobalt
processes.

Creating Your Own Launch Codes
Palm OS contains a large number of predefined launch codes, which
are listed in “Launch Code Summary” on page 33. In addition,
developers can create their own launch codes to implement specific
functionality. Both the sending and the receiving application must
know about and handle any developer-defined launch codes.

The launch code parameter is an unsigned 16-bit value. All launch
codes with values 0–32767 are reserved for use by the system and
for future enhancements. Launch codes beginning at
sysAppLaunchCmdCustomBase (that is, those from 32768 to
65535) are available for private use by applications.

Stopping an Application
An application shuts itself down when it receives the event
appStopEvent. Note that this is an event, not a launch code. The
application must detect this event and terminate. (Events are
covered in detail in Chapter 3, “Palm OS Events.”) Applications
typically call a “StopApplication” function in response to the
appStopEvent, before returning from PilotMain().

The appStopEvent gives the a application an opportunity to
perform cleanup activities including closing databases and saving
state information. In the stop function, an application should first
flush all active records, close the application’s database, and save
those aspects of the current state needed for the next time the
application is started. Listing 2.3 is an example of a stop function—
this is from the Datebook application.

Listing 2.3 PrvStopApplication() from Datebook

static void PrvStopApplication (void) {
 // Save the preferences

Application Start and Stop
Launch Code Summary

Exploring Palm OS: Programming Basics 33

 DatebookSavePrefs();

 // Save current categories
 PrvSaveCurrentCategories(DateBkCurrentCategoriesCount,
 DateBkCurrentCategoriesP);

 // Send a frmSave event to all the open forms.
 FrmSaveAllForms ();

 // Close all the open forms.
 FrmCloseAllForms ();

 // Close the application's cursor
 ApptCloseCursor(&gApptCursorID);

 // Close the application's data file.
 DbCloseDatabase (ApptDB);
 ApptDB = NULL;

 // Unload the ToDo application loaded as a shared library
 if (ToDoRefNum != kRALInvalidRefNum)
 SysUnloadModule(ToDoRefNum);
}

Launch Code Summary
The following tables list all Palm OS standard launch codes. These
launch codes are declared in CmnLaunchCodes.h,
TelephonyLib.h, and Preferences.h. All the parameters for a
launch code are passed in a single parameter block, and the results
are returned in the same parameter block.

Table 2.1 Palm OS Launch Codes

Code Request

prefAppLaunchCmdSetActivePanel

sysAppLaunchCmdAddRecord Add a record to a database.

sysAppLaunchCmdAlarmTriggered Schedule next alarm or perform quick
actions such as sounding alarm tones.

sysAppLaunchCmdAttention Perform the action requested by the
Attention Manager.

Application Start and Stop
Launch Code Summary

34 Exploring Palm OS: Programming Basics

sysAppLaunchCmdBackground Sent to the executable module that is
launched in a background thread.

sysAppLaunchCmdCardLaunch Launch the application. This launch
code signifies that the application is
being launched from an expansion
card.

sysAppLaunchCmdCountryChange Respond to country change.

sysAppLaunchCmdDeleteRecord Instructs the application to delete a
specified database record.

sysAppLaunchCmdDisplayAlarm Display specified alarm dialog or
perform time-consuming alarm-
related actions.

sysAppLaunchCmdEventHook Allow the application to process an
event.

sysAppLaunchCmdExportRecord Instructs the application to export a
specified database record.

sysAppLaunchCmdExportRecordGetCou
nt

Instructs the application to return the
number of records in the application’s
database.

sysAppLaunchCmdFailedAppNotify Indicates a failure in an application
that was just switched to.

sysAppLaunchCmdFepPanelAddWord Add a word to the FEP user dictionary.

sysAppLaunchCmdFinalizeUI Instructs the application’s start-up
code to de-initialize the process’s UI.

sysAppLaunchCmdFind Find a text string.

sysAppLaunchCmdGoTo Go to a particular record, display it,
and optionally select the specified text.

Table 2.1 Palm OS Launch Codes (continued)

Code Request

Application Start and Stop
Launch Code Summary

Exploring Palm OS: Programming Basics 35

sysAppLaunchCmdHandleSyncCallApp Perform some application-specific
operation at the behest of the
application’s conduit.

sysAppLaunchCmdImportRecord Presents the application with a record
to be added to or updated in the
application’s database.

sysAppLaunchCmdInitDatabase Initialize database.

sysAppLaunchCmdInitializeUI Instructs the application’s start-up
code to initialize the process’s UI.

sysAppLaunchCmdLookup Look up data. In contrast to
sysAppLaunchCmdFind, a level of
indirection is implied. For example,
look up a phone number associated
with a name.

sysAppLaunchCmdLookupWord Look a word up in the FEP
dictionaries.

sysAppLaunchCmdMultimediaEvent

sysAppLaunchCmdNormalLaunch Launch normally.

sysAppLaunchCmdNotify Receive a notification.

sysAppLaunchCmdOpenDB Launch application and open a
database.

sysAppLaunchCmdPanelCalledFromApp Tell preferences panel that it was
invoked from an application, not the
Preferences application.

sysAppLaunchCmdPinletLaunch Sent to an application that is launched
as a pinlet instead of
sysAppLaunchCmdNormalLaunch
in order to launch the application.

Table 2.1 Palm OS Launch Codes (continued)

Code Request

Application Start and Stop
Launch Code Summary

36 Exploring Palm OS: Programming Basics

sysAppLaunchCmdReturnFromPanel Tell an application that it’s restarting
after preferences panel had been
called.

sysAppLaunchCmdRun68KApp Launch a 68K-based application.

sysAppLaunchCmdSaveData Save data. Often sent before find
operations.

sysAppLaunchCmdSlipLaunch System use only.

sysAppLaunchCmdSyncCallApplicatio
nV10

Obsolete launch code.

sysAppLaunchCmdSyncNotify Notify applications that a HotSync has
been completed.

sysAppLaunchCmdSyncRequest Request a HotSync.

sysAppLaunchCmdSyncRequestLocal Request a “local” HotSync.

sysAppLaunchCmdSyncRequestRemote Request a “remote” HotSync.

sysAppLaunchCmdSystemLock Sent to the Security application to
request that the system be locked
down.

sysAppLaunchCmdSystemReset Respond to system reset. No UI is
allowed during this launch code.

sysAppLaunchCmdTimeChange Respond to system time change.

sysAppLaunchPnpsPreLaunch Pre-launch code for “plug-and-play”
devices.

sysBootAppLaunchCmdNoSublaunch Informs the boot application that a no-
notify reset has occurred. This launch
code is for system use only.

sysLaunchCmdAppExited An application has exited from its
PilotMain() function.

Table 2.1 Palm OS Launch Codes (continued)

Code Request

Application Start and Stop
Launch Code Summary

Exploring Palm OS: Programming Basics 37

sysLaunchCmdBoot Informs operating system
initialization procedures that the
system is booting. This launch code is for
system use only.

sysLaunchCmdFinalize An executable module is being
unloaded; gives the module a last
chance to do any needed “de-
initialization.”

sysLaunchCmdGetGlobals Retrieve a pointer to an executable
module’s globals structure.

sysLaunchCmdGetModuleID Retrieve an executable module’s
module ID. This launch code is for
system use only.

sysLaunchCmdGraphicsAccelInit System use only.

sysLaunchCmdInitialize An executable module has been
loaded; gives the executable a chance
to do any needed initialization.

sysLaunchCmdInitRuntime A newly-loaded executable module
should initialize its module ID and
linker stub. This launch code is for
system use only.

sysLibLaunchCmdGet68KSupportEntry Determine if a shared library can be
called from a 68K application.

sysPackageLaunchAttachImage A package has been loaded and
should supply an image context used
by the package to determine when the
package should be unloaded.

sysPackageLaunchGetInstantiate Asks a package for the function used
to instantiate the package’s
components.

Table 2.1 Palm OS Launch Codes (continued)

Code Request

Application Start and Stop
Launch Code Summary

38 Exploring Palm OS: Programming Basics

sysPatchLaunchCmdClearInfo Informs a patch that a target shared
library has been unloaded.

sysPatchLaunchCmdSetInfo Informs a patch that one of the shared
libraries it wants to patch is being
loaded.

sysPinletLaunchCmdLoadProcPtrs Requests pointers to the functions
used by the Pen Input Manager when
interacting with a pinlet.

sysSvcLaunchCmdGetQuickEditLabel Get a “quick edit” label for one of the
standard service panels.

sysSvcLaunchCmdGetServiceID Get a standard service panel’s service
ID.

sysSvcLaunchCmdGetServiceInfo Obtain the name and service ID for a
given system service.

sysSvcLaunchCmdGetServiceList Obtain a list of system services.

sysSvcLaunchCmdSetServiceID Set a standard service panel’s service
ID.

Table 2.2 Communications-related Launch Codes

Code Request

kTelNwkLaunchCmdNetworkStatusChan
ge

kTelNwkLaunchCmdSignalLevelChange

kTelNwkLaunchCmdUssdAnswer

kTelPowLaunchCmdBatteryChargeLeve
lChange

kTelPowLaunchCmdBatteryConnection
StatusChange

Table 2.1 Palm OS Launch Codes (continued)

Code Request

Application Start and Stop
Launch Code Summary

Exploring Palm OS: Programming Basics 39

kTelPowLaunchCmdConnectionOff

kTelPowLaunchCmdConnectionOn

kTelPowLaunchCmdPhonebookNotReady

kTelPowLaunchCmdPhonebookReady

kTelPowLaunchCmdSmsNotReady

kTelPowLaunchCmdSmsReady

kTelSmsLaunchCmdIncomingMessage

kTelSpcLaunchCmdCallAlerting

kTelSpcLaunchCmdCallConnect

kTelSpcLaunchCmdCallDialing

kTelSpcLaunchCmdCallerIdAvailable

kTelSpcLaunchCmdCallHeld

kTelSpcLaunchCmdCallIncoming

kTelSpcLaunchCmdCallReleased

kTelSpcLaunchCmdCallWaiting

kTelStyLaunchCmdAuthenticated

kTelStyLaunchCmdAuthenticationCan
celed

sysAppLaunchCmdAntennaUp The antenna has been raised on a
device that is appropriately equipped.

sysAppLaunchCmdExgAskUser Let the application override display of
the dialog asking user if they want to
receive incoming data via the
Exchange Manager.

Table 2.2 Communications-related Launch Codes (continued)

Code Request

Application Start and Stop
Launch Code Summary

40 Exploring Palm OS: Programming Basics

sysAppLaunchCmdExgGetData Notify the application that it should
send data using the Exchange
Manager.

sysAppLaunchCmdExgPreview Notify the application that it should
display a preview using the Exchange
Manager.

sysAppLaunchCmdExgReceiveData Notify the application that it should
receive incoming data using the
Exchange Manager.

sysAppLaunchCmdGoToURL Launch an application and open a
URL.

sysAppLaunchCmdURLParams Obsolete launch code.

sysAppLaunchNppiNoUI Launch a network panel plug-in
without UI, and load NetLib.

sysAppLaunchNppiUI Launch a network panel plug-in with
UI.

sysBtLaunchCmdExecuteService Let Bluetooth service applications
know that there is an inbound-
connected data socket.

sysBtLaunchCmdPrepareService Let Bluetooth service applications
know that a listener socket has been
created and to request an SDP service
record.

sysCncPluginLaunchCmdGetPlugins Request for plug-in descriptions from
Connection Manager plug-in modules

sysCncPluginLaunchCmdRegister Instructs Connection Manager plug-
ins to initialize themselves.

sysCncPluginLaunchCmdUnregister The Connection Manager plug-in is
being removed.

sysCncWizardLaunchCmdEdit Edit a Connection Manager profile.

Table 2.2 Communications-related Launch Codes (continued)

Code Request

Application Start and Stop
Application Manager Function Summary

Exploring Palm OS: Programming Basics 41

Application Manager Function Summary

sysDialLaunchCmdDial Dial the modem.

sysDialLaunchCmdHangUp Hang the modem up.

sysIOSDriverInstall System use only.

sysIOSDriverRemove System use only.

Launching Applications

SysAppLaunch()
SysAppLaunchLocal()
SysAppLaunchRemote()

SysAppLaunchV40()
SysUIAppSwitch()
SysUIAppSwitchV40()

Other Application Manager Functions

SysBroadcastActionCode()
SysCurAppDatabase()
SysCurAppDatabaseV40()

SysGetStackInfo()
SysReset()

Table 2.2 Communications-related Launch Codes (continued)

Code Request

Application Start and Stop
Application Manager Function Summary

42 Exploring Palm OS: Programming Basics

Exploring Palm OS: Programming Basics 43

3
Events and the
Event Loop
This chapter discusses events—the primary mechanism by which
the operating system communicates with an application—and the
event loop that forms the heart of all Palm OS® applications. The
topics covered are:

Palm OS Events 43

The Structure of an Event 44

The Application Event Loop 45

Using Events to Communicate Between Threads 53

Palm OS-Generated Events 54

Summary of Event APIs 56

When working with events, you use APIs declared in Event.h.
These APIs are documented in Chapter 7, “Event,” on page 139;
additional event-related APIs are documented in Chapter 13,
“System Event Manager,” on page 247. The event codes
representing the various events are primarily declared in
EventCodes.h, documented in Chapter 8, “Event Codes,” on
page 169. Many events are only of interest to developers working
with a particular technology; accordingly, those events have been
documented in the corresponding Exploring Palm OS volumes. See
“Palm OS-Generated Events” on page 54 for a complete list of all
events organized according to the book, and thus the technology,
with which it is most commonly associated.

Palm OS Events
Palm OS applications are event-driven: user actions and some
system requests are placed in an event queue from which the events
can be retrieved and acted upon. Each thread running in either the

Events and the Event Loop
The Structure of an Event

44 Exploring Palm OS: Programming Basics

Application or Background process can have its own event queue
into which events destined for that thread are placed (but note that
the event queue is part of the UI context of the thread, and a UI
context is relatively heavyweight, so unless you need it you
shouldn’t create the UI context). The operating system places into
each queue only those events that are relevant for that queue.

Certain events—such as pen and key events—are classified as low-
level events. Applications rarely work with low-level events
directly; the operating system translates low-level events into
higher-level events that are then posted to the appropriate event
queue. Applications that do work with low-level events directly
might do so to enqueue key events or to retrieve each of the pen
points that comprise a pen stroke.

Because Palm OS translates low-level pen and key events into
higher-level events, most Palm OS events can be ignored by the
typical application. For instance, if the user taps an on-screen button
a low-level penDownEvent is generated. This event is passed on to
the control object, which then posts a ctlEnterEvent. Then as the
user moves the pen, a series of penMoveEvents are posted.
Finally,when the user lifts the pen a penUpEvent is posted. If the
pen was lifted within the control, the operating system realizes that
the user just tapped an on-screen button and posts a
ctlSelectEvent to the event queue. Of these events, an
application that is only interested in knowing when the user taps an
on-screen button need only watch for the ctlSelectEvent; it can
ignore the other events entirely.

The Structure of an Event
The EventType structure describes an event. It consists of three
main parts:

• A 32-bit value that identifies the event that has taken place.

• A standard data block that, for many events, contains the
state of the pen at the time the event occurred.

• An optional event-specific data block.

The EventType structure looks like this (with the event-specific
data structures that comprise the data union omitted for clarity):

Events and the Event Loop
The Application Event Loop

Exploring Palm OS: Programming Basics 45

typedef struct EventType {
 eventsEnum eType;
 Boolean penDown;
 uint8_t padding_1;
 uint16_t padding_2;
 uint32_t tapCount;
 Coord screenX;
 Coord screenY;
 union {
 ...
 } data;
} EventType;

In this structure the data union is used only by those events that
have additional data associated with them. For instance, a
keyDownEvent’s data field contains the following structure:
struct _KeyDownEventType {
 wchar_t chr;
 uint16_t keyCode;
 uint16_t modifiers;
} keyDown

On the other hand, an appStopEvent—an indication to the
application that it should stop—needs no additional data.

The Application Event Loop
Upon receiving a sysAppLaunchCmdNormalLaunch launch code,
a typical Palm OS application does the following:

1. Perform any needed application-specific initialization.

2. Display the application’s main form.

3. Enter a loop, retrieving and handling events until an
appStopEvent is retrieved. This part of the program is
known as the application event loop.

4. Perform any necessary cleanup, and exit.

In the event loop, the application fetches events from the queue and
dispatches them, taking advantage of the default system
functionality as appropriate. Most events are passed on to the

Events and the Event Loop
The Application Event Loop

46 Exploring Palm OS: Programming Basics

system, which knows how to handle them. For example, the system
knows how to respond to pen taps on forms or menus.

The application typically remains in the event loop until the system
tells it to shut itself down by sending an appStopEvent through
the event queue. The application must detect this event and
terminate.

Listing 3.1 shows a typical application event loop. Figure 3.1
graphically illustrates this same event loop, with additional
explanation for each of the steps.

Listing 3.1 Sample application event loop

static void AppEventLoop(void){
 status_t error;
 EventType event;

 do {
 EvtGetEvent(&event, evtWaitForever);

 if (SysHandleEvent(&event))
 continue;

 if (MenuHandleEvent(0, &event, &error))
 continue;

 if (AppHandleEvent(&event))
 continue;

 FrmDispatchEvent(&event);

 } while (event.eType != appStopEvent);
}

Events and the Event Loop
The Application Event Loop

Exploring Palm OS: Programming Basics 47

Figure 3.1 Control flow in a typical application

Events and the Event Loop
The Application Event Loop

48 Exploring Palm OS: Programming Basics

As illustrated both in the code and the flowchart, within the basic
application event loop the application performs the following steps
(Each of which is discussed in greater detail in the following
sections):

1. Fetch an event from the event queue.

2. Call SysHandleEvent() to give the system an opportunity
to handle the event.

3. If SysHandleEvent() did not completely handle the event,
the application gives the menu system a chance to handle it
by calling MenuHandleEvent().

4. If MenuHandleEvent() did not completely handle the
event, your application now gets a chance to deal with it.
ApplicationHandleEvent() is a function your
application has to provide. Your
ApplicationHandleEvent() function typically only
handles the frmLoadEvents, since each form typically
handles its own events.

5. If ApplicationHandleEvent did not completely handle
the event, the application calls FrmDispatchEvent(). This
function sends the event to the active form’s event handler
and, if the form’s event handler didn’t deal with it,
FrmDispatchEvent() passes it off to the operating system
to do any default processing of the event.

Notice how the event flow allows your application to rely on system
functionality as much as it wants. If your application wants to know
whether a button is pressed, it has only to wait for a
ctlSelectEvent. All the details of the event queue are handled
by the system.

Some events are actually requests for the application to do
something, for example, frmOpenEvent. Typically, all the
application does is initialize the elements on the form and then wait
for events it can handle to arrive from the queue.

Retrieving Events
Applications call EvtGetEvent() to obtain the next available
event from the current thread’s event queue. Pass a pointer to an
EventType structure into which the event will be copied, and a
timeout value indicating the length of time the function should wait

Events and the Event Loop
The Application Event Loop

Exploring Palm OS: Programming Basics 49

for an event if there are no events currently on the queue. In most
instances you simply pass evtWaitForever, indicating that
EvtGetEvent() shouldn’t return until there is at least one event in
the queue.

EvtGetEvent() has no return value: it always returns a valid
event. If there are no events in the queue and the specified timeout
period elapses, EvtGetEvent() generates and returns a
nilEvent.

If your application needs to perform a lengthy process, such as a
data transfer during a communications session, it should
periodically call EvtGetEvent(). That is, you call
EvtGetEvent() and do work when you get a nilEvent. Each
time you get a nilEvent, do a chunk of work, but be sure to
continue to call EvtGetEvent() frequently (like every half
second), so that pen taps and other events get noticed quickly. Note
that in situations like these you’ll probably also want to display a
progress dialog. For more information on progress dialogs, see
Exploring Palm OS: User Interface.

Handling System Events
The system handles events like power on/power off, Graffiti® 2
input, tapping inputarea icons; these events are not posted to your
thread’s event queue. Other events, like the pressing of the “hard”
buttons on the device, are posted to your thread’s event queue to
give your application the opportunity to handle them. Those events
that your application does not handle entirely by itself should be
passed on to the operating system; you do this by calling
SysHandleEvent().

SysHandleEvent() returns true if the event was completely
handled and no further processing of the event is required. The
application is then free to pick up the next event from the queue.

Handling Menu Events
MenuHandleEvent() handles two types of events:

• If the user has tapped in the area that invokes a menu,
MenuHandleEvent() brings up the menu.

Events and the Event Loop
The Application Event Loop

50 Exploring Palm OS: Programming Basics

• If the user has tapped inside a menu to invoke a menu
command, MenuHandleEvent() removes the menu from
the screen and puts the events that result from the command
onto the event queue.

MenuHandleEvent() returns true if the event was completely
handled.

Handling Form Load Events: the
AppHandleEvent() Function
Your ApplicationHandleEvent() function typically only
handles the frmLoadEvents, since each form typically handles its
own events. The EventType structure that comprises a
frmLoadEvent contains both the formID of the form to be loaded
and a DmOpenRef to the open resource database that contains the
form. Using this information, your AppHandleEvent() function
should do the following:

1. Load and initialize the form. This is most commonly done by
calling FrmInitForm(). At this point the form has not yet
been drawn, nor is it active.

2. Make the form the active form. Call FrmSetActiveForm()
to do this. The active form receives all key and pen input, and
all drawing is performed on the active form (until otherwise
specified).

3. Set the form’s event handler using
FrmSetEventHandler(). You supply the address of a
callback function that will receive all events intended for the
form. Generally, you create a separate callback function for
each form in your application.

4. Call FrmInitLayout() to prepare the form for automatic
resizing. This last step is optional, but recommended: you
need only call this function if your form should be
automatically resized in response to a winResizedEvent.

Your AppHandleEvent() function should return true if it
handled the event, or false if the event should be passed on to be
handled elsewhere.

Listing 3.2 illustrates a typical AppHandleEvent() function.

Events and the Event Loop
The Application Event Loop

Exploring Palm OS: Programming Basics 51

Listing 3.2 A sample AppHandleEvent() function

static Boolean AppHandleEvent(EventType* pEvent) {
 uint16_t formId;
 FormType *pForm;

 if (pEvent->eType == frmLoadEvent) {
 // Load the form resource.
 formId = pEvent->data.frmLoad.formID;

 pForm = FrmInitForm(gAppDB, formId);
 FrmSetActiveForm(pForm);

 // Set the event handler for the form. The handler of
 // the currently active form is called by
 // FrmHandleEvent each time is receives an event.
 switch (formId) {
 case MainForm:
 FrmSetEventHandler(pForm, MainFormHandleEvent);
 FrmInitLayout(pForm, gMainFormLayout);
 break;

 case Form2Form:
 FrmSetEventHandler(pForm, Form2FormHandleEvent);
 FrmInitLayout(pForm, gForm2FormLayout);
 break;

 default:
 ErrFatalDisplay("Invalid Form Load Event");
 break;
 }

 return true;
 }

 return false;
}

Handling Form-Specific Events
FrmDispatchEvent() begins by sending the event to the
application’s event handler for the active form. This is the event
handler routine that was established in
ApplicationHandleEvent(). This gives the application’s code
the first opportunity to process events that pertain to the current

Events and the Event Loop
The Application Event Loop

52 Exploring Palm OS: Programming Basics

form. The application’s event handler may completely handle the
event and return true, in which case FrmDispatchEvent()
returns to the application’s event loop. Otherwise,
FrmDispatchEvent() calls FrmHandleEvent() to provide the
system’s default processing for the event. In many cases this default
handling is sufficient; see the documentation for
FrmHandleEvent() for an explanation of how that function deals
with various events.

In the process of handling an event, an application may have to first
close the current form and then open another one. This happens as
follows:

1. The application calls FrmGotoForm() to bring up another
form. FrmGotoForm() enqueues a frmCloseEvent for the
currently active form, and then enqueues a frmLoadEvent
and a frmOpenEvent for the new form.

2. When the application gets the frmCloseEvent, it closes
and erases the currently active form.

3. When the application gets the frmLoadEvent, it loads and
then activates the new form. Normally, the form remains
active until it’s closed. (Note that this wouldn’t work if you
preload all forms, but pre-loading is really discouraged.
Applications don’t need to be concerned with the overhead
of loading forms; loading is so fast that applications can do it
when they need it.) The application’s event handler for the
new form is also established.

4. Upon receipt of the frmOpenEvent the application performs
any required initialization of the form.

5. Upon receipt of a frmUpdateEvent the application draws
the form on the display.

After FrmGotoForm() has been called, any further events that
make their way to the application event loop’s
FrmDispatchEvent() call are dispatched to the event handler for
the form that’s currently active—the form specified in the
FrmGotoForm() call.

Events and the Event Loop
Using Events to Communicate Between Threads

Exploring Palm OS: Programming Basics 53

Using Events to Communicate Between Threads

NOTE: This section describes how the Palm OS event
mechanism can be used to facilitate communications between
separate threads of execution. For more complete information on
writing multi-tasking Palm OS applications, see Exploring Palm
OS: System Management.

Each thread can have its own event queue. While the Palm OS event
mechanism is most commonly used to keep applications apprised of
user actions, you can also employ it to communicate with other
threads, either in the same or a different process.

Communicating Between Threads in a Single
Process
Given a handle to an event queue, you can post an arbitrary event to
that queue by calling EvtAddEventToEventQueue() or
EvtAddUniqueEventToEventQueue(). Note that the former is
different from EvtAddEventToQueue(), which always posts
events to the default queue for the current thread.

To obtain a handle to the event queue of another thread in the same
process you simply call EvtGetThreadEventQueue() from
within that thread. When you are done with the queue be sure to
call EvtReleaseEventQueue().

Communicating Between Threads in Different
Processes
As when posting events to the queue of another thread in the same
process, you use EvtAddEventToEventQueue() or
EvtAddUniqueEventToEventQueue() to post events to a queue
in a separate process. How you obtain the handle to the other
thread’s queue, however, differs. The mechanism you use depends
on whether you created the other thread yourself or whether you
need to attach to an already-running thread in another process:

• If you are creating the thread yourself, you’ll likely use
EvtCreateBackgroundThread(). This function returns a
handle to the newly-created background thread’s event

Events and the Event Loop
Palm OS-Generated Events

54 Exploring Palm OS: Programming Basics

queue. Note that although threads don’t necessarily have an
event queue—you need to call WinStartThreadUI() to
create a UI context (and thus an event queue) for a thread
created with SysThreadCreate()—background threads
created with EvtCreateBackgroundThread() do always
have an event queue.

• To obtain a handle to the event queue of an already-running
thread in another process, that thread must have published
its queue by name using EvtPublishEventQueue().
Then, as long as the posting thread knows the name by
which the queue was published, it need only call
EvtLookupEventQueue() to obtain the queue handle.

Two-way communication is enabled by the replyQueue parameter
to the EvtAddEventToEventQueue() call: if task A supplies a
handle to its own queue when posting an event to task B’s event
queue, task B can send a reply by posting an event back to task A’s
queue. In order to obtain the handle to task A’s event queue, task B
must call EvtGetReplyEventQueue() while processing the
original event posted by task A. Note that the reply queue is
associated with a single event posting; this allows a background
server task to service multiple clients at the same time.

Palm OS-Generated Events
The following is complete list of all events generated by Palm OS
that are of interest to developers. Because most events are generated
by or handled by specific areas of the system, they are documented
in other books in the Exploring Palm OS series, as listed in the
following tables.

Palm OS-Generated Events

General Events

appStopEvent nilEvent

Events documented in Exploring Palm OS: Input Services

gsiStateChangeEvent keyDownEvent

keyHoldEvent keyHoldEvent5

Events and the Event Loop
Palm OS-Generated Events

Exploring Palm OS: Programming Basics 55

keyUpEvent keyUpEvent5

penDownEvent penMoveEvent

penUpEvent

Events documented in Exploring Palm OS: User Interface

ctlEnterEvent ctlExitEvent

ctlRepeatEvent ctlSelectEvent

daySelectEvent fldChangedEvent

fldEnterEvent fldHeightChangedEvent

frmCloseEvent frmGadgetEnterEvent

frmGadgetMiscEvent frmGotoEvent

frmLoadEvent frmOpenEvent

frmSaveEvent frmScrollPrvRefreshEvent

frmStopDialogEvent frmTitleEnterEvent

frmTitleSelectEvent frmUpdateEvent

insertionPointOffEvent insertionPointOnEvent

lstEnterEvent lstExitEvent

lstSelectEvent menuCloseEvent

menuCmdBarOpenEvent menuCmdBarTimeoutEvent

menuEvent menuOpenEvent

popSelectEvent prgUpdateEvent

sclEnterEvent sclExitEvent

sclRepeatEvent sysClearUIEvent

tblEnterEvent tblExitEvent

tblSelectEvent winEnterEvent

winExitEvent winFocusGainedEvent

Events and the Event Loop
Summary of Event APIs

56 Exploring Palm OS: Programming Basics

Summary of Event APIs

winFocusLostEvent winResizedEvent

winUpdateEvent winVisibilityChangedEvent

Events to be documented in Exploring Palm OS: Creating a FEP

tsmConfirmEvent tsmFepButtonEvent

tsmFepChangeEvent tsmFepDisplayOptionsEvent

tsmFepModeEvent tsmFepSelectOptionEvent

Events documented in Exploring Palm OS: Telephony and SMS

telAsyncReplyEvent (kTelTelephonyEvent)

Events used internally by the operating system or reserved for future use

amWorkerDoneEvent attnIndicatorEnterEvent

attnIndicatorSelectEvent certMgrWorkerDoneEvent

debugEvent exgLocalEvtNotify

exgLocalEvtDie reservedEventCode1

reservedEventCode2 reservedEventCode3

reservedFindEvent stringInputEvent

tunneledEvent

Functions Declared in Event.h

Main Event Queue Management

EvtAddEventToQueue EvtAddEventToQueueAtTime

EvtAddUniqueEventToQueue EvtAddUniqueEventToQueueAtTime

EvtEventAvail EvtGetEvent

EvtSetNullEventTick EvtSysEventAvail

Pen Queue Management

Events and the Event Loop
Summary of Event APIs

Exploring Palm OS: Programming Basics 57

EvtDequeuePenPoint EvtDequeuePenStrokeInfo

EvtFlushNextPenStroke EvtFlushPenQueue

EvtGetPen EvtGetPenNative

Key Queue Management

EvtDequeueKeyEvent EvtEnqueueKey

EvtFlushKeyQueue EvtKeydownIsVirtual

EvtKeyQueueEmpty

Handling Power On

EvtWakeup EvtWakeupWithoutNilEvent

Communicating Between Threads in the Same Process

EvtAddEventToEventQueue EvtGetThreadEventQueue

EvtReleaseEventQueue

Communicating Between Threads in Different Processes

EvtAcquireEventQueue EvtCreateBackgroundThread

EvtGetReplyEventQueue EvtLookupEventQueue

EvtPublishEventQueue

Blocking on the Event Queue’s IOS File Descriptor

EvtFinishLastEvent EvtGetEventDescriptor

Getting the Current Focus

EvtGetFocusWindow

Debugging

EvtEventToString

Events and the Event Loop
Summary of Event APIs

58 Exploring Palm OS: Programming Basics

Exploring Palm OS: Programming Basics 59

4
Notifications
Applications can register for notifications that are sent when certain
system-level events or application-level events occur. Notifications
are similar to application launch codes, with one important
difference: notifications are only sent to applications or code
resources that have specifically registered to receive them, making
them more efficient than launch codes.

This chapter describes the Palm OS notification mechanism. It
shows how to register for a notification and how to deal with the
notifications that you then receive. It provides some detail on some
of the more commonly-used notifications: those that signal when
the device is about to go to sleep and those that indicate that it is
waking up. This chapter then discusses a special class of
notifications—helper notifications—that can be used to publish and
request application services. Finally, it concludes with a complete
list of all of the notifications defined by Palm OS.

Notification Overview 59

Registering for a Notification 60

Writing a Notification Handler 62

Sleep and Wake Notifications 63

Helper Notifications 66

Notification Summary 72

Notification Function Summary 75

Reference material for many of the APIs discussed in this chapter
can be found in Chapter 4, “Notifications,” on page 59.

Notification Overview
The Palm OS system and the built-in applications send notifications
when certain events occur. (For a complete list, see “Notification
Summary” on page 72.) It’s also possible for your application to

Notif ications
Registering for a Notification

60 Exploring Palm OS: Programming Basics

create and broadcast its own notifications. However, applications
rarely do so. It’s more likely that you’ll want to register to receive
the predefined notifications or that you’ll broadcast the predefined
sysNotifyHelperEvent described under “Helper Notifications”
on page 66.

A given notification is sent to each of the notification clients that
register for it. Three general types of event flow are possible using
the notification manager:

• Single consumer

Each client is notified that the event has occurred and
handles it in its own way without modifying any information
in the parameter block.

• Collaborative

The notification’s parameter block contains a handled flag.
Clients can set this flag to communicate to other clients that
the event has been handled, while still allowing them to
receive the notification.

• Collective

Each client can add information to the notification’s
parameter block, allowing the data to be accumulated for all
clients. This style of notification could be used, for example,
to build a menu dynamically by letting each client add its
own menu text. The sysNotifyMenuCmdBarOpenEvent is
similar to this style of notification.

Registering for a Notification
To receive notification that an event has occurred, you must register
for it using the SysNotifyRegister() function. Once you
register for a notification, you remain registered until the system is
reset, the notification is deleted, or until you explicitly unregister for
this notification using SysNotifyUnregister().

To register an application for the HotSync® notification, you’d use a
function call similar to the one in Listing 4.1.

Listing 4.1 Registering for a notification

SysNotifyRegister(appDBID, sysNotifySyncStartEvent, NULL,

Notif ications
Registering for a Notification

Exploring Palm OS: Programming Basics 61

 sysNotifyNormalPriority, myDataP, myDataSize);

The parameters you pass to the SysNotifyRegister() function
specify the following:

• The database ID for the PRC file. Be sure you’re not passing
the local ID of the record database that your application
accesses. You use the record database’s local ID more
frequently than you do the application’s local ID, so this is a
common mistake to make.

• The notification for which you are registering. In the above
examples, sysNotifySyncStartEvent specifies that you
want to be informed when a HotSync operation is about to
start. (There is also a sysNotifySyncFinishEvent that
specifies that a HotSync operation has ended.)

• The means by which the notification should be received.
Applications should use NULL for this parameter to specify
that they should be notified through the application launch
code sysAppLaunchCmdNotify. As with all other launch
codes, the system passes this to the application’s
PilotMain() function.

• The priority with which the notification should be sent.
sysNotifyNormalPriority means that you don’t want
your code to receive any special consideration when
receiving the notification. Notifications are broadcast
synchronously in priority order. The lower the number you
specify here, the earlier you receive the notification in the list.

In virtually all cases, you should use
sysNotifyNormalPriority. If you absolutely must
ensure that your code is notified in a certain order (either
before most notifications or after most notifications), be sure
to leave some space between priority values so that your
code won’t collide with the system’s handling of notifications
or with another application’s handling of notifications. Never
use the extreme maximum or minimum allowed value. In
general, PalmSource recommends using a value whose least
significant bits are 0 (such as 32, 64, 96, and so on).

