

High-Level
Communications

Exploring Palm OS

®

Written by Christopher Bey
Technical assistance from Alain Basty and Gavin Peacock

Copyright © 1996–2004, PalmSource, Inc. and its affiliates. All rights reserved. This technical documentation contains
confidential and proprietary information of PalmSource, Inc. (“PalmSource”), and is provided to the licensee (“you”)
under the terms of a Nondisclosure Agreement, Product Development Kit license, Software Development Kit license
or similar agreement between you and PalmSource. You must use commercially reasonable efforts to maintain the
confidentiality of this technical documentation. You may print and copy this technical documentation solely for the
permitted uses specified in your agreement with PalmSource. In addition, you may make up to two (2) copies of this
technical documentation for archival and backup purposes. All copies of this technical documentation remain the
property of PalmSource, and you agree to return or destroy them at PalmSource’s written request. Except for the
foregoing or as authorized in your agreement with PalmSource, you may not copy or distribute any part of this
technical documentation in any form or by any means without express written consent from PalmSource, Inc., and
you may not modify this technical documentation or make any derivative work of it (such as a translation,
localization, transformation or adaptation) without express written consent from PalmSource.

PalmSource, Inc. reserves the right to revise this technical documentation from time to time, and is not obligated to
notify you of any revisions.

THIS TECHNICAL DOCUMENTATION IS PROVIDED ON AN “AS IS” BASIS. NEITHER PALMSOURCE NOR ITS
SUPPLIERS MAKES, AND EACH OF THEM EXPRESSLY EXCLUDES AND DISCLAIMS TO THE FULL EXTENT
ALLOWED BY APPLICABLE LAW, ANY REPRESENTATIONS OR WARRANTIES REGARDING THIS TECHNICAL
DOCUMENTATION, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION
ANY WARRANTIES IMPLIED BY ANY COURSE OF DEALING OR COURSE OF PERFORMANCE AND ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT,
ACCURACY, AND SATISFACTORY QUALITY. PALMSOURCE AND ITS SUPPLIERS MAKE NO
REPRESENTATIONS OR WARRANTIES THAT THIS TECHNICAL DOCUMENTATION IS FREE OF ERRORS OR IS
SUITABLE FOR YOUR USE. TO THE FULL EXTENT ALLOWED BY APPLICABLE LAW, PALMSOURCE, INC. ALSO
EXCLUDES FOR ITSELF AND ITS SUPPLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR TORT
(INCLUDING NEGLIGENCE), FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL,
EXEMPLARY OR PUNITIVE DAMAGES OF ANY KIND ARISING OUT OF OR IN ANY WAY RELATED TO THIS
TECHNICAL DOCUMENTATION, INCLUDING WITHOUT LIMITATION DAMAGES FOR LOST REVENUE OR
PROFITS, LOST BUSINESS, LOST GOODWILL, LOST INFORMATION OR DATA, BUSINESS INTERRUPTION,
SERVICES STOPPAGE, IMPAIRMENT OF OTHER GOODS, COSTS OF PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES, OR OTHER FINANCIAL LOSS, EVEN IF PALMSOURCE, INC. OR ITS SUPPLIERS HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR IF SUCH DAMAGES COULD HAVE BEEN
REASONABLY FORESEEN.

PalmSource, Palm OS, Palm Powered, HotSync, and certain other trademarks and logos are trademarks or registered
trademarks of PalmSource, Inc. or its affiliates in the United States, France, Germany, Japan, the United Kingdom, and
other countries. These marks may not be used in connection with any product or service that does not belong to
PalmSource, Inc. (except as expressly permitted by a license with PalmSource, Inc.), in any manner that is likely to
cause confusion among customers, or in any manner that disparages or discredits PalmSource, Inc., its licensor, its
subsidiaries, or affiliates. All other product and brand names may be trademarks or registered trademarks of their
respective owners.

IF THIS TECHNICAL DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE SOFTWARE AND OTHER
DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT TO THE LICENSE AGREEMENTS
ACCOMPANYING THE SOFTWARE AND OTHER DOCUMENTATION.

Exploring Palm OS: High-Level Communications
Document Number 3115-003
November 9, 2004
For the latest version of this document, visit
http://www.palmos.com/dev/support/docs/.

PalmSource, Inc.
1240 Crossman Avenue
Sunnyvale, CA 94089
USA
www.palmsource.com

http://www.palmos.com/dev/support/docs/
http://www.palmsource.com

Exploring Palm OS: High-Level Communications

iii

Table of Contents

About This Document xiii

Who Should Read This Book xiii
What This Book Contains xiv
Changes to This Book xv
The

Exploring Palm OS

 Series xv
Additional Resources xvi

Part I: Connection Manager

1 Connections 3

About the Connection Manager. 3
Overview . 4
Terminology . . 5
Connection Profiles 8
Security Considerations 14
Persistent Connections 15
Graph Management 16

Using the Connection Manager 18
Making a Connection 19
Creating a Profile. 21
Changing a Profile 21
Finding Profiles . 23
Managing Profiles 24
Configuring Components 26
Invoking a Function in a Profile Plug-In 27

Summary of Connection Manager 27

2 Connection Manager Plug-ins 31

Network Plug-ins. 31
IPIF Plug-in . 32
ILL Plug-in . 34
PPP Plug-in . 35
Script Plug-in . 38

iv

 Exploring Palm OS: High-Level Communications

DLE Plug-in . 40
Examples of Network Profile Strings 40

Serial Plug-ins . 41
Serial Interface . 41
Serial Plug-in . 43

USB Plug-in . 43
Infrared Plug-in . 44
Bluetooth Plug-in . 44
Telephony Plug-ins . 47

Phone Plug-in . 47
DataCall . 47

3 Connection Manager Reference 49

Connection Manager Structures and Types 49
CncConnectionStateType 49
CncControlType . 51
CncEditMode . 52
CncFindOptionsType 53
CncInfoType . 55
CncParameterType 58

Connection Manager Constants. 59
Connection Options 59
Control Requests 59
Error Codes . 60
Object Information Flags 62
Object Types . 63
Parameter Types . 63
Profile Move Constants 64

Connection Manager Notifications 64
cncNotifyConnectionStateEvent 64

Connection Manager Functions. 65
CncCloseSession . 65
CncConnectReceiveState 66
CncEdgeDelete . 67
CncEdgeNew . 67

Exploring Palm OS: High-Level Communications

v

CncGetOrOpenSession 68
CncGetSession . 69
CncInterfaceNew. 69
CncObjectControl 70
CncObjectDelete . 72
CncObjectFindAll 72
CncObjectGetIndex 74
CncObjectGetInfo 74
CncObjectMoveItem 75
CncObjectSetInfo . 76
CncParametersFree 77
CncParametersInit 77
CncProfileAttach . 78
CncProfileConnect 79
CncProfileCopy . 80
CncProfileDecode 81
CncProfileDeleteItem 82
CncProfileDisconnect 82
CncProfileEdit . 83
CncProfileEncode 84
CncProfileFindClose 85
CncProfileFindConnect 85
CncProfileFindFirst 87
CncProfileFindNext 88
CncProfileGetItemId 89
CncProfileGetItemIndex. 90
CncProfileGetLength 91
CncProfileGetParameters 91
CncProfileInsertItem 93
CncProfileLock. 94
CncProfileNew. 95
CncProfileRegroupSubmit 96
CncProfileSetParameters 97
CncProfileSubmit 98
CncProfileUngroup. 99

vi

 Exploring Palm OS: High-Level Communications

CncProfileUnlock 99
CncRegisterPluginModule. 100
CncSubProfileAssign 101

Part II: Exchange Manager

4 Object Exchange 105

About the Exchange Manager 106
Exchange Libraries 106
Typed Data Objects 107

Initializing the Exchange Socket Structure 108
Identifying the Exchange Library 109
Identifying the Type of Data 111

Registering for Data. 112
General Registration Guidelines 113
Setting the Default Application. 114
Registering to Receive Unwrapped Data 118

Sending Data. . 119
Sending a Single Object 119
Sending Multiple Objects 121
Implementing the Send Command 122

Receiving Data . . 122
Controlling the Exchange Dialog 123
Getting the Object Description 125
Receiving the Data 126

Sending and Receiving Databases. 129
Sending a Database 129
Receiving a Database 131

Requesting Data . 132
Sending a Get Request for a Single Object 133
Responding to a Get Request 133
Two-Way Communications 134
Getting the Sender’s URL 134
Requesting a URL 135

Exploring Palm OS: High-Level Communications

vii

Sending and Receiving Locally 136
Interacting with the Launcher 138
HotSync Exchange . 138

Sending Files with HotSync Exchange. 139
Example . 140

Attachment Support Guidelines 142
Viewing Attachments 143
Sending an Attachment from a Messaging Application . . . 150
Sending an Attachment from a Display Application. 154
Email Application Guidelines 156

Summary of Exchange Manager 157

5 Exchange Manager Reference 159

Exchange Manager Data Structures 159
ExgAskParamType 159
ExgCtlGetURLType 160
ExgGoToType . 160
ExgLocalSocketInfoType 161
ExgPreviewInfoType 163
ExgSocketType . 165

Exchange Manager Constants 168
ExgAskResultType 168
Registry ID Constants 169
Predefined URL Schemes 170
Predefined URL Prefixes 171

Exchange Manager Launch Codes 172
sysAppLaunchCmdExgAskUser 172
sysAppLaunchCmdExgGetData 173
sysAppLaunchCmdExgPreview 174
sysAppLaunchCmdExgReceiveData 174

Exchange Manager Functions 175
ExgAccept. . 175
ExgConnect . 176
ExgControl . 178
ExgDBRead . 181

viii

 Exploring Palm OS: High-Level Communications

ExgDBWrite . . 183
ExgDisconnect . . 184
ExgDoDialog . 186
ExgGet . 188
ExgGetDefaultApplication 190
ExgGetRegisteredApplications 191
ExgGetRegisteredTypes 193
ExgGetTargetApplication 194
ExgNotifyGoto. . 196
ExgNotifyPreview 197
ExgNotifyReceive 199
ExgPut . 201
ExgReceive . 202
ExgRegisterDatatype 204
ExgRegisterData . 207
ExgRequest . 208
ExgSend . 209
ExgSetDefaultApplication 210

Application-Defined Functions 212
ExgDBDeleteProcPtr 212
ExgDBReadProcPtr 213
ExgDBWriteProcPtr. 214

Part III: Personal Data Interchange

6 Personal Data Interchange 217

About Personal Data Interchange 218
About vObjects . 218
Overview of vObject Structure 219

About the PDI Library. 221
PDI Property and Parameter Types 222
The PDI Library Properties Dictionary 223
PDI Readers . . 223
PDI Writers . 224

Exploring Palm OS: High-Level Communications

ix

Format Compatibility 225
International Considerations. 226
Features Not Yet Supported 226

Using the PDI Library 226
Creating a PDI Reader 229
Reading Properties 229
Reading Property Values 230
Creating a PDI Writer 234
Writing Properties 235
Writing Property Values 236
Specifying PDI Versions 236

Using UDA for Different Media. 236
About the UDA Library 236

Using a PDI Reader - An Example 238
Using a PDI Writer - An Example 241
Summary of Personal Data Interchange 244
Summary of Unified Data Access Manager 245

7 Personal Data Interchange Reference 247

PDI Library Data Structures 247
PdiDictionary . 247
PdiReaderType . 248
PdiWriterType . . 250

PDI Library Constants. 251
Buffer Management Constants 251
Encoding Type Constants 252
Error Code Constants 253
Parameter Name Constants 254
Parameter Value Constants 254
Property Name Constants 255
Property Type Constants 256
Property Value Field Constants 256
Property Value Format Constants 257
Reader and Writer Options Constants 259
Reader Event Constants 261

x

 Exploring Palm OS: High-Level Communications

Value Type Constants 262
PDI Library Functions 263

PdiDefineReaderDictionary 263
PdiDefineResizing 264
PdiDefineWriterDictionary 265
PdiEnterObject. . 266
PdiLibClose . 266
PdiLibOpen . 267
PdiParameterPairTest 267
PdiReaderDelete 268
PdiReaderNew. . 268
PdiReadParameter 269
PdiReadProperty 270
PdiReadPropertyField 271
PdiReadPropertyName 272
PdiSetCharset . 273
PdiSetEncoding . 274
PdiWriteBeginObject 274
PdiWriteEndObject 275
PdiWriteParameter 276
PdiWriteParameterStr. 277
PdiWriteProperty 278
PdiWritePropertyBinaryValue 279
PdiWritePropertyFields 280
PdiWritePropertyStr 281
PdiWritePropertyValue 282
PdiWriterDelete . 282
PdiWriterNew . . 283

8 Unified Data Access Manager Reference 285

UDA Manager Data Structures 285
UDABufferSize . 285
UDAObjectType 286
UDAFilterType . 286
UDAReaderType 287

Exploring Palm OS: High-Level Communications

xi

UDAWriterType . 288
UDA Manager Constants 289

Control Flags . 289
Error Constants . 289
Object Option Flags 289
Miscellaneous Constants 290

UDA Manager Functions 290
UDAControl. . 290
UDADelete . 291
UDAEndOfReader 292
UDAFilterJoin . . 292
UDAInitiateWrite 293
UDAMoreData . 293
UDARead . 294
UDAWriterFlush 294
UDAWriterJoin . 295

UDA Object Creation Functions 295
UDAExchangeReaderNew 295
UDAExchangeWriterNew 296
UDAMemoryReaderNew 296

Index 299

xii

 Exploring Palm OS: High-Level Communications

Exploring Palm OS: High-Level Communications

xiii

About This

Document

This book describes the portions of Palm OS

®

 that are involved in
high-level communications functions and are not transport specific.
These include:

• Connection Manager, which provides a central mechanism
for managing Palm OS communications connections

• Exchange Manager, which supports sending and receiving
typed data objects

• Personal Data Interchange, which facilitates the exchange of
information using standard

vObjects

This book focuses on the high-level communications managers. It
does not cover lower-level transport-specific managers. For
information on these managers, see

Exploring Palm OS: Low-Level
Communications

.

Who Should Read This Book

You should read this book if you are a Palm OS software developer
and you want to do one of the following:

• Establish a communications connection so that your
application can send or receive data.

• Create or configure communications

profiles

, which link
lower-level communications components, called

plug-ins

,
into a complete path that can be used to establish a
connection.

• Send or received typed data objects from an application
without having to manage the communications connection.
The Exchange Manager manages all communications details
for you.

• Register your application to receive data objects of a
particular type when they arrive on the handheld device.

• Enable your application to read vObjects from an input
stream or write vObjects to an output stream. The vObject
standard allows applications to exchange standardized data

About This Document

What This Book Contains

xiv

 Exploring Palm OS: High-Level Communications

types such as vCard (virtual business cards) and vCal
(calendar and schedule information).

The APIs described in this book are optional, though they can
greatly enhance the capabilities of an application. Beginning Palm
OS developers may want to delay reading this book until they gain
a better understanding of the fundamentals of Palm OS application
development. Instead, consider reading

Exploring Palm OS:
Programming Basics

 to gain a good understanding of event
management and

Exploring Palm OS: User Interface

 to learn about
events generated by standard UI controls. Read this book when you
find that you need to enable your application with communications
functionality.

What This Book Contains

This book contains the following information:

• Part I, “Connection Manager,” contains information on the
Connection Manager:

– Chapter 1, “Connections,” on page 3 describes how to
establish, manage, and configure connections that use
communications components called plug-ins.

– Chapter 2, “Connection Manager Plug-ins,” on page 31
describes the Connection Manager plug-ins that are built
into the Palm OS

®

.

– Chapter 3, “Connection Manager Reference,” on page 49
describes the APIs for working with connections, and for
managing and configuring connection profiles.

• Part II, “Exchange Manager,” contains information on the
Exchange Manager:

– Chapter 4, “Object Exchange,” on page 105 explains how
to send and receive typed data objects such as MIME
data, databases, or database records.

– Chapter 5, “Exchange Manager Reference,” on page 159
describes the APIs for sending and receiving typed data.

About This Document

The Exploring Palm OS Series

Exploring Palm OS: High-Level Communications

xv

• Part III, “Personal Data Interchange,” contains information
on Personal Data Interchange:

– Chapter 6, “Personal Data Interchange,” on page 217
explains how to read and write vObjects.

– Chapter 7, “Personal Data Interchange Reference,” on
page 247 describes the APIs for reading and writing
vObjects.

– Chapter 8, “Unified Data Access Manager Reference,” on
page 285 describes APIs for abstracting read and write
access to different kinds of source and destination media,
including memory and the Exchange Manager.

Changes to This Book

3115-003

• Minor bug fixes.

3115-002

• Minor bug fixes and editorial corrections.

3115-001

• Initial version.

The

Exploring Palm OS

 Series

This book is a part of the

Exploring Palm OS

 series. Together, the
books in this series document and explain how to use the APIs
exposed to third-party developers by the fully ARM-native versions
of Palm OS, beginning with Palm OS Cobalt. Each of the books in
the

Exploring Palm OS

 series explains one aspect of the Palm
operating system and contains both conceptual and reference
documentation for the pertinent technology.