• Any data you want easy access to in your notification
handler function.

After you’ve made the calls shown in Listing 4.1 and the system is
about to begin a HotSync operation, it broadcasts the

Notif ications
Writing a Notification Handler

62 Exploring Palm OS: Programming Basics

sysNotifySyncStartEvent notification to both clients. Along
with the notification your code receives a SysNotifyParamType
structure containing the notification name, the broadcaster, and a
pointer to your specific data (myDataP in the example above). Some
notifications contain extra information in a notifyDetailsP field
in this structure. (The HotSync notifications do not use the
notifyDetailsP field.)

Writing a Notification Handler
The application’s (or a library’s) response to
sysAppLaunchCmdNotify is called a notification handler. A
notification handler may perform any processing necessary,
including displaying a user interface or broadcasting other
notifications.

When displaying a user interface, consider the possibility that you
may be blocking other applications from receiving the notification.
For this reason, it’s generally not a good idea to display a modal
form or do anything else that requires waiting for the user to
respond. Also, many of the notifications are broadcast during
SysHandleEvent(), which means your application event loop
may not have progressed to the point where it is possible for you to
display a user interface, or that you may overflow the stack.

If you need to perform some lengthy process in a notification
handler, one way to ensure that you aren’t blocking other events is
to send yourself a deferred notification. For example, Listing 4.2
shows a notification handler for the
sysNotifyTimeChangeEvent notification that performs no work
other than setting up a deferred notification
(myDeferredNotifyEvent--which is a custom notification) and
scheduling it for broadcast. When the application receives the
myDeferredNotifyEvent, it calls the MyNotifyHandler
function, which is where the application really handles the time
change event.

Listing 4.2 Deferring notification within a handler

case sysAppLaunchCmdNotify :
 if (cmdPBP->notify->notifyType == sysNotifyTimeChangeEvent) {
 SysNotifyParamType notifyParm;

Notif ications
Sleep and Wake Notifications

Exploring Palm OS: Programming Basics 63

 MyNotificationDataStruct myData;

 /* initialize myData here */

 /* Create the notification block. */
 notifyParam.notifyType = myDeferredNotifyEvent;
 notifyParam.broadcaster = myCreatorID;
 notifyParam.notifyDetailsP= NULL;
 notifyParam.handled = false;

 /* Register for my notification */
 SysNotifyRegister(myCardNo, appDBID, myDeferredNotifyEvent, NULL,
 sysNotifyNormalPriority, &myData);

 /* Broadcast the notification */
 SysNotifyBroadcastDeferred(¬ifyParam, NULL);

 } else if (cmdPBP->notify->notifyType == myDeferredNotifyEvent)
 MyNotifyHandler(cmdPBP->notify);
break;

The SysNotifyBroadcastDeferred() function broadcasts the
specified notification to all interested parties; however, it waits to do
so until the current event has completed processing. Thus, by using
a separate deferred notification, you can be sure that all other clients
have had a chance to respond to the first notification.

There are several functions that broadcast notifications. Notification
handlers should use SysNotifyBroadcastDeferred() to avoid
the possibility of overflowing the notification stack.

A special case of dealing with lengthy computations in a notification
handler occurs when the system is being put to sleep. See “Sleep
and Wake Notifications” below.

Sleep and Wake Notifications
Several notifications are broadcast at various stages when the
system goes to sleep and when the system wakes up. These are:

sysNotifySleepRequestEvent : Broadcast during
SysHandleEvent() processing when the system has
decided to go to sleep.

Notif ications
Sleep and Wake Notifications

64 Exploring Palm OS: Programming Basics

sysNotifySleepNotifyEvent : Broadcast during
SysHandleEvent() immediately before the system is put
to sleep. After the broadcast is complete, the system is put to
sleep.

sysNotifyEarlyWakeupEvent : Broadcast during
SysHandleEvent() immediately after the system has
finished sleeping. The screen may still be turned off, and the
system may not fully wake up. It may simply handle an
alarm or a battery charger event and go back to sleep.

sysNotifyLateWakeupEvent: Broadcast during
SysHandleEvent() immediately after the device has
finished waking up.

These notifications are not guaranteed to be broadcast. For example,
if the system goes to sleep because the user removes the batteries,
sleep notifications are not sent. Thus, these notifications are
unsuitable for applications where external hardware must be shut
off to conserve power before the system goes to sleep.

If you want to know when the system is going to sleep because you
have a small amount of cleanup that should occur beforehand, then
register for sysNotifySleepNotifyEvent.

It is recommended that you not perform any sort of prolonged
activity, such as displaying an alert panel that requests
confirmation, in response to a sleep notification. If you do, the alert
might be displayed long enough to trigger another auto-off event,
which could be detrimental to other handlers of the sleep notify
event.

In a few instances, you might need to prevent the system from going
to sleep. For example, your code might be in the middle of
performing some lengthy computation or in the middle of
attempting a network connection. If so, register for the
sysNotifySleepRequestEvent instead. This notification
informs all clients that the system might go to sleep. If necessary,
your handler can delay the sleep request by doing the following:

((SleepEventParamType *)
 (notify->notifyDetailsP))->deferSleep++;

Notif ications
Sleep and Wake Notifications

Exploring Palm OS: Programming Basics 65

The system checks the deferSleep value when each notification
handler returns. If it is nonzero, it cancels the sleep event.

After you defer sleep, your code is free to finish what it was doing.
When it is finished, you must allow the system to continue with the
sleep event. To do so, create a keyDownEvent with the
resumeSleepChr and the command key bit set (to signal that the
character is virtual) and add it to the event queue. When the system
receives this event, it will again broadcast the
sysNotifySleepRequestEvent to all clients. If deferSleep is
0 after all clients return, then the system knows it is safe to go to
sleep, and it broadcasts the sysNotifySleepNotifyEvent to all
of its clients.

Notice that you may potentially receive the
sysNotifySleepRequestEvent many times before the system
actually goes to sleep, but you receive the
sysNotifySleepNotifyEvent exactly once.

During a wake-up event, the other two notifications listed above are
broadcast. The sysNotifyEarlyWakeupEvent is broadcast very
early on in the wake-up process, generally before the screen has
turned on. At this stage, it is not guaranteed that the system will
fully wake up. It may simply handle an alarm or a battery charger
event and go back to sleep. Most applications that need notification
of a wake-up event will probably want to register for
sysNotifyLateWakeupEvent instead. At this stage, the screen
has been turned on and the system is guaranteed to fully wake up.

When the handheld receives the sysNotifyLateWakeupEvent
notification, it may be locked and waiting for the user to enter the
password. If this is the case, you must wait for the user to unlock the
handheld before you display a user interface. Therefore, if you
intend to display a user interface when the handheld wakes up, you
should make sure the handheld is not locked. If the handheld is
locked, you should register for sysNotifyDeviceUnlocked
notification and display your user interface when it is received. See
Listing 4.3.

Listing 4.3 Responding to Late Wake-up Notification

case sysNotifyLateWakeupEvent:
 if ((Boolean) PrefGetPreference(prefDeviceLocked)) {

Notif ications
Helper Notifications

66 Exploring Palm OS: Programming Basics

 SysNotifyRegister(myDbID, sysNotifyDeviceUnlocked,
 NULL, sysNotifyNormalPriority, NULL);
 } else {
 HandleDeviceWakeup();
 }
case sysNotifyDeviceUnlocked:
 HandleDeviceWakeup();

Helper Notifications
The helper notification, sysNotifyHelperEvent, is a way for one
application to request a service from another application. Currently,
the Dial application is the only application that performs a service
through sysNotifyHelperEvent. Specifically, the Dial
application dials a phone in response to this notification. The
Address Book uses the Dial application to dial the phone number
that the user has selected. You can use the Dial application in a
similar way by broadcasting the sysNotifyHelperEvent from
your application. You may also choose to write a provider of
services.

In this section, the application that responds to the
sysNotifyHelperEvent notification is called the helper, and the
application that broadcasts the notification is called the broadcaster.

A helper registers for the sysNotifyHelperEvent notification. In
the notification handler, the helper responds to action requests
pertaining to the service that it provides.

Actions are requests to provide information about the service or to
perform the service. The details structure for
sysNotifyHelperEvent (a HelperNotifyEventType
structure) defines three possible actions:

• kHelperNotifyActionCodeEnumerate is a request for
the helper to list the services that it can perform.

• kHelperNotifyActionCodeValidate is a request for the
helper to make sure that it can perform the service.

• kHelperNotifyActionCodeExecute is a request to
actually perform the service.

Notif ications
Helper Notifications

Exploring Palm OS: Programming Basics 67

The possible services are defined in HelperServiceClass.h and
described in Chapter 10, “Helper Service Class,” on page 181. These
services are to dial a number, email a message, send an SMS
message, or send a fax. If you want to define your own service, you
must register a unique creator ID for that service. Alternatively, you
can use the creator ID of your application.

When to Use the Helper API
There are several means by which one application can communicate
with another application on the same handheld. Specifically, an
application can send a launch code to another application (see
“Launching Applications Programmatically” on page 29, can use
the Exchange Manager and Local Exchange Library to send data to
another application (see Chapter 4, “Object Exchange,” in Exploring
Palm OS: High-Level Communications), or can use the helper API to
request that a service be performed.

The helper API is designed for use when you do not know anything
about the receiving application. The helper API provides a means of
communication where the sending and receiving application do not
need to know anything about each other. This contrasts with the
launch code mechanism, in which the sending application must
know the local ID of the receiving database as well as which launch
code to send.

Requesting a Helper Service
Listing 4.4 shows how an application should request the dial
service. In general, you should do the following to request a service:

• Broadcast a sysNotifyHelperEvent with a
kHelperNotifyActionCodeValidate action each time
you want to verify that the service is available.

For example, when the Address Book initializes the List view
form, it checks to see if the dial service is available by
broadcasting the notification with the action code
kHelperNotifyActionCodeValidate. The Dial
application makes sure the Telephony Library is open. If so,
it sets handled to true in the SysNotifyParamType
structure. If not, it sets handled to false. If handled is

Notif ications
Helper Notifications

68 Exploring Palm OS: Programming Basics

false after the notification is broadcast, the Address Book
does not display the Dial menu item.

• Broadcast a sysNotifyHelperEvent with a
kHelperNotifyActionCodeExecute action when you
want the service performed. See Listing 4.4.

• If you want to obtain a list of all possible services, broadcast a
sysNotifyHelperEvent with a
kHelperNotifyActionCodeEnumerate action. You
might do so when your application is launched, upon system
reset, or any time the user performs a task where you might
want to provide a service.

Listing 4.4 Requesting a helper service

Boolean PrvDialListDialSelected(FormType* frmP) {
 SysNotifyParamType param;
 HelperNotifyEventType details;
 HelperNotifyExecuteType execute;

 param.notifyType = sysNotifyHelperEvent;
 param.broadcaster = sysFileCAddress;
 param.notifyDetailsP = &details;
 param.handled = false;

 details.version = kHelperNotifyCurrentVersion;
 details.actionCode = kHelperNotifyActionCodeExecute;
 details.data.executeP = &execute;

 execute.serviceClassID = kHelperServiceClassIDVoiceDial;
 execute.helperAppID = 0;
 execute.dataP = FldGetTextPtr(ToolsGetFrmObjectPtr(frmP,
 DialListNumberField));
 execute.displayedName = gDisplayName;
 execute.detailsP = 0;
 execute.err = errNone;

 SysNotifyBroadcast(¶m);

 // Check error code
 if (!param.handled)
 // Not handled so exit the list - Unexpected error
 return true;
 else

Notif ications
Helper Notifications

Exploring Palm OS: Programming Basics 69

 return (execute.err == errNone);
}

When you broadcast the sysNotifyHelperEvent, it’s important
to note the following:

• Always use SysNotifyBroadcast(), which broadcasts
the notification synchronously.

• The notification’s notifyDetailsP parameter points to a
HelperNotifyEventType. This structure allows the
broadcaster to communicate with the helper.

• The helper may allocate memory and add it to the
HelperNotifyEventType structure. In particular, if the
action code is kHelperNotifyActionCodeEnumerate,
the helper allocates at least one structure of type
HelperNotifyEnumerateListType and adds it to the
data field in the HelperNotifyEventType structure. The
broadcaster must free this memory, even though the helper
allocated it.

• The broadcaster uses the helperAppID field to
communicate directly with a particular provider of the
requested service. For example, suppose two applications
provide a dial service. The broadcaster might discover these
two applications through the enumerate action and then
allow the user to specify which application should dial the
phone number. When broadcasting the enumerate action, no
helper ID is specified, so all helpers respond. After the user
has set the preferred helper, the broadcaster sets the
helperAppID field for the validate and execute actions to
that helper’s creator ID. A helper must check the
helperAppID field and only respond to the notification if its
creator ID matches the value in that field or if that field is 0.

• The dataP field contains the data required to perform the
service. For the dial service, dataP contains the phone
number to dial. If any extra information is required or
desired, then it is provided in the detailsP field. If you’re
requesting the email or SMS service, you use detailsP to
provide the message to be sent. See Chapter 10, “Helper
Service Class,” on page 181 for more information.

• The handled field of SysNotifyParamType and the err
field of the HelperNotifyEventType structure are used to

Notif ications
Helper Notifications

70 Exploring Palm OS: Programming Basics

return the result. Always set handled to false and err to
errNone before broadcasting and check their values after
the broadcast is complete. The helper uses handled to
indicate if it attempted to handle the service. If handled is
true, it uses err to indicate the success or failure of
performing that service.

Implementing a Helper
To implement a helper, do the following:

• Register to receive the sysNotifyHelperEvent. It is best
to register for this notification in response to the
sysAppLaunchCmdSyncNotify and
sysAppLaunchCmdSystemReset launch codes. This
registers your helper when it is first installed and re-registers
it upon each system reset.

• In the notification handler, handle the three possible actions:
enumerate, execute, and validate. Note that even though the
enumerate action is optional and not currently used by
Address Book, a helper must respond to this action in its
handler because another third party application might send
the enumerate action.

Listing 4.5 and Listing 4.6 show how the Dial application responds
to the enumerate and validate actions. Note that the enumerate
action requires the helper to allocate memory and add that memory
to the HelperNotifyEventType structure pointed to by
notifyDetailsP in the SysNotifyParamType parameter block.
In this case, the notifyDetailsP->dataP field is a linked list of
HelperNotifyEnumerateListType structures. Each helper
must allocate one of these structure per service and add it to the end
of the list. The broadcaster is responsible for freeing all of these
structures after the notification broadcast is complete.

Listing 4.5 Enumerating services provided

Boolean PrvAppEnumerate
(HelperNotifyEventType *helperNotifyEventP)
{
 HelperNotifyEnumerateListType* newNodeP;
 MemHandle handle;
 MemPtr stringP;

Notif ications
Helper Notifications

Exploring Palm OS: Programming Basics 71

 newNodeP = MemPtrNew
 (sizeof(HelperNotifyEnumerateListType));

 // Get name to display in user interface.
 handle = DmGetResource(strRsc, HelperAppNameString);
 stringP = MemHandleLock(handle);
 StrCopy(newNodeP->helperAppName, stringP);
 MemHandleUnlock(handle);
 DmReleaseResource(handle);

 // Get name of service to display in UI.
 handle = DmGetResource(strRsc, HelperActionNameString);
 stringP = MemHandleLock(handle);
 StrCopy(newNodeP->actionName, stringP);
 MemHandleUnlock(handle);
 DmReleaseResource(handle);

 newNodeP->serviceClassID = kHelperServiceClassIDVoiceDial;
 newNodeP->helperAppID = kDialCreator;
 newNodeP->nextP = 0;

 // Add the new node.
 if (helperNotifyEventP->data.enumerateP == 0) {
 helperNotifyEventP->data.enumerateP = newNodeP;
 else {
 HelperNotifyEnumerateListType* nodeP;
 nodeP = helperNotifyEventP->data.enumerateP;
 //Look for the end of the list.
 while (nodeP->nextP != 0)
 nodeP = nodeP->nextP;
 nodeP->nextP = newNodeP;
 }

 return true;
}

Listing 4.6 show how the Dial application responds to the validate
action.

Listing 4.6 Responding to validate action

Boolean PrvAppValidate (SysNotifyParamType *sysNotifyParamP)
{
 HelperNotifyEventType* helperNotifyEvent;

Notif ications
Notification Summary

72 Exploring Palm OS: Programming Basics

 helperNotifyEvent = sysNotifyParamP->notifyDetailsP;
 // Check version
 if (helperNotifyEvent->version < 1)
 return false;

 // Check service
 if (helperNotifyEvent-> data.validateP->serviceClassID
 != kHelperServiceClassIDVoiceDial)
 return false;

 // check appId (either null or me)
 if ((helperNotifyEvent->data.validateP->helperAppID != 0)
 && (helperNotifyEvent->data.validateP->helperAppID !=
 kDialCreator))
 return false;

 // Check Telephony library presence
 if (!PrvAppCheckTelephony())
 return false;

 sysNotifyParamP->handled = true;
 return true;
}

When writing a helper, it is also important to note the following:

• Always check the helperAppID field and only respond if it
is 0 or if it matches your creator ID. For the validate and
execute actions, a broadcaster may use helperAppID to
only communicate with the desired helper.

• If you handle the action, set handled to true. If the
handling of the service was unsuccessful, set the err field in
notifyDetailsP.

• Always check the handled field before performing the
service. If any helper can perform the service, you must make
sure that the service has not already been performed before
you perform it. If handled is true, the service has already
been performed.

Notification Summary
Table 4.1 lists the standard notifications that are supported in Palm
OS Cobalt. These notifications are declared in the header

Notif ications
Notification Summary

Exploring Palm OS: Programming Basics 73

NotifyMgr.h. All the parameters for a notification are passed in a
SysNotifyParamType structure and the results are returned in
that same structure.

Table 4.1 Notification Constants

Constant Description

cncNotifyConnectionStateEvent Broadcast by the Connection Manager
whenever a persistent profile is either
connected or disconnected.

shortCutNotifyAddDbgMacrosEvent

sysExternalConnectorAttachEvent A device has been attached to an external
connector.

sysExternalConnectorDetachEvent A device has been detached from an
external connector.

sysNotifyAltInputSystemDisabled An alternative input system (such as an
external keyboard) has become disabled.

sysNotifyAltInputSystemEnabled An alternative input system (such as an
external keyboard) has been enabled.

sysNotifyAntennaRaisedEvent The antenna has been raised on a Palm
VII series handheld.

sysNotifyAppServicesEvent

sysNotifyCardInsertedEvent An expansion card has been inserted into
the expansion slot.

sysNotifyCardRemovedEvent An expansion card has been removed
from the expansion slot.

sysNotifyDBAddedEvent A new database has been added to the
device.

sysNotifyDBChangedEvent Database info has been set on a database,
such as with DmSetDatabaseInfo().

sysNotifyDBCreatedEvent A database has been created.

sysNotifyDBDeletedEvent A database has been deleted.

Notif ications
Notification Summary

74 Exploring Palm OS: Programming Basics

sysNotifyDBDirtyEvent An overlay has been opened, a database
has been opened for write, or another
event has occurred which has made the
database info “dirty.”

sysNotifyDeleteProtectedEvent The Launcher has attempted to delete a
protected database.

sysNotifyDeviceUnlocked The user has unlocked the handheld.

sysNotifyDisplayChangeEvent The color table or bit depth has changed.

sysNotifyEarlyWakeupEvent The system is starting to wake up.

sysNotifyEvtGotAttnEvent System use only.

sysNotifyForgotPasswordEvent The user has tapped the Lost Password
button in the Security application.

sysNotifyHelperEvent An application has requested that a
particular service be performed.

sysNotifyHostFSInitDone System use only.

sysNotifyLateWakeupEvent The system has finished waking up.

sysNotifyLocaleChangedEvent The system locale has changed.

sysNotifyMenuCmdBarOpenEvent The system is about to display the menu
command toolbar.

sysNotifyPhoneEvent Reserved for future use.

sysNotifyPOSEMountEvent System use only.

sysNotifyResetFinishedEvent The system has finished a reset.

sysNotifyRetryEnqueueKey The Attention Manager has failed to post
a virtual character to the key queue.

sysNotifySecuritySettingEvent The device security level has been
changed.

sysNotifySleepNotifyEvent The system is about to go to sleep.

Table 4.1 Notification Constants (continued)

Constant Description

Notif ications
Notification Function Summary

Exploring Palm OS: Programming Basics 75

Notification Function Summary

sysNotifySleepRequestEvent The system has decided to go to sleep.

sysNotifySyncFinishEvent A HotSync operation has just completed.

sysNotifySyncStartEvent A HotSync operation is about to begin.

sysNotifyTimeChangeEvent The system time has just changed.

sysNotifyVolumeMountedEvent A file system has been mounted.

sysNotifyVolumeUnmountedEvent A file system has been unmounted.

telNotifyEnterCodeEvent

telNotifyErrorEvent

Notification Manager Functions

SysNotifyBroadcast
SysNotifyBroadcastDeferred
SysNotifyRegister
SysNotifyRegisterBackground

SysNotifyRegisterV40
SysNotifyUnregister
SysNotifyUnregisterV40

Table 4.1 Notification Constants (continued)

Constant Description

Notif ications
Notification Function Summary

76 Exploring Palm OS: Programming Basics

Part III
Reference

This part contains reference documentation for the following:

Application Manager. 79

Common Launch Codes 103

Event . 139

Event Codes 169

Helper . 173

Helper Service Class 181

Notification Manager 185

Palm Types . 233

System Event Manager 247

Exploring Palm OS: Programming Basics 79

5
Application Manager
This chapter provides reference documentation for the Application
Manager, which you use to launch Palm OS applications
programmatically. The contents of this chapter are organized as
follows:

Application Manager Structures and Types 79

Application Manager Constants 89

Application Manager Functions and Macros 91

The header file AppMgr.h declares the API that this chapter
describes.

For more information on how Palm OS applications are launched,
see “Application Start and Stop” on page 21.

Application Manager Structures and Types

ARMAppLaunchPrefsType Struct
Purpose ARM application’s launch preferences.

Declared In AppMgr.h

Prototype typedef struct ARMAppLaunchPrefsType {
 uint32_t version;
 uint32_t reserved1;
 uint32_t reserved2;
 uint32_t stackSize;
 uint32_t flags;
} ARMAppLaunchPrefsType

Fields version
Version of this structure. See “Launch Preferences Structure
Versions” on page 90 for the values that this field can assume.

Application Manager
ImportExportRecordParamsType

80 Exploring Palm OS: Programming Basics

reserved1
Reserved for future use.

reserved2
Reserved for future use.

stackSize
Not used in Palm OS Cobalt. This field should always have a
value of 0.

flags
Any combination of the launch flags listed under “Launch
Preference Flags” on page 89.

Example You can obtain an application’s launch preferences using code
similar to the following:

DmOpenRef openRef;

// Open the database
openRef = DmOpenDatabase(dbID, dmModeReadOnly);
if (openRef) {

 // Look for its launch preferences.
 MemHandle resH = DmGetResource(openRef,
 sysResTAppLaunchPrefsLE32, sysResIDDefault);

 if (resH) {
 ARMAppLaunchPrefsType *launchPrefs =
 (ARMAppLaunchPrefsType *)MemHandleLock(resH);

 // Do something with the launch prefs here

 MemHandleUnlock(resH);
 DmReleaseResource(resH);
 }
}

ImportExportRecordParamsType Struct
Purpose Parameter block passed with the

sysAppLaunchCmdImportRecord,
sysAppLaunchCmdMoveRecord,

Application Manager
ImportExportRecordParamsType

Exploring Palm OS: Programming Basics 81

sysAppLaunchCmdExportRecord and
sysAppLaunchCmdDeleteRecord launch codes.

Declared In AppMgr.h

Prototype typedef struct {
 uint32_t index;
 uint32_t destIndex;
 uint32_t uniqueID;
 MemHandle vObjectH;
} ImportExportRecordParamsType
typedef ImportExportRecordParamsType
*ImportExportRecordParamsPtr;

Fields index
Index of the database record to be exported, moved, or
deleted, or dmMaxRecordIndex if the uniqueID field
identifies the record. When importing, this value is ignored.
This value is updated after the sublaunch.

destIndex
Index of the destination location for the record to be moved
when the launch code is sysAppLaunchCmdMoveRecord.

uniqueID
The record’s unique ID. This field is ignored unless the
index field is set to dmMaxRecordIndex. When importing,
if this field is set to a valid record unique ID (other than
dmUnusedRecordID) the imported record should replace
the one specified.

vObjectH
Memory handle for the location that contains the record
being exported or the location where the record being
imported is to be stored.

Application Manager
SysAppLaunchCmdCardType

82 Exploring Palm OS: Programming Basics

SysAppLaunchCmdCardType Struct
Purpose Parameter block that accompanies a

sysAppLaunchCmdCardLaunch launch code.

Declared In AppMgr.h

Prototype typedef struct {
 status_t err;
 uint16_t volRefNum;
 uint16_t _reserved1;
 const char *path;
 uint16_t startFlags;
 uint16_t padding;
} SysAppLaunchCmdCardType

Fields ← err
Initially set to expErrUnsupportedOperation,
applications that recognize
sysAppLaunchCmdCardLaunch and that don’t want to
receive the subsequent sysAppLaunchCmdNormalLaunch
launch code should set this field to errNone.

→ volRefNum
The reference number of the volume from which the
application is being launched.

_reserved1
Reserved for future use.

→ path
The complete path to the application being launched.

↔ startFlags
A combination of the flags listed under “Expansion Card
Launch Flags” on page 89.

padding
Padding bytes.

SysAppLaunchCmdFailedAppNotifyType
Struct

Purpose Parameter block that accompanies a
sysAppLaunchCmdFailedAppNotify launch code. This

Application Manager
SysAppLaunchCmdHandleSyncCallAppType

Exploring Palm OS: Programming Basics 83

structure identifies both the failed application and the reason for
failure.

Declared In AppMgr.h

Prototype typedef struct {
 uint32_t creator;
 uint32_t type;
 status_t result;
} SysAppLaunchCmdFailedAppNotifyType

Fields creator
The failed application’s creator ID.

type
The failed application’s type.

result
The error code returned from the failed application.

SysAppLaunchCmdHandleSyncCallAppType
Struct

Purpose Parameter block that accompanies a
sysAppLaunchCmdHandleSyncCallApp launch code. This
structure contains all of the information passed to
SyncCallRemoteModule() on the desktop plus the fields needed
to pass the result back to the desktop.

Declared In AppMgr.h

Application Manager
SysAppLaunchCmdHandleSyncCallAppType

84 Exploring Palm OS: Programming Basics

Prototype typedef struct
SysAppLaunchCmdHandleSyncCallAppType {
 uint16_t pbSize;
 uint16_t action;
 void *paramP;
 uint32_t dwParamSize;
 void *dlRefP;
 Boolean handled;
 uint8_t _reserved1;
 uint16_t _reserved2;
 status_t replyErr;
 uint32_t dwReserved1;
 uint32_t dwReserved2;
} SysAppLaunchCmdHandleSyncCallAppType

Fields pbSize
Size, in bytes, of this parameter block. Set to
sizeof(SysAppLaunchCmdHandleSyncCallAppType).

action
Call action ID (application-specific).

paramP
Pointer to parameter block (call action ID specific).

dwParamSize
Parameter block size, in bytes.

dlRefP
DesktopLink reference pointer. Supply this value in the
DlkCallAppReplyParamType structure when calling
DlkControl() with the dlkCtlSendCallAppReply
control code.

handled
Initialized to false by DLServer; if handled, your
application must set it to true (and your handler the handler
must call DlkControl with the
dlkCtlSendCallAppReplycontrol code). If your handler
is not going to send a reply back to the conduit, leave this
field set to false, in which case the DesktopLink Server will
send the default "unknown request" reply.

_reserved1
Reserved. Set to NULL.

Application Manager
SysAppLaunchCmdInitDatabaseType

Exploring Palm OS: Programming Basics 85

_reserved2
Reserved. Set to NULL.

replyErr
Error code returned from the call to DlkControl() with the
dlkCtlSendCallAppReply control code.

dwReserved1
Reserved. Set to NULL.

dwReserved2
Reserved. Set to NULL.

SysAppLaunchCmdInitDatabaseType Struct
Purpose Parameter block that accompanies a

sysAppLaunchCmdInitDatabase launch code.

Declared In AppMgr.h

Prototype typedef struct SysAppLaunchCmdInitDatabaseType {
 DmOpenRef dbP;
 uint32_t creator;
 uint32_t type;
 uint16_t version;
 uint16_t padding;
} SysAppLaunchCmdInitDatabaseType

Fields dbP
Handle of the newly-created database, already open for
read/write access.

creator
Creator ID of the newly-created database.

type
Type of the newly-created database.

version
Version number of the newly-created database.

padding
Padding bytes.

Comments IMPORTANT: The sysAppLaunchCmdInitDatabase launch
code handler must leave the database handle open on return.

Application Manager
SysAppLaunchCmdOpenDBType

86 Exploring Palm OS: Programming Basics

SysAppLaunchCmdOpenDBType Struct
Purpose Parameter block that accompanies a sysAppLaunchCmdOpenDB

launch code.

Declared In AppMgr.h

Prototype typedef struct {
 MemHandle dbH;
} SysAppLaunchCmdOpenDBType

Fields dbH
Handle to the database to open.

SysAppLaunchCmdPnpsType Struct
Purpose Parameter block that accompanies a

sysAppLaunchPnpsPreLaunch launch code.

Declared In AppMgr.h

Prototype typedef struct {
 status_t error;
 uint16_t volRefNum;
 uint16_t slotLibRefNum;
 uint16_t slotRefNum;
 uint16_t _reserved1;
} SysAppLaunchCmdPnpsType

Fields error
Error code returned from the pre-launch application. Set this
field errNone to prevent the application from receiving a
sysAppLaunchCmdNormalLaunch launch code.

volRefNum
Volume reference number, or zero if a file system wasn’t
mounted.

slotLibRefNum
Slot driver library reference number. This field is always
valid for a slot driver call.

slotRefNum
Slot reference number. This field is always valid for a slot
driver call.

_reserved1
Reserved for future use.

Application Manager
SysAppLaunchCmdSyncCallApplicationTypeV10

Exploring Palm OS: Programming Basics 87

SysAppLaunchCmdSaveDataType Struct
Purpose Parameter block that accompanies a sysAppLaunchCmdSaveData

launch code.

Declared In AppMgr.h

Prototype typedef struct {
 Boolean uiComing;
 uint8_t reserved1;
} SysAppLaunchCmdSaveDataType

Fields uiComing
true if the system dialog is displayed before launch code
arrives.

reserved1
Reserved for future use.

SysAppLaunchCmdSyncCallApplicationTypeV
10 Struct

Purpose

Declared In AppMgr.h

Prototype typedef struct
SysAppLaunchCmdSyncCallApplicationTypeV10 {
 uint16_t action;
 uint16_t paramSize;
 void *paramP;
 uint8_t remoteSocket;
 uint8_t tid;
 Boolean handled;
 uint8_t reserved1;
} SysAppLaunchCmdSyncCallApplicationTypeV10

Fields action

paramSize

paramP

Application Manager
SysAppLaunchCmdSystemResetType

88 Exploring Palm OS: Programming Basics

remoteSocket

tid

handled

reserved1

SysAppLaunchCmdSystemResetType Struct
Purpose Parameter block that accompanies a

sysAppLaunchCmdSystemReset launch code.

Declared In AppMgr.h

Prototype typedef struct {
 Boolean hardReset;
 Boolean createDefaultDB;
} SysAppLaunchCmdSystemResetType

Fields hardReset
true if system was hard reset. false if system was soft
reset.

createDefaultDB
If true, application has to create default database.

PilotMainType Typedef
Purpose Type used to declare pointers to a PilotMain() function.

Declared In AppMgr.h

Prototype typedef uint32_t (PilotMainType) (uint16_t cmd,
void *cmdPBP, uint16_t launchFlags)

See Also PilotMain()

Application Manager
Launch Preference Flags

Exploring Palm OS: Programming Basics 89

Application Manager Constants

Expansion Card Launch Flags
Purpose Used in combination to specify how

sysAppLaunchCmdCardLaunch is to operate. Supply one or more
of these flags to the startFlags field of the
SysAppLaunchCmdCardType structure that accompanies the
launch code.

Declared In AppMgr.h

Constants #define sysAppLaunchStartFlagAutoStart 0x0001
Indicates that the application is being run automatically
upon card insertion.

#define sysAppLaunchStartFlagNoAutoDelete 0x0004
Prevents the VFS Manager from deleting the copy of the
application in main memory when the associated volume is
unmounted.

#define sysAppLaunchStartFlagNoUISwitch 0x0002
Prevents a UI switch to the auto-launched application.

Launch Preference Flags
Purpose Flags that control how an ARM application is launched. These flags

can be used in combination to make up the value of the
ARMAppLaunchPrefsType structure’s flags field.

Declared In AppMgr.h

Constants #define ARMAppLaunchPrefsFindNotification 0x02
If set, the application is a sent a sysAppLaunchCmdFind
launch code upon launch.

#define ARMAppLaunchPrefsNoOverlay 0x20

#define ARMAppLaunchPrefsResetNotification 0x01
If set, the application is a sent a
sysAppLaunchCmdSystemReset launch code upon
launch.

Application Manager
Launch Preferences Structure Versions

90 Exploring Palm OS: Programming Basics

#define ARMAppLaunchPrefsTimeChangeNotification
0x04

If set, the application is a sent a
sysAppLaunchCmdTimeChange launch code upon launch.

#define ARMAppLaunchPrefsReserved 0xffffffd8
Reserved flag bits. The corresponding bits in the
ARMAppLaunchPrefsType structure’s flags field must be
set to zero.

Launch Preferences Structure Versions
Purpose Identify the version of the ARMAppLaunchPrefsType structure.

That structure’s version field should contain one of these values.

Declared In AppMgr.h

Constants #define ARMAppLaunchPrefsTypeVersion60 1
The first version of the structure as defined in Palm OS
Cobalt, version 6.0.

#define ARMAppLaunchPrefsTypeVersionCurrent
ARMAppLaunchPrefsTypeVersion60

The current version of the structure.

Miscellaneous Application Manager Constants
Purpose The Application Manager header file also defines these constants.

Declared In AppMgr.h

Constants #define ImpExpInvalidRecIndex 0xFFFFFFFF

#define ImpExpInvalidUniqueID dmUnusedRecordID

Application Manager
PilotMain

Exploring Palm OS: Programming Basics 91

Application Manager Functions and Macros

PilotMain Function
Purpose The entry point for all Palm OS applications, this function’s sole

purpose is to receive and respond to launch codes.

Declared In AppMgr.h

Prototype uint32_t PilotMain (uint16_t cmd, void *cmdPBP,
uint16_t launchFlags)

Parameters → cmd
The launch code to which your application is to respond. See
Chapter 6, “Common Launch Codes,” on page 103 for a list
of predefined launch codes. You may create additional
launch codes; see “Creating Your Own Launch Codes” on
page 32.

→ cmdPBP
A pointer to a structure containing any launch-command-
specific parameters, or NULL if the launch code has none. See
the description of each launch code for a description of the
parameter structure that accompanies it, if any.

→ launchFlags
Flags that indicate whether your application’s global
variables are available, whether your application is now the
active application, whether it already was the active
application, and so on. See “Launch Flags” on page 105 for a
list of launch flags.

Returns Return errNone if your application processed the launch code
successfully, or an appropriate error code if there was a problem.
When another application invokes your application using
SysAppLaunch(), this value is returned to the caller.

Comments See Chapter 2, “Application Start and Stop,” on page 21 for a
discussion on how applications receive and handle launch codes,
with examples.

Application Manager
SysAppLaunch

92 Exploring Palm OS: Programming Basics

SysAppLaunch Function
Purpose Launch an application as a subroutine of the caller in the caller’s

process (irrespective of whether or not the application being
launched is already running in another process).

NOTE: Applications should avoid this function; they should use
SysAppLaunchLocal() or SysAppLaunchRemote() instead.

Declared In AppMgr.h

Prototype status_t SysAppLaunch (DatabaseID dbID,
uint16_t cmd, void *cmdPBP, uint32_t *resultP)

Parameters → dbID
The database ID of the resource database containing the
application to launch.

→ cmd
Launch code passed to the launched application’s
PilotMain() function.

→ cmdPBP
Pointer to the launch code parameter block.

← resultP
The value returned from the application’s PilotMain()
routine.

Returns Returns errNone if the application was launched successfully.

Comments Applications can use SysAppLaunch() to send a specific launch
code to another application and have control return to the calling
application when finished. This function in effect makes the
specified application a subroutine of the caller. If you want to
actually close your application and call another application, use
SysUIAppSwitch() instead of this function. SysUIAppSwitch()
sends the current application an appStopEvent and then starts the
specified application.

Do not use this function to open the system-supplied Launcher
application. If another application has replaced the default launcher
with one of its own, this function will open the custom launcher
instead of the system-supplied one. To open the Launcher reliably,
enqueue a keyDownEvent that contains a launchChr.

Application Manager
SysAppLaunchLocal

Exploring Palm OS: Programming Basics 93

You can call this function only in the context of the main UI
application thread. To invoke the PilotMain() procedure of any
application in the context of another thread, use
SysLoadModule() and SysGetEntryAddresses() instead.

If the target application happens to be the same as the root
application of the calling process, the target application’s
PilotMain() is re-entered in the context of the calling thread. In
this case the sysAppLaunchFlagSubCall launch flag is set.

Before the PilotMain() procedure of the target application is
entered, the database of the target application is opened and added
to the default resource search chain. After the target application’s
PilotMain() exits, that database is closed. If the closing causes the
open count of the database to become zero, the database is removed
from the default resource search chain.

NOTE: For important information regarding the correct use of
this function, see Chapter 2, “Application Start and Stop,” on
page 21.

See Also SysBroadcastActionCode(), SysUIAppSwitch(),
SysCurAppDatabase()

SysAppLaunchLocal Function
Purpose Launch an application as a subroutine of the caller in the caller’s

process, unless the application is already running in another
process. If the application is already running in another process the
launch code and parameters are sent to the running application.

Declared In AppMgr.h

Prototype status_t SysAppLaunchLocal (DatabaseID dbID,
uint16_t cmd, void *cmdPBP,
uint32_t cmdPBSize, uint32_t *resultP)

Parameters → dbID
The database ID of the resource database containing the
application to launch.

Application Manager
SysAppLaunchRemote

94 Exploring Palm OS: Programming Basics

→ cmd
Launch code passed to the launched application’s
PilotMain() function.

→ cmdPBP
Pointer to the launch code parameter block.

→ cmdPBSize
Size, in bytes, of the launch code parameter block.

← resultP
The value returned from the application’s PilotMain()
routine.

Returns Returns errNone if the application was launched successfully.

Comments A local sublaunch becomes a local subroutine invocation in the
same process.

See Also SysAppLaunch(), SysAppLaunchRemote()

SysAppLaunchRemote Function
Purpose Launch an application as a subroutine of the caller in a separate,

newly-created process, unless the application is already running in
another process. If the application is already running in another
process the launch code and parameters are sent to the running
application.. Remote launching allows applications to execute
untrusted code without compromising their own security.

Declared In AppMgr.h

Prototype status_t SysAppLaunchRemote (DatabaseID dbID,
uint16_t cmd, void *cmdPBP,
uint32_t cmdPBSize, uint32_t *resultP)

Parameters → dbID
The database ID of the resource database containing the
application to launch.

→ cmd
Launch code passed to the launched application’s
PilotMain() function.

→ cmdPBP
Pointer to the launch code parameter block. If cmdPBSize is
non-zero, cmdPBP is interpreted as the address of a block of

Application Manager
SysAppLaunchV40

Exploring Palm OS: Programming Basics 95

memory whose size is cmdPBSize bytes. If the target
application is started in a separate transient process, the
contents of that memory block are copied to the transient
process, and the address of that copy is passed to the target
application’s PilotMain() procedure as the cmdPBP
parameter.

If cmdPBSize is zero, the value of cmdPBP is passed as-is to
the target application’s PilotMain() procedure as the
cmdPBP parameter. No memory is copied even if the target
application is started in a separate process.

→ cmdPBSize
Size, in bytes, of the launch code parameter block, or zero if
the cmdPBP parameter is to be passed as-is to the launched
application’s PilotMain() function.

← resultP
The value returned from the application’s PilotMain()
function.

Returns Returns errNone if the application was launched successfully.

Comments This function creates a separate transient process in which to
execute the target application, unless the target application happens
to be the same as the root application of the calling process—in
which case SysAppLaunchRemote() simply performs a local
sublaunch as SysAppLaunch() does.

See Also SysAppLaunch(), SysAppLaunchLocal()

SysAppLaunchV40 Function
Purpose Launch a specified application as a subroutine of the caller.

Declared In AppMgr.h

Prototype status_t SysAppLaunchV40 (uint16_t cardNo,
LocalID dbID, uint16_t launchFlags,
uint16_t cmd, MemPtr cmdPBP,
uint32_t *resultP)

Parameters → cardNo
The card number of the resource database containing the
application to launch.

Application Manager
SysAppLaunchV40

96 Exploring Palm OS: Programming Basics

→ dbID
The local ID of the resource database containing the
application to launch.

→ launchFlags
Set to 0.

→ cmd
Launch code.

→ cmdPBP
Launch code parameter block.

← resultP
The value returned from the application’s PilotMain()
routine.

Returns Returns errNone if no error, or one of sysErrParamErr,
memErrNotEnoughSpace, or sysErrOutOfOwnerIDs.

Comments Applications can use SysAppLaunch() to send a specific launch
code to another application and have control return to the calling
application when finished. This function in effect makes the
specified application a subroutine of the caller. If you want to
actually close your application and call another application, use
SysUIAppSwitch() instead of this function. SysUIAppSwitch()
sends the current application an appStopEvent and then starts the
specified application.

Do not use this function to open the system-supplied Application
Launcher application. If another application has replaced the
default launcher with one of its own, this function will open the
custom launcher instead of the system-supplied one. To open the
system-supplied launcher reliably, enqueue a keyDownEvent that
contains a launchChr.

NOTE: For important information regarding the correct use of
this function, see Chapter 2, “Application Start and Stop,” on
page 21.

Application Manager
SysCurAppDatabase

Exploring Palm OS: Programming Basics 97

Compatibility This function is provided for compatibility purposes only.
Applications should use SysAppLaunch() instead.

See Also SysBroadcastActionCode(), SysUIAppSwitch(),
SysCurAppDatabase()

SysBroadcastActionCode Function
Purpose Send the specified action code (launch code) and parameter block to

the latest version of every UI application.

Declared In AppMgr.h

Prototype status_t SysBroadcastActionCode (uint16_t cmd,
void *cmdPBP)

Parameters → cmd
Launch code to send.

→ cmdPBP
Launch code parameter block to send.

Returns Returns errNone if no error, or one of the following errors:
sysErrParamErr, memErrNotEnoughSpace, or
sysErrOutOfOwnerIDs.

See Also SysAppLaunch(), Chapter 2, “Application Start and Stop,” on
page 21

SysCurAppDatabase Function
Purpose Get the database ID of the current application’s resource database.

Declared In AppMgr.h

Prototype status_t SysCurAppDatabase (DatabaseID *dbIDP)

Parameters ← dbIDP
Pointer to the location in memory where the database ID is to
be written.

Returns Returns errNone if no error, or sysErrParamErr if an error
occurs.

See Also SysAppLaunch(), SysGetModuleDatabase(), SysUIAppSwitch()

Application Manager
SysCurAppDatabaseV40

98 Exploring Palm OS: Programming Basics

SysCurAppDatabaseV40 Function
Purpose Get the card number and database ID of the current application’s

resource database.

Declared In AppMgr.h

Prototype status_t SysCurAppDatabaseV40 (uint16_t *cardNoP,
LocalID *dbIDP)

Parameters ← cardNoP
Pointer to the location in memory where the card number is
to be written.

← dbIDP
Pointer to the location in memory where the database ID is to
be written.

Returns Returns errNone if no error, or sysErrParamErr if an error
occurs.

Compatibility This function is provided for compatibility purposes only.
Applications should use SysCurAppDatabase() instead.

See Also SysAppLaunch(), SysUIAppSwitch()

SysGetStackInfo Function
Purpose Locate the start and end of the current thread’s stack.

Declared In AppMgr.h

Prototype Boolean SysGetStackInfo (void **startPP,
void **endPP)

Parameters ← startPP
Upon return, points to the start of the stack.

← endPP
Upon return, points to the end of the stack.

Returns Returns true if the stack has not overflowed, that is, the value of
the stack overflow address has not been changed. Returns false if
the stack overflow value has been overwritten, meaning that a stack
overflow has occurred.

Application Manager
SysUIAppSwitch

Exploring Palm OS: Programming Basics 99

SysReset Function
Purpose Perform a soft reset and reinitialize the globals and the dynamic

memory heap.

Declared In AppMgr.h

Prototype void SysReset (void)

Parameters None.

Returns Nothing.

Comments This routine resets the system, reinitializes the globals area and all
system managers, and reinitializes the dynamic heap. All database
information is preserved. This routine is called when the user
presses the reset switch on the device.

SysUIAppSwitch Function
Purpose Try to make the current UI application quit and then launch the UI

application specified by database ID.

Declared In AppMgr.h

Prototype status_t SysUIAppSwitch (DatabaseID dbID,
uint16_t cmd, void *cmdPBP,
uint32_t cmdPBSize)

Parameters → dbID
Database ID of the new application’s resource database.

→ cmd
Launch code.

→ cmdPBP
Pointer to the launch code parameter block, or NULL if you
don’t need to pass a parameter block to the application.

→ cmdPBSize
Size, in bytes, of the parameter block pointed to by cmdPBP.

Returns Returns errNone if the application switch was performed
successfully.

Comments When you launch an application using SysUIAppSwitch() you
have the option to pass a parameter block (using the cmdPBP
parameter) containing application-specific information to the

Application Manager
SysUIAppSwitchV40

100 Exploring Palm OS: Programming Basics

application being launched. To create this parameter block, allocate
it using MemPtrNew() and then call MemPtrSetOwner() to set the
block’s owner ID to 0. This assigns ownership of the block to the
system; memory blocks owned by the system aren’t automatically
freed when the calling application exits. Once ownership of the
block has been assigned to the system, neither the launching nor the
launched application need worry about freeing the block since the
operating system will do this itself after the launched application
exits.

Note that your parameter block must be self contained. That is, it
must not have pointers to anything on the stack or to memory
blocks that are owned by an application. If you don’t need to pass a
parameter block to the application being launched, pass NULL for
the cmdPBP parameter.

Do not use SysUIAppSwitch() to open the system-supplied
Application Launcher application. If a third-party launcher is
installed, you’ll likely want to launch that one instead. To do this,
enqueue a keyDownEvent that contains a launchChr. This will
run whatever is run whenever the user taps the Applications icon.

See Also SysAppLaunch(), Chapter 2, “Application Start and Stop,” on
page 21

SysUIAppSwitchV40 Function
Purpose Try to make the current UI application quit and then launch the UI

application specified by card number and database ID.

Declared In AppMgr.h

Prototype status_t SysUIAppSwitchV40 (uint16_t cardNo,
LocalID dbID, uint16_t cmd, MemPtr cmdPBP)

Parameters → cardNo
Card number for the new application; currently only card 0 is
valid.

→ dbID
Local ID of the new application’s resource database.

→ cmd
Action code (launch code).

Application Manager
SysUIAppSwitchV40

Exploring Palm OS: Programming Basics 101

→ cmdPBP
Action code (launch code) parameter block.

Returns Returns errNone if the application switch was performed
successfully.

Comments May display a fatal error message if the cardNo parameter is
invalid. On debug ROMs, displays a fatal error message if there is
no currently running application.

Do not use this function to open the system-supplied Application
Launcher application. If a third-party launch is installed, you’ll
likely want to launch that one instead. To do this, enqueue a
keyDownEvent that contains a launchChr. This will run whatever
is run whenever you tap on the Applications icon.

If you are passing a parameter block (the cmdPBP parameter), you
must set the owner of the parameter block chunk to the operating
system. To do this, and for more information, see
MemPtrSetOwner(). If the parameter block structure contains
references by pointer or handle to any other chunks, you also must
set the owner of those chunks by using MemHandleSetOwner() or
MemPtrSetOwner. If you set the owner of this parameter block
properly, the system maintains the parameter block and frees it
when the second application quits. If you don’t set the owner of the
parameter block, the system frees the parameter block as soon as the
calling application quits, causing unpredictable results.

Compatibility This function is provided for compatibility purposes only.
Applications should use SysUIAppSwitch() instead.

See Also SysAppLaunch(), Chapter 2, “Application Start and Stop,” on
page 21

Application Manager
SysUIAppSwitchV40

102 Exploring Palm OS: Programming Basics

Exploring Palm OS: Programming Basics 103

6
Common Launch
Codes
This chapter provides detailed descriptions of many of the Palm OS
application launch codes and flags. Launch codes that are specific to
a particular technology are documented with that technology. For
instance, launch codes used exclusively with the Alarm Manager
are documented in the Alarm Manager reference chapter within
Exploring Palm OS: System Management.

This chapter is organized into the following sections:

Common Launch Codes Structures and Types 103

Common Launch Codes Constants. 105

Common Launch Codes 107

The header file CmnLaunchCodes.h declares the API that this
chapter describes.

Further information on working with launch codes and flags, plus a
complete listing of all Palm OS launch codes, can be found in
Chapter 2, “Application Start and Stop,” on page 21.

Common Launch Codes Structures and Types

GoToParamsType Struct
Purpose Parameter block for the sysAppLaunchCmdGoTo launch code. An

application receives this launch code if the user selects one of its

Common Launch Codes
GoToParamsType

104 Exploring Palm OS: Programming Basics

matching records in the Find Results dialog or to display data that
has just been received using the Exchange Manager.

Declared In Find.h

Prototype typedef struct {
 DatabaseID dbID;
 uint32_t recordNum;
 uint32_t recordID;
 size_t matchPos;
 size_t matchLen;
 uint32_t matchFieldNum;
 size_t searchStrLen;
 uint32_t matchCustom;
 char string[maxFindStrLen+1];
 uint8_t reserved1;
 uint8_t reserved2;
 uint8_t reserved3;
} GoToParamsType
typedef GoToParamsType *GoToParamsPtr

Fields dbID
Database ID of the record database to open.

recordNum
Index of the database record to display.

recordID
Unique ID of the database record to display.

matchPos
Byte offset of the start of the matching text within the record.
The Exchange Manager does not use this field.

matchLen
The number of bytes of matched text found in the record. The
Exchange Manager does not use this field.

matchFieldNum
Index of the text field in which the matching text should be
displayed.

If your application’s database is a schema database, use this
field to set the column ID that contains the matching text.

The Exchange Manager does not use this field.

Common Launch Codes
Launch Flags

Exploring Palm OS: Programming Basics 105

searchStrLen
Length of normalized search string. This is not the length of
the matching string. matchLen contains the length of the
matching string.

The Exchange Manager does not use this field.

matchCustom
Application-specific information.

string
The strAsTyped field from FindParamsType. The
Exchange Manager does not use this field.

reserved1
Reserved for future use.

reserved2
Reserved for future use.

reserved3
Reserved for future use.

Comments Some multi-byte character encodings represent certain characters
both as a single-byte character and a multi-byte character. When the
search is performed, the single-byte character is accurately matched
against its multi-byte equivalent. For this reason, the length of the
string searched for does not always equal the length of the matching
string.

See Also FindParamsType, FindSaveMatch()

Common Launch Codes Constants

Launch Flags
Purpose Flags that compose the launchFlags argument of an application’s

PilotMain().

Declared In CmnLaunchCodes.h

Constants #define sysAppLaunchFlagDataRelocated 0x80
Indicates that global data (static pointers) have been
relocated. Note: This flag is for internal use by
SysAppLaunch() only. It should never be set by the caller.

Common Launch Codes
Launch Flags

106 Exploring Palm OS: Programming Basics

#define sysAppLaunchFlagGlobalsAvailable 0x20
Indicates that the application can access globals. This flag is
set whenever sysAppLaunchFlagNewGlobals is set, or
when the application has an unique runtime ID. Note: This
flag is for internal use by SysAppLaunch() only. It should never
be set by the caller.

#define sysAppLaunchFlagNewGlobals 0x04
Set this flag to create a new globals environment for the
application being launched. Note that a new globals
environment implies a new owner ID for memory chunks.

#define sysAppLaunchFlagNewStack 0x02
Set this flag to have the launched application use its own,
newly-created, stack.

#define sysAppLaunchFlagNewThread 0x01
Set this flag to have the application launched in a new thread.
Applications launched with this flag set will also get a new
stack, irrespective of the sysAppLaunchFlagNewStack
flag.

#define sysAppLaunchFlagPrivateSet
(sysAppLaunchFlagSubCall |
sysAppLaunchFlagDataRelocated |
sysAppLaunchFlagGlobalsAvailable)

The set of private, internal flags that should never be set by
the caller.

#define sysAppLaunchFlagSubCall 0x10
Set this flag to indicate that the application is calling its own
entry point as a subroutine call. When this flag is set, the A5
(globals) pointer remains valid through the call. Note: This
flag is for internal use by SysAppLaunch() only. It should never
be set by the caller.

#define sysAppLaunchFlagUIApp 0x08
Indicates to the application being launched that it is a UI
application.

Common Launch Codes
sysAppLaunchCmdAddRecord

Exploring Palm OS: Programming Basics 107

Miscellaneous Common Launch Codes
Constants

Purpose The header file CmnLaunchCodes.h also declares these constants.

Declared In CmnLaunchCodes.h

Constants #define sysAppLaunchCmdCustomBase 0x8000
Application-specific launch codes should be defined starting
with this value.

#define sysDialLaunchCmdLast 39
The last of the standard dialer service launch codes.

#define sysSvcLaunchCmdLast 49
The last of the standard service panel launch codes.

Common Launch Codes

sysAppLaunchCmdAddRecord
Purpose Add a record to an application’s database.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdAddRecord 19

Parameters The launch code’s parameter block pointer references a
MailAddRecordParamsType structure. This structure looks like
this:

typedef struct {
 Boolean secret;
 Boolean signature;
 Boolean confirmRead;
 Boolean confirmDelivery;
 MailMsgPriorityType priority;
 UInt8 padding;
 Char *subject;
 Char *from;
 Char *to;
 Char *cc;
 Char *bcc;

Common Launch Codes
sysAppLaunchCmdAddRecord

108 Exploring Palm OS: Programming Basics

 Char *replyTo;
 Char *body;
} MailAddRecordParamsType;

typedef MailAddRecordParamsType
 *MailAddRecordParamsPtr;

where:

• A true value for secret means that the message should be
marked secret.

• A true value for signature indicates that the signature
from the Mail application’s preferences should be attached to
the message.

• A true value for confirmRead means that a confirmation
should be sent when the message is read.

• A true value for confirmDelivery means that a
confirmation should be sent when the message is delivered.

• priority is either high, normal, or low.

• subject is a pointer to a null-terminated string containing
the message’s subject. Set this pointer to NULL to omit the
subject line.

• from is a pointer to a null-terminated string containing the
sender’s address. This field is not currently used.

• to is a pointer to a null-terminated string containing the
email addresses to which the message is to be sent.

• cc is a pointer to a null-terminated string containing any
additional email address to which the message is to be sent.
This pointer is required; if the message isn’t to be sent to any
additional addresses, cc should point to a NUL character.

• bcc is a pointer to a null-terminated string containing any
“blind carbon copy” email address to which the message is to
be sent. This pointer is required; if the message isn’t to be
sent to any bcc addresses, bcc should point to a NUL
character.

• replyTo is a pointer to a null-terminated string containing
the email address to which any replies should be sent.

• body is a pointer to a null-terminated string containing the
text of the email message.

Common Launch Codes
sysAppLaunchCmdCardLaunch

Exploring Palm OS: Programming Basics 109

Comments This launch code is used to add a message to the Mail or
iMessenger™ (on the Palm VII™) application’s outbox. You pass
information about the message such as address, body text, etc. in the
parameter block. For iMessenger, you can set the edit field of the
parameter block to control whether or not the iMessenger editor is
displayed. Set it to true to display the editor or false not to
display it.

See Also sysAppLaunchCmdMoveRecord

sysAppLaunchCmdAntennaUp
Purpose Sent when the antenna is raised on devices that are appropriately

equipped.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdAntennaUp 53

Parameters None.

Comments This launch code is typically used to switch to the Launcher (or
whichever application the user has specified for this action).

sysAppLaunchCmdCardLaunch
Purpose Sent to an application that is being run from an expansion card,

before the application is copied into the device’s main memory.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdCardLaunch 58

Parameters The launch code’s parameter block pointer references a
SysAppLaunchCmdCardType structure.

Comments The application is copied into the device’s main memory prior to
being sent this launch code. If the application doesn’t respond to
sysAppLaunchCmdCardLaunch, it is then sent a
sysAppLaunchCmdNormalLaunch launch code. Applications that
can profit from the knowledge that they are being launched from an
expansion card may want to consult the fields in the parameter
block that accompanies sysAppLaunchCmdCardLaunch.

Common Launch Codes
sysAppLaunchCmdCountryChange

110 Exploring Palm OS: Programming Basics

When the Launcher sends sysAppLaunchCmdCardLaunch to an
application, it sets the sysAppLaunchFlagNewStack,
sysAppLaunchFlagNewGlobals, and
sysAppLaunchFlagUIApp flags (see “Launch Flags” on page 105
for documentation on these flags). These flags are not sent to
start.prc, however. Applications should never interact with the
user upon receiving this launch code, and should not depend on
globals being available. This launch code is intended to notify the
application that it is being launched from a card. Applications
typically save some state information upon receiving this launch
code and do the bulk of their processing when they receive
sysAppLaunchNormalLaunch.

sysAppLaunchCmdCountryChange
Purpose Sent when the user has changed their country preference. As a

result, various locale-specific formats should change.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdCountryChange 8

Parameters None.

Comments Applications should change the display of numbers to use the
proper number separators. To do this, call
LocGetNumberSeparators, StrLocalizeNumber, and
StrDelocalizeNumber.

sysAppLaunchCmdDeleteRecord
Purpose Generally sent to the PIM applications, this launch code instructs

the application to delete a specified database record.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdDeleteRecord 67

Parameters The launch code’s parameter block pointer references a
ImportExportRecordParamsType structure.

Common Launch Codes
sysAppLaunchCmdExportRecord

Exploring Palm OS: Programming Basics 111

Comments Note that the record may be identified either by index or unique ID.
See the ImportExportRecordParamsType structure
documentation for details.

See Also sysAppLaunchCmdExportRecord,
sysAppLaunchCmdImportRecord

sysAppLaunchCmdEventHook
Purpose Sent to an application to allow the application to process an event.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdEventHook 25

Parameters The launch code’s parameter block pointer references an
EventType structure.

Comments This launch code is for internal use only. Applications should not
send or respond to this launch code.

sysAppLaunchCmdExportRecord
Purpose Generally sent to the PIM applications, this launch code instructs

the application to export a specified database record.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdExportRecord 65

Parameters The launch code’s parameter block pointer references a
ImportExportRecordParamsType structure.

Comments In response to this launch code, the application should place a copy
of the specified database record, properly formatted for export, in
the location specified by the vObjectH field of the
ImportExportRecordParamsType structure. Note that the
record may be identified either by index or unique ID. See the
ImportExportRecordParamsType structure documentation for
details.

See Also sysAppLaunchCmdDeleteRecord,
sysAppLaunchCmdExportRecordGetCount,
sysAppLaunchCmdImportRecord

Common Launch Codes
sysAppLaunchCmdExportRecordGetCount

112 Exploring Palm OS: Programming Basics

sysAppLaunchCmdExportRecordGetCount
Purpose Generally sent to the PIM applications, this launch code instructs

the application to return the number of records in the application’s
database.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdExportRecordGetCount 64

Parameters The launch code’s parameter block pointer references a single 32-bit
integer into which the record count is to be written.

sysAppLaunchCmdFailedAppNotify
Purpose Indicates a failure in an application that was just switched to.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdFailedAppNotify 24

Parameters The launch code’s parameter block pointer references a
SysAppLaunchCmdFailedAppNotifyType structure. This
structure identifies the failed application and contains the error code
returned from that application.

sysAppLaunchCmdFepPanelAddWord
Purpose Send this launch code to the FEP panel to add a word to the FEP

user dictionary.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdFepPanelAddWord 87

Parameters The launch code’s parameter block pointer references a structure
that indicates the word to be added. This structure is simply a
pointer to the word to be added, followed by a uint16_t
containing the length of the word, like this:

typedef struct {
 const char *wordP;
 uint16_t wordLen;
} SysAppLaunchCmdFepPanelAddWordType;

See Also sysAppLaunchCmdLookupWord

Common Launch Codes
sysAppLaunchCmdFind

Exploring Palm OS: Programming Basics 113

sysAppLaunchCmdFinalizeUI
Purpose Sent only to the root application of the Application process, this

launch code instructs the application’s startup code to de-initialize
the process’s UI.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdFinalizeUI 0x7ff7

Parameters None.

See Also sysAppLaunchCmdInitializeUI

sysAppLaunchCmdFind
Purpose Used to implement the global find. When the user enters a text

string in the Find dialog, the system sends this launch code to each
application. The application should search for the string that the
user entered and return any records matching the find request.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdFind 1

Parameters The launch code’s parameter block pointer references a
FindParamsTypestructure.

Comments The system displays the results of the query in the Find results
dialog. The system continues the search with each application until
it has a full screen of matching records or until all of the applications
on the device have had a chance to respond. If the screen is full, a
Find More button appears at the bottom of the dialog. If the user
clicks the Find More button, the search resumes. Applications can
test whether the current find is a continuation of a previous one by
checking the continuation field in the parameter block.

Most applications that use text records should support this launch
code. When they receive it, they should search all records for
matches to the find string and return all matches.

An application can also integrate the find operation in its own user
interface and send the launch code to a particular application.

Applications that support this launch code should also support
sysAppLaunchCmdSaveData and sysAppLaunchCmdGoTo.

Common Launch Codes
sysAppLaunchCmdGoTo

114 Exploring Palm OS: Programming Basics

sysAppLaunchCmdGoTo
Purpose Sent in conjunction with sysAppLaunchCmdFind or

sysAppLaunchCmdExgReceiveData to allow users to actually
inspect the record that the global find returned or that was received
by the Exchange Manager.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdGoTo 2

Parameters The launch code’s parameter block pointer references a
GoToParamsTypestructure.

Comments Applications should do most of the normal launch actions, then
display the requested item. The application should continue
running unless explicitly closed.

An application launched with this code does have access to global
variables, static local variables, and code segments other than
segment 0 (in multi-segment applications).

Applications that receive this launch code should test the
sysAppLaunchFlagNewGlobals launch flag to see if they need to
initialize global variables. sysAppLaunchFlagNewGlobals
indicates that the system has just allocated your global variables.

For example:

case sysAppLaunchCmdGoTo:
 if (launchFlags & sysAppLaunchFlagNewGlobals)
 StartApplication();

Note that you shouldn’t automatically initialize the global variables
in response to this launch code. Test the launch flag first. Your
application receives this launch code when the user selects a record
in the global find results. If your application was the current
application before the user selected the Find command, the launch
flag is clear to indicate that your globals should not be re-initialized.

Common Launch Codes
sysAppLaunchCmdHandleSyncCallApp

Exploring Palm OS: Programming Basics 115

sysAppLaunchCmdGoToURL
Purpose Retrieve and display the specified URL.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdGoToURL 54

Parameters The parameter block for this launch command is simply a pointer to
a string containing the URL.

Comments The ExgRequest() function launches an application with this
launch code if it cannot find an exchange library that is registered
for the URL it has received. To receive the launch code, the
application must first use ExgRegisterDatatype() to register
for a URL scheme.

sysAppLaunchCmdHandleSyncCallApp
Purpose Sent by the Desktop Link server when

SyncCallRemoteModule() is called from a conduit to request
that the handheld application do some processing on the conduit’s
behalf.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdHandleSyncCallApp 18

Parameters The launch code’s parameter block pointer references a
SysAppLaunchCmdHandleSyncCallAppType structure.

Comments The SysAppLaunchCmdHandleSyncCallApp structure contains
all of the information passed to SyncCallRemoteModule() on
the desktop plus the fields needed to pass the result back to the
desktop. Pass the results back to the conduit by calling
DlkControl(). See that function’s documentation for an example
of how to handle this launch code.

Common Launch Codes
sysAppLaunchCmdImportRecord

116 Exploring Palm OS: Programming Basics

sysAppLaunchCmdImportRecord
Purpose Generally sent to the PIM applications, this launch code presents the

application with a record to be added to or updated in the
application’s database.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdImportRecord 66

Parameters The launch code’s parameter block pointer references a
ImportExportRecordParamsType structure.

Comments If the uniqueID field of the ImportExportRecordParamsType
structure contains the ID of an existing record, the imported record
should replace the specified existing record. Otherwise, the
imported record should be added to the application’s database.

See Also sysAppLaunchCmdDeleteRecord,
sysAppLaunchCmdExportRecord

sysAppLaunchCmdInitDatabase
Purpose Sent by the Desktop Link server in response to a request to create a

database. It is sent to the application whose creator ID matches that
of the requested database.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdInitDatabase 11

Parameters The launch code’s parameter block pointer references a
SysAppLaunchCmdInitDatabaseType structure.

Comments The most frequent occurrence of this is when a 'data' database is
being installed or restored from the desktop. In this case, HotSync
creates a new database on the device and passes it to the application
via a sysAppLaunchCmdInitDatabase command, so that the
application can perform any required initialization. HotSync will
then transfer the records from the desktop database to the device
database.

When a Palm OS application crashes while a database is installed
using HotSync, the reason may be that the application is not
handling the sysAppLaunchCmdInitDatabase command
properly. Be especially careful not to access global variables.

Common Launch Codes
sysAppLaunchCmdLookup

Exploring Palm OS: Programming Basics 117

The system will create a database and pass it to the application for
initialization. The application must perform any initialization
required, then pass the database back to the system, unclosed.

IMPORTANT: The sysAppLaunchCmdInitDatabase launch
code handler must leave the database handle (the dbP field in the
SysAppLaunchCmdInitDatabaseType structure) open on
return.

sysAppLaunchCmdInitializeUI
Purpose Sent only to the root application of the Application process, this

launch code instructs the application’s startup code to initialize the
process’s UI.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdInitializeUI 0x7ff8

Parameters None.

See Also sysAppLaunchCmdFinalizeUI

sysAppLaunchCmdLookup
Purpose The system or an application sends this launch command to retrieve

information from another application. In contrast to Find, there is a
level of indirection; for example, this launch code could be used to
retrieve the phone number based on input of a name.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdLookup 15

Parameters The parameter block is defined by the application that supports this
launch code. For an example, see the source code for the standard
Palm OS Address Book.

Comments This functionality is currently supported by the standard Palm OS
Address Book.

Common Launch Codes
sysAppLaunchCmdLookupWord

118 Exploring Palm OS: Programming Basics

Applications that decide to handle this launch code must search
their databases for the supplied string and perform the match
operation specified in the launch code’s parameter block.

If an application wants to allow its users to perform lookup in other
applications, it has to send it properly, including all information
necessary to perform the match. An example for this is in
Address.c and AppLaunchCmd.h, which are included in your
SDK.

sysAppLaunchCmdLookupWord
Purpose Send to the dictionary application to look a word up in the FEP

dictionaries.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdLookupWord 88

Parameters The launch code’s parameter block pointer references a structure
that indicates the word to be added. This structure is simply a
pointer to the word to be added, followed by a uint16_t
containing the length of the word, like this:

typedef struct {
 const char *wordP;
 uint16_t wordLen;
} SysAppLaunchCmdFepPanelAddWordType;

Comments The specified word is automatically entered into the word lookup
form, and the results are displayed to the user.

See Also sysAppLaunchCmdFepPanelAddWord

Common Launch Codes
sysAppLaunchCmdNormalLaunch

Exploring Palm OS: Programming Basics 119

sysAppLaunchCmdMoveRecord
Purpose Move a record from one position to another in an application’s

database.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdMoveRecord 68

Parameters The launch code’s parameter block pointer references an
ImportExportRecordParamsType structure. Within this
structure, the index field indicates the record to be moved, and the
destIndex field indicates the new position for the record (both
indexes are zero-based). The uniqueID field is updated if this
launch code succeeds.

Comments If the application doesn't support this launch code,
dmErrInvalidParam is returned.

See Also sysAppLaunchCmdAddRecord

sysAppLaunchCmdMultimediaEvent
Purpose

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdMultimediaEvent 63

Parameters

sysAppLaunchCmdNormalLaunch
Purpose Launch an application.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdNormalLaunch 0

Parameters None.

See Also sysAppLaunchCmdPinletLaunch,
sysAppLaunchCmdSlipLaunch

Common Launch Codes
sysAppLaunchCmdNotify

120 Exploring Palm OS: Programming Basics

sysAppLaunchCmdNotify
Purpose The system or an application sends this launch code to notify

applications that an event has occurred.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdNotify 51

Parameters The SysNotifyParamType structure declared in NotifyMgr.h
defines the format of this launch code’s parameter block. See its
description in the “Notifications” chapter.

Comments The parameter block specifies the type of event that occurred, as
well as other pertinent information. To learn which notifications are
broadcast by the system, see the chapter titled “Notifications” on
page 59.

sysAppLaunchCmdOpenDB
Purpose You can send this launch code to the Web Clipping Application

Viewer application to launch the application and cause it to open
and display a Palm™ query application stored on the device. This is
the same mechanism that the Launcher uses to launch query
applications.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdOpenDB 52

Parameters The launch code’s parameter block pointer references a
SysAppLaunchCmdOpenDBType structure.

sysAppLaunchCmdPanelCalledFromApp
Purpose Lets a preferences panel know whether it was switched to from the

Preferences application or whether an application invoked it to
make a change. The panel may be a preference panel owned by the
application or a system preferences panel.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdPanelCalledFromApp 13

Parameters None.

Common Launch Codes
sysAppLaunchCmdReturnFromPanel

Exploring Palm OS: Programming Basics 121

Comments In conjunction with sysAppLaunchCmdReturnFromPanel, this
launch code allows an application to let users change preferences
without switching to the Preferences application. For example, for
the calculator, you may launch the Formats preferences panel, set
up a number format preference, then directly return to the
calculator that then uses the new format.