As of this writing, the complete

Exploring Palm OS

 series consists of
the following titles:

•

Exploring Palm OS: Programming Basics

•

Exploring Palm OS: Memory, Databases, and Files

•

Exploring Palm OS: User Interface

About This Document

Additional Resources

xvi

 Exploring Palm OS: High-Level Communications

•

Exploring Palm OS: User Interface Guidelines

 (coming soon)

•

Exploring Palm OS: System Management

•

Exploring Palm OS: Text and Localization

•

Exploring Palm OS: Input Services

•

Exploring Palm OS: High-Level Communications

•

Exploring Palm OS: Low-Level Communications

•

Exploring Palm OS: Telephony and SMS

•

Exploring Palm OS: Multimedia

•

Exploring Palm OS: Security and Cryptography

•

Exploring Palm OS: Creating a FEP

 (coming soon)

•

Exploring Palm OS: Application Porting Guide

Additional Resources

• Documentation

PalmSource publishes its latest versions of documents for
Palm OS developers at

http://www.palmos.com/dev/support/docs/

• Training

PalmSource and its partners host training classes for Palm OS
developers. For topics and schedules, check

http://www.palmos.com/dev/training

• Knowledge Base

The Knowledge Base is a fast, web-based database of
technical information. Search for frequently asked questions
(FAQs), sample code, white papers, and the development
documentation at

http://www.palmos.com/dev/support/kb/

http://www.palmos.com/dev/support/docs/
http://www.palmos.com/dev/training
http://www.palmos.com/dev/support/kb/

Part I
Connection
Manager

The Connection Manager provides a central mechanism for
managing Palm OS

®

 communication connections at a high level.

Connections . 3

Connection Manager Plug-ins 31

Connection Manager Reference 49

Exploring Palm OS: High-Level Communications

3

1

Connections

The Connection Manager API provides a central mechanism for
managing Palm OS

®

 communications connections at a high level.
This chapter contains the following sections that describe how to
use the Palm OS Connection Manager:

• “About the Connection Manager” on page 3, explains
concepts you need to know before you can begin using the
Connection Manager.

• “Using the Connection Manager” on page 18, describes how
to use the functions in the Connection Manager to
accomplish common tasks.

For information about the built-in Connection Manager plug-ins,
see Chapter 2, “Connection Manager Plug-ins,” on page 31.

For detailed information about Connection Manager data types,
constants, and functions, see Chapter 3, “Connection Manager
Reference,” on page 49.

About the Connection Manager

This section explains concepts you need to know before you can
begin using the Connection Manager. It discusses the following
topics:

• Overview

• Terminology

• Connection Profiles

• Security Considerations

• Persistent Connections

• Graph Management

Connections
About the Connection Manager

4 Exploring Palm OS: High-Level Communications

Overview
The Connection Manager manages at a high level all connections
from the Palm Powered™ handheld to external devices. Figure 1.1
shows how the Connection Manager interacts with other
components in the communications system.

Figure 1.1 Connection Manager architecture

Communications components are installed in the Palm OS in the
form of Connection Manager plug-ins, which handle the work of
making, maintaining, and terminating communications connections
at a low level. A Connection Manager plug-in is a piece of code that
is responsible for configuring and connecting one or more

Palm Powered TM Handheld

Connection Manager

Connection code

Configuration code

User inferface for
configuration and progress

Connection Manager Plug-ins

IOS Framework

Communications
links to other

devices and the
Internet

Connection Manager
Database

...

Profile

Node
-property list
-reference to plug-in

Profile

Node
-property list
-reference to plug-in

Connections
About the Connection Manager

Exploring Palm OS: High-Level Communications 5

communications components that implement one or more
protocols. A plug-in also contains the user interface parts that are
necessary to configure its components. Examples of plug-ins
include Bluetooth, TCP/IP, PPP, USB, and IrDA.

Connection Manager plug-ins are built on the IOS (Input/Output
Subsystem) framework and typically make use of lower-level IOS
drivers and modules. Connection Manager plug-ins that are built
into the Palm OS are described in Chapter 2, “Connection Manager
Plug-ins,” on page 31. Licensees and hardware developers can find
more information about developing and installing plug-ins in the
book Network Driver Design Guide in the Palm OS Platform
Development Kit (PDK).

The Connection Manager controls the communications plug-ins,
requesting them to display configuration dialogs to the user, make
connections, and terminate connections.

The Connection Manager provides a user interface framework that
invokes configuration dialogs supplied by plug-ins, handles
transitions between forms, allows editing of configurations and
profiles, and includes progress indicators and error display.

The main functions of the Connection Manager include:

• Managing communications plug-ins, which provide specific
communications facilities and protocols to the Palm OS

• Managing communications profiles, a kind of
communications stack that links together various plug-ins to
provide a complete communications path between an
application and a remote service

• Establishing connections by using profiles

The Connection Manager only manages connections and does not
send or receive data. You must use APIs provided by the plug-ins or
the system, such as the STDIO API, to send and receive data once a
connection is established.

Terminology
This section defines terms important to understanding the
Connection Manager.

Connections
About the Connection Manager

6 Exploring Palm OS: High-Level Communications

availability: The Connection Manager determines the availability
of a profile by querying each plug-in in the profile. If all plug-
ins are available then the profile is available. Availability can
change depending on system configuration and external
circumstances. For example, a Bluetooth connection may be
unavailable if there are no other Bluetooth devices within
range.

communications component: A piece of code involved in a
communications stack. It can implement a protocol or offer
services like compression and encryption. A Connection
Manager plug-in can represent one or more communications
components, and a communications component can be
associated with multiple plug-ins.

Connection Manager database: A database that stores records that
reference plug-ins, interfaces, and connection profiles. All
configuration information is stored in this database.

Connection Manager server: Most of the Connection Manager
code runs in the Connection Manager server, a thread that
runs in the system process, along with the plug-ins. The
Connection Manager library transparently communicates
with the server to accomplish operations requested by API
calls.

connection type: The protocol used by the top-level component in
a profile is the connection type of the profile.

edge: A hierarchical relationship between two components, where
one component requires another lower-level one to make a
connection. A component can have multiple edges to other
components if there are multiple options available. The
search algorithm uses edges to find related nodes.

graph: The hierarchical arrangement of nodes (plug-ins or
interfaces) from the connection database that describes all the
components that can be used for a particular connection type.
It may contain multiple paths, each potentially used for a
different profile.

interface: A graph node that is an abstraction of plug-ins with
similar interfaces. An interface node has no associated code
module or user interface components; it is simply an object in

Connections
About the Connection Manager

Exploring Palm OS: High-Level Communications 7

the Connection Manager database that relates to other plug-
ins.

macro profile: A special profile that is used as a macro reference in
other profiles. Macro profile names must begin with the
special character kCncMacroSpecialChar, which is the
open curly brace “{“. An example of a macro profile is:
{MyMacro}="IPIF/ILL". The reference, {MyMacro} in this
example, can be used in another profile and is expanded to
its defined value. Macro profiles are not attached to a
communications component.

node: A plug-in or interface in the Connection Manager graph,
with its associated configuration parameters.

object: A connection profile, plug-in, or interface. A plug-in object
doesn’t contain the plug-in, but simply references it.

path: A sequence of consecutive edges in the graph.

plug-in: A Connection Manager plug-in is a piece of code that is
responsible for configuring and connecting one or more
communications components that implement one or more
protocols. A plug-in also contains the user interface parts that
are necessary to configure its components.

profile: An object that defines an ordering of plug-ins and
configuration settings of each referenced plug-in. It is
typically stored in the Connection Manager database, but can
also be private to an application. A profile has a string
equivalent (see profile string).

profile string: A string equivalent of a connection profile. It's a list
of plug-in names, with some values for their configuration
parameters.

record: A connection profile stored in the Connection Manager
database.

session: A communication session between the Connection
Manager library and the Connection Manager server. A
session is automatically opened when calling any Connection
Manager functions that need a session. A session is
automatically closed when the application that opened it
exits. A session identifier can be used to poll a connection.

Connections
About the Connection Manager

8 Exploring Palm OS: High-Level Communications

subprofile: A profile that is referenced by another profile. A
subprofile is just a normal profile that is called a subprofile
when it is referenced by another profile.

template: A special profile which can be copied to create a new
profile.

usability: The user determines the usability of a profile by checking
it in a list of profiles for a connection type. Only the checked
profiles in the list are usable. When an automatic connection
of that type is requested, the Connection Manager considers
only usable profiles.

Connection Profiles
A connection profile is an object that defines a sequence of plug-in
and interface nodes from the Connection Manager graph that forms
a complete path from a topmost component to a lower-level
component that can establish a physical connection. For example, a
profile might consist of these ordered components: TCP/IP, PPP,
Dialer. This means that the desired protocol, TCP/IP, requires the
use of the PPP component, which in turn requires the use of the
Dialer component, which establishes a modem connection.

When making a connection, the application generally interacts only
with the topmost component, which defines the connection type—
TCP/IP, in this example. The application doesn’t need to know
about the lower-level connections.

Profiles can be created by the user via the Connection application,
programmatically, or by software installation. The Connection
Manager also allows modification and management of existing
profiles via the Connection application or programmatically. An
application can also create and manipulate private connection
profiles that are visible only to itself (see “Profile Strings” on
page 12).

The Connection Manager database stores records that reference
plug-ins, interfaces, and profiles.

A connection profile ID is a unique uint32_t value that represents
a stored connection profile. This is the typical way to reference
stored profiles. Other objects stored in the Connection Manager
database, such as plug-ins and interfaces, also have unique IDs.

Connections
About the Connection Manager

Exploring Palm OS: High-Level Communications 9

A connection profile has a priority that is used to rank the profile in
a list of profiles that have the same connection type. The highest
priority profile of a type (such as TCP/IP profiles) is returned first
from searches, and profiles are listed from highest to lowest priority
in the list of profiles with the same connection type.

Connection profiles also have an availability. The availability
indicates if the profile can be connected at the current time (which is
not always possible to determine). For example, a Bluetooth plug-in
might be able to detect if the device is within range of a Bluetooth
access point, and would set this field accordingly.

The Connection Manager features a fallback mechanism that
attempts to make a connection using alternate profiles of the same
connection type if the highest priority profile has an unavailable
status. Profiles of the same connection type are tried in highest to
lowest priority order, and only those that have a status of available
are used; or, if the availability of a profile is unknown, it is tried. The
user can configure the fallback mechanism via the Connection
application.

The following subsections contain more details on profiles:

• Subprofiles

• Profile Configuration

• Automatic and Manual Mode Profiles

• Profile Strings

• Macro Profiles

• Templates

Subprofiles

A profile can contain references to other connection profiles, called
subprofiles because they are referenced from another profile. When
the profile is needed for connection or other purposes, the
references are automatically expanded to the full plug-in or
interface sequence that they represent.

For example, you might have a TCP/IP profile where the IP/PPP
part of the profile is always the same and the dialing part changes as
the user travels to different countries. You could make this change

Connections
About the Connection Manager

10 Exploring Palm OS: High-Level Communications

by inserting a reference to a subprofile that contains the correct
dialing configuration.

You can expand and compress such subprofiles referenced within a
profile. To expand all subprofiles within a profile, use
CncProfileUngroup(). To recompress a profile that was
previously expanded, use CncProfileRegroupSubmit(). This
function resubmits each subprofile to the Connection Manager
database as a separate profile and replaces each one in the main
profile with a reference.

You can also substitute one subprofile for another in a locked
expanded profile by calling CncSubProfileAssign().

Profile Configuration

Each node in a profile has an associated property list that contains
configuration parameters for its component. Because the
configuration parameters are stored in the profiles, different profiles
that use the same component can specify different parameter values
for it.

To be usable, profiles must be configured; that is, each plug-in in the
profile must have at least those parameters set that are needed to
make a connection. There are three agents that can assign
parameters to a node (that is, set parameters in the property list of
the plug-in):

• Installation code: The plug-in installation code can define
default parameters or find parameter values in the property
lists of other nodes during plug-in installation.

• User: The user can set parameters when creating or changing
a profile via the Connection application; or the user can be
asked to supply missing parameters by the plug-in during a
connection attempt.

• Application: An application can programmatically set plug-
in parameters.

The Connection application serves as a central mechanism for
managing and configuring all connections on the handheld. It
manages choosing the node path to form complete profiles. And it
provides a user interface framework that can display dialogs
supplied by plug-ins, for the user to supply configuration
parameters or choose among options.

Connections
About the Connection Manager

Exploring Palm OS: High-Level Communications 11

Note that the Connection application itself is not visible in the
Launcher. The Internet, Phone, and other communication
configuration applications just sublaunch the Connection
application, which shows only the relevant profiles.

Automatic and Manual Mode Profiles

Profiles can be automatic or manual. In a list of automatic profiles
for a particular connection type, the Connection Manager selects a
profile to use depending on its usability, availability, and priority.
For example, the Internet panel lists several network profiles in
priority order. If the user selects Choose Profile Automatically, the
system selects the highest priority profile that is usable and
available when a network connection is requested.

The user determines usability by checking the boxes next to the
profiles that are usable, as shown in the following figure. The
Connection Manager determines availability internally, by querying
each plug-in in a profile to see if it is available. The red symbols in
the figure below indicate unavailable profiles. The circle with a slash
is a generic “unavailable” symbol (for profiles that don’t supply
their own), and the antenna with red X is the unavailable symbol for
phone profiles.

If the user selects Choose Profile Manually, the user must choose a
specific profile from the list; this profile is always used when a
connection of that type is requested. If the selected profile is not
available at the time a connection is requested, then no connection is
made.

Connections
About the Connection Manager

12 Exploring Palm OS: High-Level Communications

What makes a profile automatic or manual is a flag
(kCncManualModeOption in CncInfoType.options) that is set
in the first plug-in in the profile. This is the plug-in to which the
profile is attached. Because all profiles of the same connection type
have the same first plug-in, the profiles in a particular list are either
all automatic or all manual.

Profile Strings

A connection profile object can be represented textually by a
connection profile string that lists the node names and their
properties.

An application can have a private profile, not stored in the
Connection Manager database or visible to other applications, by
saving a profile string.

The general format of a profile string is:

“node1:properties/node2:properties/...”

where node1 and node2 are plug-in and interface nodes in the
Connection Manager graph and properties are property lists
associated with the nodes. Each node is separated from the next by a
forward slash (/).

Property lists are pairs of parameter names and values separated by
commas. Note the following when writing parameters:

• Binary parameters are encoded using a textual hexadecimal
representation enclosed in square brackets (for example,
[645a3100]). (The usual 0x prefix is not used.)

Connections
About the Connection Manager

Exploring Palm OS: High-Level Communications 13

• String parameters are enclosed in single quotes.

• Special characters in the names or values of parameters, as
well as the equal sign and quote symbols, must be
represented with quoted-printable notation. Quoted-
printable notation consists of an equal sign followed by a two
digit hexadecimal representation of the character’s value (for
example, =3D). For details on quoted-printable notation,
refer to RFC 2045 at:
http://www.ietf.org/rfc/rfc2045.txt

• Integers begin with a digit.

• Hexadecimal numbers begin with 0x (for example, 0x4a).

Here is an example of creating a string profile and then storing it in
a profile object:

sprintf(profile,
"SerialMgr:name='PortCOM1',crea=0x%08X/Serial:Baud=%d,FCtl=0x%X,Bits=0x%X",
'com1', B9600, CRTSCTS, CS8);
profileId = CncProfileDecode("SerialMgrPort1Profile", profile);

Macro Profiles

A macro profile is a special type of subprofile whose name begins
with the special character kCncMacroSpecialChar, which is the
open curly brace “{“. For example, {MyMacro} could be the name of
a macro profile that is defined as follows:

{MyMacro} = "IPIF/ILL"

When it appears in a profile, a macro name is automatically
expanded to its full definition on connection, control, and search
requests. You can also expand the macros in a profile by calling
CncProfileUngroup().

Say there is a profile defined as follows:

MyProfile ="{MyMacro}/DLE"

When the profile is expanded, it becomes "IPIF/ILL/DLE", using
the definition of MyMacro above.

Macro profiles are not attached to any plug-in or interface. They are
used as references in profiles or templates.

http://www.ietf.org/rfc/rfc2045.txt

Connections
About the Connection Manager

14 Exploring Palm OS: High-Level Communications

The two special macros {REPLACE} and {USING} are used in
template profiles created by plug-in developers. Normal profiles
don’t need to use these.

Templates

Templates are special profiles used when creating a new profile.
When creating a new profile, the user typically chooses a template
that is copied to a real profile.

A template contains the properties and default settings applicable to
the connection type. These can then be customized by the user in the
Connection application.

Template profiles are generally created only by plug-in developers.

Link Objects

Link objects are used to associate different names to the same
profile. They act like symbolic links or shortcuts; they reference
another object and when they are found in a search, the real profile
they point to is returned.

This is useful if you create default profiles with internationalized
names but also want such profiles to be referenced by others with a
well known, unchanging name. For example a link named “RS232
at 115200bps” can point to the profile named “RS232 à 115200bps” in
French. If a search finds the profile ID of “RS232 at 115200bps,” the
profile ID of “RS232 à 115200bps” will be returned.

Security Considerations
The Connection Manager addresses security in a number of ways.
The Connection Manager server, which does all the actual work,
runs in the system process, separate from the application process
where applications run. Access to the system process is restricted,
though plug-ins, which also run in the system process, do have
access so they can read and send passwords to establish a
connection, for example.

Connection passwords, along with other sensitive parameters, can
be designated as write-only by plug-ins. Such passwords and
parameters cannot be read by applications. Also, the user interface

Connections
About the Connection Manager

Exploring Palm OS: High-Level Communications 15

for a plug-in in the Connection application can give the user the
choice not to store the password (they must enter it each time).

Plug-in installation is protected by the Security Manager. Plug-in
code must be signed to guarantee its authenticity.

Persistent Connections
A persistent connection is a connection that is maintained even
when applications switch. For example, an application may open a
type of connection that is persistent, then the user may switch to a
different application, and the connection is still maintained even
though the application that opened it has stopped running.

Persistency is a property of a plug-in, and thus of the profiles
attached to that plug-in. All built-in network profiles are persistent.
Plug-in developers may define other types of persistent
connections.

An application can determine if a persistent network connection
exists by checking the kCncIsConnectedOption flag in the
CncInfoType.options field of a profile, as shown in Listing 1.1.

Listing 1.1 Checking for a network connection

// Returns true if there is a network connection
Boolean IsOnline(void)
{
 Boolean isOnline = false;
 uint32_t profileID; // ID of the network interface
 status_t err; // Result code
 CncInfoType* profileList = NULL; // the profiles list
 int16_t profileCount = 0; // the profiles count
 int16_t index;

 // get the updated profile list
 // kCncNetOutgoingInterface is defined in NetCnc.h (TCP/IP)
 profileID = CncObjectGetIndex(kCncNetOutgoingInterface);
 if (0 == profileID) return false;
 err = CncObjectFindAll(profileID, kCncFindDefault,
 &profileCount, &profileList);
 if (errNone != err || 0 == profileCount) return false;
 // update online feature
 for (index = 0; index < profileCount; index++)
 {

Connections
About the Connection Manager

16 Exploring Palm OS: High-Level Communications

 if ((profileList[index].options &
 kCncIsConnectedOption)!= 0)
 {
 isOnline = true;
 break;
 }
 }
 // free the returned list
 MemPtrFree(profileList);
 return isOnline;
}

An application can also register for the
cncNotifyConnectionStateEvent notification, which is
broadcast whenever the connection state of a persistent profile
changes (a persistent profile is connected or disconnected on error
or on user request, or the availability of the profile changes).

Graph Management
Most application developers won’t need to modify the Connection
Manager graph. This section is provided as an overview in case it is
necessary.

The Connection Manager maintains a graph of connections between
all of the installed communication components, which appear as
nodes in the graph. This graph is maintained in the Connection
Manager database.

The graph represents hierarchical relationships between
components, where a higher component requires the use of a
component at the next lower level to establish a connection. Figure
1.2 shows a simplified example of such a graph.

Connections
About the Connection Manager

Exploring Palm OS: High-Level Communications 17

Figure 1.2 Connection Manager graph

Nodes in the graph can be plug-ins (boxes in the figure) or interfaces
(ovals in the figure).

An interface is a node that is an abstraction of similar plug-ins that
it logically groups together. For example, the IrComm and serial
plug-ins both provide the same RS-232 interface, so they can be
abstracted by a general RS-232 interface node. An interface node has
no associated code module or user interface components; it is
simply an object in the Connection Manager database that relates to
other plug-in objects.

An interface can be used to logically group profiles (which are
attached to nodes in the graph; see “Adding a Profile to a
Connection Type List” on page 25.) For example, a developer might
use CncInterfaceNew() to create a top-level telnet interface node
just to attach some telnet-specific profiles to.

Typically, interfaces are used by plug-in developers and you
probably won’t need to create them.

To establish a connection, the system requires a complete path from
a top component in the graph, which defines the connection type, to
the bottom component of any branch. There may be several
different possible paths from the top component to the bottom
component of a branch, each forming a possible connection profile.
A communications component can be used in more than one profile.

RS232

TCP/IP

IrComm

PPP

Dialer

Serial

IrDA

Connections
Using the Connection Manager

18 Exploring Palm OS: High-Level Communications

Components can be linked together by creating relationships, called
edges, between them. An edge is simply a hierarchical relationship
between two components. It means that the “upper” component
requires the “lower” component to make a connection. The upper
component may have multiple edges to lower components,
meaning that there is a choice of which one to use.

The search algorithm also uses edges internally. For example, if an
edge exists between the “RS232” and “Serial” nodes, then searching
for “RS232/*” returns profiles attached to the “RS232” node as well
as profiles attached to the “Serial” node.

The Connection Manager includes functions to create
(CncEdgeNew()) and delete (CncEdgeDelete()) edges between
components, but these are generally unnecessary to use. Edges are
typically created or deleted only by plug-in developers.

Using the Connection Manager
The Connection Manager manages all connections at a high level
from the Palm Powered™ handheld to external devices.

The Connection Manager is a shared library that the system
automatically loads when needed and unloads when not needed.
You don’t need to do anything to load or initialize the library.

This section explains how to use the Connection Manager in your
application. It covers:

• Making a Connection

• Creating a Profile

• Changing a Profile

• Finding Profiles

• Managing Profiles

• Configuring Components

• Invoking a Function in a Profile Plug-In

Many Connection Manager functions operate on profiles, which are
identified by a profile ID number. You can obtain the ID of a profile
by passing the name of the profile to CncObjectGetIndex() or
by searching for it with CncProfileFindFirst(), which

Connections
Using the Connection Manager

Exploring Palm OS: High-Level Communications 19

searches based on name or a partial profile string. Of course, if you
create a new profile with CncProfileNew() or
CncProfileDecode(), then that function returns the profile ID.

Making a Connection
You can make a connection in the following ways:

• From an existing stored profile

• By creating a profile dynamically and connecting from it

These methods are discussed in the following sections.

Connecting From a Stored Profile

To make a connection from an existing profile stored in the
Connection Manager database, call CncProfileConnect(). You
pass this function the ID of a stored profile and it makes the
connection by requesting each plug-in in the profile to establish a
connection, starting with the lowest level. Once the topmost plug-in
in the profile has successfully completed a connection, this function
returns an IOS file descriptor for the connection.

Applications use the file descriptor to identify the connection for
reading and writing data, configuring the connection, or closing it.
These tasks can be performed by functions in the STDIO library,
which provides a uniform, generic, POSIX-like STDIO interface. For
more information, refer to Part VI, “IOS STDIO,” in Exploring Palm
OS: Low-Level Communications.

Normally, the call to CncProfileConnect() is synchronous, and
blocks until the connection is established. You can call this function
in asynchronous mode, however, by setting the
kCncConnectAsynchronous flag. In this case, you must call
CncConnectReceiveState() to receive connection progress and
termination messages. The calling application may want to use
IOSPoll() on the session file descriptor (returned by
CncGetSession()) to know when to call this function.

Here’s an example of how to use IOSPoll() to poll the file
descriptor for a Connection Manager response, and allow normal
user interface event processing to continue while polling.

Connections
Using the Connection Manager

20 Exploring Palm OS: High-Level Communications

#define kNfds 2
EventType event;
struct pollfd fdList[kNfds]; // the fd list
int32_t oNfds; // returned count of fds
status_t err;
CncConnectionStateType state;
fdList[0].fd = CncGetOrOpenSession(); // The CM session fd
fdList[1].fd = EvtGetEventDescriptor(); // The event queue fd
fdList[0].events = POLLIN; // wait for a normal message
fdList[1].events = POLLIN;
while(1) { // loop and poll
 err = IOSPoll(fdList, kNfds, -1, &oNfds);
 if (err != errNone)
 break;
 if (fdList[0].revents & POLLIN) {
 // process connection manager notifications
 err = CncConnectReceiveState(&state);
 // check state and exit loop as needed
 } else if (fdList[1].revents & POLLIN) {
 // process UI events
 do {
 EvtGetEvent(&event, 0);
 // process events normally
 } while(EvtEventAvail());
 EvtFinishLastEvent();
 }
}

If you don’t have the ID of a profile to connect, you can use the
alternative function, CncProfileFindConnect(). This function
searches the stored profiles by name or partial profile string.

The CncProfileConnect() and CncProfileFindConnect()
functions can have multiple user interface side effects. For example,
the user can be prompted to complete or configure the connection
profile, if parameter values are missing or the profile does not
specify a complete connection path. Some user interface side effects
can be allowed or disallowed via the flags parameter to these
functions.

Creating a Profile Dynamically and Connecting

An application may want to use a private profile, not storing it in
the Connection Manager database. To do this, the application can
privately construct and store a profile string without using any

Connections
Using the Connection Manager

Exploring Palm OS: High-Level Communications 21

Connection Manager functions. To connect using it, pass the string
to CncProfileFindConnect(). When passed a complete profile
string, this function creates a profile object from it and connects
using that profile.

Note that calling any connection function can have multiple user
interface side effects, as noted in the previous section.

Canceling or Disconnecting a Profile

If you want to cancel the connection process before it is completed,
you can call CncProfileDisconnect(). You can also call this
function to disconnect a persistently connected profile.

Creating a Profile
Users generally create profiles through the Connection application.
An application can create a profile programmatically as well.

To create a new empty profile, call CncProfileNew(). To add
items such as plug-ins, interfaces, and other profiles to it, call
CncProfileInsertItem(). To submit the changes to the
Connection Manager database and unlock the profile, call
CncProfileSubmit().

You can also create a profile by passing a string to
CncProfileDecode().

You can create a profile dynamically, when you want to make a
connection. For details, see the previous section, “Configuring
Components.”

If you create a profile but don’t submit it to the Connection Manager
database, it won’t be saved after your application exits. However, it
is associated with the client session while your application is
running and it will be found by the find functions described in
“Finding Profiles” on page 23.

For information on configuring the individual communications
components in the profile, see “Configuring Components” on
page 26.

Changing a Profile
You can change a profile in the following ways:

Connections
Using the Connection Manager

22 Exploring Palm OS: High-Level Communications

• Add new components such as plug-ins and interfaces

• Delete components from the profile, or the profile itself

• Launch the configuration application

These tasks are discussed in the following sections.

Adding Components to a Profile

To add components such as plug-ins, interfaces, and other profiles
to a profile, call CncProfileInsertItem(). Adding a component
inserts a reference to it into the sequence of components that
comprise a profile.

One profile can even be inserted into another as a subprofile; for
details, see “Subprofiles” on page 9.

Changes you make to a profile are not saved until you submit the
changes to the Connection Manager database by calling
CncProfileSubmit().

Deleting Components and Profiles

To delete a plug-in or interface component and its associated
parameters from a profile, call CncProfileDeleteItem().

Changes you make to a profile are not saved until you submit the
changes to the Connection Manager database by calling
CncProfileSubmit().

To delete a profile from the Connection Manager database, call
CncObjectDelete(). Removing a plug-in or interface object also
removes all edges and profiles that use it. Removing a profile also
removes profiles that reference it.

Launching the Configuration Application

To allow the user to complete or edit a profile or configure
components, you can launch the Connection application by calling
CncProfileEdit(). By setting a flag, you can control what form
the application displays on launch. There are several options, such
as the form that lists connection types, the form that lists profiles
available for a particular connection type, the configuration form,
the profile creation form, and the profile deletion form.

Connections
Using the Connection Manager

Exploring Palm OS: High-Level Communications 23

Finding Profiles
There may be many different profiles stored in the Connection
Manager database. You can always find a profile object from its
name by using CncObjectGetIndex(), but if you don’t know its
name, you can use the find functions.

There are two ways to find profiles:

• Use CncObjectFindAll() to find all profiles that are
attached to a particular plug-in or interface. This function
returns all found profiles in an array.

• Use CncProfileFindFirst() to find a profile based on its
name or partial profile string, then iterate through other
matching profiles with CncProfileFindNext(). This
method is explained in more detail in the following
paragraphs.

To begin a search for a profile based on its name or a partial profile
string, call CncProfileFindFirst(). You can pass this function
a partial profile string such as “NetOut/*”, to find profiles that
begin with it. This example finds network profiles. The “/*”
characters are a wildcard at the end that signify a partial string. For
details about profile strings, see “Profile Strings” on page 12.

The CncProfileFindFirst() function returns the first profile
that matches the search string and creates a search object that you
can query repeatedly by calling CncProfileFindNext() to
return the next matching profile.

Both CncProfileFindFirst() and CncProfileFindNext()
return locked profiles, so if you don’t want to edit the returned
profiles, you might want to call CncProfileUnlock() in the
search loop.

It’s good practice to call CncProfileFindClose() to clean up
memory when you are done with a search, after you have called
CncProfileFindNext() for the last time. This function frees the
memory used for the search object allocated by
CncProfileFindFirst().

Note that you can also use the CncProfileFindFirst() function
to create a new profile. If you specify a complete profile string for
the search string, this function creates and returns the ID of a new
profile object. However, the profile is automatically deleted when

Connections
Using the Connection Manager

24 Exploring Palm OS: High-Level Communications

the Connection Manager session closes, unless you call
CncProfileSubmit() to save it.

If you create a profile but don’t submit it to the Connection Manager
database, it isn’t saved, but it is associated with the client session
while your application is running and it will be found by the find
functions described in this section. Other applications won’t find it,
because each application using the Connection Manager server has
its own exclusive client session. Only after it is submitted can other
applications find it.

Managing Profiles
Profile management involves tasks such as:

• Getting information about profiles and items

• Adding a profile to the list of those available for a particular
connection type

• Locking, unlocking, and submitting changes

These tasks are discussed in the following sections.

Getting Information About Profiles and Items

Before you can work with profiles and the communications
components in them, you’ll need to obtain their IDs, which are
unique identifiers assigned to all Connection Manager objects. You
can obtain the ID of a profile by passing the name of the profile to
CncObjectGetIndex() or by searching for it with
CncProfileFindFirst(), which searches based on its name or a
partial profile string.

Most operations on the items in a profile require the index of the
item in the profile, which you can obtain by passing its name to
CncProfileGetItemIndex(). From the index, you can obtain an
item’s ID by calling CncProfileGetItemId().

To determine the number of items in a profile, use
CncProfileGetLength().

An information structure, CncInfoType, is associated with each
profile and item object, and is stored in the Connection Manager
database. This structure contains information such as the object’s
name, version, type, and for profile objects, the priority and

Connections
Using the Connection Manager

Exploring Palm OS: High-Level Communications 25

availability. You can use the functions CncObjectGetInfo() and
CncObjectSetInfo() to get and set the information in this
structure.

Adding a Profile to a Connection Type List

On a Palm OS device, users can request connections by type. The
type of a connection is identified by the topmost plug-in of its
profile. All the profiles that share that topmost plug-in are of the
same type. Some of the top-level plug-ins typically include TCP/IP
(network), Serial, Bluetooth, and Phone. Each of these connection
types might have several associated profiles.

For each connection type, the associated Connection Manager panel
lists the various profiles available, so the user can choose which to
use. For example, to make a TCP/IP connection, the user might
have the choice of profiles that use a dial-up connection to an ISP, a
Bluetooth connection to an ISP through a LAN access point, or a
GPRS connection through a mobile phone via an infrared link.

Here’s an example of a list of possible network connection profiles
shown in the Internet panel:

To add a new profile to the list for a particular connection type
(called “attaching” a profile), use the function
CncProfileAttach(). For example, calling this function to attach
a profile to the TCP/IP plug-in would add it to the list shown above.

The order in which the profile is inserted into the list is determined
by its priority (see the priority field of CncInfoType) relative to
the existing profiles in the list. The list is ordered from highest to

Connections
Using the Connection Manager

26 Exploring Palm OS: High-Level Communications

lowest priority and determines the order in which profiles are
returned by CncProfileFindNext() when searching for profiles
of the same connection type.

You can change the position of a profile in the list by calling
CncObjectMoveItem(). Note that this doesn’t change the priority
of the profile, however. The priority is used only once —to initially
place the profile in the list.

Locking, Unlocking, and Submitting Profiles

Before you can perform most operations on a profile, such as editing
it or configuring its components, you must lock the profile. This
prevents other threads from trying to modify the profile at the same
time. You can lock a profile by calling CncProfileLock(). (Note
that CncProfileUngroup() also locks a profile.)

If you create a new profile with CncProfileNew(), the returned
profile is automatically locked.

To save the changes when you are done changing a profile, call
CncProfileSubmit(). This function submits the changes to the
Connection Manager database and unlocks the profile.

If you want to unlock a profile without saving any changes, call
CncProfileUnlock().

Locks are counted and if you lock a profile more than once, but only
unlock it once, it is still locked.

Locks are cleaned up by the Connection Manager. If your
application exits and leaves a profile locked, it will automatically be
unlocked.