Examples of these system panels that may handle this launch code
are:

• Network panel (called from network applications)

• Modem panel (called if modem selection is necessary)

All preferences panels must handle this launch code. If a panel is
launched with this command, it should:

• Display a Done button.

• Not display the panel-switching pop-up trigger used for
navigation within the preferences application.

sysAppLaunchCmdPinletLaunch
Purpose Sent to an application that is launched as a pinlet instead of

sysAppLaunchCmdNormalLaunch in order to launch the
application.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdPinletLaunch 83

Parameters None.

See Also sysAppLaunchCmdSlipLaunch

sysAppLaunchCmdReturnFromPanel
Purpose Informs an application that the user is done with a called

preferences panel.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdReturnFromPanel 14

Parameters None.

Common Launch Codes
sysAppLaunchCmdRun68KApp

122 Exploring Palm OS: Programming Basics

Comments This launch code is used in conjunction with
sysAppLaunchCmdPanelCalledFromApp. The system passes
this launch code to the application when a previously-called
preferences panel exists.

sysAppLaunchCmdRun68KApp
Purpose Sent to PACE in order to launch a 68K-based application.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdRun68KApp 0x7ffc

Parameters The launch code’s parameter block pointer references a structure
that specifies the application to be run. This structure looks
something like this:

typedef struct AppSwitchInfoType {
 DatabaseID dbID;
 DatabaseID agent;
 MemPtr cmdPBP;
 uint32_t cmdPBSize;
 uint16_t cmd; // if (!dbID), doubles as error code
 uint16_t flags; // hold launch flags fo the app
 uint16_t rsrcID;
 uint8_t padding[2];
} AppSwitchInfoType;

sysAppLaunchCmdSaveData
Purpose Instructs the application to save all current data. For example,

before the system performs a global find, an application should save
all data.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdSaveData 10

Parameters The launch code’s parameter block pointer references a
SysAppLaunchCmdSaveDataType structure.

Comments Any application that supports the Find command and that can have
buffered data should support this launch code. The system sends
this launch code to the currently active application before it begins

Common Launch Codes
sysAppLaunchCmdSyncNotify

Exploring Palm OS: Programming Basics 123

the search. The application receiving this launch code should
respond by saving all buffered data so that the search is able to find
matches in the text just entered.

sysAppLaunchCmdSlipLaunch
Purpose Sent to any application that is launched within a Slip at the time of

launch.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdSlipLaunch 82

Parameters None.

Comments Applications so launched can only draw during update events.

See Also sysAppLaunchCmdNormalLaunch,
sysAppLaunchCmdPinletLaunch

sysAppLaunchCmdSyncCallApplicationV10
Purpose Used by the Desktop Link Server’s “call application” command.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdSyncCallApplicationV10 12

Parameters

sysAppLaunchCmdSyncNotify
Purpose Sent to applications to inform them that a HotSync operation has

occurred.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdSyncNotify 3

Parameters None.

Comments This launch code is sent only to applications whose databases were
changed during the HotSync operation, including when the
application itself has been installed by HotSync. The record
database(s) must have the same creator ID as the application in

Common Launch Codes
sysAppLaunchCmdSyncRequest

124 Exploring Palm OS: Programming Basics

order for the system to know which application to send the launch
code to.

This launch code provides a good opportunity to update, initialize,
or validate the application’s new data, such as resorting records,
setting alarms, and so on.

Because applications only receive sysAppLaunchCmdSyncNotify
when their databases are updated, this launch code is not a good
place to perform any operation that must occur after every HotSync
operation. Instead, you may register to receive the
sysNotifySyncFinishEvent notification. This notification is
sent at the end of a HotSync operation, and it is sent to all
applications registered to receive it, whether the application’s data
changed or not. Note that there is also a
sysNotifySyncStartEvent notification.

sysAppLaunchCmdSyncRequest
Purpose Sent to the HotSync application to request a HotSync. This launch

code is equivalent to sysAppLaunchCmdSyncRequestLocal.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdSyncRequest
sysAppLaunchCmdSyncRequestLocal

Parameters None.

sysAppLaunchCmdSyncRequestLocal
Purpose Sent to the HotSync application to request a “local” HotSync. A local

HotSync occurs when the HotSync button is pressed.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdSyncRequestLocal 9

Parameters None.

See Also sysAppLaunchCmdSyncRequest,
sysAppLaunchCmdSyncRequestRemote

Common Launch Codes
sysAppLaunchCmdSystemReset

Exploring Palm OS: Programming Basics 125

sysAppLaunchCmdSyncRequestRemote
Purpose Sent to the HotSync application to request a “remote” HotSync. A

remote HotSync occurs when the “Remote HotSync” button
(vchrHardCradle2) is pressed.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdSyncRequestRemote 17

Parameters None.

See Also sysAppLaunchCmdSyncRequest,
sysAppLaunchCmdSyncRequestLocal

sysAppLaunchCmdSystemLock
Purpose Sent to the system-internal security application to lock the device.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdSystemLock 16

Parameters None.

Comments As a rule, applications don’t need to do respond to this launch code.
If an application replaces the system-internal security application, it
must handle this launch code.

sysAppLaunchCmdSystemReset
Purpose Respond to a soft or hard reset.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdSystemReset 5

Parameters The launch code’s parameter block pointer references a
SysAppLaunchCmdSystemResetType structure.

Comments Applications can respond to this launch code by performing
initialization, indexing, or other setup that they need to do when the
system is reset. For more information about resetting the device, see
Chapter 7, “System Reset,” in Exploring Palm OS: System
Management.

Common Launch Codes
sysAppLaunchCmdTimeChange

126 Exploring Palm OS: Programming Basics

NOTE: Your application will not receive this launch code unless
the the ARMAppLaunchPrefsResetNotification flag in
the application’s launch preferences resource is set to TRUE. See
the description of the Application Launch Preferences
Resource—in particular, the ALPF_FLAG_NOTIFY_RESET flag—
in Palm OS Resource File Formats for more information on setting
this flag.

sysAppLaunchCmdTimeChange
Purpose Respond to a time change initiated by the user.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdTimeChange 4

Parameters None.

Comments Applications that are dependent on the current time or date need to
respond to this launch code. For example, an application that sets
alarms may want to cancel an alarm or set a different one if the
system time changes.

Applications should register to receive the
sysNotifyTimeChangeEvent notification instead of responding
to this launch code. The sysAppLaunchCmdTimeChange launch
code is sent to all applications. The sysNotifyTimeChangeEvent
notification is sent only to applications that have specifically
registered to receive it, making it more efficient than
sysAppLaunchCmdTimeChange.

sysAppLaunchCmdURLParams
Purpose Sent from the Web Clipping Application Viewer application to

launch another application.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdURLParams 50

Parameters The parameter block consists of a pointer to a special URL string,
which the application must know how to parse. The string is the

Common Launch Codes
sysAppLaunchNppiUI

Exploring Palm OS: Programming Basics 127

URL used to launch the application and may contain encoded
parameters.

Comments An application launched with this code may or may not have access
to global variables, static local variables, and code segments other
than segment 0 (in multi-segment applications). It depends on the
URL that caused the Web Clipping Application Viewer to send this
launch code. If this launch code results from a palm URL, then
globals are available. If the launch code results from a palmcall
URL, then globals are not available.

The best way to test if you have global variable access is to test the
sysAppLaunchFlagNewGlobals launch flag sent with this
launch code. If this is flag is set, then you have global variable
access.

sysAppLaunchNppiNoUI
Purpose Sent to a network panel plug-in to launch it without UI, and load

NetLib.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchNppiNoUI 55

Parameters The launch code’s parameter block pointer references a uint16_t
that contains the network library reference number.

See Also sysAppLaunchNppiUI

sysAppLaunchNppiUI
Purpose Send to a network panel plug-in to launch it with UI.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchNppiUI 56

Parameters None.

See Also sysAppLaunchNppiNoUI

Common Launch Codes
sysAppLaunchPnpsPreLaunch

128 Exploring Palm OS: Programming Basics

sysAppLaunchPnpsPreLaunch
Purpose Pre-launch code for “plug-and-play” devices.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchPnpsPreLaunch 61

Parameters The launch code’s parameter block pointer references a
SysAppLaunchCmdPnpsType structure.

sysAppLaunchPreDelete
Purpose Sent to PalmSource-created applications before they're deleted.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchPreDelete 62

Parameters None.

sysCncPluginLaunchCmdGetPlugins
Purpose Sent to Connection Manager plug-in modules to request plug-in

descriptions.

Declared In CmnLaunchCodes.h

Prototype #define sysCncPluginLaunchCmdGetPlugins 81

Parameters The launch code’s parameter block pointer references a
CncGetPluginsPBType structure.

Comments NOTE: This launch code is intended for use by Connection
Manager plug-ins only. Applications should not send nor respond
to this launch code.

Upon receipt of this launch code, each plug-in should set the
CncGetPluginsPBType structure’s plugins field so that it points
to one or more contiguous CncPlgDefinitionType structures,
each containing details about a particular plug-in. Set the
CncGetPluginsPBType structure’s n field to the number of plug-
ins structures being returned.

See Also sysCncPluginLaunchCmdRegister

Common Launch Codes
sysCncPluginLaunchCmdUnregister

Exploring Palm OS: Programming Basics 129

sysCncPluginLaunchCmdRegister
Purpose The Connection Manager sends this launch code to each plug-in

module after it has been registered with the Connection Manager.
This launch code gives the plug-in a chance to initialize itself.

Declared In CmnLaunchCodes.h

Prototype #define sysCncPluginLaunchCmdRegister 79

Parameters The launch code’s parameter block pointer references a
CncRegisterPBType structure.

Comments NOTE: This launch code is intended for use by Connection
Manager plug-ins only. Applications should not send nor respond
to this launch code.

A Connection Manager plug-in must handle this launch code if it
wants to define more objects than just plug-ins, such as interfaces,
edges or profiles. Plug-ins have already been added to the
Connection Manager database before this code is sent.

See Also sysCncPluginLaunchCmdUnregister

sysCncPluginLaunchCmdUnregister
Purpose Sent to Connection Manager plug-in modules when removing plug-

ins

Declared In CmnLaunchCodes.h

Prototype #define sysCncPluginLaunchCmdUnregister 80

Parameters None.

Comments NOTE: This launch code is intended for use by Connection
Manager plug-ins only. Applications should not send nor respond
to this launch code.

A Connection Manager plug-in must handle this launch code to free
any data Connection Manager related. The Connection Manager has
the charge to delete any profiles and relations that reference a
deleted plug-in.

See Also sysCncPluginLaunchCmdRegister

Common Launch Codes
sysCncWizardLaunchCmdEdit

130 Exploring Palm OS: Programming Basics

sysCncWizardLaunchCmdEdit
Purpose The CncProfileEdit() function sends this launch code to the

Connection Manager’s configuration application in order to edit a
connection profile.

Declared In CmnLaunchCodes.h

Prototype #define sysCncWizardLaunchCmdEdit 84

Parameters NOTE: This launch code is intended for use by Connection
Manager plug-ins only. Applications should not send nor respond
to this launch code.

The launch code’s parameter block pointer references a
CncWizardEditPBType structure.

sysDialLaunchCmdDial
Purpose Dials the modem (optionally displaying the dial progress), given the

service ID and serial library reference number.

Declared In CmnLaunchCodes.h

Prototype #define sysDialLaunchCmdDial 30

Parameters

See Also sysDialLaunchCmdHangUp

sysDialLaunchCmdHangUp
Purpose Hangs up the modem (optionally displaying the disconnect

progress), given the service ID and serial library reference number.

Declared In CmnLaunchCodes.h

Prototype #define sysDialLaunchCmdHangUp 31

Parameters

See Also sysDialLaunchCmdDial

Common Launch Codes
sysLaunchCmdAppExited

Exploring Palm OS: Programming Basics 131

sysIOSDriverInstall
Purpose Sent to a code module in the I/O process when it is installed.

Declared In CmnLaunchCodes.h

Prototype #define sysIOSDriverInstall 74

Parameters The launch code’s parameter block pointer references an
IOSDriverInstallType structure.

Comments The code module typically initializes the driver in response to this
launch code.

sysIOSDriverRemove
Purpose Sent to a code module in the I/O process when it is removed.

Declared In CmnLaunchCodes.h

Prototype #define sysIOSDriverRemove 75

Parameters None.

sysLaunchCmdAppExited
Purpose Sent by the Application Manager to all loaded modules after an

application exits from its PilotMain() function.

Declared In CmnLaunchCodes.h

Prototype #define sysLaunchCmdAppExited 0x7ff9

Parameters None.

Common Launch Codes
sysLaunchCmdBoot

132 Exploring Palm OS: Programming Basics

sysLaunchCmdBoot
Purpose Sent to operating system initialization procedures at boot time,

upon receipt of this launch code those procedures do whatever is
necessary to initialize their component.

Declared In CmnLaunchCodes.h

Prototype #define sysLaunchCmdBoot 70

Parameters The launch code’s parameter block pointer references a
AppInitProcParamsType structure. This structure is private.

Comments The procedure receiving this launch code runs in the System
process. Drivers typically install themselves at this time (using
IOSInstallDriver()). Many other initialization procedures take
this opportunity to register plug-ins (with
CncRegisterPluginModule()).

sysLaunchCmdFinalize
Purpose Sent to all kinds of executable modules right before a module gets

unloaded, this launch code gives your executable a last chance to
release resources or do any other needed “de-initialization.”

Declared In CmnLaunchCodes.h

Prototype #define sysLaunchCmdFinalize 0x7fff

Parameters None.

See Also sysLaunchCmdAppExited(), sysLaunchCmdInitialize()

sysLaunchCmdGetGlobals
Purpose Sent to an executable module to retrieve a pointer to its global

structure.

Declared In CmnLaunchCodes.h

Prototype #define sysLaunchCmdGetGlobals 0x7ffa

Parameters The launch code’s parameter block pointer references a location into
which the executable module should write either the location of its

Common Launch Codes
sysLaunchCmdGraphicsAccelInit

Exploring Palm OS: Programming Basics 133

globals structure, if there are globals to export, or NULL if the
executable doesn’t export any globals.

Comments An executable module that wants to make all or part of its globals
accessible by other modules can do this by putting those globals in a
single C structure and returning the address of this global structure
in the memory location pointed to by the launch code’s parameter
block pointer.

To prevent globals from being retrieved, simply return NULL in
response to this launch code.

See Also “Exporting Globals” on page 73 of Exploring Palm OS: System
Management.

sysLaunchCmdGetModuleID
Purpose Sent to an executable module to retrieve its module ID.

Declared In CmnLaunchCodes.h

Prototype #define sysLaunchCmdGetModuleID 0x7ff5

Parameters None.

sysLaunchCmdGraphicsAccelInit
Purpose Sent by mini-GL to the graphics accelerator, requesting that it

initialize itself.

Declared In CmnLaunchCodes.h

Prototype #define sysLaunchCmdGraphicsAccelInit 78

Parameters The launch code’s parameter block pointer references a private
structure that contains the mini-GL context in which the graphics
accelerator is running.

Common Launch Codes
sysLaunchCmdInitialize

134 Exploring Palm OS: Programming Basics

sysLaunchCmdInitialize
Purpose Sent to an executable module right after the module is loaded, this

launch code gives your executable a chance to allocate resources or
do any other needed initialization.

Declared In CmnLaunchCodes.h

Prototype #define sysLaunchCmdInitialize 0x7ffe

Parameters In some cases the launch code’s parameter block pointer references
a private structure that contains information about the heap. Often
the parameter block pointer is set to NULL.

See Also sysLaunchCmdFinalize()

sysLaunchCmdInitRuntime
Purpose Sent to an executable module when it is loaded to initialize its

module ID and linker stub.

Declared In CmnLaunchCodes.h

Prototype #define sysLaunchCmdInitRuntime 0x7ff6

Parameters The launch code’s parameter block pointer references a structure
that contains the module ID and a pointer to the module’s linker
stub. This structure looks like this:

struct {
 uint32_t id;
 void *linkerP;
} cmdPB

Common Launch Codes
sysPackageLaunchAttachImage

Exploring Palm OS: Programming Basics 135

sysLibLaunchCmdGet68KSupportEntry
Purpose Sent to a shared library to determine if it can be called from a 68K

application.

Declared In CmnLaunchCodes.h

Prototype #define sysLibLaunchCmdGet68KSupportEntry 0x7ffd

Parameters The launch code’s parameter block pointer indicates the location to
which the launch code handler should write the address of the
shared library’s main entry point.

Comments Shared libraries that can be called from 68K applications (via PACE)
should respond to this launch code by returning (using the
parameter block pointer) the address of the shared library’s main
entry point.

sysLaunchCmdProcessDestroyed
Purpose

Declared In CmnLaunchCodes.h

Prototype #define sysLaunchCmdProcessDestroyed 0x7ff4

Parameters

sysPackageLaunchAttachImage
Purpose Sent to a package when it is loaded in order to supply an image

context used by the package to determine when the package should
be unloaded.

Declared In CmnLaunchCodes.h

Prototype #define sysPackageLaunchAttachImage 71

Parameters The launch code’s parameter block pointer references a private
structure that contains information about the image context.

Comments This launch code is for internal use only. Applications should not
send or respond to this launch code.

See Also sysPackageLaunchGetInstantiate

Common Launch Codes
sysPackageLaunchGetInstantiate

136 Exploring Palm OS: Programming Basics

sysPackageLaunchGetInstantiate
Purpose Sent to a package when it is loaded in order to locate the function

used to instantiate the package’s components.

Declared In CmnLaunchCodes.h

Prototype #define sysPackageLaunchGetInstantiate 72

Parameters The launch code’s parameter block pointer indicates a private
structure. One of this structure’s fields is the location to which the
launch code handler should write the component instantiation
function’s address.

Comments This launch code is for internal use only. Applications should not
send or respond to this launch code.

See Also sysPackageLaunchAttachImage

sysPinletLaunchCmdLoadProcPtrs
Purpose Sent to a PRC-style pinlet before the pinlet is displayed on the

screen, requesting pointers to the functions used by the Pen Input
Manager when interacting with this pinlet.

Declared In CmnLaunchCodes.h

Prototype #define sysPinletLaunchCmdLoadProcPtrs 85

Parameters The launch code’s parameter block pointer references an empty
PinletAPIType structure. Pinlets should fill in the contents of this
structure upon receipt of this launch code.

sysSvcLaunchCmdGetQuickEditLabel
Purpose Get a “quick edit” label for one of the standard service panels. The

standard service panels include the Network panel and the Dialer
panel.

Declared In CmnLaunchCodes.h

Prototype #define sysSvcLaunchCmdGetQuickEditLabel 40

Parameters The launch code’s parameter block pointer references a private
SvcQuickEditLabelInfoType structure.

Common Launch Codes
sysSvcLaunchCmdGetServiceList

Exploring Palm OS: Programming Basics 137

Comments This launch code is for internal use only. Applications should not
send or respond to this launch code.

sysSvcLaunchCmdGetServiceID
Purpose Get a standard service panel’s service ID. The standard service

panels include the Network panel and the Dialer panel.

Declared In CmnLaunchCodes.h

Prototype #define sysSvcLaunchCmdGetServiceID 21

Parameters The launch code’s parameter block pointer references a
PrvNetSvcServiceIDType structure.

Comments This launch code is for internal use only. Applications should not
send or respond to this launch code.

See Also sysSvcLaunchCmdGetServiceInfo,
sysSvcLaunchCmdSetServiceID

sysSvcLaunchCmdGetServiceInfo
Purpose Obtain the name and service ID for a given system service.

Declared In CmnLaunchCodes.h

Prototype #define sysSvcLaunchCmdGetServiceInfo 23

Parameters The launch code’s parameter block pointer references a
ServiceInfo68KType structure.

Comments This launch code is for internal use only. Applications should not
send or respond to this launch code.

sysSvcLaunchCmdGetServiceList
Purpose Obtain a list of system services.

Declared In CmnLaunchCodes.h

Prototype #define sysSvcLaunchCmdGetServiceList 22

Parameters The launch code’s parameter block pointer references a
ServiceList68KType structure.

Common Launch Codes
sysSvcLaunchCmdSetServiceID

138 Exploring Palm OS: Programming Basics

Comments This launch code is for internal use only. Applications should not
send or respond to this launch code.

sysSvcLaunchCmdSetServiceID
Purpose Set a standard service panel’s service ID. The standard service

panels include the Network panel and the Dialer panel.

Declared In CmnLaunchCodes.h

Prototype #define sysSvcLaunchCmdSetServiceID 20

Parameters The launch code’s parameter block pointer references a
PrvNetSvcServiceIDType structure.

Comments This launch code is for internal use only. Applications should not
send or respond to this launch code.

See Also sysSvcLaunchCmdGetServiceID

Exploring Palm OS: Programming Basics 139

7
Event
This chapter provides reference documentation for the structures
and functions that you use to manipulate events and event queues.
This includes functions that allow you to create and communicate
with threads in the background process.

The contents of this chapter are organized as follows:

Event Structures and Types 139

Event Constants 142

Event Launch Codes 144

Event Functions and Macros 144

Application-Defined Functions 165

The header file Event.h declares the API that this chapter
describes. For reference documentation on some common system
events, see Chapter 8, “Event Codes.” For conceptual information
on events and event queues, see Chapter 3, “Events and the Event
Loop.”

Event Structures and Types

EventType Struct
Purpose The EventType structure contains all of the data associated with a

system event. All event types have some common data. Most events
also have data specific to those events. The event-specific data uses
a union that is part of the EventType data structure.

The common data is documented below the structure. Chapter 8,
“Event Codes,” documents each event and provides details on the
important data associated with each type of event.

Event
EventType

140 Exploring Palm OS: Programming Basics

Declared In Event.h

Prototype typedef struct EventType {
 eventsEnum eType;
 Boolean penDown;
 uint8_t padding_1;
 uint16_t padding_2;
 uint32_t tapCount;
 Coord screenX;
 Coord screenY;
 union {
 ...
 } data;
} EventType;
typedef EventType *EventPtr

Fields eType
The type of the event. See “Event Codes Events” on page 171
for a complete list of events.

penDown
true if the pen was down at the time of the event, otherwise
false.

padding_1
Padding bytes, for alignment purposes.

padding_2
Padding bytes, for alignment purposes.

tapCount
The number of taps received at this location. This value is
used mainly by fields. When the user taps in a text field, two
taps selects a word, and three taps selects the entire line.

screenX
Window-relative position of the pen in pixels (number of
pixels from the left bound of the window).

screenY
Window-relative position of the pen in pixels (number of
pixels from the top left of the window).

data
The specific data for an event, if any. The data is a union, and
its exact contents depend on the eType field. See Chapter 8,
“Event Codes,” for more information on the event types and
the structures that may accompany them.

Event
SysAppLaunchCmdBackgroundType

Exploring Palm OS: Programming Basics 141

EvtQueueHandle Typedef
Purpose A handle for a thread’s event queue.

Declared In Event.h

Prototype typedef void *EvtQueueHandle

See Also EvtAddEventToEventQueue(),
EvtCreateBackgroundThread(),
EvtGetReplyEventQueue(), EvtGetThreadEventQueue()

SysAppLaunchCmdBackgroundType Struct
Purpose Structure that accompanies a sysAppLaunchCmdBackground

launch code and provides data supplied to the
EvtCreateBackgroundThread() call that created the
background thread.

Declared In Event.h

Prototype typedef struct SysAppLaunchCmdBackgroundType {
 EvtQueueHandle callerQueue;
 MemPtr data;
 size_t dataSize;
} SysAppLaunchCmdBackgroundType

Fields callerQueue
Event queue handle supplied when
EvtCreateBackgroundThread() was called, or NULL if
no handle was supplied. This handle is automatically
released by the system when the thread terminates. This
queue allows the background thread to post events back to
the calling application.

data
Pointer to a data block supplied when
EvtCreateBackgroundThread() was called, or NULL if
no data block pointer was supplied. This pointer is
automatically released by the system when the thread
terminates.

dataSize
Size of the data block pointed to by the data field. This is the
value supplied to the call to
EvtCreateBackgroundThread() that created the
background thread.

Event
Event Constants

142 Exploring Palm OS: Programming Basics

Event Constants

Event Flags Enum
Purpose Flags that accompany certain events.

Declared In Event.h

Constants evtPenPressureFlag = 0x0001
This flag is set in the flags field of the penDownMove
structure that accompanies a penDownEvent or
penMoveEvent if there is pen pressure information
available. The pen pressure value, if available, can be found
in the penDownMove structure’s pressure field.

Event Dispatch Types Enum
Purpose Values returned by your pen event filter function indicating how a

given pen event should be handled.

Declared In Event.h

Prototype typedef uint32_t EvtDispatchType;

Constants evtDispatchAbsorb = 0
Deliver the event to the window and consume it.

evtDispatchFallthrough = 1
Ignore the pen event, and send it to the next window. Note
that once you have allowed an event to fall through, you will
not see this or any more events in the current motion
delivered to your window.

Event Error Codes
Purpose Error codes returned by the various Event and System Event

Manager functions (those defined here and those defined in
SysEvtMgr.h).

Declared In Event.h

Constants #define evtErrNoQueue (evtErrorClass | 5)
The specified event queue does not exist.

Event
Miscellaneous Event Constants

Exploring Palm OS: Programming Basics 143

#define evtErrParamErr (evtErrorClass | 1)
One of the specified parameters is invalid.

#define evtErrQueueBusy (evtErrorClass | 4)

#define evtErrQueueEmpty (evtErrorClass | 3)
There are no events in the specified event queue.

#define evtErrQueueFull (evtErrorClass | 2)
The event could not be added to the queue because the event
queue is full.

Miscellaneous Event Constants
Purpose The header file Event.h defines these constants.

Declared In Event.h

Constants #define evtNoWait 0
A timeout value you can supply to EvtGetEvent() to cause
it to return immediately if there are no events waiting in the
event queue.

#define evtWaitForever -1
A timeout value you can supply to EvtGetEvent() to cause
the CPU to go into doze mode until the user provides input.

#define virtualKeyMask (appEvtHookKeyMask |
libEvtHookKeyMask | commandKeyMask)

Mask value used by the EvtKeydownIsVirtual() macro
to determine if a given event is a virtual character key down
event.

Event
Event Launch Codes

144 Exploring Palm OS: Programming Basics

Event Launch Codes

sysAppLaunchCmdBackground
Purpose Sent to the executable module that is launched in a background

thread with EvtCreateBackgroundThread().

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdBackground 73

Parameters The launch code’s parameter block pointer references a
SysAppLaunchCmdBackgroundType structure.

Event Functions and Macros

EvtAcquireEventQueue Function
Purpose Acquires a reference on the given queue so that it won’t become

invalid until another EvtReleaseEventQueue() call is made on
it.

Declared In Event.h

Prototype void EvtAcquireEventQueue (EvtQueueHandle queue)

Parameters → queue
Handle to the event queue.

Returns Nothing.

Comments This function is useful if, for example, you’ve gotten an
EvtQueueHandle from somewhere and now want to give it to
another thread. Call EvtAcquireEventQueue() and then pass
the EvtQueueHandle to the other thread. When the other thread is
done with the event queue, it should call
EvtReleaseEventQueue(). Unlike
EvtGetThreadEventQueue(), EvtAcquireEventQueue()
allows you to pass a handle to any event queue, not just the one
associated with your thread.

Event
EvtAddEventToEventQueue

Exploring Palm OS: Programming Basics 145

EvtAddEventToEventQueue Function
Purpose Send an event to a specific event queue.

Declared In Event.h

Prototype status_t EvtAddEventToEventQueue
(EvtQueueHandle queue, const EventType *event,
EvtQueueHandle replyQueue)

Parameters → queue
Handle of the event queue to which the event is to be sent.

→ event
Pointer to the event structure representing the event to be
sent.

→ replyQueue
Handle of the event queue to which a reply is to be sent, or
NULL if the event handler doesn’t need to generate an event
in reply. The event handler can retrieve this value by calling
EvtGetReplyEventQueue().

Returns Returns errNone if the event was successfully added to the queue,
or one of the following otherwise:

bndErrorDead
The process that was hosting the event queue has gone away.

evtErrQueueFull
The event queue is full, or the target thread associated with
the queue has gone away.

evtErrNoQueue
queue is NULL.

Comments Events can be sent with the restriction that only the top-level
contents of the event structure will be copied. The event structure
cannot contain pointers to strings or other data or objects.

See Also EvtCreateBackgroundThread(),
EvtGetThreadEventQueue(), EvtLookupEventQueue()

Event
EvtAddEventToQueue

146 Exploring Palm OS: Programming Basics

EvtAddEventToQueue Function
Purpose Add an event to the event queue.

Declared In Event.h

Prototype status_t EvtAddEventToQueue
(const EventType *event)

Parameters → event
Pointer to the structure that contains the event.

Returns Returns errNone if the event was successfully added to the event
queue, or evtErrQueueFull otherwise.

Comments This function makes a copy of the structure that you pass in and
adds it to the event queue.

EvtAddEventToQueueAtTime Function
Purpose Add an event to the event queue at a specified time.

Declared In Event.h

Prototype status_t EvtAddEventToQueueAtTime
(uint64_t absoluteTime,
const EventType *event)

Parameters → absoluteTime
The time, in milliseconds. This value is the number of
milliseconds since the device was last reset; you can get the
current time by calling SysGetRunTime() and converting
the resulting value to milliseconds with the P_NS2MS()
macro.

→ event
Pointer to the structure that contains the event.

Returns Returns errNone if the event was successfully added to the event
queue.

Comments This function makes a copy of the structure that you pass in and
adds it to the event queue.

Event
EvtAddUniqueEventToEventQueue

Exploring Palm OS: Programming Basics 147

EvtAddUniqueEventToEventQueue Function
Purpose Add an event to a specific event queue, replacing one of the same

type if it is found.

Declared In Event.h

Prototype status_t EvtAddUniqueEventToEventQueue
(EvtQueueHandle queue, const EventType *event,
uint32_t userCookie, Boolean inPlace)

Parameters → queue
Handle of the event queue to which the event is to be sent.

→ event
Pointer to the structure that contains the event.

→ userCookie
Event identifier. If this value is 0, this function matches on the
first existing event that has the given type. Otherwise, it
matches only on an event that has both the given type and
the identifier supplied in this parameter.

→ inPlace
If true, any existing event is replaced. If false, the existing
event is deleted and a new event is added to end of queue.

Returns Returns errNone if the event was successfully added to the event
queue, or evtErrQueueFull otherwise.

Comments This function looks in the specified event queue for an event of the
same event type and userCookie (if specified). The function
replaces it with the new event, if found.

If no existing event is found, the new event is copied to the specified
queue.

If an existing event is found, the function proceeds as follows:

• If inPlace is true, the existing event is replaced with a
copy of the new event.

• If inPlace is false, the existing event is removed and the
new event is added to the end of the queue.

Event
EvtAddUniqueEventToQueue

148 Exploring Palm OS: Programming Basics

EvtAddUniqueEventToQueue Function
Purpose Add an event to the event queue, replacing one of the same type if it

is found.

Declared In Event.h

Prototype status_t EvtAddUniqueEventToQueue
(const EventType *eventP, uint32_t userCookie,
Boolean inPlace)

Parameters → eventP
Pointer to the structure that contains the event.

→ userCookie
Event identifier. If this value is 0, this function matches on the
first existing event that has the given type. Otherwise, it
matches only on an event that has both the given type and
the identifier supplied in this parameter.

→ inPlace
If true, any existing event is replaced. If false, the existing
event is deleted and a new event is added to end of queue.

Returns Returns errNone if the event was successfully added to the event
queue, or evtErrQueueFull otherwise.

Comments This function looks in the event queue for an event of the same
event type and userCookie (if specified). The routine replaces it
with the new event, if found.

If no existing event is found, the new event is copied to the queue.

If an existing event is found, the routine proceeds as follows:

• If inPlace is true, the existing event is replaced with a
copy of the new event.

• If inPlace is false, the existing event is removed and the
new event is added to the end of the queue.

Event
EvtAddUniqueEventToQueueAtTime

Exploring Palm OS: Programming Basics 149

EvtAddUniqueEventToQueueAtTime Function
Purpose Add an event to the event queue at a specified time, replacing one of

the same type if it is found.

Declared In Event.h

Prototype status_t EvtAddUniqueEventToQueueAtTime
(uint64_t absoluteTime,
const EventType *eventP, uint32_t userCookie,
Boolean inPlace)

Parameters → absoluteTime
The time, in milliseconds. This value is the number of
milliseconds since the device was last reset; you can get the
current time by calling SysGetRunTime() and converting
the resulting value to milliseconds with the P_NS2MS()
macro.

→ eventP
Pointer to the structure that contains the event.

→ userCookie
Event identifier. If this value is 0, this function matches on the
first existing event that has the given type. Otherwise, it
matches only on an event that has both the given type and
the identifier supplied in this parameter.

→ inPlace
If true, any existing event is replaced. If false, the existing
event is deleted and a new event is added to end of queue.

Returns Returns errNone if the event was successfully added to the event
queue, or evtErrQueueFull otherwise.

Comments This function looks for an event in the event queue of the same
event type and userCookie (if specified). The routine replaces it
with the new event, if found.

If no existing event is found, the new event is copied to the queue.

If an existing event is found, the routine proceeds as follows:

• If inPlace is true, the existing event is replaced with a
copy of the new event.

If inPlace is false, the existing event is removed and the new
event is added to the end of the queue.

Event
EvtCreateBackgroundThread

150 Exploring Palm OS: Programming Basics

EvtCreateBackgroundThread Function
Purpose Create a thread in the background process and return a handle to

the thread’s event queue, through which you can communicate with
the background thread.

Declared In Event.h

Prototype EvtQueueHandle EvtCreateBackgroundThread
(DatabaseID db, size_t stackSize,
uint8_t priority, EvtQueueHandle callerQueue,
MemPtr data, size_t dataSize)

Parameters → db
Unique identifier for the database containing the code to be
executed in the background thread.

→ stackSize
Size, in bytes, to be allocated to the background thread’s
stack.

→ priority
The requested thread priority. See “Thread Priorities” on
page 454 of Exploring Palm OS: System Management for
constants that represent commonly-used thread priorities.

→ callerQueue
Event queue handle for the queue that the background
thread is to use to communicate with the calling thread, or
NULL if the background thread doesn’t need to send events
back to the calling thread. This is usually the calling
application’s event queue, which can be obtained by calling
EvtGetThreadEventQueue().

→ data
Pointer to a block of data that will be made accessible to the
background thread. This pointer accompanies the
sysAppLaunchCmdBackground launch code. The data
block cannot be more than 3kb in size (approximately).

→ dataSize
Size, in bytes, of the data block pointed to by data. This
value is passed to the code running in the background
thread.

Returns Returns a handle to the background thread’s event queue, or NULL
if the background thread couldn’t be started.

Event
EvtDequeueKeyEvent

Exploring Palm OS: Programming Basics 151

Comments Events can be sent to the background thread through the queue as in
the local process, with the restriction that only top-level contents of
the event structure will be copied. The event structure cannot
contain pointers to strings or other data or objects.