Configuring Components
The communications components referenced by a profile typically
have various parameters that can be set to control some aspect of
the communications operation. For example, a TCP/IP plug-in
might have parameters that specify the IP address, DNS address,
timeout, and so forth.

Values for these parameters are stored in the items that are in a
particular profile in the Connection Manager database. You can
retrieve the parameter values for an item by calling

Connections
Summary of Connection Manager

Exploring Palm OS: High-Level Communications 27

CncProfileGetParameters() and set the parameter values by
calling CncProfileSetParameters(). Both of these functions
use parameter arrays that you can allocate by calling
CncParametersInit().

When you are done with the parameter array returned by
CncProfileGetParameters(), call CncParametersFree() to
free the memory used by the array.

To allow the user to complete or edit a profile or configure
components, you can launch the Connection application by calling
CncProfileEdit(). By setting a flag, you can control what form
the application displays on launch. There are several options, such
as the configuration form, profile creation form, partial profile
completion form, etc.

Invoking a Function in a Profile Plug-In
An application may want to programmatically invoke a function in
a plug-in associated with a profile. You can do this by calling
CncObjectControl(). Using this call, you can send a request to
the control function in a single plug-in or in all plug-ins in a profile.
The control function in a plug-in accepts a request parameter that
tells it what to do, and a parameter block that is associated with the
request.

Plug-in developers define the requests that a plug-in can respond to.
This feature allows plug-ins to expose proprietary features.

One request that all plug-ins should respond to is the
kCncControlAvailability request, which the Connection
application uses to query all plug-ins about their availability.

Summary of Connection Manager
Connection Manager Functions

Session Open and Close

CncCloseSession()
CncGetOrOpenSession()

CncGetSession()

Connections
Summary of Connection Manager

28 Exploring Palm OS: High-Level Communications

Profile Management

CncEdgeDelete()
CncEdgeNew()
CncObjectControl()
CncObjectMoveItem()
CncProfileAttach()
CncProfileCopy()

CncProfileEdit()
CncProfileInsertItem()
CncProfileLock()
CncProfileNew()
CncProfileUnlock()

Connecting

CncConnectReceiveState()
CncProfileConnect()

CncProfileDisconnect()
CncProfileFindConnect()

Searching

CncObjectFindAll()
CncProfileFindClose()

CncProfileFindFirst()
CncProfileFindNext()

Profile/String Conversion

CncProfileDecode() CncProfileEncode()

Plug-in Registration

CncRegisterPluginModule()

Database Record Operations

CncInterfaceNew()
CncObjectDelete()
CncObjectGetIndex()

CncObjectGetInfo()
CncObjectSetInfo()
CncProfileSubmit()

Parameter Configuration

CncParametersFree() CncParametersInit()

Profile Item Operations

CncProfileDeleteItem()
CncProfileGetItemId()
CncProfileGetItemIndex()

CncProfileGetLength()
CncProfileGetParameters()
CncProfileSetParameters()

Connection Manager Functions

Connections
Summary of Connection Manager

Exploring Palm OS: High-Level Communications 29

Subprofile Operations

CncProfileRegroupSubmit()
CncProfileSubmit()

CncSubProfileAssign()

Connection Manager Functions

Connections
Summary of Connection Manager

30 Exploring Palm OS: High-Level Communications

Exploring Palm OS: High-Level Communications 31

2
Connection Manager
Plug-ins
This chapter documents the Connection Manager plug-ins that are
commonly built into the Palm OS®. If you need to construct custom
Connection Manager profiles, you will need to know what plug-ins
are available and what their parameters are. This chapter describes
the following plug-ins and groups of plug-ins:

• Network Plug-ins

• Serial Plug-ins

• USB Plug-in

• Infrared Plug-in

• Bluetooth Plug-in

• Telephony Plug-ins

A particular Palm OS device may not have all of the Connection
Manager plug-ins described here, or may have additional plug-ins,
depending on the communication hardware installed in the system.

For information about setting and getting plug-in parameters, see
“Configuring Components” on page 26. You can also work with
plug-in parameters in profile strings, and this is described in
“Profile Strings” on page 12.

Note that plug-in development is not covered in the SDK. Licensees
and hardware developers can find more information about
developing and installing plug-ins in the book Network Driver
Design Guide in the Palm OS Platform Development Kit (PDK).

Network Plug-ins
All network profiles start with the NetOut interface. This interface
serves as the top-level network component in the system. It is not a

Connection Manager Plug-ins
Network Plug-ins

32 Exploring Palm OS: High-Level Communications

plug-in, but rather an interface, below which all other plug-ins in
the TCP/IP stack reside.

Below the NetOut interface, the TCP/IP stack includes the
following plug-ins:

• IPIF Plug-in

• ILL Plug-in

• PPP Plug-in

• Script Plug-in

• DLE Plug-in

Some parameters of the network plug-ins can reside in more than
one plug-in in the network stack.

Some parameters of the network plug-ins are dynamic; that is, they
are set by the plug-in after the connection is active.

IPIF Plug-in
The IPIF (IP Interface) plug-in resides in the layer below the NetOut
interface in the TCP/IP stack. The IPIF plug-in manages the
configuration of IP networking interfaces and other associated
configuration information such as network routes, domain name
resolver configuration entries, etc. It also controls DHCP when
automatic configuration is enabled.

The IPIF plug-in has a user interface that is accessed via the TCP/IP
tab in the Connection application for Internet profiles. This tab
allows the user to set certain configuration parameters such as
automatic (IP address is supplied by DHCP) or manual mode (IP
address is supplied by the user), DNS servers, and DNS suffixes.

The complete list of parameters that you can set or get for the IPIF
plug-in is shown in Table 2.1.

Connection Manager Plug-ins
Network Plug-ins

Exploring Palm OS: High-Level Communications 33

Table 2.1 IPIF plug-in parameters

Parameter Type Description

'LoIP' string Local IP address, in dotted notation. If this
parameter is missing, automatic mode is assumed
and the DHCP client is started for this connection.
This value is set by the IP Address field in the TCP/
IP tab if Manual mode is chosen.

'ReIP' string Remote IP address for PPP links, in dotted notation.
Set only in manual mode. If this parameter is
present, a PPP link is assumed and a default route is
added, using this address as a default gateway.

'_MTU' unsigned integer Maximum transmit unit in bytes. Defaults to the
value provided by the lower-level layer (DLPI or
PPP).

'NetM' string Subnet mask; formatted as a dotted IP address. Set
only in manual mode; in automatic mode it is
computed automatically. This value is set by the
Subnet Mask field in the TCP/IP tab if Manual
mode is chosen.

'Brod' string Broadcast address. Set only in manual mode; in
automatic mode, it is computed automatically.

'IFFS' unsigned integer Interface bits to set, which override the default IP
configuration set by the SIOCSIFFLAGS ioctl
command. Set only in manual mode.

'IFFC' unsigned integer Interface bits to clear, which override the default IP
configuration set by the SIOCSIFFLAGS ioctl
command. Set only in manual mode.

'IFId' unsigned integer Interface ID for use with the 'LLNa' parameter to
build the interface name.

'LLNA' string Link name for use with the 'IFId' parameter to build
the interface name.

Connection Manager Plug-ins
Network Plug-ins

34 Exploring Palm OS: High-Level Communications

ILL Plug-in
The ILL (IP Link Layer) plug-in implements a Data Link Provider
Interface (DLPI). It resides below the IPIF plug-in in the TCP/IP
stack. Those interested in the DLPI specification can find it at:
http://www.opengroup.org/onlinepubs/9638599/toc.htm

The ILL plug-in has no user configurable parameters and thus has
no user interface.

The complete list of parameters that you can set or get for the ILL
plug-in is shown in Table 2.2.

'Mtic' unsigned integer Interface metric (defaults to 1 if not available). A
metric is a value that is assigned to an IP route for a
particular network interface that identifies the cost
that is associated with using that route. For
example, the metric can be valued in terms of link
speed, hop count, or time delay. Higher metrics
have the effect of making a route less favorable.

'DNSs' string List of DNS servers formatted as a list of dotted IP
addresses, separated by spaces. This value is set by
the DNS Servers form in the TCP/IP tab.

'GWys' string List of default gateways formatted as a list of dotted
IP addresses, separated by spaces. This value is set
by the Gateway field in the TCP/IP tab if Manual
mode is chosen.

'Doms' string List of DNS domain suffixes separated by spaces.
This value is set by the DNS Suffixes form in the
TCP/IP tab.

Table 2.1 IPIF plug-in parameters (continued)

Parameter Type Description

http://www.opengroup.org/onlinepubs/9638599/toc.htm

Connection Manager Plug-ins
Network Plug-ins

Exploring Palm OS: High-Level Communications 35

PPP Plug-in
The PPP plug-in implements a Point-to-Point (PPP) link and
performs PPP negotiation. It resides below the ILL plug-in in the
TCP/IP stack.

The PPP plug-in has a user interface that is accessed via the PPP tab
in the Connection application for Internet profiles. This tab allows
the user to set certain configuration parameters such as user name,
password, timeout, Maximum Receive Unit (MRU) size,
authentication type, etc.

The complete list of parameters that you can set or get for the PPP
plug-in is shown in Table 2.3.

Table 2.2 ILL plug-in parameters

Parameter Type Description

'DDev' string DLPI device name.

'DPPA' unsigned integer DLPI physical point of attachment for style 2 DLPI
drivers.

'_ARP' unsigned integer Nonzero if ARP (Address Resolution Protocol) can
be done on the link; zero if it cannot, such as with
PPP links. Read-only.

'LLNA' string Link name for use with the 'IFId' parameter to build
the interface name.

'LLAd' binary Link hardware MAC address. This parameter is
always dynamic; that is, it is set by the plug-in after
the connection is active. Read-only.

Connection Manager Plug-ins
Network Plug-ins

36 Exploring Palm OS: High-Level Communications

Table 2.3 PPP plug-in parameters

Parameter Type Description

'LoIP' string Local IP address, in dotted notation. If this
parameter is missing, automatic mode is assumed
and the IP address is obtained from the server for
this connection. This value is set by the IP Address
field in the TCP/IP tab if Manual mode is chosen.

'ReIP' string Remote IP address for PPP links, in dotted notation.
Set only in manual mode. If this parameter is
present, a PPP link is assumed and a default route is
added, using this address as a default gateway.

'_MTU' unsigned integer Maximum transmit unit in bytes. Defaults to 1500.

'_MRU' unsigned integer Maximum receive unit in bytes. Defaults to 1500.

'Mtic' unsigned integer Interface metric (defaults to 30 if not available). A
metric is a value that is assigned to an IP route for a
particular network interface that identifies the cost
that is associated with using that route. For
example, the metric can be valued in terms of link
speed, hop count, or time delay. Higher metrics
have the effect of making a route less favorable.

'DNSs' string List of DNS servers formatted as a list of dotted IP
addresses, separated by spaces. This value is set by
the DNS Servers form in the TCP/IP tab.

'DDev' string DLPI device name.

'ConT' unsigned integer Timeout in milliseconds when connecting. The
default is 10 seconds (10000).

'TrmT' unsigned integer Timeout in milliseconds when disconnecting. The
default is 3 seconds (3000).

Connection Manager Plug-ins
Network Plug-ins

Exploring Palm OS: High-Level Communications 37

'LCOp' string LCP (Link Control Protocol) options. The following
options are valid (multiple options can be specified
with the OR operator, and the default is all options
ORed together):

ACFC
Address and control field
compression.

PFC
Protocol field compression.

Magic
Magic number (for loopback
detection).

'Auth' string Allowed authentication options. The following
options are valid (multiple options can be specified
with the OR operator):

CHAP
Challenge Handshake Authentication
Protocol.

MSCHAP
Microsoft Challenge Handshake
Authentication Protocol.

PAP
Password Authentication Protocol.

All
Allow all options (default).

EncryptedOnly
Allow all options that use encrypted
passwords (CHAP, MSCHAP).

'ACCM' unsigned integer PPP asynchronous characters map. Defaults to
0x000A0000 (XON/XOFF characters).

Table 2.3 PPP plug-in parameters (continued)

Parameter Type Description

Connection Manager Plug-ins
Network Plug-ins

38 Exploring Palm OS: High-Level Communications

Script Plug-in
The Script plug-in is associated with PPP and provides login script
capability for PPP connections.

The Script plug-in has only one parameter, listed in Table 2.4.

Login script commands that you can use are listed in Table 2.5.

'User' string Username.

'Pass' string Password (write-only).

Table 2.3 PPP plug-in parameters (continued)

Parameter Type Description

Table 2.4 Script plug-in parameters

Parameter Type Description

'LogS' binary Login script.

Table 2.5 Login script commands

Function Command Parameters Example

Send s string s go PPP

Wait for w string w password:

Delay d seconds d 1

Get IP g none g

Prompt a string a Enter Name:

Wait for prompt f string f ID:

Send CR n none n

Send UserID u none u

Send Password x none x

End e none e

Connection Manager Plug-ins
Network Plug-ins

Exploring Palm OS: High-Level Communications 39

When setting the value of the LogS parameter, the characters in the
script command string must be encoded into ASCII hex values and
enclosed in square brackets. Each script command must end with
the null character (00). For example, for the command “s go PPP”,
you would set this value: [7320676f2050505000]

The final script command string in the set must end with an
additional null character, so there must be two nulls at the end
(0000).

In the parameters to various login script commands, you can use the
special escape sequences listed in Table 2.6. Each escape sequence,
when encountered in a script command, expands to the value
shown.

Table 2.6 Login script escape sequences

Escape sequence
string

Description

$USERID Expands to the user name.

$PASSWORD Expands to the password.

^c If c is one of the ASCII characters in the sequence '@' through
'_', then this equals a byte value of 0 through 31, respectively.

If c is one of the ASCII characters in the sequence 'a' through
'z', then this equals a byte value of 1 through 26, respectively.

If c is any other character, this equals that character.

<cr> Carriage return (0x0D)

<lf> Line feed (0x0A)

\" " (double quotation mark)

\^ ^ (circumflex accent)

\< < (less-than sign)

\\ \ (backslash)

Connection Manager Plug-ins
Network Plug-ins

40 Exploring Palm OS: High-Level Communications

DLE Plug-in
The DLE plug-in provides the Ethernet framing interface and
resides at the lowest level, above the network hardware.

The DLE plug-in has no user configurable parameters and thus has
no user interface.

The complete list of parameters that you can set or get for the DLE
plug-in is shown in Table 2.7.

Examples of Network Profile Strings
Here is an example of a profile using the 'foo' device. It will be
configured using DHCP:

P1 = “NetOut/IPIF/ILL/DLE:DevN='foo'”

Here is an example of a subprofile:

“Mydevice” = “ILL/DLE:DevN='foo'”

The following profile is equivalent to P1:

P2 = “NetOut/IPIF/Mydevice”

Here is an example of a manually configured profile with the local
IP address set. The subnet mask and broadcast address will be
automatically set:

P3 = “NetOut/
IPIF:LoIP='192.168.1.10',GWys='192.168.1.1',DNSs='192.168.2
.1',Doms='bar.org'/Mydevice”

Table 2.7 DLE plug-in parameters

Parameter Type Description

'DDev' string DLPI device name.

'DPPA' unsigned integer DLPI physical point of attachment for style 2 DLPI
drivers.

'_ARP' unsigned integer Nonzero if ARP (Address Resolution Protocol) can
be done on the link; zero if it cannot, such as with
PPP links. Read-only.

'DevN' string Name of IOS driver that will be opened when
connecting the profile.

Connection Manager Plug-ins
Serial Plug-ins

Exploring Palm OS: High-Level Communications 41

Here is an example of a PPP connection using a direct IrDA link:

P4 = “NetOut/IPIF/ILL/PPP:User='foo',Pass='bar'/
Serial:DevN='ircomm'”

Here is an example of a PPP connection with the local IP address
manually set and a script:

P5 = “NetOut/IPIF/ILL/
PPP:User='foo',Pass='bar',LoIP='192.168.2.10'/
Script:LogS=[…………]/Serial:DevN='ircomm'”

The following profile is equivalent to P5 (it will produce the same
effect but is not creatable via the user interface):

P6 = “NetOut/IPIF:LoIP='192.168.2.10'/ILL/
PPP:User='foo',Pass='bar'/Script:LogS=[…………]/
Serial:DevN='ircomm'”

Serial Plug-ins
There is a serial interface node and a serial plug-in that provide an
interface to serial communication hardware:

• Serial Interface

• Serial Plug-in

Serial Interface
All serial profiles must start with the SerialMgr interface. This
interface serves as the top-level serial component in the system. It is
not a plug-in, but rather an interface, below which all other serial
plug-ins must reside.

Profiles define a number of parameters for the SerialMgr interface,
and these are listed in Table 2.8.

Connection Manager Plug-ins
Serial Plug-ins

42 Exploring Palm OS: High-Level Communications

Here is an example of a profile string for a port based on a device
named “SERIAL”:

“SerialMgr:crea=1234,feat=0x00001000,mbrt=115200,hsbr=300,hna
m='Cradle port',lpid=0/
Serial:Baud=9600,FCtl=0x80000000,Bits=0x30,DevN='SERIAL'”

Table 2.8 SerialMgr interface parameters

Parameter Type Description

'crea' unsigned integer The port ID that is returned by
SrmGetDeviceInfo() in
DeviceInfoType.serDevCreator. This ID can
be used to open a port. Profiles defining IrComm
and RfComm will use the legacy IDs 'ircm' and
'rfcm', respectively.