The caller queue and data are propagated to the new thread through
the launch code as described below. Supplying NULL for any of
these is valid.

Be sure to call EvtReleaseEventQueue() when you are done
with this queue (though only doing that will not make the thread go
away). You’ll need a handle to the caller queue; this means that you
should not do something like this:

myHandle = EvtCreateBackgroundThread(...,
EvtGetThreadEventQueue(), ...);

The above function enters PilotMain() with the launch code
sysAppLaunchCmdBackground and a
SysAppLaunchCmdBackgroundType data structure.

NOTE: EvtCreateBackgroundThread() does not guarantee
that the requested priority will be satisfied. A return value of
errNone does not guarantee that the thread has been created at
requested priority. Depending upon the context in which the
function was called, the actual thread priority may be lower than
what was requested.

See Also SysThreadCreate()

EvtDequeueKeyEvent Function
Purpose Obtain the next key event from the key queue.

Declared In Event.h

Prototype status_t EvtDequeueKeyEvent (EventType *event,
Boolean peek)

Parameters ← event
Pointer to an event structure that is filled in with the details
of the next event on the key queue.

Event
EvtDequeuePenPoint

152 Exploring Palm OS: Programming Basics

→ peek
If false, the key event is removed from the key queue. If
true, it is left in the key queue.

Returns Returns errNone if the key queue contained at least one key event,
or evtErrQueueEmpty if there are no key events in the key queue.

EvtDequeuePenPoint Function
Purpose Get the next pen point out of the pen queue. This function is called

by recognizers.

Declared In Event.h

Prototype status_t EvtDequeuePenPoint (PointType *retP)

Parameters ← retP
Return point.

Returns Always returns errNone.

Comments Called by a recognizer that wishes to extract the points of a stroke.
Returns the point (-1, -1) at the end of a stroke.

Before calling this routine, you must call
EvtDequeuePenStrokeInfo().

EvtDequeuePenStrokeInfo Function
Purpose Initiate the extraction of a stroke from the pen queue.

Declared In Event.h

Prototype status_t EvtDequeuePenStrokeInfo
(PointType *startPtP, PointType *endPtP)

Parameters ← startPtP
Start point returned here.

← endPtP
End point returned here.

Returns Always returns errNone.

Comments This routine must be called before EvtDequeuePenPoint() is
called.

Event
EvtEventAvail

Exploring Palm OS: Programming Basics 153

Subsequent calls to EvtDequeuePenPoint() return points at the
starting point in the stroke and including the end point. After the
end point is returned, the next call to EvtDequeuePenPoint()
returns the point -1, -1.

EvtEnqueueKey Function
Purpose Place keys into the key queue.

Declared In Event.h

Prototype status_t EvtEnqueueKey (wchar32_t ascii,
uint16_t keycode, uint16_t modifiers)

Parameters → ascii
Character code for the key.

→ keycode
Virtual key code of key. This is the keyCode field of the
keyDownEvent and is currently unused.

→ modifiers
Modifiers for keyDownEvent.

Returns Returns errNone if successful, or evtErrParamErr if an error
occurs.

Comments IMPORTANT: Make sure you pass a wchar32_t as the ascii
parameter, not a char. If you pass a high-ASCII char, the
compiler sign-extends it to be a 32-bit value, resulting in the
wrong character being added to the key queue.

EvtEventAvail Function
Purpose Determine if an event is available.

Declared In Event.h

Prototype Boolean EvtEventAvail (void)

Parameters None.

Returns Returns true if an event is available, false otherwise.

Event
EvtEventToString

154 Exploring Palm OS: Programming Basics

EvtEventToString Function
Purpose Creates a string representation of an event, for debugging purposes.

Declared In Event.h

Prototype void EvtEventToString (EventType *event,
char *str, uint32_t bufsize)

Parameters → event
The event for which a string representation is to be created.

← str
A string buffer into which the string representation is
written.

→ bufsize
The size of the string buffer str.

Returns Nothing.

Comments The string representation includes the event type, an indication of
whether the pen was touching the screen at the time the event was
generated, the tap count, and the x and y coordinates identifying the
pen location. It also includes event-specific information, if
appropriate. You can use the string produced by this function to log
events as an aid to debugging.

EvtFinishLastEvent Function
Purpose Indicate that you are done processing an event obtained before

blocking on the IOS file descriptor for the event queue.

Declared In Event.h

Prototype void EvtFinishLastEvent (void)

Parameters None.

Returns Nothing.

Comments Normally you don’t need to call this function. EvtGetEvent() and
IOSPoll() both call it for you.

See Also EvtGetEventDescriptor()

Event
EvtFlushPenQueue

Exploring Palm OS: Programming Basics 155

EvtFlushKeyQueue Function
Purpose Flush all keys out of the key queue.

Declared In Event.h

Prototype status_t EvtFlushKeyQueue (void)

Parameters None.

Returns Always returns errNone.

EvtFlushNextPenStroke Function
Purpose Flush the next stroke out of the pen queue.

Declared In Event.h

Prototype status_t EvtFlushNextPenStroke (void)

Parameters None.

Returns Always returns errNone.

Comments Called by recognizers that need only the start and end points of a
stroke. If a stroke has already been partially dequeued (by
EvtDequeuePenStrokeInfo()) this routine finishes the stroke
dequeueing. Otherwise, this routine flushes the next stroke in the
queue.

See Also EvtDequeuePenPoint()

EvtFlushPenQueue Function
Purpose Flush all points out of the pen queue.

Declared In Event.h

Prototype status_t EvtFlushPenQueue (void)

Parameters None.

Returns Always returns errNone.

Event
EvtGetEvent

156 Exploring Palm OS: Programming Basics

EvtGetEvent Function
Purpose Return the next available event from the current thread’s event

queue.

Declared In Event.h

Prototype void EvtGetEvent (EventType *event,
int32_t timeout)

Parameters ← event
Pointer to the structure to hold the event returned.

→ timeout
Maximum number of ticks to wait before an event is returned
(evtWaitForever means wait indefinitely, evtNoWait
means don’t wait at all).

Returns Nothing.

Comments Pass evtWaitForever as the timeout in most instances. When
running on the device, this makes the CPU go into doze mode until
the user provides input. For applications that do animation, pass a
timeout value greater than or equal to zero (evtNoWait has a
value of zero).

Note that a timeout value greater than or equal to zero is simply the
maximum number of ticks which can elapse before EvtGetEvent()
returns an event. If any other event—including a nilEvent—
occurs before this time has elapsed, EvtGetEvent() returns that
event. Otherwise, once the specified time has elapsed
EvtGetEvent() generates and returns a nilEvent. If you supply
a value of zero for the timeout parameter, EvtGetEvent() returns
the event currently in the queue, or, if there aren’t any events in the
queue, it immediately generates and returns a nilEvent.

EvtGetEventDescriptor Function
Purpose Get an IOS file descriptor that you can block on until events arrive

in your queue.

Declared In Event.h

Prototype int32_t EvtGetEventDescriptor (void)

Parameters None.

Event
EvtGetFocusWindow

Exploring Palm OS: Programming Basics 157

Returns Returns the IOS file descriptor for the event queue, or a value less
than zero if an error occurred while obtaining the file descriptor.

Comments This function only works for the main UI thread. Outside of the
main UI thread you should use the multithreading APIs to do I/O
instead of multiplexing with an event thread.

Rather than making repeated calls to EvtGetEvent(), you can
instead obtain an IOS file descriptor using this function and block
on that file descriptor. When an event is posted to your event queue,
your application will wake up and can then process the event. Note
that when using this technique you must let the operating system
know when you are done with the event. IOSPoll() does this for
you, or you can make a call to EvtFinishLastEvent().

On debug ROMs, this function displays a fatal alert if the calling
thread is not the main UI thread.

EvtGetFocusWindow Function
Purpose Get a handle to the window that currently has the focus.

Declared In Event.h

Prototype WinHandle EvtGetFocusWindow (void)

Parameters None.

Returns Returns a handle to the last window that received a
winFocusGainedEvent, or, if a winFocusGainedEvent has not
been returned from EvtGetEvent() since the last
winFocusLostEvent, returns invalidWindowHandle (this
constant is defined in Window.h).

Event
EvtGetPen

158 Exploring Palm OS: Programming Basics

EvtGetPen Function
Purpose Return the current status of the pen.

Declared In Event.h

Prototype status_t EvtGetPen (Coord *pScreenX,
Coord *pScreenY, Boolean *pPenDown)

Parameters ← pScreenX
x location, in standard coordinates, relative to the draw
window.

← pScreenY
y location, in standard coordinates, relative to the draw
window.

← pPenDown
true or false, indicating whether or not the pen is
currently touching the screen.

Returns Always returns errNone.

See Also EvtGetPenNative()

EvtGetPenNative Function
Purpose Get the current status of the pen using a window’s active coordinate

system.

Declared In Event.h

Prototype status_t EvtGetPenNative (WinHandle winH,
Coord *pScreenX, Coord *pScreenY,
Boolean *pPenDown)

Parameters → winH
Handle to a valid window.

← pScreenX
x location, in active coordinates, relative to the window.

← pScreenY
y location, in active coordinates, relative to the window.

← pPenDown
true if the pen is down, false otherwise.

Returns Always returns errNone.

Event
EvtGetThreadEventQueue

Exploring Palm OS: Programming Basics 159

Comments This function is a variation on EvtGetPen(). EvtGetPen()
returns a pen sample using the standard coordinate system, relative
to the draw window, whereas EvtGetPenNative() returns a pen
sample using the active coordinate system of winH, relative to the
window origin. If the active coordinate system is high density, the
returned pen sample uses high-density coordinates.

On a debug ROM this function displays an error if winH doesn’t
reference a valid window object.

EvtGetReplyEventQueue Function
Purpose Obtain the event queue through which you can post a reply to the

event being processed.

Declared In Event.h

Prototype EvtQueueHandle EvtGetReplyEventQueue (void)

Parameters None.

Returns A handle to the reply event queue, or NULL if the event handler isn’t
expected to post a reply.

Comments Used by event handlers to post a response to the thread that sent the
event. The reply queue handle is specified when the event is
originally sent, as a parameter to EvtAddEventToEventQueue().

You must call EvtReleaseEventQueue() when done with the
queue returned by this function.

See Also EvtGetThreadEventQueue(), EvtLookupEventQueue()

EvtGetThreadEventQueue Function
Purpose Obtain a handle to the current thread’s event queue.

Declared In Event.h

Prototype EvtQueueHandle EvtGetThreadEventQueue (void)

Parameters None.

Returns Returns a handle to the event queue.

Event
EvtKeydownIsVirtual

160 Exploring Palm OS: Programming Basics

Comments Given a handle to a thread’s event queue, you can use
EvtAddEventToEventQueue() to add events to the thread’s
event queue from any other thread in the process. When you are
done with the thread’s event queue, call
EvtReleaseEventQueue() to allow the system to reclaim the
queue’s resources.

See Also EvtGetReplyEventQueue(), EvtLookupEventQueue()

EvtKeydownIsVirtual Macro
Purpose Determine if a given event is a virtual character key down event.

Declared In Event.h

Prototype #define EvtKeydownIsVirtual (eventP)

Parameters → eventP
Pointer to an EventType structure.

Returns Evaluates to true if the character is a letter in an alphabet or a
numeric digit, false otherwise.

Comments The macro assumes that the caller has already determined the event
is a keyDownEvent.

This macro is intended for use by the system.

EvtKeyQueueEmpty Function
Purpose Determine whether the key queue is currently empty.

Declared In Event.h

Prototype Boolean EvtKeyQueueEmpty (void)

Parameters None.

Returns Returns true if the key queue is currently empty, otherwise returns
false.

Event
EvtPublishEventQueue

Exploring Palm OS: Programming Basics 161

EvtLookupEventQueue Function
Purpose Look up an event queue by name.

Declared In Event.h

Prototype EvtQueueHandle EvtLookupEventQueue
(const char *name)

Parameters → name
The name of the event queue, as published by
EvtPublishEventQueue().

Returns Returns a handle to the event queue if the named queue was found,
or NULL if an event queue with the given name couldn’t be located.

Comments You must call EvtReleaseEventQueue() when you are done
with the queue returned by this function.

Published queues persist across application switches, but note that
if the queue refers to a thread in the Application process, after an
application switch that queue will be dead and errors will be
returned if you attempt to use it.

See Also EvtGetReplyEventQueue(), EvtGetThreadEventQueue(),
EvtPublishEventQueue()

EvtPublishEventQueue Function
Purpose Publish (or withdraw from publication) an event queue name, so

that code executing in other threads can gain access to the queue
simply by knowing the event queue name.

Declared In Event.h

Prototype status_t EvtPublishEventQueue (const char *name,
EvtQueueHandle queue)

Parameters → name
The name by which the event queue is to be known (or the
name of the published event queue that is to be withdrawn
from publication).

→ queue
The event queue’s handle, if publishing, or NULL to
withdraw an event queue from publication.

Event
EvtReleaseEventQueue

162 Exploring Palm OS: Programming Basics

Returns Returns errNone if the operation was successfully completed, or an
error value otherwise.

Comments The functionality provided by this function and by
EvtLookupEventQueue() allows an application that operates in
conjunction with a background thread to attach to its already
running background thread whenever the application starts. For
instance, a media player that uses a background thread to perform
playback or recording operations could use this to reestablish
communications with the background thread after the user has
switched away from and then back to the media player UI
application.

Event queues should use Java-style naming conventions. For
example, “com.palmsource.someapp.myqueue”.

Published queues persist across application switches, but note that
if the queue refers to a thread in the Application process, after an
application switch that queue will be dead and errors will be
returned if you attempt to use it.

See Also EvtLookupEventQueue()

EvtReleaseEventQueue Function
Purpose Release a reference on an event queue.

Declared In Event.h

Prototype void EvtReleaseEventQueue (EvtQueueHandle queue)

Parameters → queue
Handle to the event queue to be released.

Returns Nothing.

Comments Call this function to release a reference on the queue. Once all
references are gone—including the one implicitly held by the thread
running the queue and from publishing the queue—the system will
reclaim the queue’s resources.

See Also EvtCreateBackgroundThread(),
EvtGetReplyEventQueue(), EvtGetThreadEventQueue(),
EvtLookupEventQueue()

Event
EvtSetPenDispatchFunc

Exploring Palm OS: Programming Basics 163

EvtSetNullEventTick Function
Purpose Make sure that a nilEvent occurs in at least the specified amount

of time.

Declared In Event.h

Prototype Boolean EvtSetNullEventTick
(int64_t milliseconds)

Parameters → milliseconds
Maximum amount of time, in milliseconds, that should
elapse before a nilEvent is added to the queue.

Returns Returns true if timeout value changed, or false if it did not
change.

EvtSetPenDispatchFunc Function
Purpose Set the pen event filter function for a given window.

Declared In Event.h

Prototype extern status_t EvtSetPenDispatchFunc
(WinHandle winHandle,
EvtPenDispatchFunc penDispatch,
void *userData)

Parameters → winHandle
Handle to the window for which the pen event filter function
is being set.

→ penDispatch
Pointer to the filter function, which must have a prototype as
defined by EvtPenDispatchFunc(). If this parameter is
NULL, the default filter function (which always returns
evtDispatchAbsorb) is used.

→ userData
Pointer that can be used to pass application-specific data to
the pen event filter function. If the filter function requires no
such data, pass NULL for this parameter.

Returns Always returns errNone. On a debug ROM, this function generates
a fatal error if the supplied window handle is invalid.

Event
EvtSysEventAvail

164 Exploring Palm OS: Programming Basics

Comments A pen event filter function is a function that you write that allows
you to control which pen taps are passed on to your window’s event
queue, and which are passed on to other windows that may be
beneath yours. Such “pen event filters” are used primarily by
overlay pinlets, although they can be used by any window; they are
not limited to use by pinlets.

EvtSysEventAvail Function
Purpose Return true if a low-level system event (such as a pen or key event)

is available.

Declared In Event.h

Prototype Boolean EvtSysEventAvail (Boolean ignorePenUps)

Parameters → ignorePenUps
If true, this function ignores pen-up events when
determining if there are any system events available.

Returns Returns true if a system event is available.

Comments Call EvtEventAvail() to determine whether high-level software
events are available.

EvtWakeup Function
Purpose Force the Event Manager to wake up and send a nilEvent to the

current application.

Declared In Event.h

Prototype status_t EvtWakeup (void)

Parameters None.

Returns Always returns errNone.

Comments Called by interrupt routines, like the Sound Manager and Alarm
Manager.

See Also EvtWakeupWithoutNilEvent()

Event
EvtPenDispatchFunc

Exploring Palm OS: Programming Basics 165

EvtWakeupWithoutNilEvent Function
Purpose Force the Event Manager to wake up without sending a nilEvent

to the current application.

Declared In Event.h

Prototype status_t EvtWakeupWithoutNilEvent (void)

Parameters None.

Returns Always returns errNone.

Comments Called by interrupt routines.

See Also EvtWakeup()

Application-Defined Functions

EvtPenDispatchFunc Function
Purpose A callback function that allows you to control which pen taps are

passed on to your window’s event queue, and which are passed on
to other windows that may be beneath yours. Such “pen event
filters” are used primarily by overlay (“on screen input”) pinlets,
although they can be used by any window; they are not limited to
use by pinlets. They can be used to implement windows with
irregular shapes and more sophisticated effects.

Declared In Event.h

Prototype typedef EvtDispatchType (*EvtPenDispatchFunc)
(const EventType *penEvent,
const RectangleType *nativeFrame,
void *userData)

Parameters → penEvent
The pen event to be filtered.

→ nativeFrame
The target window’s frame.

↔ userData
Pointer to an optional application-defined data block
specified during the call to EvtSetPenDispatchFunc().

Event
EvtPenDispatchFunc

166 Exploring Palm OS: Programming Basics

Returns Return one of the values defined by the Event Dispatch Types enum
to indicate whether the event should be absorbed or passed on to
the next window layer.

Comments This function is called for each pen event delivered to the window,
allowing you to decide what to do with the event. Return
evtDispatchAbsorb for those events that should be placed on
your window’s event queue, or evtDispatchFallthrough for
those that should “fall through” to the next window beneath. Note
that once you have allowed an event to fall through, any subsequent
events in the current motion will not be delivered to your window.

NOTE: This function is called from outside of the window’s
event thread. You cannot access any UI state from it.

A typical EvtPenDispatchFunc() implementation will usually
do nothing more than check if the pen is in a certain region of the
window (and possibly check some internal state of the pinlet) before
returning the appropriate value.

It is important to understand that the dispatch function set here is
called as part of the system’s lower-level event dispatching
mechanism, before the event is placed in the target window’s event
queue. This means:

• The function is called in a system thread, not in the window’s
event thread, and so it cannot access any of that thread’s UI
state. In particular it can’t make any Window Manager or
standard Event Manager calls. You can use the multi-
threaded Event Manager functions to communicate from this
thread to the UI thread, however. You can also count on the
thread running in the same process as your window, so you
can access common globals and the userData parameter
can contain a pointer to a shared data structure on the local
heap.

• When using this function you must have a good
understanding of multithreading to correctly synchronize
calls to the dispatch function with whatever is going on in the
UI thread. Not properly taking care of multi-threaded issues
can result in application crashes and other bad behavior.

Event
EvtPenDispatchFunc

Exploring Palm OS: Programming Basics 167

• This dispatch function is called as part of the low-level
system event dispatching, and thus should do as little
possible to decide what to do with each event it is given.

This function provides very direct access to the operating system’s
event processing, and as such developers should be very careful
when using it. Take care to call as few operating system functions as
possible: avoid the Data Manager, any UI functions besides the
multithreaded Event Manager functions, and any other high level
functions such as those involving the status bar, the dynamic input
area, and the like. While some of these functions may happen to
work in current versions of the operating system, future versions of
the system may not be able to support them.

Event
EvtPenDispatchFunc

168 Exploring Palm OS: Programming Basics

Exploring Palm OS: Programming Basics 169

8
Event Codes
The file EventCodes.h defines the Palm OS-generated events. This
chapter documents that header file, and is organized as follows:

Event Codes Structures and Types 169

Event Codes Constants 170

Event Codes Events 171

For information on the structures that accompany most events, and
the functions that can be used to manipulate the event queue, see
Chapter 7, “Event,” on page 139. For conceptual information on
events and the event queue, see Chapter 3, “Events and the Event
Loop,” on page 43.

Event Codes Structures and Types

eventsEnum Typedef
Purpose Defines a type that can be used to hold an event value.

Declared In EventCodes.h

Prototype typedef uint32_t eventsEnum

Comments See “Event Codes Events” on page 171 for the set of event values
defined by Palm OS.

Event Codes
Event Codes Constants

170 Exploring Palm OS: Programming Basics

Event Codes Constants

Miscellaneous Event Codes Constants
Purpose In addition to the enum that defines the events themselves, the

EventCodes.h header file declares these constants.

Declared In EventCodes.h

Constants invalidEvent = 100
An invalid event value, used for error checking. This event is
not normally posted to the event queue.

firstINetLibEvent = 0x1000
Base value for Internet Library events.

firstWebLibEvent = 0x1100
Base value for Web Library events.

firstUserEvent = 0x6000
Base value for events generated by third-party applications.
All events generated by Palm OS have a value less than
firstUserEvent. Third-party application event values
should fall in the range:
firstUserEvent >= n >= lastUserEvent

lastUserEvent = 0x7FFF
The maximum value that should be used for an event
generated by a third-party application. Third-party
application event values should fall in the range:
firstUserEvent >= n >= lastUserEvent

Event Codes
nilEvent

Exploring Palm OS: Programming Basics 171

Event Codes Events

NOTE: The events documented in this section represent
general events of interest to most Palm OS programmers. Other
events declared in EventCodes.h are generated by, or handled
by, specific portions of the system and thus are only of interest to
developers working with the corresponding operating system
features. Those events are documented in other books in the
Exploring Palm OS series, as listed under “Palm OS-Generated
Events” on page 54.

appStopEvent
Purpose Request for the current application to terminate.

Prototype There is no event-specific data associated with this event.

Comments When the system wants to launch a different application than the
one currently running, the event manager sends this event to
request the current application to terminate. In response, an
application has to exit its event loop, close any open files and forms,
and exit.

If an application doesn’t respond to this event by exiting, the system
can’t start the other application.

nilEvent
Purpose Event that is sent by the Event Manager when there are no events in

the event queue.

Prototype There is no event-specific data associated with this event.

Comments A nilEvent is useful for animation, polling, and similar situations.

The Event Manager sends this event when there are no events in the
event queue. This can happen if the routine EvtGetEvent() is
passed a time-out value (a value other than evtWaitForever). If
EvtGetEvent() is unable to return an event in the specified time,
it returns a nilEvent. Different Palm OS versions and different

Event Codes
prgMakeCallback

172 Exploring Palm OS: Programming Basics

devices can send nilEvents under different circumstances, so you
might receive a nilEvent even before the timeout has expired.

prgMakeCallback
Purpose This event is for use by the operating system only. Applications

should not post or act upon this event

prgUpdateDialog
Purpose This event is for use by the operating system only. Applications

should not post or act upon this event

Exploring Palm OS: Programming Basics 173

9
Helper
This chapter describes the Helper API declared in the header files
Helper.h and HelperServiceClass.h. The Helper API is used
when an application broadcasts a sysNotifyHelperEvent to all
interested parties. The broadcaster of the notification and the
notification clients (called helpers) use the Helper APIs to
communicate with each other. The chapter discusses the following
topics:

Helper Structures and Types 173

Helper Constants 178

Helper Notifications 179

The header file Helper.h declares the API that this chapter
describes.

For more information on using the Helper API, see the section
“Helper Notifications” on page 66.

Helper Structures and Types

HelperNotifyActionCodeType Typedef
Purpose Contains an action code that specifies what action the broadcasting

application is requesting. See “Action Codes” on page 178 for the set
of defined action codes.

Declared In Helper.h

Prototype typedef uint16_t HelperNotifyActionCodeType

HelperNotifyEnumerateListType Struct
Purpose The HelperNotifyEnumerateListType provides the

broadcaster of the helper notification with information about the

Helper
HelperNotifyEnumerateListType

174 Exploring Palm OS: Programming Basics

services that the helper can provide. This structure is used as the
data field of the HelperNotifyEventType structure when the
action code is kHelperNotifyActionCodeEnumerate.

Declared In Helper.h

Prototype typedef struct HelperNotifyEnumerateListTypeTag {
 struct HelperNotifyEnumerateListTypeTag *nextP;
 Char helperAppName[kHelperAppMaxNameSize];
 Char actionName[kHelperAppMaxActionNameSize];
 uint32_t helperAppID;
 uint32_t serviceClassID;
} HelperNotifyEnumerateListType

Fields nextP
A pointer to the next element in the list or NULL to signal the
end of the list.

helperAppName
A null-terminated string containing the name of the helper
application, suitable for display in the user interface. If more
than one application can perform the same service, this name
can be displayed as one of the choices in a pop-up list. The
name should not exceed kHelperAppMaxNameSize bytes
in length.

actionName
A null-terminated string containing the name of the service
that can be performed, suitable for display in the user
interface. The action name should be short enough to display
on a button, and should never exceed
kHelperAppMaxActionNameSize bytes in length.

helperAppID
The helper’s creator ID or any other ID that uniquely
identifies the helper.

serviceClassID
The ID of the service that the helper performs. See “Helper
Service Class IDs” on page 182.

Comments The helper allocates this structure and then adds it to the linked list
of structures pointed to by
notifyDetailsP->data.enumerateP in the
SysNotifyParamType that is sent to the helper. The helper should
allocate one structure per supported service.

Helper
HelperNotifyEventType

Exploring Palm OS: Programming Basics 175

Even though the helper allocates this structure, the helper is not
responsible for freeing the structure. Instead, the application that
broadcast the notification must free the structure.

HelperNotifyEventType Struct
Purpose The HelperNotifyEventType structure contains all data

associated with a helper notification (sysNotifyHelperEvent). A
pointer to this structure is passed as the notifyDetailsP field in
the SysNotifyParamType for that notification.

Declared In Helper.h

Prototype typedef struct HelperNotifyEventTypeTag {
 uint16_t version;
 HelperNotifyActionCodeType actionCode;
 union {
 struct HelperNotifyEnumerateListTypeTag
 *enumerateP;
 struct HelperNotifyValidateTypeTag
 *validateP;
 struct HelperNotifyExecuteTypeTag
 *executeP;
 } data;
} HelperNotifyEventType

Fields version
The version number for this structure. The current version is
kHelperNotifyCurrentVersion.

actionCode
The action that the helper application should perform. See
“Action Codes” on page 178.

data
Data specific to the action code. See “Action Codes” on
page 178.

Helper
HelperNotifyExecuteType

176 Exploring Palm OS: Programming Basics

Comments The HelperNotifyEventType structure specifies which action is
to be performed and contains data necessary for that action. All
actions have some common data. Actions also have data specific to
that action. The specific data uses a union that is part of the
HelperNotifyEventType structure.

HelperNotifyExecuteType Struct
Purpose The HelperNotifyExecuteType structure identifies the service

to perform and contains the data necessary to perform that service.
This structure is used as the data field of the
HelperNotifyEventType structure when the action code is
kHelperNotifyActionCodeExecute.

Declared In Helper.h

Prototype typedef struct HelperNotifyExecuteTypeTag {
 uint32_t serviceClassID;
 uint32_t helperAppID;
 Char *dataP;
 Char *displayedName;
 void *detailsP;
 status_t err;
} HelperNotifyExecuteType

Fields serviceClassID
The ID of the service to be performed. See “Helper Service
Class IDs” on page 182.

helperAppID
The unique ID of the helper; a value of 0 indicates that any
available helper for the specified service class should
perform the service.

dataP
A null-terminated string specific to this service, such as a
phone number for the dial service or an email address for the
email service. See “Helper Service Class IDs” on page 182.
Multiple fields must be separated by semicolons (;).

displayedName
A null-terminated string containing an optional, human-
readable description of the string in dataP. For example, if

Helper
HelperNotifyValidateType

Exploring Palm OS: Programming Basics 177

dataP contains a phone number, this field might contain the
name of the person at that number.

detailsP
A pointer to a data structure containing extra information
that this service requires. See “Helper Service Class IDs” on
page 182. If the service does not require extra information,
this field is NULL.

err
An error code that indicates whether the service was
performed successfully. If the service was successful, this
field contains errNone, and the handled field in the
notification data structure should be set to true.

HelperNotifyValidateType Struct
Purpose The HelperNotifyValidateType structure identifies a service

that should be validated and the helper that should validate it. This
structure is used as the data field of the
HelperNotifyEventType structure when the action code is
kHelperNotifyActionCodeValidate.

Declared In Helper.h

Prototype typedef struct HelperNotifyValidateTypeTag {
 uint32_t serviceClassID;
 uint32_t helperAppID;
} HelperNotifyValidateType

Fields serviceClassID
The ID of the service to be validated. See “Helper Service
Class IDs” on page 182.

helperAppID
The creator ID of the helper application. 0 indicates that any
available helper for the specified service should respond. If
nonzero, only the helper with the matching creator ID should
respond.

Comments The helper returns true in the handled field of the
SysNotifyParamType structure to indicate that the service can be
performed or false to indicate that the service cannot be
performed.

Helper
Helper Constants

178 Exploring Palm OS: Programming Basics

Helper Constants

Action Codes
Purpose Codes that specify the action that a helper application is expected to

take. The code is passed to each helper application registered to
receive a sysNotifyHelperEvent notification as part of the
HelperNotifyEventType structure that accompanies the
notification.

Declared In Helper.h

Constants #define kHelperNotifyActionCodeEnumerate
((HelperNotifyActionCodeType)1)

Send a list of available services. The
HelperNotifyEventType structure’s data field contains
a HelperNotifyEnumerateListType structure.

#define kHelperNotifyActionCodeExecute
((HelperNotifyActionCodeType)3)

Perform the specified service. The
HelperNotifyEventType structure’s data field contains
a HelperNotifyExecuteType structure.

#define kHelperNotifyActionCodeValidate
((HelperNotifyActionCodeType)2)

Perform the specified service. The
HelperNotifyEventType structure’s data field contains
a HelperNotifyValidateType structure.

Miscellaneous Helper Constants
Purpose The Helper.h file also declares these constants.

Declared In Helper.h

Constants #define kHelperAppMaxActionNameSize 48
The maximum length, in bytes, of a string containing the
name of the service that can be performed, suitable for
display in the user interface. This string is passed to
broadcasting applications as part of the
HelperNotifyEnumerateListType structure.

Helper
sysNotifyHelperEvent

Exploring Palm OS: Programming Basics 179

#define kHelperAppMaxNameSize 72
The maximum length, in bytes, of a string containing the
name of the helper application, suitable for display in the
user interface. This string is passed to broadcasting
applications as part of the
HelperNotifyEnumerateListType structure.

#define kHelperNotifyCurrentVersion 1
The version of the HelperNotifyEventType structure.

Helper Notifications

sysNotifyHelperEvent
Purpose Broadcast by applications to request a service from another

application. For example, the Address Book application broadcasts
this notification to request that the Dial application dial a phone
number.

Declared In NotifyMgr.h

Prototype #define sysNotifyHelperEvent 'hlpr'

Parameters notifyDetailsP points to a HelperNotifyEventType
structure.

Comments For the sysNotifyHelperEvent, the notification client (that is,
the application or shared library that registers for the notification) is
called a helper. The application that broadcasts this notification
specifies one of the action codes listed under “Action Codes” on
page 178. These action codes request all helper applications to
enumerate (list the services they perform), validate (ensure that the
service will succeed), and execute (perform the action). The helper
responds to the notification by returning the required data in the
appropriate portion of the notifyDetailsP structure and by
setting the handled field to true or false to indicate the success
or failure of the action.

Helper
sysNotifyHelperEvent

180 Exploring Palm OS: Programming Basics

Exploring Palm OS: Programming Basics 181

10
Helper Service Class
This chapter documents those APIs that you employ when using the
standard helper services included in Palm OS. The material in this
chapter is divided up as follows:

Helper Service Class Structures and Types 181

Helper Service Class Constants 182

The header file HelperServiceClass.h declares the API that this
chapter describes.

For more information on using the Helper API, see the section
“Helper Notifications” on page 66 and Chapter 9, “Helper.”

Helper Service Class Structures and Types

HelperServiceEMailDetailsType Struct
Purpose Provides additional data for the email service. It is used as the

detailsP field in the HelperNotifyExecuteType when the
service class ID is kHelperServiceClassIDEMail.

Declared In HelperServiceClass.h

Prototype typedef struct _HelperServiceEMailDetailsType {
 uint16_t version;
 Char *cc;
 Char *subject;
 Char *message;
} HelperServiceEMailDetailsType

Fields version
The version number for this structure. The current version is
1.

Helper Service Class
HelperServiceSMSDetailsType

182 Exploring Palm OS: Programming Basics

cc
A null-terminated string containing an email address that
should be sent a carbon copy of the message. Multiple
addresses are separated by a semi-colon (;). May be NULL if
there are no email addresses to carbon copy.

subject
A null-terminated string containing the subject line. May be
NULL.

message
Initial message body string or NULL.

HelperServiceSMSDetailsType Struct
Purpose The HelperServiceSMSDetailsType structure provides the

SMS message to be sent. It is used as the detailsP field in the
HelperNotifyExecuteType when the service class ID is
kHelperServiceClassIDSMS.

Declared In HelperServiceClass.h

Prototype typedef struct _HelperServiceSMSDetailsType {
 uint16_t version;
 Char *message;
} HelperServiceSMSDetailsType

Fields version
The version number for this structure. The current version is
1.

message
A null-terminated string containing the body of the message
to be sent, or NULL.

Helper Service Class Constants

Helper Service Class IDs
Purpose Identify the service that the helper performs. Pass one of these

service class IDs within a HelperNotifyValidateType structure
when validating the existence of a service, or within a

Helper Service Class
Helper Service Class IDs

Exploring Palm OS: Programming Basics 183

HelperNotifyExecuteType when requesting that the service be
performed. When enumerating possible services, the returned
HelperNotifyEnumerateListType structures contain service
class IDs to identify the services that they perform.

Declared In HelperServiceClass.h

Constants #define kHelperServiceClassIDEMail 'mail'
Send an email message. dataP points to the email address to
which the message is to be sent, while detailsP points to a
structure of type HelperServiceEMailDetailsType.

#define kHelperServiceClassIDFax 'fax_'
Send a fax. dataP points to the fax number to which the fax
is to be sent, while detailsP is NULL.

#define kHelperServiceClassIDSMS 'sms_'
Send an SMS message. dataP points to the SMS mailbox
number to which the message is to be sent, while detailsP
points to a structure of type
HelperServiceSMSDetailsType.

#define kHelperServiceClassIDVoiceDial 'voic'
Dial a phone number for a voice telephone call. dataP points
to the telephone number to dial, while detailsP is NULL.

Comments Third party developers may define their own service classes. To do
so, you must register a 32-bit identifier with PalmSource, Inc. on this
web site:

http://www.palmos.com/dev/creatorid/

Alternatively, you can use a creator ID that you already own.

http://www.palmos.com/dev/creatorid/

Helper Service Class
Helper Service Class IDs

184 Exploring Palm OS: Programming Basics

Exploring Palm OS: Programming Basics 185

11
Notification Manager
This chapter provides reference documentation for the Notification
Manager APIs. These APIs include both the functions that you use
to register and unregister to receive a notification and the functions
you use to broadcast a notification, plus the definitions of many of
the notifications themselves.