'feat' unsigned integer Defines the port capabilities (serDevCradlePort,
serDevRS232Serial, etc.), which are returned by
SrmGetDeviceInfo() in
DeviceInfoType.serDevFtrInfo.

'mbrt' unsigned integer Maximum baud rate supported by the port, which
is returned by SrmGetDeviceInfo() in
DeviceInfoType.serDevMaxBaudRate.

'hsbr' unsigned integer Always set this parameter to zero.

'hnam' string The name to be used for this port in the user
interface. This name is returned by
SrmGetDeviceInfo() in
DeviceInfoType.serDevPortInfoStr. This
name must be localized.

'lpid' unsigned integer Optional. Defines the mapping of this port to a
Serial Manager logical port ID (for example,
serPortCradlePort; constants are defined in
SerialMgrLib.h). There must be only one profile
defining each logical port.

Connection Manager Plug-ins
USB Plug-in

Exploring Palm OS: High-Level Communications 43

Serial Plug-in
The Serial plug-in provides an interface to serial communication
hardware. It registers itself with the Connection Manager under the
name “Serial”.

The Serial plug-in has a user interface that is accessed via the Serial
tab in the Connection application. This tab allows the user to set
certain configuration parameters such as the device name, baud
rate, number of data and stop bits, parity, etc.

The complete list of parameters that you can set or get for the Serial
plug-in is shown in Table 2.9.

USB Plug-in
The USB plug-in provides an interface to USB hardware. It registers
itself with the Connection Manager under the name “USBSerial”.

Table 2.9 Serial plug-in parameters

Parameter Type Description

'Baud' unsigned integer Baud rate. Standard baud rate constants are defined
in termios.h. All baud rates are not supported by all
serial hardware.

'FCtl' unsigned integer Flow control configuration. Specify CTSFLOW,
RTSFLOW, or CRTSCTS (constants are defined in
termios.h).

'Bits' unsigned integer Number of data bits. Specify CS5, CS6, CS7, or CS8
(constants defined in termios.h).

'Stop' unsigned integer Number of stop bits. For 1 stop bit specify 0, or for 2
stop bits specify CSTOPB (constants defined in
termios.h).

'Prty' unsigned integer Parity setting. For no parity specify 0, for even
parity specify PARENB, or for odd parity specify
PARENB|PARODD (constants defined in termios.h).

'DevN' string Name of IOS driver that will be opened when
connecting the profile.

Connection Manager Plug-ins
Infrared Plug-in

44 Exploring Palm OS: High-Level Communications

The complete list of parameters that you can set or get for the USB
plug-in is shown in Table 2.10.

The USB plug-in uses the other serial plug-in parameters when
creating the default USB profiles so that the profiles will mimic a
serial interface. These serial paramters have no effect on the
connection, however.

Infrared Plug-in
The Infrared plug-in provides an interface to infrared (IR) hardware.
It registers itself with the Connection Manager under the name
“IRIF”.

The Infrared plug-in configures itself automatically and has no
parameters.

Here is an example profile string for PPP over infrared:

“NetOut/IPIF/PPP:User='foo',Pass='bar'/IRIF”

Bluetooth Plug-in
The Bluetooth plug-in provides an interface to Bluetooth hardware.
It registers itself with the Connection Manager under the name
“Bluetooth”.

The Bluetooth plug-in has a user interface that is accessed via the
Bluetooth Connection application. This tab allows the user to set
certain configuration parameters such as the Bluetooth device

Table 2.10 USB plug-in parameters

Parameter Type Description

'Func' unsigned integer 32-bit creator code that defines what the function of
the USB connection is, for example, 'sync' for
HotSync.

'DevN' string Name of IOS USB serial driver that will be opened
when connecting the profile. This must be
USBSERIAL.

Connection Manager Plug-ins
Bluetooth Plug-in

Exploring Palm OS: High-Level Communications 45

name, whether to authenticate the connection, and whether to
encrypt the data.

The complete list of parameters that you can set or get for the
Bluetooth plug-in is shown in Table 2.11.

Table 2.11 Bluetooth plug-in parameters

Parameter Type Description

'addr' string 48-bit Bluetooth device address of the remote device formatted
as six one-byte values expressed in hex and separated by colons
(for example '98:76:54:ab:CD:ef'). If this parameter is not
specified, then a device discovery operation is performed.

'cod' string Class-of-device. Used for filtering the devices that are displayed
to the user if a discovery procedure is used to determine the
remote device address. Valid values are: 'computer', 'pda',
'phone', 'modem', or 'lan'. If no class-of-device parameter is
specified, then the discovery procedure displays devices of all
classes.

Developers are discouraged from specifying a value for 'cod',
'cod2', and 'cod3' because there is no reliable correlation
between a remote device’s class of device and the services it
provides.

'cod2' string A second class-of-device that takes the same values as 'cod'.

'cod3' string A third class-of-device that takes the same values as 'cod'.

'prot' string Bluetooth protocol to use, either 'l2cap' or 'rfcomm'. If not
specified, then 'rfcomm' is used.

'intf' string Which standard interface, if any, to present above the Bluetooth
protocol entity. Only the value 'serial' is supported.

Connection Manager Plug-ins
Bluetooth Plug-in

46 Exploring Palm OS: High-Level Communications

To determine the values for parameters whose values are not
explicitly specified, the Bluetooth plug-in uses any contextual
information present in the profile. That is, it looks for those values in
plug-ins and interfaces to the left of Bluetooth in the profile string.

You should never programmatically create a profile containing only
the Bluetooth plug-in (a Bluetooth terminal profile) because these
must always be kept in sync with the Bluetooth favorites list and the
Bluetooth cache information. The recommended way to create a

'sci' string Service class identifier to look for in the
ServiceClassIDList attribute of the remote service record.
If more than one service class identifier is specified (by using the
sciN parameters), they are searched in sequence one at a time.
The search ends as soon as one is found.

Valid values are: 'SerialPort', 'LANAccessUsingPPP',
'DialupNetworking', 'OBEXObjectPush'; or a 128-bit UUID
expressed by exactly 32 hex digits, for example,
'0123456789abcdef0123456789abcdef'. (If specifying a UUID, the
hex digits are not bracketed or preceded by 0x.)

If PPP is used above Bluetooth and no sciN parameter is
specified, and the class-of-device is 'phone' or 'modem', then
sci='DialupNetworking'. If the class-of-device is 'lan' or
'computer', then sci='LANAccessUsingPPP'.

If Serial or Telephony are used above Bluetooth and no sciN
parameter is specified, then sci='SerialPort'.

'sci2' string Service class id to look for if that specified by 'sci' is not found.

'sci3' string Service class id to look for if those specified by 'sci' and 'sci2' are
not found.

'auth' string Authentication required. Specify either 'yes' (default if 'encr' is
set to 'yes') or 'no' (default if 'encr' is set to 'no').

'encr' string Encryption required; implies authentication is required. Specify
either 'yes' or 'no' (default).

Table 2.11 Bluetooth plug-in parameters (continued)

Parameter Type Description

Connection Manager Plug-ins
Telephony Plug-ins

Exploring Palm OS: High-Level Communications 47

Bluetooth terminal profile is to sublaunch the Bluetooth panel to
add a new favorite device. Once the device has been added to the
favorites list, you can still programmatically add or modify profile
parameters, except for 'addr' and all 'codN' parameters, which must
never be changed.

Telephony Plug-ins
There are two telephony plug-ins that provide an interface to phone
hardware:

• Phone Plug-in

• DataCall

Phone Plug-in
The phone plug-in registers itself with the Connection Manager
under the name “Phone”.

The Phone plug-in has a user interface that is accessed via the Phone
tab in the Connection application. This tab allows the user to choose
the phone driver.

The Phone plug-in has only one parameter, listed in Table 2.12.

DataCall
The DataCall plug-in registers itself with the Connection Manager
under the name “DataCall”.

The DataCall plug-in has a user interface that is accessed via the
DataCall tab in the Connection application. This tab allows the user
to set certain parameters such as the phone connection type and
phone number to dial for analog connections.

The complete list of parameters that you can set or get for the
DataCall plug-in is shown in Table 2.13.

Table 2.12 Phone plug-in parameters

Parameter Type Description

'Drvr' unsigned integer The creator of the phone driver to use.

Connection Manager Plug-ins
Telephony Plug-ins

48 Exploring Palm OS: High-Level Communications

Table 2.13 DataCall plug-in parameters

Parameter Type Description

'Type' unsigned integer Only the value 0, for analog connections, is
supported.

'Dial' string The phone number to dial, for analog connections.

PalmSource FrameMaker Templates 49

3
Connection Manager
Reference
The Connection Manager allows other applications to access, add,
modify, and delete connection profiles contained in the Connection
Manager database, and to make and terminate connections.

This chapter provides reference material for the Connection
Manager API declared in the header file CncMgr.h:

• Connection Manager Structures and Types

• Connection Manager Constants

• Connection Manager Notifications

• Connection Manager Functions

For more information on the Connection Manager, see Chapter 1,
“Connections,” on page 3.

Connection Manager Structures and Types
This section describes data structures and types used by Connection
Manager functions.

CncConnectionStateType Struct
Purpose Contains information about the connection state. This structure is

returned by the CncConnectReceiveState() function.

Declared In CncMgr.h

Prototype typedef struct CncConnectionStateTag {
 int32_t asyncId;
 uint32_t profileId;
 status_t error;
 int32_t fd;

Connection Manager Reference
CncConnectionStateType

50 PalmSource FrameMaker Templates

 uint16_t state;
 uint16_t prgResoureId;
 uint32_t prgModuleCreator;
 uint32_t prgModuleType;
 uint16_t prgStringId;
 uint16_t prgIconId;
} CncConnectionStateType;

Fields asyncId
Asynchronous operation ID used instead of the file
descriptor (in the fd field) for asynchronous connection
operations. This identifies which asynchronous operation
this structure refers to.

profileId
ID of the connected profile.

error
Error returned by a plug-in or the Connection Manager.
Possible Connection Manager errors include:
cncErrMemory, cncErrInvalidParam,
cncErrObjectTableFull, cncErrObjectNotFound,
cncErrCommunication,
cncErrMandatoryParameterNotFound. For details on
these errors, see “Error Codes” on page 60.

fd
File descriptor of the IOS connection.

state
Indicates the connection state. Possible values include:

#define kCncConnectedState 0
Connected.

#define kCncConnectingState 1
Connecting.

#define kCncDisconnectedState 2
Disconnected.

#define kCncDisconnectingState 3
Disconnecting.

prgResoureId
Resource ID of the code module associated with this
connection.

Connection Manager Reference
CncControlType

PalmSource FrameMaker Templates 51

prgModuleCreator
Creator code of the database that contains progress
information for this connection.

prgModuleType
Type code of the database that contains progress information
for this connection.

prgStringId
ID of the string containing progress status for this
connection. This value, along with prgIconId, is useful for
an application that wants to connect without using the
default progress dialog. The application can use this
information to update its own status display.

prgIconId
ID of the icon associated with progress status for this
connection.

CncControlType Struct
Purpose Contains information about an object. This structure is used by the

CncObjectControl() function.

Declared In CncMgr.h

Prototype typedef struct CncControlTag {
 uint16_t size;
 uint16_t session;
 status_t error;
 uint32_t Id;
 int16_t index;
 int16_t count;
 uint32_t data;
} CncControlType;

Fields size
Size of the whole data structure passed in the controlP
parameter to CncObjectControl(). Must be supplied by
the caller of CncObjectControl().

session
Session identifier to use for CncSrv... functions. The
Connection Manager supplies this value to plug-ins as they
are called.

Connection Manager Reference
CncEditMode

52 PalmSource FrameMaker Templates

error
Error returned from the plug-in function call. This value is set
by the plug-in.

Id
Object ID of a plug-in or profile. Must be supplied by the
caller of CncObjectControl(). If you specify a plug-in,
only that plug-in’s control function is called. If you specify a
profile, the control function for each plug-in in the profile is
called.

index
Index of the current plug-in in the profile, or -1 if the Id field
specifies a single plug-in. The Connection Manager supplies
this value to plug-ins as they are called.

count
Number of plug-ins in the profile, or -1 if the Id field
specifies a single plug-in. The Connection Manager supplies
this value to plug-ins as they are called.

data
Function-specific data to be passed to the function and/or
returned from it.

CncEditMode Typedef
Purpose Specifies a mode of operation for the Connection application.

Declared In CncMgr.h

Prototype typedef uint32_t CncEditMode;

Constants #define kCncTechnologyMode ((CncEditMode) 1)
Display a list of communications technologies that can be
configured. This lists consists of all profiles that begin with
the kCncTechnologiesRoot interface.

#define kCncProfileMode ((CncEditMode) 2)
Display a list of profiles associated with a communications
technology, for example network connections.

#define kCncNewMode ((CncEditMode) 4)
Display the profile creation form.

#define kCncDeleteMode ((CncEditMode) 8)
Display the profile deletion form.

Connection Manager Reference
CncFindOptionsType

PalmSource FrameMaker Templates 53

#define kCncEditMode ((CncEditMode) 16)
Display the configuration form, for setting component
parameters. Each plug-in in the profile is displayed in a
separate tab so that the user can configure each plug-in that
defines a configuration form.

#define kCncFullMode (kCncTechnologyMode |
kCncProfileMode | kCncNewMode | kCncDeleteMode |
kCncEditMode)

Reserved for future use.

#define kCncPanelMode (kCncProfileMode |
kCncNewMode | kCncDeleteMode | kCncEditMode)

Reserved for future use.

#define kCncAppSwitchMode ((CncEditMode) 0x8000)
The configuration application is launched via an application
switch; otherwise, the application is sublaunched.

#define kCncNoDoneButtonMode ((CncEditMode)
0x4000)

The configuration application must not display the Done
button.

See Also CncProfileEdit()

CncFindOptionsType Typedef
Purpose Specifies the kind of object to find. These constants can be ORed.

Declared In CncMgr.h

Prototype typedef uint32_t CncFindOptionsType;

Constants #define kCncFindAllObjects ((CncFindOptionsType)
kCncAllObjects)

Find all objects.

#define kCncFindPluginObjects
((CncFindOptionsType) kCncPluginObject)

Find only plug-in objects.

#define kCncFindInterfaceObjects
((CncFindOptionsType) kCncInterfaceObject)

Find only interface objects.

Connection Manager Reference
CncFindOptionsType

54 PalmSource FrameMaker Templates

#define kCncFindProfileObjects
((CncFindOptionsType) kCncProfileObject)

Find only profile objects.

#define kCncFindTemplateObjects
((CncFindOptionsType) kCncTemplateObject)

Find only template objects.

#define kCncFindLinkObjects ((CncFindOptionsType)
kCncLinkObject)

Find only link objects.

#define kCncFindAvailableOnly
((CncFindOptionsType) 0x100)

Find only objects that have availability different from
kCncNotAvailable and
kCncPercentBaseAvailability (0%); these are all
available objects.

#define kCncFindUsableOnly ((CncFindOptionsType)
0x200)

Find only objects that have the kCncUsableOption flag.

#define kCncFindInvisible ((CncFindOptionsType)
0x400)

Find objects that are both visible (have the
kCncVisibleOption flag) and invisible (without the
kCncVisibleOption flag). If the kCncFindInvisible
flag is not set, then invisible objects are not found.

#define kCncFindDefault (kCncFindProfileObjects)
Find only profile objects, which is the default.

#define kCncFindAllCountMax 128
Maximum count of objects returned by
CncObjectFindAll().

See Also CncObjectFindAll(), CncProfileFindFirst()

Connection Manager Reference
CncInfoType

PalmSource FrameMaker Templates 55

CncInfoType Struct
Purpose Contains information about a Connection Manager object (plug-in,

interface, or profile).

Declared In CncMgr.h

Prototype typedef struct CncInfoTag {
 char name[kCncMaxNameLength + 1];
 uint32_t objectId;
 uint8_t version;
 uint8_t type;
 uint16_t count;
 uint8_t priority;
 uint8_t availability;
 uint16_t options;
 uint32_t manualId;
} CncInfoType;

Fields name
Name of the object (read/write field).

objectId
Object unique ID (read-only field).

version
Version of the object (read-only field).

type
Type of the object (read/write field). One of the constants
listed in “Object Types” on page 63.

count
For a profile, the number of plug-ins and interfaces in it; for a
plug-in or interface, the number of profiles that include it
(read-only field).

priority
Priority number of the profile (read/write field). 0 is the
lowest priority. The priority is used only when a profile is
first added to a list of similar profiles, to determine where in
the list to insert it. Profiles of the same connection type are
listed in order from high priority to low priority.

This value is set by the user via the Connection application,
or programmatically by CncObjectSetInfo().