The contents of this chapter are organized as follows:

Notification Manager Structures and Types 185

Chapter 5, “Low-Level Events Reference,”Notification
Manager Constants 197

Notification Manager Notifications. 200

Notification Manager Functions and Macros 220

Application-Defined Functions 231

The header file NotifyMgr.h declares the API that this chapter
describes.

See Chapter 4, “Notifications,” on page 59 for an introduction to
notifications and their use. For a complete list of all notifications
broadcast by Palm OS, see “Notification Summary” on page 72.

Notification Manager Structures and Types

SleepEventParamType Struct
Purpose Notification-specific data that accompanies a

sysNotifySleepRequestEvent notification. This structure

Notif ication Manager
SysNotifyAppLaunchOrQuitType

186 Exploring Palm OS: Programming Basics

indicates why the device is going to sleep and allows a handler to
prevent the device from sleeping.

Declared In NotifyMgr.h

Prototype typedef struct SleepEventParamTag {
 uint16_t reason;
 uint16_t deferSleep;
} SleepEventParamType

Fields reason
The reason the system is going to sleep. See “Reasons for
Device Sleep” on page 197 for the set of possible values for
this field.

deferSleep
Initially set to 0. If a notification handler wants to defer sleep,
then it should increment this value. When deferSleep is
greater than 0, the system waits before going to sleep.

SysNotifyAppLaunchOrQuitType Struct
Purpose Notification-specific data intended to accompany a

sysNotifyAppLaunchingEvent notification. Because that

Notif ication Manager
SysNotifyDBAddedType

Exploring Palm OS: Programming Basics 187

notification is not sent in Palm OS Cobalt, however, this structure
isn’t used.

Declared In NotifyMgr.h

Prototype typedef struct SysNotifyAppLaunchOrQuitTag {
 uint32_t version;
 uint32_t dbID;
 uint16_t cardNo;
 uint16_t padding;
} SysNotifyAppLaunchOrQuitType

SysNotifyDBAddedType Typedef
Purpose Notification-specific data that accompanies a

sysNotifyDBAddedEvent notification. This structure identifies
the newly-added database.

Declared In NotifyMgr.h

Prototype typedef SysNotifyDBCreatedType
SysNotifyDBAddedType;

Comments SysNotifyDBAddedType is equivalent to
SysNotifyDBCreatedType. See that structure’s documentation
for details.

Notif ication Manager
SysNotifyDBChangedType

188 Exploring Palm OS: Programming Basics

SysNotifyDBChangedType Struct
Purpose Notification-specific data that accompanies a

sysNotifyDBChangedEvent notification. This structure indicates
what about the database has changed.

Declared In NotifyMgr.h

Prototype typedef struct SysNotifyDBChangedTag {
 DatabaseID dbID;
 char name[dmDBNameLength];
 uint32_t creator;
 uint32_t type;
 uint16_t attributes;
 uint16_t version;
 uint32_t crDate;
 uint32_t modDate;
 uint32_t bckUpDate;
 uint32_t modNum;
 MemHandle appInfoH;
 MemHandle sortInfoH;
 char displayName[dmDBNameLength];
 uint16_t encoding;
 uint16_t fields;
 char oldName[dmDBNameLength];
 uint32_t oldCreator;
 uint32_t oldType;
 uint16_t oldAttributes;
 uint16_t reserved;
} SysNotifyDBChangedType

Fields dbID
Database ID.

name
New name of database.

creator
New database creator ID.

type
New database type.

attributes
New database attributes.

Notif ication Manager
SysNotifyDBChangedType

Exploring Palm OS: Programming Basics 189

version
New database version.

crDate
New database creation date.

modDate
New database modification date.

bckUpDate
New database backup date.

modNum
New database modification number.

appInfoH
New database application info block.

sortInfoH
New database sort info block.

displayName
New database display name.

encoding
New database encoding.

fields
Flags that indicate what about the database changed, and
thus which of the above fields are set. See “Database
Changed Flags” on page 198 for the set of flags that can be
combined to make up this value.

oldName
Name of database prior to the call to DmSetDatabaseInfo.

oldCreator
Database creator ID prior to the call to
DmSetDatabaseInfo.

oldType
Database type prior to the call to DmSetDatabaseInfo.

oldAttributes
Database attributes prior to the call to
DmSetDatabaseInfo.

reserved
Reserved for future use.

Notif ication Manager
SysNotifyDBCreatedType

190 Exploring Palm OS: Programming Basics

SysNotifyDBCreatedType Struct
Purpose Notification-specific data that accompanies a

sysNotifyDBCreatedEvent notification. This structure identifies
the newly-created database.

Declared In NotifyMgr.h

Prototype typedef struct SysNotifyDBCreatedTag {
 DatabaseID newDBID;
 char name[dmDBNameLength];
 uint32_t creator;
 uint32_t type;
 uint16_t attributes;
 uint16_t reserved;
} SysNotifyDBCreatedType

Fields newDBID
Database ID of the newly-created database.

name
Database name.

creator
Database creator ID.

type
Database type.

attributes
Database attributes.

reserved
Reserved for future use.

Notif ication Manager
SysNotifyDBDeletedType

Exploring Palm OS: Programming Basics 191

SysNotifyDBDeletedType Struct
Purpose Notification-specific data that accompanies a

sysNotifyDBDeletedEvent notification. This structure identifies
the newly-deleted database.

Declared In NotifyMgr.h

Prototype typedef struct SysNotifyDBDeletedTag {
 DatabaseID oldDBID;
 char name[dmDBNameLength];
 uint32_t creator;
 uint32_t type;
 uint16_t attributes;
 uint16_t reserved;
} SysNotifyDBDeletedType

Fields oldDBID
The database ID of the deleted database. This ID is no longer
valid.

name
The name of the deleted database.

creator
The creator ID of the deleted database.

type
The type of the deleted database.

attributes
The deleted database’s attributes.

reserved
Reserved for future use.

Comments WARNING! The ID in oldDBID is invalid by the time the
notification is broadcast. If you try to pass it to a Data Manager
function, the system will crash.

Notif ication Manager
SysNotifyDBDirtyType

192 Exploring Palm OS: Programming Basics

SysNotifyDBDirtyType Struct
Purpose Notification-specific data that accompanies a

sysNotifyDBDirtyEvent notification. This structure identifies
the newly-deleted database.

Declared In NotifyMgr.h

Prototype typedef struct SysNotifyDBDirtyTag {
 DatabaseID dbID;
 char name[dmDBNameLength];
 uint32_t creator;
 uint32_t type;
 uint16_t attributes;
 uint16_t reserved;
} SysNotifyDBDirtyType

Fields dbID
Database ID.

name
Database name.

creator
Database creator ID.

type
Database type.

attributes
Database attributes.

reserved
Reserved for future use.

Notif ication Manager
SysNotifyDBInfoType

Exploring Palm OS: Programming Basics 193

SysNotifyDBInfoType Struct
Purpose Notification-specific data that accompanies a

sysNotifyDeleteProtectedEvent notification. This structure
identifies the newly-deleted database.

Declared In NotifyMgr.h

Prototype typedef struct SysNotifyDBInfoTag {
 MemHandle dbID;
 uint16_t cardNo;
 uint16_t attributes;
 char dbName[dmDBNameLength];
 uint32_t creator;
 uint32_t type;
} SysNotifyDBInfoType

Fields dbID
Handle to the database to be deleted.

cardNo
The number of the card on which the database resides.

attributes
The database’s attributes.

dbName
The name of the database to be deleted.

creator
The creator ID of the database to be deleted.

type
The type of the database to be deleted.

Notif ication Manager
SysNotifyDisplayChangeDetailsType

194 Exploring Palm OS: Programming Basics

SysNotifyDisplayChangeDetailsType Struct
Purpose Notification-specific data that accompanies a

sysNotifyDisplayChangeEvent notification. This structure
contains the old and new display depths.

Declared In NotifyMgr.h

Prototype typedef struct SysNotifyDisplayChangeDetailsTag {
 uint32_t oldDepth;
 uint32_t newDepth;
} SysNotifyDisplayChangeDetailsType

Fields oldDepth
The old bit depth.

newDepth
The new bit depth.

SysNotifyLocaleChangedType Struct
Purpose Notification-specific data that accompanies a

sysNotifyLocaleChangedEvent notification. This structure
contains the old and new locales.

Declared In NotifyMgr.h

Prototype typedef struct SysNotifyLocaleChangedTag {
 LmLocaleType oldLocale;
 LmLocaleType newLocale;
} SysNotifyLocaleChangedType

Fields oldLocale
The old locale. See LmLocaleType.

newLocale
The new locale.

Notif ication Manager
SysNotifyParamType

Exploring Palm OS: Programming Basics 195

SysNotifyParamType Struct
Purpose Contains all of the data associated with a notification. This structure

is passed as the parameter block for the
sysAppLaunchCmdNotify launch code or as a parameter to the
notification callback function.

Declared In NotifyMgr.h

Prototype typedef struct SysNotifyParamType {
 uint32_t notifyType;
 uint32_t broadcaster;
 void *notifyDetailsP;
 void *userDataP;
 Boolean handled;
 uint8_t reserved2;
 uint16_t padding;
} SysNotifyParamType

Fields notifyType
The type of event that occurred. See Chapter 4,
“Notifications,” on page 59.

broadcaster
The creator ID of the application that broadcast the
notification, or sysNotifyBroadcasterCode if the system
broadcast the event.

notifyDetailsP
Pointer to data specific to this notification.

userDataP
Custom data that your notification handler requires. You
create this data and pass it to SysNotifyRegister().

handled
Set this field to true if the notification has been handled; set
to false otherwise. In some cases, handled is treated as a
bit field that notification handlers can use to indicate that
certain conditions are true.

reserved2
Reserved for future use.

padding
Padding bytes.

Notif ication Manager
SysNotifyPenStrokeType

196 Exploring Palm OS: Programming Basics

Comments The SysNotifyParamType structure contains all of the data
associated with a notification. This structure is passed as the
parameter block for the sysAppLaunchCmdNotify launch code or
as a parameter to the notification callback function. All notifications
have some common data. Most notifications also have data specific
to that notification. The specific data is pointed to by the
notifyDetailsP field.

The common data for each notification is documented below the
following structure declaration. Chapter 4, “Notifications,” on
page 59 section gives details on the important data associated with
each type of notification.

SysNotifyPenStrokeType Struct
Purpose Notification-specific data that accompanies a

sysNotifyProcessPenStrokeEvent notification. Because that
notification is not sent in Palm OS Cobalt, however, this structure
isn’t used.

Declared In NotifyMgr.h

Prototype typedef struct SysNotifyPenStrokeTag {
 uint32_t version;
 PointType startPt;
 PointType endPt;
} SysNotifyPenStrokeType

SysNotifyVirtualCharHandlingType Struct
Purpose Notification-specific data that accompanies a

sysNotifyVirtualCharHandlingEvent notification. Because

Notif ication Manager
Reasons for Device Sleep

Exploring Palm OS: Programming Basics 197

that notification is not sent in Palm OS Cobalt, however, this
structure isn’t used.

Declared In NotifyMgr.h

Prototype typedef struct SysNotifyVirtualCharHandlingTag {
 uint32_t version;
 struct _KeyDownEventType keyDown;
} SysNotifyVirtualCharHandlingType

Chapter 5, “Low-Level Events
Reference,”Notification Manager Constants

Reasons for Device Sleep
Purpose These constants are part of the notification-specific data that

accompanies a sysNotifySleepRequestEvent notification, and
indicate why the device is going to sleep.

Declared In NotifyMgr.h

Constants #define sysSleepAutoOff 1
The idle time limit has been reached.

#define sysSleepPowerButton 0
The user pressed the power off button.

#define sysSleepResumed 2
The sleep event was deferred by one of the notification
handlers but has been resumed through the use of the
resumeSleepChr.

#define sysSleepUnknown 3
Unknown reason.

Notif ication Manager
Database Changed Flags

198 Exploring Palm OS: Programming Basics

Database Changed Flags
Purpose Flags that accompany a sysNotifyDBChangedEvent and indicate

what about the database changed. Each flag corresponds to one of
the fields in the SysNotifyDBChangedType structure.

Declared In NotifyMgr.h

Constants #define DBChangedFieldSetAppInfo 0x80
New database application info block. AppInfoH contains a
handle to the new application info block.

#define DBChangedFieldSetAttributes 0x200
New database attributes. attributes contains the new
database attributes, while oldAttributes contains the
database attributes as they were before the change.

#define DBChangedFieldSetBckUpDate 0x20
New database backup date. bckUpDate contains the new
backup date.

#define DBChangedFieldSetCrDate 0x8
New database creation date. crDate contains the new
creation date.

#define DBChangedFieldSetCreator 0x2
New database creator ID. creator contains the new creator
ID, while oldCreator contains the creator ID as it was
before the change.

#define DBChangedFieldSetDisplayName 0x800
New database display name. displayName contains the
new display name.

#define DBChangedFieldSetEncoding 0x1000
New database encoding. encoding contains the new
database encoding.

#define DBChangedFieldSetModDate 0x10
New database modification date. modDate contains the new
modification date.

#define DBChangedFieldSetModNum 0x40
New database modification number. modNum contains the
new modification number.

Notif ication Manager
Miscellaneous Notification Manager Constants

Exploring Palm OS: Programming Basics 199

#define DBChangedFieldSetName 0x1
New name of database. name contains the new database
name, while oldName contains the database name as it was
before the change.

#define DBChangedFieldSetSortInfo 0x100
New database sort info block. sortInfoH contains a handle
to the new sort info block.

#define DBChangedFieldSetType 0x4
New database type. type contains the new database type,
while oldType contains the database type as it was before
the change.

#define DBChangedFieldSetVersion 0x400
New database version. version contains the new database
version.

Miscellaneous Notification Manager Constants
Purpose Miscellaneous constants defined by the Notification Manager.

Declared In NotifyMgr.h

Constants #define sysNotifyBroadcasterCode sysFileCSystem

#define sysNotifyDefaultQueueSize 100

#define sysNotifyNoDatabaseH ((DatabaseID)
0xFFFFFFFF)

#define sysNotifyNormalPriority 0
Notification priority value used with
SysNotifyRegister(). This value indicates “normal”
priority.

#define sysNotifyVersionNum 1

Notif ication Manager
Notification Manager Notifications

200 Exploring Palm OS: Programming Basics

Notification Manager Notifications

cncNotifyConnectionStateEvent
Purpose Broadcast by the Connection Manager whenever a persistent profile

is either connected or disconnected.

Declared In NotifyMgr.h

Prototype #define cncNotifyConnectionStateEvent 'cncc'

Parameters The notifyDetailsP field isn’t a pointer but instead is a
uint32_t that has one of two values: kCncConnectedState if a
persistent profile has been connected, or
kCncDisconnectedState if a persistent profile has been
disconnected.

See Also Chapter 4, “Notifications”

sysExternalConnectorAttachEvent
Purpose Broadcast when a USB cradle, RS-232 cradle or peripheral, a power

cable, or a modem is attached to the universal connector.

Declared In NotifyMgr.h

Prototype #define sysExternalConnectorAttachEvent 'ecna'

Parameters The notifyDetailsP field points to a uint16_t that identifies
which type of device was attached.

Compatibility This notification is broadcast only on devices that have the universal
connector.

See Also sysExternalConnectorDetachEvent, Chapter 4,
“Notifications”

Notif ication Manager
sysNotifyAltInputSystemEnabled

Exploring Palm OS: Programming Basics 201

sysExternalConnectorDetachEvent
Purpose Broadcast when a USB cradle, a RS-232 cradle or peripheral, a

power cable, or a modem is detached from the universal connector.

Declared In NotifyMgr.h

Prototype #define sysExternalConnectorDetachEvent 'ecnd'

Parameters The notifyDetailsP field points to a uint16_t that identifies
which type of device was detached.

Compatibility This notification is broadcast only on devices that have the universal
connector.

See Also sysExternalConnectorAttachEvent, Chapter 4,
“Notifications”

sysNotifyAltInputSystemDisabled
Purpose Broadcast by an alternative input system (such as an external

keyboard) driver when it becomes disabled.

Declared In NotifyMgr.h

Prototype #define sysNotifyAltInputSystemDisabled 'aisd'

Parameters

See Also sysNotifyAltInputSystemEnabled, Chapter 4, “Notifications”

sysNotifyAltInputSystemEnabled
Purpose Broadcast by an alternative input system (such as an external

keyboard) driver when it becomes enabled.

Declared In NotifyMgr.h

Prototype #define sysNotifyAltInputSystemEnabled 'aise'

Parameters

See Also sysNotifyAltInputSystemDisabled, Chapter 4,
“Notifications”

Notif ication Manager
sysNotifyAntennaRaisedEvent

202 Exploring Palm OS: Programming Basics

sysNotifyAntennaRaisedEvent
Purpose Broadcast by SysHandleEvent() when the antenna is raised on a

device that is so equipped.

Declared In NotifyMgr.h

Prototype #define sysNotifyAntennaRaisedEvent 'tena'

Parameters None.

Comments Register for this notification if you want to handle the antenna key
down event. To ensure that no other code handles the antenna key
down event after yours, set the handled parameter of the
SysNotifyParamType structure to true.

See Also Chapter 4, “Notifications”

sysNotifyAppServicesEvent
Purpose

Declared In NotifyMgr.h

Prototype #define sysNotifyAppServicesEvent 'apsv'

Parameters None.

Comments

See Also Chapter 4, “Notifications”

sysNotifyCardInsertedEvent
Purpose Broadcast when an Expansion Manager card is inserted into a slot.

When a new card is inserted, the Expansion Manager attempts to
mount the volume on that card and plays a sound (indicating
success or failure) once the attempt is complete.

Declared In NotifyMgr.h

Prototype #define sysNotifyCardInsertedEvent 'crdi'

Parameters notifyDetailsP points to a uint16_t containing the slot
reference number.

Notif ication Manager
sysNotifyCardRemovedEvent

Exploring Palm OS: Programming Basics 203

Comments Most applications will want to register for
sysNotifyVolumeMountedEvent instead of this notification.
Register for sysNotifyCardInsertedEvent if you need to know
when a card is inserted or if you want to prevent the Expansion
Manager from performing its default handling of the notification.

To prevent the Expansion Manager from mounting the volume, set
the expHandledVolume bit in the handled field. To prevent the
Expansion Manager from playing the sound, set the
expHandledSound bit in the handled field. For example:

cmdPBP->handled |= expHandledSound;

See Also sysNotifyCardRemovedEvent,
sysNotifyVolumeMountedEvent, Chapter 4, “Notifications”

sysNotifyCardRemovedEvent
Purpose Broadcast when an Expansion Manager card is removed from a slot.

When a card is removed, the Expansion Manager responds to this
notification by playing a goodbye sound and then attempting to
unmount the volume.

Declared In NotifyMgr.h

Prototype #define sysNotifyCardRemovedEvent 'crdo'

Parameters notifyDetailsP points to a uint16_t containing the slot
reference number.

Comments Most applications will want to register for
sysNotifyVolumeUnmountedEvent instead of this notification.
Register for sysNotifyCardRemovedEvent if you need to know
when a card is removed or if you want to prevent the Expansion
Manager from performing its default handling of the notification.

To prevent the Expansion Manager from unmounting the volume,
set the expHandledVolume bit in the handled field. To prevent
the Expansion Manager from playing the sound, set the
expHandledSound bit in the handled field. For example:

cmdPBP->handled |= expHandledSound;

See Also sysNotifyCardInsertedEvent,
sysNotifyVolumeUnmountedEvent, Chapter 4, “Notifications”

Notif ication Manager
sysNotifyDBAddedEvent

204 Exploring Palm OS: Programming Basics

sysNotifyDBAddedEvent
Purpose Broadcast when a new database has been added to the device.

Declared In NotifyMgr.h

Prototype #define sysNotifyDBAddedEvent 'dbs+'

Parameters notifyDetailsP points to a SysNotifyDBAddedType structure.

Compatibility Palm OS Cobalt does not broadcast this notification.

See Also sysNotifyDBChangedEvent, sysNotifyDBCreatedEvent,
sysNotifyDBDeletedEvent, sysNotifySyncFinishEvent,
Chapter 4, “Notifications”

sysNotifyDBChangedEvent
Purpose The sysNotifyDBChangedEvent is broadcast sometime after

database info is set with DmSetDatabaseInfo().

Declared In NotifyMgr.h

Prototype #define sysNotifyDBChangedEvent 'dbmn'

Parameters notifyDetailsP points to a SysNotifyDBChangedType
structure. The contents of fields in this structure indicates what
about the database changed, and thus which of the other structure
fields contain valid data.

Comments Register for this notification if you keep an internal list of databases
that needs to be updated when database info changes.

Notif ication Manager
sysNotifyDBCreatedEvent

Exploring Palm OS: Programming Basics 205

IMPORTANT: The sysNotifyDBxxxEvent notifications are
deferred notifications. So, for instance, if your application creates
a database, opens it for write, and then renames it, all before
EvtGetEvent() is called, the three corresponding notifications
will all go out together. A sysNotifyDBDirtyEvent handler
would fail if it tried to open the database, since the database will
already have been renamed. You must be aware of the
ramifications of a deferred notification when writing your
notification handler.

See Also sysNotifyDBAddedEvent, sysNotifyDBCreatedEvent,
sysNotifyDBDeletedEvent, sysNotifyDBDirtyEvent,
sysNotifySyncFinishEvent, Chapter 4, “Notifications”

sysNotifyDBCreatedEvent
Purpose Broadcast sometime after a database is created with

DmCreateDatabase().

Declared In NotifyMgr.h

Prototype #define sysNotifyDBCreatedEvent 'dbcr'

Parameters notifyDetailsP points to a SysNotifyDBCreatedType
structure.

Comments Register for this notification if you keep an internal list of databases
that needs to be updated when a new database is created.

Notif ication Manager
sysNotifyDBDeletedEvent

206 Exploring Palm OS: Programming Basics

IMPORTANT: The sysNotifyDBxxxEvent notifications are
deferred notifications. So, for instance, if your application creates
a database, opens it for write, and then renames it, all before
EvtGetEvent() is called, the three corresponding notifications
will all go out together. A sysNotifyDBDirtyEvent handler
would fail if it tried to open the database, since the database will
already have been renamed. You must be aware of the
ramifications of a deferred notification when writing your
notification handler.

See Also sysNotifyDBAddedEvent, sysNotifyDBChangedEvent,
sysNotifyDBDeletedEvent, sysNotifySyncFinishEvent,
Chapter 4, “Notifications”

sysNotifyDBDeletedEvent
Purpose Broadcast sometime after a database is removed from the device.

Declared In NotifyMgr.h

Prototype #define sysNotifyDBDeletedEvent 'dbs-'

Parameters notifyDetailsP points to a SysNotifyDBDeletedType
structure.

Comments Register for this notification if you keep an internal list of databases
that needs to be updated upon removal of a database. For example,
the Attention Manager and Connection Manager register for this
notification to maintain their internal lists of databases.

Notif ication Manager
sysNotifyDBDirtyEvent

Exploring Palm OS: Programming Basics 207

IMPORTANT: The sysNotifyDBxxxEvent notifications are
deferred notifications. So, for instance, if your application creates
a database, opens it for write, and then renames it, all before
EvtGetEvent() is called, the three corresponding notifications
will all go out together. A sysNotifyDBDirtyEvent handler
would fail if it tried to open the database, since the database will
already have been renamed. You must be aware of the
ramifications of a deferred notification when writing your
notification handler.

See Also sysNotifyDBAddedEvent, sysNotifyDBChangedEvent,
sysNotifyDBCreatedEvent,
sysNotifyDeleteProtectedEvent,
sysNotifySyncFinishEvent, Chapter 4, “Notifications”

sysNotifyDBDirtyEvent
Purpose Broadcast sometime after a database is opened for write or in some

other way has been made modifiable. Note that the database may
not have actually been modified yet.

Declared In NotifyMgr.h

Prototype #define sysNotifyDBDirtyEvent 'dbdr'

Parameters notifyDetailsP points to a SysNotifyDBDirtyType structure.

Comments Register for this notification if you keep an internal list of databases
that needs to be updated when a database becomes “dirty.” For
instance, upon reset the Launcher normally checks over such
databases and updates its internal list.

Notif ication Manager
sysNotifyDeleteProtectedEvent

208 Exploring Palm OS: Programming Basics

IMPORTANT: The sysNotifyDBxxxEvent notifications are
deferred notifications. So, for instance, if your application creates
a database, opens it for write, and then renames it, all before
EvtGetEvent() is called, the three corresponding notifications
will all go out together. A sysNotifyDBDirtyEvent handler
would fail if it tried to open the database, since the database will
already have been renamed. You must be aware of the
ramifications of a deferred notification when writing your
notification handler.

See Also sysNotifyDBChangedEvent, Chapter 4, “Notifications”

sysNotifyDeleteProtectedEvent
Purpose Broadcast when the Launcher attempts to delete a database that has

the protected flag set. The Launcher broadcasts the notification and
then attempts to delete the database again. Any third party
application that deletes databases should broadcast this notification
as well.

Declared In NotifyMgr.h

Prototype #define sysNotifyDeleteProtectedEvent '-pdb'

Parameters notifyDetailsP points to a SysNotifyDBInfoType structure.

Comments Register for this notification if you have a protected database but
you still want to allow users to delete your application or other code
resource if they choose. A notification handler should check the
information in the notifyDetailsP struct to see if its database is
the one being deleted. If so, it should respond to this notification to
perform any necessary cleanup and to clear the protected flag. In
this way, when the Launcher attempts to delete the database again,
it will succeed. Note that if an application has multiple protected
databases, this notification may be sent out more than once.

See Also sysNotifyDBDeletedEvent,
sysNotifySecuritySettingEvent, Chapter 4, “Notifications”

Notif ication Manager
sysNotifyDisplayChangeEvent

Exploring Palm OS: Programming Basics 209

sysNotifyDeviceUnlocked
Purpose Broadcast by the Security application when the user unlocks the

device. The notification is broadcast immediately after the device
has finished unlocking.

Declared In NotifyMgr.h

Prototype #define sysNotifyDeviceUnlocked 'unlk'

Parameters None.

Comments If you display UI in response to the sysNotifyLateWakeupEvent
notification, you should also register to receive the
sysNotifyDeviceUnlocked notification. When a locked device
receives the sysNotifyLateWakeupEvent, your UI should not be
displayed if the device is waiting for the user to enter the password.
The sysNotifyDeviceUnlocked notification is broadcast after
the password is entered, which indicates that the user interface is
ready.

See Also sysNotifyForgotPasswordEvent,
sysNotifySecuritySettingEvent, Chapter 4, “Notifications”

sysNotifyDisplayChangeEvent
Purpose Broadcast whenever the display mode changes. Either the color

table has been set to use a specific palette using the WinPalette()
function or the bit depth has changed using the WinScreenMode()
function.

Declared In NotifyMgr.h

Prototype #define sysNotifyDisplayChangeEvent 'scrd'

Parameters notifyDetailsP points to a
SysNotifyDisplayChangeDetailsType structure.

Comments The notifyDetailsP field indicates how the bit depth changed. If
the two values in the struct are equal, it means that the color palette
has changed instead of the bit depth.

See Also Chapter 4, “Notifications”

Notif ication Manager
sysNotifyEarlyWakeupEvent

210 Exploring Palm OS: Programming Basics

sysNotifyEarlyWakeupEvent
Purpose Broadcast during SysHandleEvent() immediately after the

system has finished sleeping.

Declared In NotifyMgr.h

Prototype #define sysNotifyEarlyWakeupEvent 'worm'

Parameters None.

Comments The screen may still be turned off, and the system may not fully
wake up. It may simply handle an alarm or a battery charger event
and go back to sleep. Most applications that need notification of a
wakeup event will probably want to register for
sysNotifyLateWakeupEvent instead.

IMPORTANT: This notification is not guaranteed to be
broadcast. Thus, it is not suitable for applications where external
hardware must be turned on when the system is powered on.

See Also sysNotifyResetFinishedEvent,
sysNotifySleepNotifyEvent,
sysNotifySleepRequestEvent, Chapter 4, “Notifications”

sysNotifyForgotPasswordEvent
Purpose Broadcast after the user taps the Lost Password button in the

Security application. The notification is sent after the user has
confirmed that all private records should be deleted but before the
deletion actually occurs.

Declared In NotifyMgr.h

Prototype #define sysNotifyForgotPasswordEvent 'bozo'

Parameters None.

See Also sysNotifyDeviceUnlocked,
sysNotifySecuritySettingEvent, Chapter 4, “Notifications”

Notif ication Manager
sysNotifyLateWakeupEvent

Exploring Palm OS: Programming Basics 211

sysNotifyHostFSInitDone
Purpose Broadcast by the Host File System library when the library has been

initialized.

Declared In NotifyMgr.h

Prototype #define sysNotifyHostFSInitDone 'hfid'

Parameters None.

Comments This notification allows the AutoMounter to mount volumes on
POSE slots.Applications should not register for this notification; it is
intended for system use only.

See Also Chapter 4, “Notifications”

sysNotifyLateWakeupEvent
Purpose Broadcast during SysHandleEvent() immediately after the

device has finished waking up.

Declared In NotifyMgr.h

Prototype #define sysNotifyLateWakeupEvent 'lazy'

Parameters None.

Comments This notification is sent at the late stage of wakeup, after the screen
has been turned on. When this notification is broadcast, the system
is guaranteed to fully wake up. Register for this notification if you
need to perform startup tasks each time the system wakes up.

IMPORTANT: This notification is not guaranteed to be
broadcast. Thus, it is unsuitable for applications where external
hardware must be powered on when the device wakes up.

When the device receives this notification, it may be locked and
waiting for the user to enter the password. If this is the case, you
must wait for the user to unlock the device before you display a user
interface. Therefore, if you intend to display a user interface when
the device wakes up, you should make sure the device is not locked.
If the device is locked, you should register for

Notif ication Manager
sysNotifyLocaleChangedEvent

212 Exploring Palm OS: Programming Basics

sysNotifyDeviceUnlocked notification and display your user
interface when it is received.

Example The following code excerpt show how you might respond to this
notification:

case sysNotifyLateWakeupEvent:
 if ((Boolean)
 PrefGetPreference(prefDeviceLocked)) {
 SysNotifyRegister(myCardNo, myDbID,
 sysNotifyDeviceUnlocked, NULL,
 sysNotifyNormalPriority, NULL);
 } else {
 HandleDeviceWakeup();
 }
case sysNotifyDeviceUnlocked:
 HandleDeviceWakeup();

See Also sysNotifyEarlyWakeupEvent,
sysNotifyResetFinishedEvent,
sysNotifySleepNotifyEvent,
sysNotifySleepRequestEvent, Chapter 4, “Notifications”

sysNotifyLocaleChangedEvent
Purpose Broadcast immediately after the system locale has changed.

Currently, the user has the opportunity to change the locale only
when the device first starts up and after a hard reset.

Declared In NotifyMgr.h

Prototype #define sysNotifyLocaleChangedEvent 'locc'

Parameters notifyDetailsP points to a SysNotifyLocaleChangedType
structure.

Comments RAM-based applications and other code resources should obtain
locale information by passing the prefLocale constant to
PrefGetPreference(). They should not register for this
notification. This notification is used by the built-in applications,
which respond to it by rebuilding their default databases to use the
newly selected language and character set.

See Also sysNotifyTimeChangeEvent, Chapter 4, “Notifications”

Notif ication Manager
sysNotifyPhoneEvent

Exploring Palm OS: Programming Basics 213

sysNotifyMenuCmdBarOpenEvent
Purpose Broadcast during MenuHandleEvent() when it is about to display

the menu shortcut command bar.

Declared In NotifyMgr.h

Prototype #define sysNotifyMenuCmdBarOpenEvent 'cbar'

Parameters None.

Comments Register for this notification if you are writing a system extension
(such as a “hack” installed with the HackMaster program) that
needs to add a button to the menu command bar or to suppress the
menu command bar. To add a button, call
MenuCmdBarAddButton(). To suppress the command toolbar, set
the handled field to true.

Applications that need to add their own buttons to the menu
command bar should do so in response to a
menuCmdBarOpenEvent. They should not register for this
notification because an application should only add buttons if it is
already the active application. The notification is sent after the event
has been received, immediately before the command toolbar is
displayed.

See Also Chapter 4, “Notifications”

sysNotifyPhoneEvent
Purpose Reserved for future use.

Declared In NotifyMgr.h

Prototype #define sysNotifyPhoneEvent 'fone'

Parameters

Compatibility This notification is not broadcast in Palm OS Cobalt.

See Also telNotifyEnterCodeEvent, telNotifyErrorEvent,Chapter
4, “Notifications”

Notif ication Manager
sysNotifyPOSEMountEvent

214 Exploring Palm OS: Programming Basics

sysNotifyPOSEMountEvent
Purpose Broadcast by the Host File System to communicate with itself.

Declared In NotifyMgr.h

Prototype #define sysNotifyPOSEMountEvent 'pose'

Parameters notifyDetailsP points to a uint32_t that contains the POSE
slot number in its lower 16 bits and the HostFSCustomControl()
function selector in its upper 16 bits.

Compatibility This notification is not broadcast in Palm OS Cobalt.

See Also Chapter 4, “Notifications”

sysNotifyResetFinishedEvent
Purpose Broadcast immediately after the system has finished a reset.

Declared In NotifyMgr.h

Prototype #define sysNotifyResetFinishedEvent 'rstf'

Parameters None.

Comments Because the notification registry is cleared upon a reset, only
internal system components use this notification. Applications that
need to be informed of a system reset can respond to the
sysAppLaunchCmdSystemReset launch code.

See Also sysNotifyEarlyWakeupEvent,
sysNotifyLateWakeupEvent, sysNotifySyncFinishEvent,
Chapter 4, “Notifications”

sysNotifyRetryEnqueueKey
Purpose Broadcast at the top of the event loop if the Attention Manager has

attempted to post a virtual character to the key queue and failed
because the queue is full. The notification signals that the Attention

Notif ication Manager
sysNotifySecuritySettingEvent

Exploring Palm OS: Programming Basics 215

Manager is going to retry enqueuing the virtual character until it is
successful.

Declared In NotifyMgr.h

Prototype #define sysNotifyRetryEnqueueKey 'retk'

Parameters notifyDetailsP points to a wchar_t containing the virtual
character to be enqueued.

Comments Most applications do not need to register for this notification. It is
used only by the Attention Manager to schedule retries of
enqueuing the virtual character. When enqueueing a virtual
character fails, the Attention Manager retries at the top of the event
loop. It uses this notification to schedule retries so that they occur
even if the user switches applications.

See Also Chapter 4, “Notifications”

sysNotifySecuritySettingEvent
Purpose Broadcast after the security level is successfully changed with a call

to SecSvcsSetDeviceSetting().

Declared In NotifyMgr.h

Prototype #define sysNotifySecuritySettingEvent 'ssch'

Parameters None.

Comments This notification is not broadcast if the level isn’t changed, either
because the user doesn’t have permission to change the level or the
level value supplied to SecSvcsSetDeviceSetting() is invalid.