Connection Manager Reference
CncInfoType

56 PalmSource FrameMaker Templates

availability
Indicates if the profile can connect at this time (read/write
field). By default, all profiles have an availability of
kCncProfileAvailable. Possible values include:

#define kCncProfileUnknownAvailability 0
Unknown availability. The Connection manager will
try to dynamically determine the availability when
asked by querying each plug-in in the profile.

#define kCncProfileAvailable 1
Profile can connect.

#define kCncPercentBaseAvailability 100
The profile is available with a defined percentage, as
for a phone signal strength for example. A value
between kCncPercentBaseAvailability and
kCncPercentBaseAvailability+100 represents
a percentage of availability between 0 and 100.

#define kCncProfileNotAvailable 255
Profile cannot connect.

options
Flags that set various characteristics of the object. These
constants can be ORed together.

#define kCncHasUIOption 0x8000
Plug-in has a user interface form and a form handler.

#define kCncHasConnectOption 0x4000
Plug-in has a connect callback function.

#define kCncHasFriendlyNameOption 0x2000
Plug-in has a friendly name

#define kCncIsConnectedOption 0x1000
Profile is connected.

#define kCncUsableOption 0x0001
Object is usable for obtaining connect information.

#define kCncVisibleOption 0x0002
Object is visible. When this flag is cleared, the object
becomes “invisible” to searches and won’t be found
by the find functions. Generic template profiles that
are never connected or searched are typically made

Connection Manager Reference
CncInfoType

PalmSource FrameMaker Templates 57

invisible; they only appear in the template list to be
copied as the basis of a new profile.

#define kCncUnsearchableOption 0x0004
Object is searchable by search operations.

#define kCncReadOnlyOption 0x0008
Object is read-only and cannot be changed.

#define kCncReplaceOnUsingOption 0x0010
Profile must be copied even if it is referenced by a
{USING} macro.

#define kCncUndeletableOption 0x0020
Object cannot be deleted.

#define kCncPersistentOption 0x0040
The profiles attached to the plug-in or interface are
persistent.

#define kCncManualModeOption 0x0080
For Internet profiles, the Connection Manager uses the
ID specified in the manualId field when trying to
connect. If this flag is not set, the Connection Manager
uses the first available and usable Internet profile. The
configuration application changes this option when
the user taps the Automatic/Manual buttons in the
Internet profiles list.

#define kCncUserCanChangeModeOption 0x0100
User can change the manual/automatic mode for this
plug-in or interface. This option is used by the
configuration application.

#define kCncTestableOption 0x0200
This plug-in is testable. If a plug-in has this option set,
then the Connection application displays a “Test”
button in place of the “Go Online” button for profiles
attached to this plug-in. Tapping this button causes
the Connection application to call
CncObjectControl() and to send the
kCncControlTest request to the selected profile.

Connection Manager Reference
CncParameterType

58 PalmSource FrameMaker Templates

manualId
ID of the Internet profile to connect, if
kCncManualModeOption is set in the options field (read/
write field).

See Also CncObjectFindAll(), CncObjectGetInfo(),
CncObjectSetInfo()

CncParameterType Struct
Purpose Contains information about a parameter of a profile item. This

structure is used by the CncProfileGetParameters() and
CncProfileSetParameters() functions.

Declared In CncMgr.h

Prototype typedef struct CncParameterTag {
 uint32_t name;
 uint16_t size;
 uint8_t type;
 uint8_t reserved;
 union {
 int32_t asInteger;
 char *asString;
 uint8_t *asBinary;
 } value;
} CncParameterType;

Fields name
Parameter name.

size
Size of the parameter value in bytes.

type
Parameter type; one of the constants listed in “Parameter
Types” on page 63.

reserved
Reserved for system use.

value
Parameter value.

Connection Manager Reference
Control Requests

PalmSource FrameMaker Templates 59

Connection Manager Constants
This section describes constants used by Connection Manager
functions.

Connection Options
Purpose Flags that control how a connection is made.

Declared In CncMgr.h

Constants #define kCncConnectProgressUI 1
Allows the Connection Manager to display the progress
indicator during the connection process.

#define kCncConnectChooserUI 2
Reserved for future use.

#define kCncConnectDisableFallback 4
Disables the automatic fallback mechanism. The fallback
mechanism tries to make a connection using the first
available and usable profile, and if it fails, the next one is
tried, and so on.

#define kCncConnectDisableReconnection 8
Reserved for future use.

#define kCncConnectAsynchronous 16
Causes the function to return immediately without waiting
for the connection completion. The caller must call
CncConnectReceiveState() to determine connection
progress and status.

See Also CncProfileConnect(), CncProfileFindConnect()

Control Requests
Purpose Specify the type of request to send to a plug-in via the

CncObjectControl() function.

Declared In CncMgr.h

Constants #define kCncControlTest 0x00000080
Requests the plug-in to perform a test function. Built-in plug-
ins currently don’t support such a function.

Connection Manager Reference
Error Codes

60 PalmSource FrameMaker Templates

#define kCncControlUserChange 0x00000081
Notifies the plug-in that a profile it is part of has changed.
Some plug-ins may want to do some kind of update in this
case. The Connection application sends this request code to
all plug-ins in a profile when the profile is changed.

#define kCncControlAvailability 0x00000082
Requests the plug-in to check its availability. The Connection
Manager uses this request code to check the availability of
plug-ins in a profile. All built-in plug-ins support this
request.

Error Codes
Purpose Error codes returned by Connection Manager functions.

Declared In CncMgr.h

Constants cncErrInvalidParam
One or more of the function parameters is invalid.

cncErrOpenFailed
The Connection Manager failed to open a session with the
Connection Manager server.

cncErrObjectTableFull
There are too many locked profiles (from all sessions).
Unlock some profiles and try again.

cncErrInvalidPluginModule
The specified plug-in module is invalid.

cncErrMemory
Not enough free memory to perform the requested
operation.

cncErrNotImplemented
The requested operation is not implemented.

cncErrObjectNotFound
The specified object cannot be found in the database.

cncErrCannotAllocateObject
Cannot allocate a new object in the database.

Connection Manager Reference
Error Codes

PalmSource FrameMaker Templates 61

cncErrObjectFull
Cannot add a new item in the object because the item count
limit is reached.

cncErrIndexOutOfRange
The specified index is out of range.

cncErrDatabase
The Connection Manager database cannot be opened or
created.

cncErrCommunication
The application cannot communicate with the Connection
Manager.

cncErrPluginModuleInitFailed
Failed to initialize the plug-in module.

cncErrInvalidObject
The specified object is invalid.

cncErrObjectAlreadyExists
Cannot create a new object with the same name as an existing
object.

cncErrMandatoryParameterNotFound
A parameter required to make a connection is not defined for
a plug-in.

cncErrModuleAlreadyLoaded
Internal error.

cncErrNoPluginForm
A plug-in is involved in the configuration application but
does not have a configuration form.

cncErrSessionTableFull
There are too many locked profiles (from the current session).
Unlock some profiles in the current session and try again.

cncErrExclusiveObject
Tried to lock an object while another client has exclusive
access to it.

cncErrObjectInUse
Attempt to delete a locked object.

Connection Manager Reference
Object Information Flags

62 PalmSource FrameMaker Templates

cncErrAlreadyDisconnecting
Attempt to disconnect a profile while the profile is already in
a disconnecting or disconnected mode.

cncErrUndeletableObject
Attempt to delete an object that has the
kCncUndeletableOption option flag.

cncErrReadOnlyObject
Attempt to change an object that has the
kCncReadOnlyOption option flag.

Object Information Flags
Purpose Specify which fields in the CncInfoType structure are set by the

CncObjectSetInfo() function.

Declared In CncMgr.h

Constants #define kCncNameInfoFlag 1
The name field.

#define kCncPriorityInfoFlag 2
The priority field.

#define kCncAvailabilityInfoFlag 4
The availability field.

#define kCncOptionsInfoFlag 8
The options field.

#define kCncOptionsSetInfoFlag 16
Set to 1 (with an OR operation) the bits specified in
infoP.options.

#define kCncOptionsClearInfoFlag 32
Set to 0 (with an AND NOT operation) the bits specified in
infoP.options.

#define kCncOptionsInvertInfoFlag 64
Invert (with an XOR operation) the bits specified in
infoP.options.

#define kCncToggleTemplateInfoFlag 128
Changes a profile that is not a template into a template; or
changes a template profile into a regular profile. This flag

Connection Manager Reference
Parameter Types

PalmSource FrameMaker Templates 63

toggles the setting of the infoP.type field between
kCncProfileObject and kCncTemplateObject.

#define kCncManualIdInfoFlag 256
Sets the default profile attached to a top-level plug-in; this
profile is then used in manual mode.

#define kCncToggleLinkInfoFlag 512
Changes a profile into a link; or changes a link into a regular
profile. This flag toggles the setting of the infoP.type field
between kCncProfileObject and kCncLinkObject.

Object Types
Purpose Specify the type of an object.

Declared In CncMgr.h

Constants #define kCncPluginObject 0x01
Plug-in object.

#define kCncInterfaceObject 0x02
Interface object.

#define kCncProfileObject 0x04
Profile object.

#define kCncTemplateObject 0x08
Template object.

#define kCncLinkObject 0x10
Template object.

Parameter Types
Purpose Specify the type of value stored for a parameter in a connection

profile.

Declared In CncMgr.h

Constants #define kCncUndefinedParameterType 0
Undefined type. When setting parameters, use this type to
remove a parameter from a profile.

Connection Manager Reference
Profile Move Constants

64 PalmSource FrameMaker Templates

#define kCncIntegerParameterType 1
Integer type (int32_t).

#define kCncStringParameterType 2
String type (zero terminated).

#define kCncBinaryParameterType 3
Binary data type.

Profile Move Constants
Purpose Specify how to move a profile in a list of profiles for a particular

connection type.

Declared In CncMgr.h

Constants #define kCncMoveUp -1
Move the profile one position closer to the top of the list.

#define kCncMoveDown +1
Move the profile one position lower in the list.

#define kCncMoveAsDefault -128
Move the profile to the top of the list, so it becomes the
default profile for the connection type.

#define kCncMoveLast 127
Move the profile to the end of the list.

See Also CncObjectMoveItem()

Connection Manager Notifications

cncNotifyConnectionStateEvent
Purpose Broadcast by the Connection Manager whenever the connection

state of a persistent profile changes (a persistent profile is connected
or disconnected on error or on user request, or the availability of the
profile changes).

Connection Manager Reference
CncCloseSession

PalmSource FrameMaker Templates 65

Declared In NotifyMgr.h

Prototype #define cncNotifyConnectionStateEvent 'cncc'

Parameters None.

Comments This notification carries no data, so notification clients will need to
query the persistent profiles they are interested in to update their
state information.

Connection Manager Functions

CncCloseSession Function
Purpose Closes the interprocess communication channel session with the

Connection Manager server.

Declared In CncMgr.h

Prototype void CncCloseSession(void)

Parameters None.

Returns None.

Comments Generally, you do not need to call this function because the
Connection Manager closes the session when your application exits.

You might want to use this function to close a session in order to
free the session resources if your application no longer needs to use
the Connection Manager, but continues running.

If a session is not open, this function does nothing.

See Also CncGetOrOpenSession()

Connection Manager Reference
CncConnectReceiveState

66 PalmSource FrameMaker Templates

CncConnectReceiveState Function
Purpose Blocks until a connection status message from the Connection

Manager server is available and then returns it.

Declared In CncMgr.h

Prototype status_t CncConnectReceiveState
(CncConnectionStateType *stateP)

Parameters ← stateP
Pointer to a CncConnectionStateType structure that
contains the current state of the connection.

Returns Returns errNone if the function was successful or returns an error
code if not successful.

Comments When you call this function to connection check status, make sure
that the ID returned in stateP→asyncID matches the
asynchronous ID returned by your connection call. This ensures that
you are getting the status of the correct asynchronous operation, in
case there are more than one in progress.

After calling this function, wait until stateP→state is
kCncConnectedState before attempting to send or receive data.
This signals that the connection process is finished and the
stateP→fd field is set to the file descriptor of the connection.
Other intermediate states can be used to update a custom progress
UI.

The calling application may want to use IOSPoll() on the session
file descriptor (returned by CncGetSession()) to know when to
call this function.

Before calling CncConnectReceiveState(), the application
must have previously called CncProfileConnect() or
CncProfileFindConnect() in asynchronous mode.

For an example of how to poll using IOSPoll(), see “Connecting
From a Stored Profile” on page 19.

Connection Manager Reference
CncEdgeNew

PalmSource FrameMaker Templates 67

CncEdgeDelete Function
Purpose Deletes an edge (a relationship between two nodes) from the

Connection Manager graph.

Declared In CncMgr.h

Prototype status_t CncEdgeDelete(uint32_t fromId,
uint32_t toId)

Parameters → fromId
Start node of the edge; that is, the ID of a plug-in or interface
that defines the start of an edge. You can use
CncObjectGetIndex() to obtain an object ID.

→ toId
End node of the edge; that is, the ID of a plug-in or interface
that defines the end of an edge.

Returns Returns the following result codes:

errNone
No error; the edge is deleted.

cncErrObjectNotFound
The specified start or end nodes do not exist.

CncEdgeNew Function
Purpose Adds a Connection Manager graph edge (relationship) between two

nodes (plug-ins or interfaces) in the Connection Manager database.

Declared In CncMgr.h

Prototype status_t CncEdgeNew(uint32_t fromId,
uint32_t toId)

Parameters → fromId
Start node of the edge; that is, the ID of a plug-in or interface
that defines the start of the edge. The start node represents a
plug-in or interface that uses the node identified by toId; it’s
“above” the end node in a communications stack. You can
use CncObjectGetIndex() to obtain an object ID.

Connection Manager Reference
CncGetOrOpenSession

68 PalmSource FrameMaker Templates

→ toId
End node of the edge; that is, the ID of a plug-in or interface
that defines the end of the edge, below the node identified by
fromId, hierarchicaly.

Returns Returns the following result codes:

errNone
No error; the edge is created.

cncErrObjectNotFound
The specified start or end nodes do not exist.

cncErrObjectFull
A new edge cannot be added to toId.

cncErrMemory
Cannot allocate memory for the edge.

Comments Use this function in an application that needs a private interface
node to link an interface with one or more nodes of the Connection
Manager graph.

CncGetOrOpenSession Function
Purpose Returns the existing interprocess communication channel session

with the Connection Manager server. If a session is not already
open, this function opens a new session.

Declared In CncMgr.h

Prototype int32_t CncGetOrOpenSession(void)

Parameters None.

Returns Returns the file descriptor of the session. A returned value of -1
means that a session could not be opened with the Connection
Manager server.

Comments The session ID is a file descriptor. Use this function if you want to
call asynchronous functions and want to use IOSPoll() to wait for
Connection Manager server replies.

Generally, you do not need to call this function to open a session
because the Connection Manager automatically opens a session

Connection Manager Reference
CncInterfaceNew

PalmSource FrameMaker Templates 69

when your application makes Connection Manager calls that need a
session.

See Also CncCloseSession(), CncGetSession()

CncGetSession Function
Purpose Returns the existing interprocess communication channel session

with the Connection Manager server.

Declared In CncMgr.h

Prototype int32_t CncGetSession(void)

Parameters None.

Returns Returns the file descriptor of the session. A returned value of -1
means that a session is not open with the Connection Manager
server.

Comments The session ID is a file descriptor. Use this function if you want to
call asynchronous functions and want to use IOSPoll() to wait for
Connection Manager server replies. The
CncGetOrOpenSession() function is a more convenient way to
obtain the session file descriptor.

See Also CncGetOrOpenSession()

CncInterfaceNew Function
Purpose Creates an empty interface node and adds it to the Connection

Manager database.

Declared In CncMgr.h

Prototype status_t CncInterfaceNew(const char *nameStr,
uint32_t *Id)

Parameters → nameStr
Pointer to the interface name.

← Id
Pointer to the interface ID that is created. If the name
specified by nameStr already exists, a pointer to that
existing object ID is returned.

Connection Manager Reference
CncObjectControl

70 PalmSource FrameMaker Templates

Returns Returns the following result codes:

errNone
No error.

cncErrMemory
Memory allocation error.

cncErrCannotAllocateObject
The Connection Manager object table is full.

cncErrObjectAlreadyExists

An object already exists with the name nameStr.

Comments An application can use this function to create a private interface
node in the Connection Manager graph. After calling this function,
an application would typically call CncEdgeNew() to create
relationships between the interface node and one or more plug-ins.

CncObjectControl Function
Purpose Calls the control function in a single plug-in or in every plug-in in a

profile.

Declared In CncMgr.h

Prototype status_t CncObjectControl(uint32_t objectId,
uint32_t request, CncControlType *controlP)

Parameters → objectId
ID of the object you want to control. This can be plug-in or a
profile. If a profile is specified, the controlF function is
called for each plug-in in the profile.

→ request
The request code, which is passed to the control function in
the plug-in. This code tells the plug-in what to do.
Universally defined request codes are listed in “Control
Requests” on page 59. Plug-ins can also define their own
request codes.

↔ controlP
Parameters that are passed to the control function; see
CncControlType.