See Also sysNotifyDeleteProtectedEvent,
sysNotifyDeviceUnlocked,
sysNotifyForgotPasswordEvent, Chapter 4, “Notifications”

Notif ication Manager
sysNotifySleepNotifyEvent

216 Exploring Palm OS: Programming Basics

sysNotifySleepNotifyEvent
Purpose Broadcast during SysHandleEvent() immediately before the

system is put to sleep. After the broadcast is complete, the system is
put to sleep.

Declared In NotifyMgr.h

Prototype #define sysNotifySleepNotifyEvent 'slp!'

Parameters None.

Comments Register for this notification if you have a small amount of cleanup
that needs to be performed before the system goes to sleep. It is
recommended that you not perform any sort of prolonged activity,
such as displaying an alert panel that requests confirmation, in
response to a sleep notification. If you do, the alert might be
displayed long enough to trigger another auto-off event, which
could be detrimental to other handlers of this notification.

If your code is in the middle of a lengthy computation and needs to
defer sleep, it should register for the
sysNotifySleepRequestEvent notification instead.

IMPORTANT: This notification is not guaranteed to be
broadcast. For example, if the system goes to sleep because the
user removes the batteries, sleep notifications are not sent. Thus,
these notifications are unsuitable for applications where external
hardware must be shut off to conserve power before the system
goes to sleep.

See Also sysNotifyEarlyWakeupEvent,
sysNotifyLateWakeupEvent, Chapter 4, “Notifications”

Notif ication Manager
sysNotifySleepRequestEvent

Exploring Palm OS: Programming Basics 217

sysNotifySleepRequestEvent
Purpose Broadcast during SysHandleEvent() processing when the

system has decided to go to sleep.

Declared In NotifyMgr.h

Prototype #define sysNotifySleepRequestEvent 'slpq'

Parameters notifyDetailsP points to a SleepEventParamType structure.

Comments Register for this notification if you need to delay the system from
going to sleep while your code performs a lengthy operation, such
as disconnecting from the network. The system checks the
deferSleep value when each notification handler returns. If it is
nonzero, it cancels the sleep event.

After you defer sleep, your code is free to finish what it was doing.
When it is finished, you must allow the system to continue with the
sleep event. To do so, create a keyDownEvent with the
resumeSleepChr and the command key bit set (to signal that the
character is virtual) and add it to the event queue. When the system
receives this event, it will again broadcast the
sysNotifySleepRequestEvent to all clients. If deferSleep is
0 after all clients return, then the system knows it is safe to go to
sleep, and it broadcasts the sysNotifySleepNotifyEvent to all
of its clients.

Note that you may receive this notification several times before the
system goes to sleep because notification handlers can delay the
system sleep and resume it later.

IMPORTANT: This notification is not guaranteed to be
broadcast. For example, if the system goes to sleep because the
user removes the batteries, sleep notifications are not sent. Thus,
these notifications are unsuitable for applications where external
hardware must be shut off to conserve power before the system
goes to sleep.

See Also sysNotifyEarlyWakeupEvent,
sysNotifyLateWakeupEvent,
sysNotifySleepNotifyEvent, Chapter 4, “Notifications”

Notif ication Manager
sysNotifySyncFinishEvent

218 Exploring Palm OS: Programming Basics

sysNotifySyncFinishEvent
Purpose Broadcast immediately after a HotSync operation has completed.

Register for this notification if you need to perform post-processing
after HotSync operations.

Declared In NotifyMgr.h

Prototype #define sysNotifySyncFinishEvent 'sync'

Parameters None.

See Also sysNotifyDBAddedEvent, sysNotifyDBChangedEvent,
sysNotifyDBDeletedEvent,
sysNotifyResetFinishedEvent,
sysNotifySyncStartEvent, Chapter 4, “Notifications”

sysNotifySyncStartEvent
Purpose Broadcast immediately before a HotSync operation is begun.

Register for this notification if you need to perform preprocessing
before a HotSync operation.

Declared In NotifyMgr.h

Prototype #define sysNotifySyncStartEvent 'hots'

Parameters None.

See Also sysNotifySyncFinishEvent, Chapter 4, “Notifications”

sysNotifyTimeChangeEvent
Purpose Broadcast just after the system time has been changed using

TimSetSeconds(). Register for this notification if you need to
know when the time has changed.

Declared In NotifyMgr.h

Prototype #define sysNotifyTimeChangeEvent 'time'

Parameters None.

See Also sysNotifyLocaleChangedEvent, Chapter 4, “Notifications”

Notif ication Manager
sysNotifyVolumeUnmountedEvent

Exploring Palm OS: Programming Basics 219

sysNotifyVolumeMountedEvent
Purpose Broadcast when a Virtual File System Manager volume is mounted.

Declared In NotifyMgr.h

Prototype #define sysNotifyVolumeMountedEvent 'volm'

Parameters notifyDetailsP points to a VFSSlotMountParamType or
VFSPOSEMountParamType structure.

Comments When a volume is mounted, the VFS Manager activates the
start.prc application on the newly mounted volume and
switches applications to the Launcher or to the start.prc
application on that volume if it has a user interface.

Register for this notification if you need to know when a volume is
mounted or if you want to prevent the default behavior of the VFS
Manager.

To prevent the VFS Manager from activating the start.prc
application, set the vfsHandledStartPrc bit in the handled
field. To prevent the VFS Manager from switching applications, set
the vfsHandledUIAppSwitch bit.

See Also sysNotifyCardInsertedEvent,
sysNotifyVolumeUnmountedEvent, Chapter 4, “Notifications”

sysNotifyVolumeUnmountedEvent
Purpose Broadcast when a Virtual File System Manager volume is

unmounted. Register for this notification if you need to know when
a volume is unmounted.

Declared In NotifyMgr.h

Prototype #define sysNotifyVolumeUnmountedEvent 'volu'

Parameters notifyDetailsP contains the volume reference number.

See Also sysNotifyCardRemovedEvent,
sysNotifyVolumeMountedEvent, Chapter 4, “Notifications”

Notif ication Manager
Deprecated Notifications

220 Exploring Palm OS: Programming Basics

Deprecated Notifications
Purpose These notifications, although declared in NotifyMgr.h, are not

used in Palm OS Cobalt.

Declared In NotifyMgr.h

Constants sysNotifyGotUsersAttention

Notification Manager Functions and Macros

SysNotifyBroadcast Function
Purpose Synchronously send a notification to all applications registered for

it.

Declared In NotifyMgr.h

Prototype status_t SysNotifyBroadcast
(SysNotifyParamType *notify)

Parameters ↔ notify
Identifies the notification to be broadcast. See
SysNotifyParamType.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

sysNotifyErrBroadcastBusy
The broadcast stack limit has already been reached.

sysErrParamErr
The background thread is broadcasting the notification and
the notify parameter is NULL.

sysNotifyErrNoStackSpace
There is not enough space on the stack for the notification.

Comments When you call this function, the notification you specify is broadcast
to all applications, shared libraries, and other code resources that
have registered to receive that notification. The broadcast is
performed synchronously, meaning that the system broadcasts the
notification immediately and waits for each notification client to
perform its notification handler and return before the

Notif ication Manager
SysNotifyBroadcastDeferred

Exploring Palm OS: Programming Basics 221

SysNotifyBroadcast call returns. This notification occurs in
priority order.

The system allows nested notifications. That is, the recipient of a
notification might broadcast a new notification, whose recipient
might broadcast another new notification and so on. The constant
sysNotifyDefaultQueueSize specifies how many levels of
nested notification are allowed. If you reach this limit, the error
sysNotifyErrBroadcastBusy is returned and your notification
is not broadcast. To avoid reaching the limit, use
SysNotifyBroadcastDeferred() instead of
SysNotifyBroadcast() in your notification handlers. This
ensures that the notification will not be broadcast until the top of the
event loop.

WARNING! Do not call SysNotifyBroadcast() from outside
of the main UI thread. Use SysNotifyBroadcastDeferred()
instead.

WARNING! This function is not secure. it dispatches the
notifications all in the local process by loading the PRCs being
executed. Secure applications should always use
SysNotifyBroadcastDeferred().

See Also SysNotifyRegister()

SysNotifyBroadcastDeferred Function
Purpose Enqueue a notification for later broadcast.

Declared In NotifyMgr.h

Prototype status_t SysNotifyBroadcastDeferred
(SysNotifyParamType *notify,
uint32_t paramSize)

Parameters ↔ notify
The notification to enqueue. See SysNotifyParamType.

Notif ication Manager
SysNotifyRegister

222 Exploring Palm OS: Programming Basics

→ paramSize
Size of the data pointed to by the field
notify->notifyDetailsP.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

memErrNotEnoughSpace
There is not enough memory to allocate a new notification
entry in the queue.

sysErrParamErr
paramSize is a negative number.

sysNotifyErrQueueFull
The queue has reached its maximum number of entries.

Comments This function is similar to SysNotifyBroadcast() except that
the broadcast does not take place until the top of the event loop
(specifically, the next time EvtGetEvent() is called). The system
copies the notify structure to a new memory chunk, which is
disposed of upon completion of the broadcast. (The paramSize
value is used when copying the notifyDetailsP portion of the
notify structure.)

See Also SysNotifyRegister()

SysNotifyRegister Function
Purpose Register to receive a notification.

Declared In NotifyMgr.h

Prototype status_t SysNotifyRegister (DatabaseID database,
uint32_t notifyType,
SysNotifyProcPtr callback, int32_t priority,
void *userData, uint32_t userDataSize)

Parameters → database
ID of the database containing the application or code
resource that is to receive the notification.

→ notifyType
The notification that the application wants to receive. See
Chapter 4, “Notifications,” on page 59.

Notif ication Manager
SysNotifyRegister

Exploring Palm OS: Programming Basics 223

→ callback
Set to NULL to receive the notification as an application
launch code. Note that you can only request a call with a
callback from the main UI thread; use
SysNotifyRegisterBackground() to register to receive
a notification in the background thread.

→ priority
The priority with which the application should receive the
event. Most applications and other code resources should
always use sysNotifyNormalPriority. In rare
circumstances, you may need to ensure that your code is
notified toward the beginning or toward the end of the
notification sequence. If so, be sure to leave some space so
that your code won’t collide with the system’s handling of
notifications or with another application’s handling of
notifications. In general, PalmSource recommends using a
value whose least significant bits are 0 (such as 32, 64, 96, and
so on). The smaller the priority, the earlier your code is
notified.

→ userData
Caller-defined data to pass to the notification handler.

→ userDataSize
Size, in bytes, of the data block pointed to by userData.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

sysErrParamErr
The specified database ID is NULL.

sysNotifyErrDuplicateEntry
This application is already registered to receive this
notification.

sysNotifyErrNoServer
The notification server could not be contacted.

Comments Call this function when your code should receive a notification that
a specific event has occurred or is about to occur. See Chapter 4,
“Notifications,” on page 59 for a list of the possible notifications.
Once you register for a notification, you remain registered to receive
it until a system reset occurs or until you explicitly unregister using
SysNotifyUnregister().

Notif ication Manager
SysNotifyRegister

224 Exploring Palm OS: Programming Basics

Pass NULL for the callbackP parameter so that the system will
notify your application by sending it the
sysAppLaunchCmdNotify launch code. This launch code’s
parameter block points to a SysNotifyParamType structure
containing details about the notification.

The notification handler may perform any processing necessary. As
with most launch codes, it’s not possible to access global variables.
If the handler needs access to any particular value to respond to the
notification, pass a pointer to that value in the userDataP
parameter. The system passes this pointer back to your code in the
launch code’s parameter block.

The notification handler may unregister for this notification or
register for other notifications. It may also broadcast another
notifications; however, it’s recommended that you use
SysNotifyBroadcastDeferred() to do this so as not to
overflow the broadcast stack.

You may display a user interface in your notification handler;
however, you should be careful when you do so. Many of the
notifications are broadcast during SysHandleEvent(), which
means your application event loop might not have progressed to the
point where it is possible for you to display a user interface, or you
might overflow the stack by displaying a user interface at this stage.
See Chapter 4, “Notifications,” on page 59 to learn which
notifications are broadcast during SysHandleEvent().

See Also SysNotifyBroadcast(), SysNotifyBroadcastDeferred(),
SysNotifyRegisterBackground(),
SysNotifyUnregister()

Notif ication Manager
SysNotifyRegisterBackground

Exploring Palm OS: Programming Basics 225

SysNotifyRegisterBackground Function
Purpose Register to receive a notification in the background thread.

Declared In NotifyMgr.h

Prototype status_t SysNotifyRegisterBackground
(DatabaseID database, uint32_t notifyType,
int32_t priority, void *userData,
uint32_t userDataSize)

Parameters → database
ID of the database containing the application or code
resource that is to receive the notification.

→ notifyType
The notification that the application wants to receive. See
Chapter 4, “Notifications,” on page 59.

→ priority
The priority with which the application should receive the
event. Most applications and other code resources should
always use sysNotifyNormalPriority. In rare
circumstances, you may need to ensure that your code is
notified toward the beginning or toward the end of the
notification sequence. If so, be sure to leave some space so
that your code won’t collide with the system’s handling of
notifications or with another application’s handling of
notifications. In general, PalmSource recommends using a
value whose least significant bits are 0 (such as 32, 64, 96, and
so on). The smaller the priority, the earlier your code is
notified.

→ userData
Caller-defined data to pass to the notification handler.

→ userDataSize
The size, in bytes, of the data block pointed to by userData.

Returns

Comments This function allows you to register for a notification to be received
in the background thread. When the notification occurs, the
Notification Manager loads the PRC indicated by database into
the background process and performs the sublaunch there.

Notif ication Manager
SysNotifyRegisterV40

226 Exploring Palm OS: Programming Basics

NOTE: Background notifications happen completely
independently of the main applications, so these notifications are
often received out-of-order with the notifications delivered to the
main UI thread.

See Also SysNotifyBroadcast(), SysNotifyBroadcastDeferred(),
SysNotifyRegister(), SysNotifyUnregister()

SysNotifyRegisterV40 Function
Purpose Register to receive a notification.

NOTE: This function is provided for compatibility purposes only;
applications should use SysNotifyRegister() instead.

Declared In NotifyMgr.h

Prototype status_t SysNotifyRegisterV40 (uint16_t cardNo,
LocalID dbID, uint32_t notifyType,
SysNotifyProcPtr callback, int8_t priority,
void *userData)

Parameters → cardNo
Number of the storage card on which the application or code
resource resides.

→ dbID
Local ID of the application or code resource.

→ notifyType
The notification that the application wants to receive. See
Chapter 4, “Notifications,” on page 59.

→ callback
Set to NULL to receive the notification as an application
launch code, or pass a pointer to a function that should be
called when the notification is broadcast. See
SysNotifyProcPtr().

→ priority
The priority with which the application should receive the
event. Most applications and other code resources should
always use sysNotifyNormalPriority. In rare

Notif ication Manager
SysNotifyRegisterV40

Exploring Palm OS: Programming Basics 227

circumstances, you may need to ensure that your code is
notified toward the beginning or toward the end of the
notification sequence. If so, be sure to leave some space so
that your code won’t collide with the system’s handling of
notifications or with another application’s handling of
notifications. In general, PalmSource recommends using a
value whose least significant bits are 0 (such as 32, 64, 96, and
so on). The smaller the priority, the earlier your code is
notified.

→ userData
Caller-defined data to pass to the notification handler.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

memErrCardNotPresent
The cardNo parameter is non-zero.

sysErrParamErr
The specified database ID is NULL.

sysNotifyErrDuplicateEntry
This application is already registered to receive this
notification.

sysNotifyErrNoServer
The notification server could not be contacted.

Comments Call this function when your code should receive a notification that
a specific event has occurred or is about to occur. See Chapter 4,
“Notifications,” on page 59 for a list of the possible notifications.
Once you register for a notification, you remain registered to receive
it until a system reset occurs or until you explicitly unregister using
SysNotifyUnregister().

If your code is running in the main UI thread, you can register a
function to be called when the notification is broadcast. In your call
to SysNotifyRegisterV40() pass a pointer to a callback
function in callbackP. This callback should follow the prototype
shown in SysNotifyProcPtr(). Note that you should always
supply a card number and database ID to
SysNotifyRegisterV40(), even if you specify a callback
function.

Notif ication Manager
SysNotifyRegisterV40

228 Exploring Palm OS: Programming Basics

IMPORTANT: Because the callbackP pointer is used to
directly call the function, the pointer must remain valid from the
time SysNotifyRegister() is called to the time the notification
is broadcast. If the function is in a shared library, you must keep
the library open. If the function is in a separately-loaded code
resource, the resource must remain loaded in the applicatoin
process while registered for the notification. When you close a
library or unlock a resource, you must first unregister for any
notifications. If you don’t, the system will crash when the
notification is broadcast.

If the code registering for notification isn’t in the main UI thread, or
if you don’t have a function that can be called directly, pass NULL as
the callbackP parameter. In this case, the system notifies your
application by sending it the sysAppLaunchCmdNotify launch
code. This launch code’s parameter block points to a
SysNotifyParamType structure containing details about the
notification.

Whether the notification handler is responding to
sysAppLaunchCmdNotify or uses the callback function, the
notification handler may perform any processing necessary. As with
most launch codes, it’s not possible to access global variables. If the
handler needs access to any particular value to respond to the
notification, pass a pointer to that value in the userDataP
parameter. The system passes this pointer back to your application
or callback function in the launch code’s parameter block.

The notification handler may unregister for this notification or
register for other notifications. It may also broadcast another
notifications; however, it’s recommended that you use
SysNotifyBroadcastDeferred() to do this so as not to
overflow the broadcast stack.

You may display a user interface in your notification handler;
however, you should be careful when you do so. Many of the
notifications are broadcast during SysHandleEvent(), which
means your application event loop might not have progressed to the
point where it is possible for you to display a user interface, or you
might overflow the stack by displaying a user interface at this stage.

Notif ication Manager
SysNotifyUnregister

Exploring Palm OS: Programming Basics 229

See Chapter 4, “Notifications,” on page 59 to learn which
notifications are broadcast during SysHandleEvent().

Compatibility This function is provided for compatibility purposes only;
applications should use SysNotifyRegister()—which omits
the obsolete cardNo parameter, identifies the database containing
the application or code resource using a DatabaseID, and adds the
userDataSize parameter—instead.

See Also SysNotifyBroadcast(), SysNotifyBroadcastDeferred(),
SysNotifyRegister(), SysNotifyUnregisterV40()

SysNotifyUnregister Function
Purpose Cancel notification of the given event.

Declared In NotifyMgr.h

Prototype status_t SysNotifyUnregister
(DatabaseID database, uint32_t notifyType,
int32_t priority)

Parameters → database
Database ID of the database containing the application or
code resource that is receiving the notification.

→ notifyType
The notification for which to unregister. See Chapter 4,
“Notifications,” on page 59..

→ priority
The priority value you passed when calling
SysNotifyRegister().

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

sysNotifyErrEntryNotFound
The application wasn’t registered to receive this notification.

sysNotifyErrNoServer
The notification server could not be contacted.

Comments Use this function to remove your code from the list of those that
receive notifications about a particular event. This function is
particularly necessary if you use a notification callback; when the

Notif ication Manager
SysNotifyUnregisterV40

230 Exploring Palm OS: Programming Basics

resource containing the callback is unloaded, it must unregister for
all of its notifications, or the system will crash when the notification
is broadcast.

See Also SysNotifyRegister()

SysNotifyUnregisterV40 Function
Purpose Cancel notification of the given event.

NOTE: This function is provided for compatibility purposes only;
applications should use SysNotifyUnregister() instead.

Declared In NotifyMgr.h

Prototype status_t SysNotifyUnregisterV40 (uint16_t cardNo,
LocalID dbID, uint32_t notifyType,
int8_t priority)

Parameters → cardNo
Number of the storage card on which the application or code
resource resides.

→ dbID
Local ID of the application or code resource.

→ notifyType
The notification for which to unregister. See Chapter 4,
“Notifications,” on page 59.

→ priority
The priority value you passed when calling
SysNotifyRegisterV40().

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

memErrCardNotPresent
The cardNo parameter is non-zero.

sysNotifyErrEntryNotFound
The application wasn’t registered to receive this notification.

sysNotifyErrNoServer
The notification server could not be contacted.

Notif ication Manager
SysNotifyProcPtr

Exploring Palm OS: Programming Basics 231

Comments Use this function to remove your code from the list of those that
receive notifications about a particular event. This function is
particularly necessary if you are writing a shared library or a
separately loaded code resource that receives notifications. When
the resource is unloaded, it must unregister for all of its
notifications, or the system will crash when the notification is
broadcast.

Compatibility This function is provided for compatibility purposes only;
applications should use SysNotifyUnregister()—which omits
the obsolete cardNo parameter and identifies the database
containing the application or code resource using a DatabaseID—
instead.

See Also SysNotifyRegisterV40()

Application-Defined Functions

SysNotifyProcPtr Function
Purpose Notification-handling callback function prototype.

Declared In NotifyMgr.h

Prototype status_t (*SysNotifyProcPtr)
(SysNotifyParamType *notifyParamsP)

Parameters → notifyParamsP
Pointer to a structure that contains the notification event that
occurred and any other information about it. See
SysNotifyParamType.

Returns Your notification handler should always return errNone.

Comments NOTE: Applications should register to receive each notification
as a launch code; the use of a callback function in Palm OS
Cobalt is discouraged.

You pass this function as a parameter to SysNotifyRegister()
or SysNotifyRegisterV40() when registering code that does
not have a PilotMain() for a notification. See the description of

Notif ication Manager
SysNotifyProcPtr

232 Exploring Palm OS: Programming Basics

SysNotifyRegister() for advice on writing a notification
handler.

IMPORTANT: Because the callbackP pointer is used to
directly call the function, the pointer must remain valid from the
time SysNotifyRegister() is called to the time the notification
is broadcast. If the function is in a shared library, you must keep
the library open. If the function is in a separately loaded code
resource, the resource must remain locked while registered for
the notification. When you close a library or unlock a resource,
you must first unregister for any notifications. If you don’t, the
system will crash when the notification is broadcast. Because of
this, applications should generally register to receive a notification
using a callback function; instead, register to receive it as a
launch code.

Exploring Palm OS: Programming Basics 233

12
Palm Types
PalmTypes.h defines a number of basic types and constants used
throughout Palm OS, along with a number of macros to do byte-
swapping (for endianness) and time interval conversion.

The contents of this chapter is organized as follows:

Palm Types Structures and Types 233

Palm Types Constants 237

Palm Types Functions and Macros 238

Palm Types Structures and Types

Boolean Typedef
Purpose A boolean type.

Declared In PalmTypes.h

Prototype typedef unsigned char Boolean

Comments Use the TRUE and FALSE, or true and false, constants with
Boolean variables.

coord Typedef
Purpose A single floating-point coordinate type.

NOTE: This type is provided for compatibility purposes;
applications should use fcoord_t instead.

Declared In PalmTypes.h

Prototype typedef float coord

See Also Coord, fcoord_t

Palm Types
Coord

234 Exploring Palm OS: Programming Basics

Coord Typedef
Purpose A single fixed-point coordinate type, used for screen and window

coordinates.

Declared In PalmTypes.h

Prototype typedef int16_t Coord

See Also coord

Enum16 Typedef
Purpose An enum type that can have up to 65,535 enumerated constants.

Declared In PalmTypes.h

Prototype typedef uint16_t Enum16

See Also Enum8, SignedEnum16

Enum8 Typedef
Purpose An enum type that can have up to 255 enumerated constants.

Declared In PalmTypes.h

Prototype typedef uint8_t Enum8

See Also Enum16, SignedEnum8

fcoord_t Typedef
Purpose A single floating-point coordinate type, used in conjunction with

the graphics context drawing functions.

Declared In PalmTypes.h

Prototype typedef float fcoord_t

See Also coord, Coord

Palm Types
SignedEnum16

Exploring Palm OS: Programming Basics 235

MemHandle Struct
Purpose A handle to a location in memory. Unlike a pointer, a handle can be

used to reference memory that may be relocated.

Declared In PalmTypes.h

Prototype typedef struct _opaque *MemHandle

Fields None.

See Also MemPtr, SysHandle

MemPtr Typedef
Purpose A pointer to a location in memory.

Declared In PalmTypes.h

Prototype typedef void *MemPtr

See Also MemHandle

ProcPtr Typedef
Purpose Pointer to a function that returns a 32-bit integer.

Declared In PalmTypes.h

Prototype int32_t (*ProcPtr) ()

SignedEnum16 Typedef
Purpose An enum type whose enumerated constant values can range from

-32,768 to +32,767.

Declared In PalmTypes.h

Prototype typedef int16_t SignedEnum16

See Also Enum16, SignedEnum8

Palm Types
SignedEnum8

236 Exploring Palm OS: Programming Basics

SignedEnum8 Typedef
Purpose An enum type whose enumerated constant values can range from

-128 to +127.

Declared In PalmTypes.h

Prototype typedef int8_t SignedEnum8

See Also Enum8, SignedEnum16

SysHandle Typedef
Purpose A virtual address.

Declared In PalmTypes.h

Prototype typedef uint32_t SysHandle

VAddr Typedef
Purpose A virtual address, used by the ErrThrow()/ErrCatch()

exception-handling mechanism.

Declared In PalmTypes.h

Prototype typedef uint32_t VAddr

wchar16_t Typedef
Purpose A 16-bit character type.

Declared In PalmTypes.h

Prototype typedef uint16_t wchar16_t

See Also wchar32_t

Palm Types
Boolean Values

Exploring Palm OS: Programming Basics 237

wchar32_t Typedef
Purpose A 32-bit “wide” character type.

Declared In PalmTypes.h

Prototype typedef uint32_t wchar32_t

Comments wchar16_t

Palm Types Constants

Time Constants
Purpose Various multiples of one nanosecond. These constants are used by

the nanosecond conversion macros documented in “Palm Types
Functions and Macros” on page 238.

Declared In PalmTypes.h

Constants #define P_ONE_MICROSECOND (P_ONE_NANOSECOND*1000)
One microsecond.

#define P_ONE_MILLISECOND (P_ONE_MICROSECOND*1000)
One millisecond.

#define P_ONE_NANOSECOND ((nsecs_t)1)
One nanosecond.

#define P_ONE_SECOND (P_ONE_MILLISECOND*1000)
One second.

Boolean Values Enum
Purpose Defines values that can be used with Boolean variables.

Declared In PalmTypes.h

Constants false
A “false” value that can be used with Boolean variables.

true
A “true” value that can be used with Boolean variables.

Palm Types
Miscellaneous Constants

238 Exploring Palm OS: Programming Basics

Miscellaneous Constants
Purpose PalmTypes.h also defines these constants.

Declared In PalmTypes.h

Constants #define FALSE (0)
A “false” value that can be used with Boolean variables.

#define NULL 0
A null value that can be used with pointers.

#define TRUE (1)
A “true” value that can be used with Boolean variables.

Palm Types Functions and Macros

EndianSwap16 Macro
Purpose Swaps the bytes in a 16-bit value to switch between big-endian byte

order and little-endian byte order.

Declared In PalmTypes.h

Prototype #define EndianSwap16 (n)

Parameters → n
The 16-bit value to be byte-swapped.

Returns Evaluates to a 16-bit value with endianness opposite that of the
supplied value.

See Also EndianSwap32, RsrcEndianSwap16()

EndianSwap32 Macro
Purpose Swaps the bytes in a 32-bit value to switch between big-endian byte

order and little-endian byte order.

Declared In PalmTypes.h

Prototype #define EndianSwap32 (n)

Parameters → n
The 32-bit value to be byte-swapped.

Palm Types
ErrConvertTo68k

Exploring Palm OS: Programming Basics 239

Returns Evaluates to a 32-bit value with endianness opposite that of the
supplied value.

See Also EndianSwap16, RsrcEndianSwap32()

ErrConvertFrom68k Macro
Purpose Converts a 16-bit error value, of the type produced by many Palm

OS functions when called through PACE, to a status_t value, as
produced by many ARM-native operating system functions.

Declared In PalmTypes.h

Prototype #define ErrConvertFrom68k (x)

Parameters → x
The 16-bit error code to be converted.

Returns The status_t value that corresponds to the supplied error code.

See Also ErrConvertTo68k

ErrConvertTo68k Macro
Purpose Converts a status_t value, of the type produced by many ARM-

native operating system functions, to a 16-bit error value, as
produced by many operating system functions when called through
PACE.

Declared In PalmTypes.h

Prototype #define ErrConvertTo68k (x)

Parameters → x
The status_t value to be converted.

Returns The 16-bit error code that corresponds to the supplied status_t
value.

See Also ErrConvertFrom68k

Palm Types
P_MICROSECONDS_TO_NANOSECONDS

240 Exploring Palm OS: Programming Basics

P_MICROSECONDS_TO_NANOSECONDS
Macro

Purpose Converts from microseconds to nanoseconds.

Declared In PalmTypes.h

Prototype #define P_MICROSECONDS_TO_NANOSECONDS (us)

Parameters → us
A quantity of time, in microseconds.

Returns Evaluates to the supplied amount of time, in nanoseconds.

Comments This macro is equivalent to P_US2NS().

See Also P_MILLISECONDS_TO_NANOSECONDS(),
P_SECONDS_TO_NANOSECONDS(),
P_NANOSECONDS_TO_MICROSECONDS()

P_MILLISECONDS_TO_NANOSECONDS Macro
Purpose Converts from milliseconds to nanoseconds.

Declared In PalmTypes.h

Prototype #define P_MILLISECONDS_TO_NANOSECONDS (ms)

Parameters → ms
A quantity of time, in milliseconds.

Returns Evaluates to the supplied amount of time, in nanoseconds.

Comments This macro is equivalent to P_MS2NS().

See Also P_MICROSECONDS_TO_NANOSECONDS(),
P_SECONDS_TO_NANOSECONDS(),
P_NANOSECONDS_TO_MILLISECONDS()

Palm Types
P_NANOSECONDS_TO_MILLISECONDS

Exploring Palm OS: Programming Basics 241

P_MS2NS Macro
Purpose Converts from milliseconds to nanoseconds.

Declared In PalmTypes.h

Prototype #define P_MS2NS (ms)

Parameters → ms
A quantity of time, in milliseconds.

Returns Evaluates to the supplied amount of time, in nanoseconds.

Comments This macro is equivalent to
P_MILLISECONDS_TO_NANOSECONDS().

See Also P_S2NS(), P_US2NS(), P_NS2MS()

P_NANOSECONDS_TO_MICROSECONDS
Macro

Purpose Converts from nanoseconds to microseconds.

Declared In PalmTypes.h

Prototype #define P_NANOSECONDS_TO_MICROSECONDS (ns)

Parameters → ms
A quantity of time, in nanoseconds.

Returns Evaluates to the supplied amount of time, in microseconds.

Comments This macro is equivalent to P_NS2US().

See Also P_NANOSECONDS_TO_MILLISECONDS(),
P_NANOSECONDS_TO_SECONDS(),
P_MICROSECONDS_TO_NANOSECONDS()

P_NANOSECONDS_TO_MILLISECONDS Macro
Purpose Converts from nanoseconds to milliseconds.

Declared In PalmTypes.h

Prototype #define P_NANOSECONDS_TO_MILLISECONDS (ns)

Parameters → ms
A quantity of time, in nanoseconds.

Palm Types
P_NANOSECONDS_TO_SECONDS

242 Exploring Palm OS: Programming Basics

Returns Evaluates to the supplied amount of time, in milliseconds.

Comments This macro is equivalent to P_NS2MS().

See Also P_NANOSECONDS_TO_MICROSECONDS(),
P_NANOSECONDS_TO_SECONDS(),
P_MILLISECONDS_TO_NANOSECONDS()

P_NANOSECONDS_TO_SECONDS Macro
Purpose Converts from nanoseconds to seconds.

Declared In PalmTypes.h

Prototype #define P_NANOSECONDS_TO_SECONDS (ns)

Parameters → ms
A quantity of time, in nanoseconds.

Returns Evaluates to the supplied amount of time, in seconds.

Comments This macro is equivalent to P_NS2S().

See Also P_NANOSECONDS_TO_MICROSECONDS(),
P_NANOSECONDS_TO_MILLISECONDS(),
P_SECONDS_TO_NANOSECONDS()

P_NS2MS Macro
Purpose Converts from nanoseconds to milliseconds.

Declared In PalmTypes.h

Prototype #define P_NS2MS (ns)

Parameters → ms
A quantity of time, in nanoseconds.

Returns Evaluates to the supplied amount of time, in milliseconds.

Comments This macro is equivalent to
P_NANOSECONDS_TO_MILLISECONDS().

See Also P_NS2US(), P_NS2S(), P_MS2NS()

Palm Types
P_S2NS

Exploring Palm OS: Programming Basics 243

P_NS2S Macro
Purpose Converts from nanoseconds to seconds.

Declared In PalmTypes.h

Prototype #define P_NS2S (ns)

Parameters → s
A quantity of time, in nanoseconds.

Returns Evaluates to the supplied amount of time, in seconds..

Comments This macro is equivalent to P_NANOSECONDS_TO_SECONDS().

See Also P_NS2MS(), P_NS2US(), P_S2NS()

P_NS2US Macro
Purpose Converts from nanoseconds to microseconds.

Declared In PalmTypes.h

Prototype #define P_NS2US (ns)

Parameters → ms
A quantity of time, in nanoseconds.

Returns Evaluates to the supplied amount of time, in microseconds.

Comments This macro is equivalent to
P_NANOSECONDS_TO_MICROSECONDS().

See Also P_NS2MS(), P_NS2S(), P_US2NS()

P_S2NS Macro
Purpose Converts from seconds to nanoseconds.

Declared In PalmTypes.h

Prototype #define P_S2NS (s)

Parameters → s
A quantity of time, in seconds.

Returns Evaluates to the supplied amount of time, in seconds..

Palm Types
P_SECONDS_TO_NANOSECONDS

244 Exploring Palm OS: Programming Basics

Comments This macro is equivalent to P_SECONDS_TO_NANOSECONDS().

See Also P_MS2NS(), P_US2NS(), P_NS2S()

P_SECONDS_TO_NANOSECONDS Macro
Purpose Converts from seconds to nanoseconds.

Declared In PalmTypes.h

Prototype #define P_SECONDS_TO_NANOSECONDS (s)

Parameters → s
A quantity of time, in seconds.

Returns Evaluates to the supplied amount of time, in seconds..

Comments This macro is equivalent to P_S2NS().

See Also P_MICROSECONDS_TO_NANOSECONDS(),
P_MILLISECONDS_TO_NANOSECONDS(),
P_NANOSECONDS_TO_SECONDS()

P_US2NS Macro
Purpose Converts from microseconds to nanoseconds.

Declared In PalmTypes.h

Prototype #define P_US2NS (us)

Parameters → us
A quantity of time, in microseconds.

Returns Evaluates to the supplied amount of time, in nanoseconds.

Comments This macro is equivalent to
P_MICROSECONDS_TO_NANOSECONDS().

See Also P_MS2NS(), P_US2NS(), P_NS2US()

Palm Types
RsrcEndianSwap32

Exploring Palm OS: Programming Basics 245

RsrcEndianSwap16 Macro
Purpose Swaps the bytes in a 16-bit value within a resource to switch

between big-endian byte order and little-endian byte order.