Returns Returns the following result codes:

Connection Manager Reference
CncObjectControl

PalmSource FrameMaker Templates 71

errNone
No error; the object is deleted.

cncErrInvalidParam
One or more function parameters are invalid.

cncErrObjectTableFull
There are too many locked profiles.

cncErrCannotAllocateObject
A new object cannot be allocated.

cncErrSessionTableFull
The object has too many profiles locked in the current
session.

Comments This function serves as a general mechanism for calling directly into
the plug-ins associated with a profile, for control or any other
purpose. Each plug-in should define a controlF function that is
called when CncObjectControl() is invoked.

The request parameter is designed to pass a request code telling
the plug-in what to do. The controlP parameter can contain
custom parameters needed for the request.

The controlP parameter can be of a type other than
CncControlType, but it must have the same first fields as
CncControlType. For example, the structure used for the
kCncControlAvailability request is defined as follows:

typedef struct CncControlAvailabilityTag {
 CncControlType control;
 uint8_t availability;
 uint32_t moduleCreator;
 uint32_t moduleType; }
 CncControlAvailabilityType;

A new session to the Connection Manager server is created to
handle the requests from this function, to avoid conflicting with the
client session.

Connection Manager Reference
CncObjectDelete

72 PalmSource FrameMaker Templates

CncObjectDelete Function
Purpose Deletes a plug-in, interface, or profile from the Connection Manager

database.

Declared In CncMgr.h

Prototype status_t CncObjectDelete(uint32_t nodeId)

Parameters → nodeId
ID of the object to delete. After deletion, the ID is no longer
valid.

Returns Returns the following result codes:

errNone
No error; the object is deleted.

cncErrObjectNotFound
The specified object ID does not exist.

Comments Removing a plug-in or interface also removes all edges and profiles
that use it. Removing a profile also removes profiles that reference
it.

CncObjectFindAll Function
Purpose Searches all items associated with an object.

Declared In CncMgr.h

Prototype status_t CncObjectFindAll(uint32_t objectId,
CncFindOptionsType options, int16_t *countP,
CncInfoType **infoArrayP)

Parameters → objectId
ID of the object in which to search associated items. For
example, specify a profile ID to search all plug-ins associated
with that profile.

→ options
Specifies the kind of object to search for; see
CncFindOptionsType.

← countP
Number of items found.

Connection Manager Reference
CncObjectFindAll

PalmSource FrameMaker Templates 73

↔ infoArrayP
An array of CncInfoType objects for the found items. When
you are done with this array, free it with MemPtrFree(). If
you don’t want the array of items passed back, set this
parameter to NULL on input.

Returns Returns the following result codes:

errNone
No error; the object is deleted.

cncErrMemory
Not enough memory to allocate the array of returned objects.

cncErrInvalidParam
One or more function parameters are invalid.

Comments This function can be used to find a set of profiles at once, instead of
looping with CncProfileFindFirst(),
CncProfileFindNext(), and CncProfileFindClose(). Also,
CncObjectFindAll automatically allocates memory that it needs.

This function not only finds profiles in the database but also finds
profiles created but not yet submitted in the current session.

Returned objects are unlocked.

Example To find all plug-ins registered with the Connection Manager, call
this function like this:

uint32_t profileID;
status_t err;
CncInfoType* profileList = NULL; // the profiles list
int16_t profileCount = 0; // the profiles count
profileID = CncObjectGetIndex(kCncPluginsRoot);
if (0 == profileID) return false;
err = CncObjectFindAll(profileID, kCncFindPluginObjects,
 &profileCount, &profileList);

To find all Internet connection profiles, use this code:

uint32_t profileID;
status_t err;
CncInfoType* profileList = NULL; // the profiles list
int16_t profileCount = 0; // the profiles count
// kCncNetOutgoingInterface is defined in NetCnc.h (TCP/IP)
profileID = CncObjectGetIndex(kCncNetOutgoingInterface);
if (0 == profileID) return false;

Connection Manager Reference
CncObjectGetIndex

74 PalmSource FrameMaker Templates

err = CncObjectFindAll(profileID, kCncFindDefault,
 &profileCount, &profileList);

See Also CncProfileFindFirst()

CncObjectGetIndex Function
Purpose Gets the ID of a plug-in, interface, or profile, by name.

Declared In CncMgr.h

Prototype uint32_t CncObjectGetIndex(const char *nameStr)

Parameters → nameStr
Pointer to the name of the object to return.

Returns Returns the ID of the object. If the name is not found, returns 0.

Comments This function parses all of the Connection Manager database named
records until the name is found or all records are examined.

CncObjectGetInfo Function
Purpose Gets information from the database record of a plug-in, interface, or

profile.

Declared In CncMgr.h

Prototype status_t CncObjectGetInfo(uint32_t recordId,
CncInfoType *infoP)

Parameters → recordId
ID of the object to return information about.

↔ infoP
Pointer to a CncInfoType structure.

Returns Returns the following result codes:

errNone
No error.

cncErrObjectNotFound
The specified object ID does not exist.

Connection Manager Reference
CncObjectMoveItem

PalmSource FrameMaker Templates 75

cncErrInvalidParam
The infoP pointer is not valid (NULL).

See Also CncObjectSetInfo()

CncObjectMoveItem Function
Purpose Changes the order of a profile in the list of profiles attached to a

communications component.

Declared In CncMgr.h

Prototype status_t CncObjectMoveItem(uint32_t itemId,
int16_t newIndexRelative)

Parameters → itemId
The ID of the item to move.

→ newIndexRelative
An offset by which to move the item, such as -1, +3, or one of
the Profile Move Constants. Specify a negative number
to move the item closer to the top of the list and a positive
number to move it lower in the list.

Returns Returns the following result codes:

errNone
No error.

cncErrObjectNotFound
The specified object ID does not exist.

cncErrInvalidParam
One or more function parameters are invalid.

cncErrMemory
Not enough free memory to perform the operation.

cncErrObjectTableFull
There are too many locked profiles.

cncErrIndexOutOfRange
The value specified for newIndexRelative is out of range.

cncErrSessionTableFull
The object has too many profiles locked in the current
session.

Connection Manager Reference
CncObjectSetInfo

76 PalmSource FrameMaker Templates

Comments This function can also be used to make a profile the default one in a
list by moving it to the top of the list.

This function does not change the priority of a profile, only its order
in the list.

CncObjectSetInfo Function
Purpose Sets information in the database record of a plug-in, interface, or

profile.

Declared In CncMgr.h

Prototype status_t CncObjectSetInfo(uint32_t recordId,
CncInfoType *infoP, uint32_t flags)

Parameters → recordId
ID of the object to set information about.

→ infoP
Pointer to CncInfoType structure that contains the
information to set.

→ flags
Flags indicating which fields to set. Specify values from the
Object Information Flags.

Returns Returns the following result codes:

errNone
No error.

cncErrObjectNotFound
The specified object ID does not exist.

cncErrInvalidParam
The infoP pointer is not valid (NULL).

See Also CncObjectGetInfo()

Connection Manager Reference
CncParametersInit

PalmSource FrameMaker Templates 77

CncParametersFree Function
Purpose Frees all binary and string parameters in an array of parameters.

Use this function after calling CncProfileGetParameters() to
free allocated memory.

Declared In CncMgr.h

Prototype void CncParametersFree
(CncParameterType parameters[])

Parameters ↔ parameters
An array of CncParameterType structures.

Returns None.

See Also CncParametersInit()

CncParametersInit Function
Purpose Initializes a CncParameterType array.

Declared In CncMgr.h

Prototype void CncParametersInit
(CncParameterType parameters[], int32_t n)

Parameters ↔ parameters
An array of CncParameterType structures.

→ n
The number of elements to initialize (typically the size of the
array).

Returns None.

Comments This function sets the last element in the array of parameters to the
constant kCncParameterTableEnd. The last array element is
required to have this value when setting parameters, so you should
set the value of n to one greater than the number of parameters you
want to set.

See Also CncProfileGetParameters(),
CncProfileSetParameters()

Connection Manager Reference
CncProfileAttach

78 PalmSource FrameMaker Templates

CncProfileAttach Function
Purpose Inserts a profile into the list of profiles attached to a plug-in or

interface.

Declared In CncMgr.h

Prototype status_t CncProfileAttach(uint32_t fromId,
uint32_t toId)

Parameters → fromId
ID of the plug-in or interface to which you want to attach the
profile.

→ toId
ID of the profile to attach.

Returns Returns the following result codes:

errNone
No error.

cncErrObjectNotFound
One of the specified object IDs does not exist.

Comments A plug-in or interface can have several different profiles attached to
it, and these are kept in a list for the plug-in or interface. These are
typically the profiles that have that plug-in or interface as the
topmost component in their sequence, and this defines their
connection type. For example, the TCP/IP plug-in might have three
attached profiles; these each have TCP/IP as the topmost
component.

The order in which CncProfileAttach() inserts the profile into
the list is determined by the profile’s priority (see the priority
field of CncInfoType) relative to the existing profiles in the list.
The list is ordered from highest to lowest priority.

Connection Manager Reference
CncProfileConnect

PalmSource FrameMaker Templates 79

CncProfileConnect Function
Purpose Makes a connection using a stored connection profile.

Declared In CncMgr.h

Prototype int32_t CncProfileConnect(uint32_t profileId,
uint32_t flags, status_t *error)

Parameters → profileId
ID of the connection profile to use to establish a connection.

→ flags
Flags that control how the connection is made. See
“Connection Options” on page 59.

← error
errNone if the connection is successful, or a connection error
returned by lower-level communications services.

Returns If error is errNone, returns the file descriptor of the connection.
Or, if called in asynchronous mode, returns the asynchronous
operation ID, which uniquely identifies this particular
asynchronous operation so that when you call
CncConnectReceiveState() to determine the status, you can be
sure it’s for this operation and not some other.

Comments This function can be called in asynchronous mode with the
kCncConnectAsynchronous flag. In this case, the caller must call
CncConnectReceiveState() to get connection progress and
termination messages. The caller can use IOSPoll() to poll the
Connection Manager session file descriptor in order to know when
to call CncConnectReceiveState().

When you call CncConnectReceiveState() to check status,
make sure that the ID returned in stateP→asyncID matches the
ID returned by CncProfileConnect(). This ensures that you are
getting the status of the correct asynchronous operation, in case
there are more than one in progress.

This function can have multiple user interface side effects. For
example, the user can be prompted for a password or a progress
dialog can be displayed. Some side effects are allowed or disallowed
via the flags parameter.

See Also CncProfileDisconnect(), CncProfileFindConnect()

Connection Manager Reference
CncProfileCopy

80 PalmSource FrameMaker Templates

CncProfileCopy Function
Purpose Creates a new profile by copying a subset of items from an existing

profile.

Declared In CncMgr.h

Prototype status_t CncProfileCopy(uint32_t *profileId,
int16_t from, int16_t to)

Parameters ↔ profileId
On input, a pointer to the ID of a profile to copy. On output,
the ID of the copy of the profile.

→ from
The index of the item in the profile at which to begin copying.

→ to
The index of the last item to copy.

Returns Returns the following result codes:

errNone
No error.

cncErrObjectNotFound
The specified object ID does not exist.

cncErrInvalidParam
One or more function parameters are invalid.

cncErrMemory
Not enough free memory to perform the operation.

cncErrObjectTableFull
There are too many locked profiles.

cncErrIndexOutOfRange
The value specified for from or to is out of range.

cncErrCannotAllocateObject
Cannot allocate a new object in the database.

cncErrSessionTableFull
There are too many locked profiles (from the current session).
Unlock some profiles in the current session and try again.

Comments Use this function to copy a subset of items from a profile and create
a new profile from them. All items beginning with the index from

Connection Manager Reference
CncProfileDecode

PalmSource FrameMaker Templates 81

and through (and including) the index to are copied to the new
profile.

The newly created copy is locked.

CncProfileDecode Function
Purpose Decodes a profile string into a new profile and submits it to the

Connection Manager database.

Declared In CncMgr.h

Prototype uint32_t
CncProfileDecode(const char *profileName,
const char *pathStr)

Parameters → profileName
Pointer to the name of the profile.

→ pathStr
Pointer to the profile path string.

Returns The ID of the unlocked profile, or 0 if an error occurs.

Comments Use this function along with CncProfileEncode() to manipulate
string representations of connection profiles.

You can use this function to easily create a new connection profile,
such as a private connection profile used by an application.

This function submits the newly created profile to the Connection
Manager database and automatically attaches the profile to the first
plug-in (or interface) in the profile. That is, the profile is added to
the list of profiles available for the connection type that corresponds
to the first plug-in. (This function calls CncProfileAttach()
internally.)

Connection Manager Reference
CncProfileDeleteItem

82 PalmSource FrameMaker Templates

CncProfileDeleteItem Function
Purpose Deletes an item (plug-in, interface, or a nested profile) and its

parameters from a locked profile.

Declared In CncMgr.h

Prototype status_t CncProfileDeleteItem(uint32_t lockedId,
uint32_t itemIndex)

Parameters → lockedId
ID of a locked profile.

→ itemIndex
The zero-based index of an item to delete in the profile.

Returns The ID of the locked profile, or 0 if an error occurs.

Comments The profile must first be locked with CncProfileLock() or
CncProfileNew().

CncProfileDisconnect Function
Purpose Disconnects a persistently connected profile or cancels the

connection process.

Declared In CncMgr.h

Prototype status_t CncProfileDisconnect(uint32_t profileId,
uint8_t kind)

Parameters → profileId
ID of the connection profile to disconnect or cancel.

→ kind
The reason for the disconnection; this is passed to the plug-
in. You can specify the following values:

#define kCncUserCancelled 1
The user canceled the connection being made.

#define kCncSystemCancelled 2
The system canceled the connection being made.

#define kCncUserDisconnected 3
The user disconnected the persistent connection.

#define kCncSystemDisconnected 4
The system disconnected the persistent connection.

Connection Manager Reference
CncProfileEdit

PalmSource FrameMaker Templates 83

Returns Returns the following result codes:

errNone
No error.

cncErrObjectNotFound
The ID specified in profileId cannot be found.

cncErrAlreadyDisconnecting
The connection is already being disconnected.

Comments The profile must be connected or in the process of connecting,
otherwise this function returns cncErrObjectNotFound.

See Also CncProfileConnect()

CncProfileEdit Function
Purpose Launches the Connection application and opens the configuration

form associated with the first plug-in of a profile.

Declared In CncMgr.h

Prototype status_t CncProfileEdit(uint32_t *Id,
CncEditMode launchMode,
CncEditMode enabledModes,
CncEditParametersType *params)

Parameters ↔ Id
ID of the profile to configure; the configuration form
associated with the first plug-in in the profile is opened if
launchMode is kCncEditMode. The ID can be for a plug-in
to create or choose a profile beginning with this plug-in.

→ launchMode
Identifies the mode in which the Connection application is to
open. See the CncEditMode type for valid values.

→ enabledModes
Reserved for future use.

↔ params
Reserved for future use.

Returns Returns errNone if the ID parameter is valid and references the
selected profile. Do not assume that this ID is the same as the one

Connection Manager Reference
CncProfileEncode

84 PalmSource FrameMaker Templates

passed in; the user may have switched to another profile or created
a new one.

Comments If the kCncAppSwitchMode bit is set in launchMode, the
Connection application is launched via SysUIAppSwitch(). The
current application is first closed, then the Connection application is
launched.

If the kCncAppSwitchMode bit is not set, the Connection
application is sublaunched via SysAppLaunch() (the Connection
application is launched as a subroutine of the current application).

If the kCncNoDoneButtonMode bit is set in launchMode, the
Connection application does not display a Done button. If the Done
button is shown in the Connection application, tapping it returns to
the calling application, in the case of a SysAppLaunch().

CncProfileEncode Function
Purpose Encodes a profile into an external string representation.

Declared In CncMgr.h

Prototype char* CncProfileEncode(uint32_t profileId,
int16_t index)

Parameters → profileId
ID of the profile to encode.

→ index
The index of a single plug-in within the profile that you want
to encode. If you specify a valid plug-in index, then just the
string representation of that plug-in is encoded. Specify -1 to
encode the whole profile into a string.

Returns The external string representation of the profile (or plug-in), or
NULL if an error occurs. If non-NULL, you must free this by calling
MemPtrFree() when you are done with it.

Comments Use this function along with CncProfileDecode() to manipulate
string representations of connection profiles.

You can use this function to help manage an application’s private
connection profile.

Connection Manager Reference
CncProfileFindConnect

PalmSource FrameMaker Templates 85

CncProfileFindClose Function
Purpose Ends a profile search in the database.

Declared In CncMgr.h

Prototype void CncProfileFindClose(uint32_t searchId)

Parameters → searchId
ID of the search, returned by CncProfileFindFirst().

Returns None.

Comments This function releases any internal data structures used by the find
algorithm.

CncProfileFindConnect Function
Purpose Finds a profile, or creates a profile dynamically, and makes a

connection using it.