Declared In PalmTypes.h

Prototype #define RsrcEndianSwap16 (x)

Parameters → x
The 16-bit value within the resource that is to be byte-
swapped.

Returns Evaluates to a 16-bit value with endianness opposite that of the
supplied value.

See Also EndianSwap16, RsrcEndianSwap32()

RsrcEndianSwap32 Macro
Purpose Swaps the bytes in a 32-bit value within a resource to switch

between big-endian byte order and little-endian byte order.

Declared In PalmTypes.h

Prototype #define RsrcEndianSwap32 (x)

Parameters → x
The 32-bit value within the resource that is to be byte-
swapped.

Returns Evaluates to a 32-bit value with endianness opposite that of the
supplied value.

See Also EndianSwap32, RsrcEndianSwap16()

Palm Types
RsrcEndianSwap32

246 Exploring Palm OS: Programming Basics

Exploring Palm OS: Programming Basics 247

13
System Event
Manager
The System Event Manager APIs allow you to enable the Graffiti® 2
handwriting engine and to control the device’s auto-off timer.

The contents of this chapter are organized as follows:

System Event Manager Structures and Types 248

System Event Manager Constants 248

System Event Manager Functions and Macros 249

The header file SysEvtMgr.h declares the API that this chapter
describes.

For other APIs used to work with events, see Chapter 7, “Event,” on
page 139. For background information on the Palm OS event
system, see Chapter 3, “Events and the Event Loop,” on page 43.

System Event Manager
System Event Manager Structures and Types

248 Exploring Palm OS: Programming Basics

System Event Manager Structures and Types

EvtSetAutoOffCmd Typedef
Purpose Contains one of the auto-off-timer command values defined by the

EvtSetAutoOffTag enum.

Declared In SysEvtMgr.h

Prototype typedef Enum8 EvtSetAutoOffCmd

System Event Manager Constants

EvtSetAutoOffTag Enum
Purpose Commands used with EvtSetAutoOffTimer() to control the

device’s auto-off timer.

Declared In SysEvtMgr.h

Constants SetAtLeast
Make sure that the device won’t turn off until timeout
seconds of idle time has passed. (This operation only changes
the current value if it’s less than the value you specify.)

SetExactly
Set the timer to turn off in timeout seconds.

SetAtMost
Make sure the device will turn before timeout seconds has
passed. (This operation only changes the current value if it’s
greater than the value you specify.)

SetDefault
Change the default auto-off timeout to timeout seconds.

ResetTimer
Reset the auto-off timer so that the device does not turn off
until at least the default seconds of idle time has passed.

System Event Manager
EvtResetAutoOffTimer

Exploring Palm OS: Programming Basics 249

System Event Manager Functions and Macros

EvtEnableGraffiti Function
Purpose Enable or disable Graffiti 2 handwriting recognition.

Declared In SysEvtMgr.h

Prototype void EvtEnableGraffiti (Boolean enable)

Parameters → enable
true to enable handwriting recognition, false to disable it.

Returns Nothing.

EvtResetAutoOffTimer Function
Purpose Reset the auto-off timer.

Declared In SysEvtMgr.h

Prototype status_t EvtResetAutoOffTimer (void)

Parameters None.

Returns Always returns errNone.

Comments EvtResetAutoOffTimer resets the auto-off timer so that the
device does not turn off until at least the default amount of idle time
has passed. You can use this function to ensure that the device
doesn’t automatically power off during a long operation without
user input (for example, when there is a lot of serial port activity).

NOTE: This function requires an IPC; accordingly, it should be
used sparingly.

If you need more control over the auto-off timer, consider using
EvtSetAutoOffTimer() instead of this function.

System Event Manager
EvtSetAutoOffTimer

250 Exploring Palm OS: Programming Basics

EvtSetAutoOffTimer Function
Purpose Set the auto-off timer.

Declared In SysEvtMgr.h

Prototype status_t EvtSetAutoOffTimer
(EvtSetAutoOffCmd cmd, uint16_t timeout)

Parameters → cmd
One of the commands defined by the EvtSetAutoOffTag
enum.

→ timeout
A new timeout value in seconds. If cmd is ResetTimer, this
parameter is ignored.

Returns Always returns errNone.

Comments Use this function to ensure that the device doesn’t automatically
power off during a long operation that has no user input (for
example, when there is a lot of serial port activity).

See Also EvtResetAutoOffTimer()

Exploring Palm OS: Programming Basics 251

Index

A
adding event to event queue 146
amWorkerDoneEvent 56
API naming conventions 8
appl database 11
application design

handling system messages 10
application icon

size 9
application launcher 22
application preferences database 9
application record database 9
application start 33–41
application startup 21–75
applications

control flow 6
event driven 6

appStopEvent 171
ARMAppLaunchPrefsFindNotification 89
ARMAppLaunchPrefsNoOverlay 89
ARMAppLaunchPrefsReserved 90
ARMAppLaunchPrefsResetNotification 89
ARMAppLaunchPrefsTimeChangeNotification 90
ARMAppLaunchPrefsType 79
ARMAppLaunchPrefsTypeVersion60 90
ARMAppLaunchPrefsTypeVersionCurrent 90
attnIndicatorEnterEvent 56
attnIndicatorSelectEvent 56
auto-off

timer 249

B
Boolean 233, 237

C
certMgrWorkerDoneEvent 56
cncNotifyConnectionStateEvent 200
conduit 5
control flow 6
conventions for API naming 8
Coord 234
coord 233
CoreTraps.h 15

creator ID 11, 116

D
database ID

and launch codes 30
databases 6
DBChangedFieldSetAppInfo 198
DBChangedFieldSetAttributes 198
DBChangedFieldSetBckUpDate 198
DBChangedFieldSetCrDate 198
DBChangedFieldSetCreator 198
DBChangedFieldSetDisplayName 198
DBChangedFieldSetEncoding 198
DBChangedFieldSetModDate 198
DBChangedFieldSetModNum 198
DBChangedFieldSetName 199
DBChangedFieldSetSortInfo 199
DBChangedFieldSetType 199
DBChangedFieldSetVersion 199
debugEvent 56
dynamic heap

reinitializing 99

E
EndianSwap16() 238
EndianSwap32() 238
Enum16 234
Enum8 234
ErrConvertFrom68k() 239
ErrConvertTo68k() 239
Event 142
event loop 45–48

example 46
event queue, adding event 146
event-driven applications 6
EventPtr 140
events

naming conventions 8
overview 43–57

eventsEnum 169
EventType 139
EvtAcquireEventQueue() 144
EvtAddEventToEventQueue() 145

252 Exploring Palm OS: Programming Basics

EvtAddEventToQueue() 146
EvtAddEventToQueueAtTime() 146
EvtAddUniqueEventToEventQueue() 147
EvtAddUniqueEventToQueue() 148
EvtAddUniqueEventToQueueAtTime() 149
EvtCreateBackgroundThread() 150
EvtDequeueKeyEvent() 151
EvtDequeuePenPoint() 152
EvtDequeuePenStrokeInfo() 152
evtDispatchAbsorb 142
evtDispatchFallthrough 142
EvtEnableGraffiti() 249
EvtEnqueueKey() 153
evtErrNoQueue 142
evtErrParamErr 143
evtErrQueueBusy 143
evtErrQueueEmpty 143
evtErrQueueFull 143
EvtEventAvail() 153
EvtEventToString() 154
EvtFinishLastEvent() 154
EvtFlushKeyQueue() 155
EvtFlushNextPenStroke() 155
EvtFlushPenQueue() 155
EvtGetEvent 171, 222
EvtGetEvent() 156
EvtGetEventDescriptor() 156
EvtGetFocusWindow() 157
EvtGetPen() 158
EvtGetPenNative() 158
EvtGetReplyEventQueue() 159
EvtGetThreadEventQueue() 159
EvtKeydownIsVirtual() 160
EvtKeyQueueEmpty() 160
EvtLookupEventQueue() 161
evtNoWait 143, 156
EvtPenDispatchFunc() 165
evtPenPressureFlag 142
EvtPublishEventQueue() 161
EvtQueueHandle 141
EvtReleaseEventQueue() 162
EvtResetAutoOffTimer 249
EvtResetAutoOffTimer() 249

EvtSetAutoOffCmd 248
EvtSetAutoOffTag 248
EvtSetAutoOffTimer() 250
EvtSetNullEventTick() 163
EvtSetPenDispatchFunc() 163
EvtSysEventAvail() 164
evtWaitForever 49, 143, 156, 171
EvtWakeup() 164
EvtWakeupWithoutNilEvent() 165
examples

event loop 46
startup routine 26

exgLocalEvtDie 56
exgLocalEvtNotify 56
ExgRegisterData 115
ExgRequest 115
Expansion Manager 202, 203
expHandledSound 203
expHandledVolume 203

F
FALSE 238
false 237
fcoord_t 234
Find (global find) 114
Find (lookup) 117
firstINetLibEvent 170
firstUserEvent 170
firstWebLibEvent 170
flags, launch flags 22
flushing pen queue 155
forms 7
function naming conventions 8

G
global find 9, 114

and private records 9
goto (global find) 114
GoToParamsPtr 104

H
Helper API 173
Helper.h 173

Exploring Palm OS: Programming Basics 253

HelperNotifyActionCodeType 173
HelperNotifyEnumerateListType 173, 173
HelperNotifyEventType 66, 69, 174, 175, 175, 177
HelperNotifyExecuteType 176, 176, 181, 182
HelperNotifyValidateType 177, 177
HelperServiceClass.h 67, 173
HelperServiceEMailDetailsType 181
HelperServiceSMSDetailsType 182
HelperServiceSMSDetailType 182
HotSync operation 218

I
ID

See also creator ID
ImpExpInvalidRecIndex 90
ImpExpInvalidUniqueID 90
ImportExportRecordParamsPtr 81
ImportExportRecordParamsType 80
initialization 117

global variables 26
input devices 5
invalidEvent 170

K
keyDownEvent 65, 153, 217
kHelperAppMaxActionNameSize 178
kHelperAppMaxNameSize 179
kHelperNotifyActionCodeEnumerate 66, 174, 178
kHelperNotifyActionCodeExecute 66, 176, 178
kHelperNotifyActionCodeValidate 66, 177, 178
kHelperNotifyCurrentVersion 179
kHelperServiceClassIDEMail 181, 183
kHelperServiceClassIDFax 183
kHelperServiceClassIDSMS 182, 183
kHelperServiceClassIDVoiceDial 183

L
lastUserEvent 170
launch codes 7, 21–22

and returned database ID 30
creating 32
handling 9
launch flags 22

parameter blocks 22
predefined 33
summary 33, 72, 173
SysBroadcastActionCode 30, 97
use by application 29

launch flags 22
launching applications 22
LocGetNumberSeparators 110
lookup 117

example 118

M
memErrNotEnoughSpace 96, 97
MemHandle 235
MemPtr 235
MenuCmdBarAddButton 213
menuCmdBarOpenEvent 213
MenuHandleEvent 213

N
nilEvent 163, 164, 171, 171
notification handlers 61, 62
notifications 59

predefined 72
notifyDetailsP 212
NotifyMgr.h 73
NULL 238

P
P_MICROSECONDS_TO_NANOSECONDS() 240
P_MILLISECONDS_TO_NANOSECONDS() 240
P_MS2NS() 241
P_NANOSECONDS_TO_MICROSECONDS() 241
P_NANOSECONDS_TO_MILLISECONDS() 241
P_NANOSECONDS_TO_SECONDS() 242
P_NS2MS() 242
P_NS2S() 243
P_NS2US() 243
P_ONE_MICROSECOND 237
P_ONE_MILLISECOND 237
P_ONE_NANOSECOND 237
P_ONE_SECOND 237
P_S2NS() 243

254 Exploring Palm OS: Programming Basics

P_SECONDS_TO_NANOSECONDS() 244
P_US2NS() 244
parameter blocks 22
PC connectivity 5
pen

current status 158
pen queue

flushing 155
PilotMain 22
PilotMain() 91
PilotMainType 88
power 5
predefined launch codes 33
predefined notifications 72
preferences

application-specific 26
changing with launch codes 121
restoring 9
saving 9
system 26

PrefGetPreference 212
prgMakeCallback 172
prgUpdateDialog 172
private records 9
ProcPtr 235

R
RAM 6
records 6
registering for a notification 60
reinitializing dynamic memory heap 99
reset 99
ResetTimer 248
resource database (SysCurAppDatabase) 97, 98
restoring preferences 9
resumeSleepChr 65, 197, 217
RsrcEndianSwap16() 245
RsrcEndianSwap32() 245

S
saving preferences 9
schema database 104
screen size 4

serial port 9
SetAtLeast 248
SetAtMost 248
SetDefault 248
SetExactly 248
SignedEnum16 235
SignedEnum8 236
SleepEventParamType 185
soft reset 99
starting applications 33–41
startup 21–75
startup routine, example 26
state information, storing 9
StrDelocalizeNumber, and launch code 110
stringInputEvent 56
StrLocalizeNumber

launch code 110
structure elements, naming convention 8
sublaunch 29
summary of launch codes 33, 72, 173
synchronization messages 10
SysAppLaunch() 92
sysAppLaunchCmdAddRecord 107
sysAppLaunchCmdAlarmTriggered 138
sysAppLaunchCmdAntennaUp 109
sysAppLaunchCmdAttention 138
sysAppLaunchCmdBackground 138, 144
SysAppLaunchCmdBackgroundType 141
sysAppLaunchCmdCardLaunch 109
SysAppLaunchCmdCardType 82
sysAppLaunchCmdCountryChange 110
sysAppLaunchCmdCustomBase 107
sysAppLaunchCmdDeleteRecord 110
sysAppLaunchCmdEventHook 111
sysAppLaunchCmdExportRecord 111
sysAppLaunchCmdExportRecordGetCount 112
sysAppLaunchCmdFailedAppNotify 112
SysAppLaunchCmdFailedAppNotifyType 82
sysAppLaunchCmdFepPanelAddWord 112
sysAppLaunchCmdFinalizeUI 113
sysAppLaunchCmdFind 113
sysAppLaunchCmdGoTo 103, 114
sysAppLaunchCmdGoto 113

Exploring Palm OS: Programming Basics 255

sysAppLaunchCmdGoToURL 115
sysAppLaunchCmdHandleSyncCallApp 115
SysAppLaunchCmdHandleSyncCallAppType 83
sysAppLaunchCmdImportRecord 116
sysAppLaunchCmdInitDatabase 116
SysAppLaunchCmdInitDatabaseType 85
sysAppLaunchCmdInitializeUI 117
sysAppLaunchCmdLookup 117
sysAppLaunchCmdLookupWord 118
sysAppLaunchCmdMoveRecord 119
sysAppLaunchCmdMultimediaEvent 119
sysAppLaunchCmdNormalLaunch 9, 119
sysAppLaunchCmdNotify 61, 120, 195, 196, 224,

228
sysAppLaunchCmdOpenDB 120
SysAppLaunchCmdOpenDBType 86
sysAppLaunchCmdPanelCalledFromApp 120,

122
sysAppLaunchCmdPinletLaunch 121
SysAppLaunchCmdPnpsType 86
sysAppLaunchCmdReturnFromPanel 121, 121
sysAppLaunchCmdRun68KApp 122
sysAppLaunchCmdSaveData 113, 122
SysAppLaunchCmdSaveDataType 87
sysAppLaunchCmdSlipLaunch 123
SysAppLaunchCmdSyncCallApplicationTypeV10

87
sysAppLaunchCmdSyncCallApplicationV10 123
sysAppLaunchCmdSyncNotify 70, 123
sysAppLaunchCmdSyncRequest 124
sysAppLaunchCmdSyncRequestLocal 124
sysAppLaunchCmdSyncRequestRemote 125
sysAppLaunchCmdSystemLock 125
sysAppLaunchCmdSystemReset 70, 125, 214
SysAppLaunchCmdSystemResetType 88
sysAppLaunchCmdTimeChange 126
sysAppLaunchCmdURLParams 126
sysAppLaunchFlagDataRelocated 105
sysAppLaunchFlagGlobalsAvailable 106
sysAppLaunchFlagNewGlobals 106, 114
sysAppLaunchFlagNewStack 106
sysAppLaunchFlagNewThread 106
sysAppLaunchFlagPrivateSet 106
sysAppLaunchFlagSubCall 106

sysAppLaunchFlagUIApp 106
SysAppLaunchLocal() 93
sysAppLaunchNppiNoUI 127
sysAppLaunchNppiUI 127
sysAppLaunchPnpsPreLaunch 128
sysAppLaunchPreDelete 128
SysAppLaunchRemote() 94
sysAppLaunchStartFlagAutoStart 89
sysAppLaunchStartFlagNoAutoDelete 89
sysAppLaunchStartFlagNoUISwitch 89
SysAppLaunchV40() 95
SysBroadcastActionCode 30
SysBroadcastActionCode() 97
sysCncPluginLaunchCmdGetPlugins 128
sysCncPluginLaunchCmdRegister 129
sysCncPluginLaunchCmdUnregister 129
sysCncWizardLaunchCmdEdit 130
SysCurAppDatabase() 97
SysCurAppDatabaseV40() 98
sysDialLaunchCmdDial 130
sysDialLaunchCmdHangUp 130
sysDialLaunchCmdLast 107
sysErrOutOfOwnerID 96
sysErrOutOfOwnerIDs 97
sysErrParamErr 96, 97
sysExternalConnectorAttachEvent 200
sysExternalConnectorDetachEvent 201
SysGetModuleDatabase() 30
SysGetStackInfo() 98
SysHandle 236
SysHandleEvent 63, 64, 202, 210, 211, 216, 217, 224,

228
sysIOSDriverInstall 131
sysIOSDriverRemove 131
sysLaunchCmdAppExited 131
sysLaunchCmdBoot 132
sysLaunchCmdFinalize 132
sysLaunchCmdGetGlobals 132
sysLaunchCmdGetModuleID 133
sysLaunchCmdGraphicsAccelInit 133
sysLaunchCmdInitialize 134
sysLaunchCmdInitRuntime 134
sysLaunchCmdProcessDestroyed 135

256 Exploring Palm OS: Programming Basics

sysLibLaunchCmdGet68KSupportEntry 135
sysNotifyAltInputSystemDisabled 201
sysNotifyAltInputSystemEnabled 201
sysNotifyAntennaRaisedEvent 202
SysNotifyAppLaunchOrQuitType 186
sysNotifyAppServicesEvent 202
SysNotifyBroadcast 69
SysNotifyBroadcast() 220
SysNotifyBroadcastDeferred() 221
sysNotifyBroadcasterCode 195, 199
sysNotifyCardInsertedEvent 202
sysNotifyCardRemovedEvent 203
sysNotifyDBAddedEvent 204
SysNotifyDBAddedType 187
sysNotifyDBChangedEvent 204
SysNotifyDBChangedType 188
sysNotifyDBCreatedEvent 205
SysNotifyDBCreatedType 190
sysNotifyDBDeletedEvent 206
SysNotifyDBDeletedType 191
sysNotifyDBDirtyEvent 207
SysNotifyDBDirtyType 192
SysNotifyDBInfoType 193
sysNotifyDefaultQueueSize 199, 221
sysNotifyDeleteProtectedEvent 208
sysNotifyDeviceUnlocked 65, 209, 212
SysNotifyDisplayChangeDetailsType 194
sysNotifyDisplayChangeEvent 209
sysNotifyEarlyWakeupEvent 64, 210
sysNotifyErrBroadcastBusy 220
sysNotifyErrDuplicateEntry 223, 227
sysNotifyErrEntryNotFound 229, 230
sysNotifyErrNoStackSpace 220
sysNotifyErrQueueFull 222
sysNotifyEvtGotAttnEvent 74
sysNotifyForgotPasswordEvent 210
sysNotifyGotUsersAttention 220
sysNotifyHelperEvent 66, 70, 173, 175, 179
sysNotifyHostFSInitDone 211
sysNotifyLateWakeupEvent 64, 209, 211
sysNotifyLocaleChangedEvent 212
SysNotifyLocaleChangedType 194
sysNotifyMenuCmdBarOpenEvent 213

sysNotifyNoDatabaseH 199
sysNotifyNormalPriority 61, 199, 223, 225, 226
SysNotifyParamType 62, 67, 120, 175, 195, 202,

224, 228
SysNotifyPenStrokeType 196
sysNotifyPhoneEvent 213
sysNotifyPOSEMountEvent 214
SysNotifyProcPtr 227
SysNotifyProcPtr() 231
SysNotifyRegister 60
SysNotifyRegister() 222
SysNotifyRegisterBackground() 225
SysNotifyRegisterV40() 226
sysNotifyResetFinishedEvent 214
sysNotifyRetryEnqueueKey 214
sysNotifySecuritySettingEvent 215
sysNotifySleepNotifyEvent 64, 65, 216, 217
sysNotifySleepRequestEvent 63, 216, 217
sysNotifySyncFinishEvent 61, 218
sysNotifySyncStartEvent 61, 218
sysNotifyTimeChangeEvent 218
SysNotifyUnregister 60
SysNotifyUnregister() 229
SysNotifyUnregisterV40() 230
sysNotifyVersionNum 199
SysNotifyVirtualCharHandlingType 196
sysNotifyVolumeMountedEvent 219
sysNotifyVolumeUnmountedEvent 219
sysPackageLaunchAttachImage 135
sysPackageLaunchGetInstantiate 136
sysPinletLaunchCmdLoadProcPtrs 136
SysReset() 99
sysSleepAutoOff 197
sysSleepPowerButton 197
sysSleepResumed 197
sysSleepUnknown 197
sysSvcLaunchCmdGetQuickEditLabel 136
sysSvcLaunchCmdGetServiceID 137
sysSvcLaunchCmdGetServiceInfo 137
sysSvcLaunchCmdGetServiceList 137
sysSvcLaunchCmdLast 107
sysSvcLaunchCmdSetServiceID 138
system events

checking availability 164

Exploring Palm OS: Programming Basics 257

system messages 10
system preferences 26
SysTraps.h 15
SysUIAppSwitch 30
SysUIAppSwitch() 99
SysUIAppSwitchV40() 100

T
telAsyncReplyEvent 56
TimSetSeconds 218
TRUE 238
true 237
tsmConfirmEvent 56
tsmFepButtonEvent 56
tsmFepChangeEvent 56
tsmFepDisplayOptionsEvent 56
tsmFepModeEvent 56
tsmFepSelectOptionEvent 56
tunneledEvent 56

U
UI design 4

design philosophy 4
UI objects 7

V
VAddr 236
VFSAnyMountParamType 219
vfsHandledStartPrc 219
vfsHandledUIAppSwitch 219
virtualKeyMask 143

W
wchar16_t 236
wchar32_t 237
WinPalette 209
WinScreenMode 209

258 Exploring Palm OS: Programming Basics

	Programming Basics
	Table of Contents
	About This Document
	The Exploring Palm OS Series
	Additional Resources
	Changes to This Document
	3107-002
	3107-001

	Concepts
	Programming Palm OS in a Nutshell
	Why Programming for Palm OS Is Different
	Screen Size
	Quick Turnaround Expected
	PC Connectivity
	Input Methods
	Power
	Memory
	File System
	Backward Compatibility

	Palm OS Programming Concepts
	API Naming Conventions
	Integrating Programs with the Palm OS Environment
	Writing Robust Code

	Uniquely Identifying Your Palm OS Application
	Making Your Application Run on Different Devices
	Processor Differences
	Running New Applications on an Older Device
	Compiling Older Applications with the Latest SDK

	Programming Tools
	Where to Go from Here

	Application Start and Stop
	Launch Codes and Launching an Application
	Responding to Launch Codes
	Responding to Normal Launch
	Responding to Other Launch Codes

	Launching Applications Programmatically
	Sublaunching in Another Process
	Creating Your Own Launch Codes

	Stopping an Application
	Launch Code Summary
	Application Manager Function Summary

	Events and the Event Loop
	Palm OS Events
	The Structure of an Event
	The Application Event Loop
	Retrieving Events
	Handling System Events
	Handling Menu Events
	Handling Form Load Events: the AppHandleEvent() Function
	Handling Form-Specific Events

	Using Events to Communicate Between Threads
	Communicating Between Threads in a Single Process
	Communicating Between Threads in Different Processes

	Palm OS-Generated Events
	Summary of Event APIs

	Notifications
	Notification Overview
	Registering for a Notification
	Writing a Notification Handler
	Sleep and Wake Notifications
	Helper Notifications
	When to Use the Helper API
	Requesting a Helper Service
	Implementing a Helper

	Notification Summary
	Notification Function Summary

	Reference
	Application Manager
	Application Manager Structures and Types
	ARMAppLaunchPrefsType
	ImportExportRecordParamsType
	SysAppLaunchCmdCardType
	SysAppLaunchCmdFailedAppNotifyType
	SysAppLaunchCmdHandleSyncCallAppType
	SysAppLaunchCmdInitDatabaseType
	SysAppLaunchCmdOpenDBType
	SysAppLaunchCmdPnpsType
	SysAppLaunchCmdSaveDataType
	SysAppLaunchCmdSyncCallApplicationTypeV 10
	SysAppLaunchCmdSystemResetType
	PilotMainType

	Application Manager Constants
	Expansion Card Launch Flags
	Launch Preference Flags
	Launch Preferences Structure Versions
	Miscellaneous Application Manager Constants

	Application Manager Functions and Macros
	PilotMain
	SysAppLaunch
	SysAppLaunchLocal
	SysAppLaunchRemote
	SysAppLaunchV40
	SysBroadcastActionCode
	SysCurAppDatabase
	SysCurAppDatabaseV40
	SysGetStackInfo
	SysReset
	SysUIAppSwitch
	SysUIAppSwitchV40

	Common Launch Codes
	Common Launch Codes Structures and Types
	GoToParamsType

	Common Launch Codes Constants
	Launch Flags
	Miscellaneous Common Launch Codes Constants

	Common Launch Codes
	sysAppLaunchCmdAddRecord
	sysAppLaunchCmdAntennaUp
	sysAppLaunchCmdCardLaunch
	sysAppLaunchCmdCountryChange
	sysAppLaunchCmdDeleteRecord
	sysAppLaunchCmdEventHook
	sysAppLaunchCmdExportRecord
	sysAppLaunchCmdExportRecordGetCount
	sysAppLaunchCmdFailedAppNotify
	sysAppLaunchCmdFepPanelAddWord
	sysAppLaunchCmdFinalizeUI
	sysAppLaunchCmdFind
	sysAppLaunchCmdGoTo
	sysAppLaunchCmdGoToURL
	sysAppLaunchCmdHandleSyncCallApp
	sysAppLaunchCmdImportRecord
	sysAppLaunchCmdInitDatabase
	sysAppLaunchCmdInitializeUI
	sysAppLaunchCmdLookup
	sysAppLaunchCmdLookupWord
	sysAppLaunchCmdMoveRecord
	sysAppLaunchCmdMultimediaEvent
	sysAppLaunchCmdNormalLaunch
	sysAppLaunchCmdNotify
	sysAppLaunchCmdOpenDB
	sysAppLaunchCmdPanelCalledFromApp
	sysAppLaunchCmdPinletLaunch
	sysAppLaunchCmdReturnFromPanel
	sysAppLaunchCmdRun68KApp
	sysAppLaunchCmdSaveData
	sysAppLaunchCmdSlipLaunch
	sysAppLaunchCmdSyncCallApplicationV10
	sysAppLaunchCmdSyncNotify
	sysAppLaunchCmdSyncRequest
	sysAppLaunchCmdSyncRequestLocal
	sysAppLaunchCmdSyncRequestRemote
	sysAppLaunchCmdSystemLock
	sysAppLaunchCmdSystemReset
	sysAppLaunchCmdTimeChange
	sysAppLaunchCmdURLParams
	sysAppLaunchNppiNoUI
	sysAppLaunchNppiUI
	sysAppLaunchPnpsPreLaunch
	sysAppLaunchPreDelete
	sysCncPluginLaunchCmdGetPlugins
	sysCncPluginLaunchCmdRegister
	sysCncPluginLaunchCmdUnregister
	sysCncWizardLaunchCmdEdit
	sysDialLaunchCmdDial
	sysDialLaunchCmdHangUp
	sysIOSDriverInstall
	sysIOSDriverRemove
	sysLaunchCmdAppExited
	sysLaunchCmdBoot
	sysLaunchCmdFinalize
	sysLaunchCmdGetGlobals
	sysLaunchCmdGetModuleID
	sysLaunchCmdGraphicsAccelInit
	sysLaunchCmdInitialize
	sysLaunchCmdInitRuntime
	sysLibLaunchCmdGet68KSupportEntry
	sysLaunchCmdProcessDestroyed
	sysPackageLaunchAttachImage
	sysPackageLaunchGetInstantiate
	sysPinletLaunchCmdLoadProcPtrs
	sysSvcLaunchCmdGetQuickEditLabel
	sysSvcLaunchCmdGetServiceID
	sysSvcLaunchCmdGetServiceInfo
	sysSvcLaunchCmdGetServiceList
	sysSvcLaunchCmdSetServiceID

	Event
	Event Structures and Types
	EventType
	EvtQueueHandle
	SysAppLaunchCmdBackgroundType

	Event Constants
	Event Flags
	Event Dispatch Types
	Event Error Codes
	Miscellaneous Event Constants

	Event Launch Codes
	sysAppLaunchCmdBackground

	Event Functions and Macros
	EvtAcquireEventQueue
	EvtAddEventToEventQueue
	EvtAddEventToQueue
	EvtAddEventToQueueAtTime
	EvtAddUniqueEventToEventQueue
	EvtAddUniqueEventToQueue
	EvtAddUniqueEventToQueueAtTime
	EvtCreateBackgroundThread
	EvtDequeueKeyEvent
	EvtDequeuePenPoint
	EvtDequeuePenStrokeInfo
	EvtEnqueueKey
	EvtEventAvail
	EvtEventToString
	EvtFinishLastEvent
	EvtFlushKeyQueue
	EvtFlushNextPenStroke
	EvtFlushPenQueue
	EvtGetEvent
	EvtGetEventDescriptor
	EvtGetFocusWindow
	EvtGetPen
	EvtGetPenNative
	EvtGetReplyEventQueue
	EvtGetThreadEventQueue
	EvtKeydownIsVirtual
	EvtKeyQueueEmpty
	EvtLookupEventQueue
	EvtPublishEventQueue
	EvtReleaseEventQueue
	EvtSetNullEventTick
	EvtSetPenDispatchFunc
	EvtSysEventAvail
	EvtWakeup
	EvtWakeupWithoutNilEvent

	Application-Defined Functions
	EvtPenDispatchFunc

	Event Codes
	Event Codes Structures and Types
	eventsEnum

	Event Codes Constants
	Miscellaneous Event Codes Constants

	Event Codes Events
	appStopEvent
	nilEvent
	prgMakeCallback
	prgUpdateDialog

	Helper
	Helper Structures and Types
	HelperNotifyActionCodeType
	HelperNotifyEnumerateListType
	HelperNotifyEventType
	HelperNotifyExecuteType
	HelperNotifyValidateType

	Helper Constants
	Action Codes
	Miscellaneous Helper Constants

	Helper Notifications
	sysNotifyHelperEvent

	Helper Service Class
	Helper Service Class Structures and Types
	HelperServiceEMailDetailsType
	HelperServiceSMSDetailsType

	Helper Service Class Constants
	Helper Service Class IDs

	Notification Manager
	Notification Manager Structures and Types
	SleepEventParamType
	SysNotifyAppLaunchOrQuitType
	SysNotifyDBAddedType
	SysNotifyDBChangedType
	SysNotifyDBCreatedType
	SysNotifyDBDeletedType
	SysNotifyDBDirtyType
	SysNotifyDBInfoType
	SysNotifyDisplayChangeDetailsType
	SysNotifyLocaleChangedType
	SysNotifyParamType
	SysNotifyPenStrokeType
	SysNotifyVirtualCharHandlingType

	Chapter 5, “Low-Level Events Reference,”Notification Manager Constants
	Reasons for Device Sleep
	Database Changed Flags
	Miscellaneous Notification Manager Constants

	Notification Manager Notifications
	cncNotifyConnectionStateEvent
	sysExternalConnectorAttachEvent
	sysExternalConnectorDetachEvent
	sysNotifyAltInputSystemDisabled
	sysNotifyAltInputSystemEnabled
	sysNotifyAntennaRaisedEvent
	sysNotifyAppServicesEvent
	sysNotifyCardInsertedEvent
	sysNotifyCardRemovedEvent
	sysNotifyDBAddedEvent
	sysNotifyDBChangedEvent
	sysNotifyDBCreatedEvent
	sysNotifyDBDeletedEvent
	sysNotifyDBDirtyEvent
	sysNotifyDeleteProtectedEvent
	sysNotifyDeviceUnlocked
	sysNotifyDisplayChangeEvent
	sysNotifyEarlyWakeupEvent
	sysNotifyForgotPasswordEvent
	sysNotifyHostFSInitDone
	sysNotifyLateWakeupEvent
	sysNotifyLocaleChangedEvent
	sysNotifyMenuCmdBarOpenEvent
	sysNotifyPhoneEvent
	sysNotifyPOSEMountEvent
	sysNotifyResetFinishedEvent
	sysNotifyRetryEnqueueKey
	sysNotifySecuritySettingEvent
	sysNotifySleepNotifyEvent
	sysNotifySleepRequestEvent
	sysNotifySyncFinishEvent
	sysNotifySyncStartEvent
	sysNotifyTimeChangeEvent
	sysNotifyVolumeMountedEvent
	sysNotifyVolumeUnmountedEvent
	Deprecated Notifications

	Notification Manager Functions and Macros
	SysNotifyBroadcast
	SysNotifyBroadcastDeferred
	SysNotifyRegister
	SysNotifyRegisterBackground
	SysNotifyRegisterV40
	SysNotifyUnregister
	SysNotifyUnregisterV40

	Application-Defined Functions
	SysNotifyProcPtr

	Palm Types
	Palm Types Structures and Types
	Boolean
	coord
	Coord
	Enum16
	Enum8
	fcoord_t
	MemHandle
	MemPtr
	ProcPtr
	SignedEnum16
	SignedEnum8
	SysHandle
	VAddr
	wchar16_t
	wchar32_t

	Palm Types Constants
	Time Constants
	Boolean Values
	Miscellaneous Constants

	Palm Types Functions and Macros
	EndianSwap16
	EndianSwap32
	ErrConvertFrom68k
	ErrConvertTo68k
	P_MICROSECONDS_TO_NANOSECONDS
	P_MILLISECONDS_TO_NANOSECONDS
	P_MS2NS
	P_NANOSECONDS_TO_MICROSECONDS
	P_NANOSECONDS_TO_MILLISECONDS
	P_NANOSECONDS_TO_SECONDS
	P_NS2MS
	P_NS2S
	P_NS2US
	P_S2NS
	P_SECONDS_TO_NANOSECONDS
	P_US2NS
	RsrcEndianSwap16
	RsrcEndianSwap32

	System Event Manager
	System Event Manager Structures and Types
	EvtSetAutoOffCmd

	System Event Manager Constants
	EvtSetAutoOffTag

	System Event Manager Functions and Macros
	EvtEnableGraffiti
	EvtResetAutoOffTimer
	EvtSetAutoOffTimer

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	P
	R
	S
	T
	U
	V
	W