Declared In CncMgr.h

Prototype int32_t CncProfileFindConnect(char *profileStr,
uint32_t flags, uint32_t *profileIdP,
status_t *error)

Parameters → profileStr
Pointer to the profile search string (profile name, complete
profile string, or partial profile string); for example,
“NetOut/*”. If you specify a complete profile string, this
function creates a new profile from it rather than searching
the database.

→ flags
Flags that control how the connection is made. See
“Connection Options” on page 59.

↔ profileIdP
Returns a pointer to the ID of the found profile, if a search
was performed. If you don’t need the ID to be returned, you
can set this parameter to NULL on input.

← error
errNone if the connection is successful, or a connection error
returned by lower-level communications services.

Connection Manager Reference
CncProfileFindConnect

86 PalmSource FrameMaker Templates

Returns If error is errNone, returns the file descriptor of the connection.
Or, if called in asynchronous mode, returns the asynchronous
operation ID, which uniquely identifies this particular
asynchronous operation so that when you call
CncConnectReceiveState() to determine the status, you can be
sure it’s for this operation and not some other.

Comments This function internally calls CncProfileFindFirst() to search
for or create a profile string. If profileStr is a profile name or
partial profile string (with “/*” at the end), then
CncProfileFindConnect() finds the first matching profile and
makes a connection with it.

If profileStr is a complete profile string (without “/*” at the end)
then this function creates a new profile from it and makes a
connection from it. The profile is not saved in the Connection
Manager database unless you call CncProfileSubmit(); if you
don’t call CncProfileSubmit(), the profile is automatically
deleted when the Connection Manager session closes.

This function can be called in asynchronous mode with the
kCncConnectAsynchronous flag. In this case, the caller must call
CncConnectReceiveState() to get connection progress and
termination messages. The caller can use IOSPoll() to poll the
Connection Manager session file descriptor in order to know when
to call CncConnectReceiveState().

When you call CncConnectReceiveState() to check status,
make sure that the ID returned in stateP→asyncID matches the
ID returned by CncProfileFindConnect(). This ensures that
you are getting the status of the correct asynchronous operation, in
case there are more than one in progress.

This function can have multiple user interface side effects. For
example, the user can be prompted for a password or a progress
dialog can be displayed. Some side effects are allowed or disallowed
via the flags parameter.

The Connection Manager uses the usability and availability
properties of profiles to determine if it can connect one that it finds.
It won’t try to connect a profile that is not usable or available.
However, if the first plug-in of a profile is in manual mode, the
Connection Manager attempts to connect the profile identified by
CncInfoType.manualId regardless of its usability or availability.

Connection Manager Reference
CncProfileFindFirst

PalmSource FrameMaker Templates 87

Manual mode is indicated for a profile when the
CncInfoType.options field of its first plug-in has the
kCncManualModeOption flag set. For more information on
automatic and manual mode, see “Automatic and Manual Mode
Profiles” on page 11.

An application can use this function to make a connection using a
private connection profile that it has stored as a string.

See Also CncProfileConnect(), CncProfileDisconnect()

CncProfileFindFirst Function
Purpose Begins a profile search in the database and current session, or

creates a new profile.

Declared In CncMgr.h

Prototype uint32_t CncProfileFindFirst(char *searchStr,
CncFindOptionsType options,
uint32_t *searchIdP, status_t *errP)

Parameters → searchStr
Pointer to the search string (profile name, complete profile
string, or partial profile string); for example, “NetOut/*”. If
you specify a complete profile string, this function creates a
new profile from it rather than searching the database.

→ options
Specifies the kind of object to search for; see
CncFindOptionsType.

← searchIdP
Pointer to the new search ID (used by other search functions).
If you specify NULL on input, this indicates you don’t want
the search ID to be returned. In this case, this function
internally calls CncProfileFindClose(), to end the
search before returning.

← errP
errNone if the operation is successful, or an error code if not
successful.

Returns The ID of the first profile matching the search string, or 0 if no
profile is found. The found profile is locked.

Connection Manager Reference
CncProfileFindNext

88 PalmSource FrameMaker Templates

Comments If searchStr is a profile name, this function returns that profile ID
and the value of searchIdP is set to 0.

If searchStr is a complete profile string (without “/*” at the end)
then this function creates a new profile from it and returns the ID of
the newly created profile. The value of searchIdP is set to 0. If you
do not call CncProfileSubmit(), the profile is automatically
deleted when the Connection Manager session closes.

If searchStr is a partial profile string (with “/*” at the end), this
function searches for the first matching profile. The value of
searchIdP is set to a non-zero value and references the search.
This search ID must be passed to CncProfileFindNext() and
CncProfileFindClose(). It’s good practice to call
CncProfileFindClose() to clean up memory when you are
done with the search; it needs to be called only when searchIdP
returns a non-zero value.

To find the next profile that matches the search criteria, call
CncProfileFindNext(); except if you’ve specified a NULL value
for searchIdP on input, in which case the search is closed and no
search ID is returned.

This function also finds profiles created but not yet submitted in the
current session.

See Also CncObjectFindAll()

CncProfileFindNext Function
Purpose Continues a profile search in the database and current session.

Declared In CncMgr.h

Prototype uint32_t CncProfileFindNext(uint32_t searchId,
status_t *errP)

Parameters → searchId
Search ID returned by CncProfileFindFirst().

← errP
errNone if the operation is successful, or an error code if not
successful.

Connection Manager Reference
CncProfileGetItemId

PalmSource FrameMaker Templates 89

Returns The ID of the next profile matching the search criteria established by
CncProfileFindFirst(), or 0 if no more matching profiles are
found. The found profile is locked.

Comments The CncProfileFindFirst() function must be called before
using CncProfileFindNext().

It’s good practice to call CncProfileFindClose() to clean up
memory when you are done with the search, after you have called
CncProfileFindNext() for the last time.

This function also finds profiles created but not yet submitted in the
current session.

See Also CncObjectFindAll()

CncProfileGetItemId Function
Purpose Gets the ID of an item in a profile (a plug-in or interface object) from

its index.

Declared In CncMgr.h

Prototype uint32_t CncProfileGetItemId(uint32_t lockedId,
int16_t index)

Parameters → lockedId
ID of a locked profile. A profile is locked by
CncProfileLock() or CncProfileNew().

→ index
Index (zero-based) of the item in the
profile.

Returns The ID of the plug-in or interface object, or 0 if an error occurs.

See Also CncProfileGetItemIndex()

Connection Manager Reference
CncProfileGetItemIndex

90 PalmSource FrameMaker Templates

CncProfileGetItemIndex Function
Purpose Gets the index of an item in a profile (a plug-in or interface object)

from the item name.

Declared In CncMgr.h

Prototype status_t
CncProfileGetItemIndex(uint32_t lockedId,
int16_t *index, char *nameStr)

Parameters → lockedId
ID of a locked profile. You can obtain the ID of a profile by
calling CncObjectGetIndex() or
CncProfileFindFirst(). A profile is locked by
CncProfileLock() or CncProfileNew().

↔ index
On input, a pointer to the index (zero-based) of the item at
which to begin the search. Use 0 to search the whole profile.
On output, a pointer to the index (zero-based) of the found
item, if no error occurs.

→ nameStr
Pointer to the name of the item to search for.

Returns Returns the following result codes:

errNone
No error.

cncErrObjectNotFound
The specified profile ID does not exist.

cncErrInvalidParam
The indexP pointer is not valid.

See Also CncProfileGetItemId()

Connection Manager Reference
CncProfileGetParameters

PalmSource FrameMaker Templates 91

CncProfileGetLength Function
Purpose Returns the number of items (plug-in and interface objects) in a

profile.

Declared In CncMgr.h

Prototype uint32_t CncProfileGetLength(uint32_t lockedId)

Parameters → lockedId
ID of a locked profile. A profile is locked by
CncProfileLock() or CncProfileNew(). You can obtain
the ID of a profile by calling CncObjectGetIndex() or
CncProfileFindFirst().

Returns The number of items in the profile, or -1 if lockedId is not found.

CncProfileGetParameters Function
Returns parameters of an item (plug-in or interface object) in a
profile.

Declared In CncMgr.h

Prototype status_t CncProfileGetParameters
(uint32_t lockedId, int16_t itemIndex,
int8_t method, CncParameterType parameters[])

Parameters → lockedId
ID of a locked profile. A profile is locked by
CncProfileLock() or CncProfileNew(). You can obtain
the ID of a profile by calling CncObjectGetIndex() or
CncProfileFindFirst().

→ itemIndex
Index (zero-based) of an item (plug-in or interface) in the
profile.

→ method
Flags that determine the scope of the parameter search:

kCncGetParametersItemOnly
Only the item is searched.

kCncGetParametersInherited
The item and previous items (above in the hierarchy)
are searched. If the parameter appears multiple times,

Connection Manager Reference
CncProfileGetParameters

92 PalmSource FrameMaker Templates

the first value found is returned. The profile is parsed
right to left (upwards in the hierarchy).

kCncGetParametersWholeProfile
The whole profile is searched. If the parameter
appears multiple times, the first value found is
returned. The profile is parsed left to right
(downwards in the hierarchy).

kCncGetParametersActive
The profile is searched for dynamic parameters that
are available only in the current Connection Manager
session when a persistent profile is connected. For
example, network plug-ins update a network profile
with the assigned IP address. Such dynamic
parameters exist in the profile in the Connection
Manager session, but are not saved to the profile in the
database.

↔ parameters
On input, an array of CncParameterType structures that
contain the parameter names and types to get; the array
previously should have been initialized by
CncParametersInit(). On output, an array of those
parameter values.

Returns Returns the following result codes:

errNone
No error; the parameters structures are updated with the
parameter values.

cncErrObjectNotFound
The specified profile ID does not exist.

cncErrInvalidParam
The itemIndex or parameters parameter is invalid.

Comments After you are done using the parameter array, you should call
CncParametersFree() to free the memory.

Example

CncParameterType myParams[3];
CncParametersInit(myParams, 3);
myParams[0].name = 'Fctl';
myParams[1].name = 'port';

Connection Manager Reference
CncProfileInsertItem

PalmSource FrameMaker Templates 93

index = 0;
if (CncProfileGetItemIndex(Id, &index, "rs232") == errNone)
{
 CncProfileGetParameters(Id, index, myParams,
kCncGetInherited);
 FlowControl = myParams[0].value.asString;
 PortNumber = myParams[1].value.asInteger;
 // Do something else here
}
CncParametersFree(myParams);

See Also CncProfileSetParameters()

CncProfileInsertItem Function
Inserts an item into a locked profile. Items can be plug-ins,
interfaces, or other profiles.

Declared In CncMgr.h

Prototype status_t CncProfileInsertItem(uint32_t lockedId,
int16_t *atIndex, uint32_t itemId,
CncParameterType parameters[])

Parameters → lockedId
ID of a locked profile. A profile is locked by
CncProfileLock() or CncProfileNew(). You can obtain
the ID of a profile by calling CncObjectGetIndex() or
CncProfileFindFirst().

→ atIndex
Index of an item in the profile at which to insert the new item.
Specify 0 to add the item at the beginning, or
kCncInsertAtEndIndex to add the item at the end of the
profile.

→ itemId
ID of the item to insert in the profile.

→ parameters
An array of CncParameterType structures that contain
parameters associated with the item being inserted. Can be
NULL if there are no parameters.

Returns Returns the following result codes:

Connection Manager Reference
CncProfileLock

94 PalmSource FrameMaker Templates

errNone
No error.

cncErrObjectNotFound
The specified profile ID does not exist.

cncErrInvalidParam
The itemID or parameters parameter is invalid.

Comments To submit the changes to the Connection Manager database and
unlock the profile, call CncProfileSubmit().

If you pass a parameters array to this function, note that the array
is not freed by this function. After you are done using the array, you
should call CncParametersFree() to free the memory.

CncProfileLock Function
Purpose Locks a stored profile.

Declared In CncMgr.h

Prototype status_t CncProfileLock(uint32_t Id)

Parameters → Id
ID of a profile to lock. You can obtain the ID of a profile by
calling CncObjectGetIndex().

Returns Returns the following result codes:

errNone
No error; the profile is locked.

cncErrObjectNotFound
The specified profile ID does not exist.

Comments Use this function to lock a profile before editing it. To submit the
changes to the Connection Manager database and unlock the
profile, call CncProfileSubmit(). To only unlock the profile, call
CncProfileUnlock().

Connection Manager Reference
CncProfileNew

PalmSource FrameMaker Templates 95

CncProfileNew Function
Purpose Creates a new empty, locked profile.

Declared In CncMgr.h

Prototype status_t CncProfileNew(char *profileName,
uint32_t *lockedId)

Parameters → profileName
Pointer to the user-visible name of the profile; for example,
“My Fast Internet Connection”.

← lockedId
Pointer to the ID of the newly created profile. If the name
specified by profileName already exists, a pointer to that
existing object ID is returned.

Returns Returns the following result codes:

errNone
No error; the lockedId parameter is set to the ID of the
newly created profile.

cncErrMemory
There is not enough memory available to create the new
object.

cncErrCannotAllocateObject

The Connection Manager object table is full.

cncErrObjectAlreadyExists

An object already exists with the name profileName.

Comments An application can use this function to create a new empty profile.
To add items, call CncProfileInsertItem(). To submit the
changes to the Connection Manager database and unlock the
profile, call CncProfileSubmit(). To only unlock the profile, call
CncProfileUnlock().

Connection Manager Reference
CncProfileRegroupSubmit

96 PalmSource FrameMaker Templates

CncProfileRegroupSubmit Function
Purpose Resubmits to the Connection Manager database all the subprofiles

within an expanded profile as separate profiles. The main profile is
recompressed by replacing all the subprofiles with references.

Declared In CncMgr.h

Prototype status_t
CncProfileRegroupSubmit(uint32_t lockedId)

Parameters → lockedId
ID of a locked, expanded profile to recompress.

Returns Returns the following result codes:

errNone
No error.

cncErrObjectNotFound
The specified profile ID is not found.

Comments This function works only if the profile was expanded by a call to
CncProfileUngroup(), where the regroupTags parameter was
set to true.

All individual subprofiles that exist in the main profile are saved in
the Connection Manager database as separate profiles and are
unlocked. The main profile is recompressed, submitted to the
database, and unlocked.

If there are no subprofiles in the specified profile, then this function
has the same effect as CncProfileSubmit().

See Also CncSubProfileAssign()

Connection Manager Reference
CncProfileSetParameters

PalmSource FrameMaker Templates 97

CncProfileSetParameters Function
Purpose Sets the parameters of an item (plug-in or interface object) in a

profile.

Declared In CncMgr.h

Prototype status_t
CncProfileSetParameters(uint32_t lockedId,
int16_t itemIndex,
CncParameterType parameters[])

Parameters → lockedId
ID of a locked profile. A profile is locked by
CncProfileLock() or CncProfileNew(). You can obtain
the ID of a profile by calling CncObjectGetIndex() or
CncProfileFindFirst().

→ itemIndex
Index (zero-based) of an item in the profile.

→ parameters
Array of CncParameterType structures that contain the
parameters to set; the array previously should have been
initialized by CncParametersInit(). The last item in the
parameter array must have the special name
kCncParameterTableEnd. Note that this item name is set
automatically when the array is initialized by
CncParametersInit().

Returns Returns the following result codes:

errNone
No error; the parameters structures are updated with the
parameter values.

cncErrObjectNotFound
The specified profile ID does not exist.

cncErrInvalidParam
The itemIndex or parameters parameter is invalid.

Comments To remove a parameter from a profile, use the type
kCncUndefinedParameterType.

To submit the changes to the Connection Manager database and
unlock the profile, call CncProfileSubmit().

Connection Manager Reference
CncProfileSubmit

98 PalmSource FrameMaker Templates

Example CncParameterType myParams[4];
char* myName = "SomeName";

CncParametersInit(myParams, 4);
myParams[0].name = 'uart';
myParams[0].type = kCncIntegerParameterType; // set an int
myParams[0].value.asInteger = 0;
myParams[1].name = 'DevN';
myParams[1].type = kCncStringParameterType; // set a string
myParams[1].value.asString = myName;
myParams[2].name = 'baud';
myParams[2].type = kCncUndefinedParameterType; // remove this
CncProfileSetParameters(Id, 1, myParams);

See Also CncProfileGetParameters()

CncProfileSubmit Function
Purpose Submits a changed profile to the Connection Manager database and

unlocks the profile.

Declared In CncMgr.h

Prototype status_t CncProfileSubmit(uint32_t lockedId)

Parameters → lockedId
ID of a profile to submit and unlock.

Returns Returns the following result codes:

errNone
No error.

cncErrInvalidParam
The specified profile ID is not a locked profile.

See Also CncProfileUnlock()

Connection Manager Reference
CncProfileUnlock

PalmSource FrameMaker Templates 99

CncProfileUngroup Function
Purpose Locks a profile and expands all subprofiles and macros used in it.

Declared In CncMgr.h

Prototype status_t CncProfileUngroup(uint32_t profileId,
Boolean regroupTags)

Parameters → profileId
ID of a profile to expand.

→ regroupTags
Specify true to allow all macros to be compressing back into
macro form later. This option inserts BEGIN and END tags
around each expanded portion, to allow future
recompression.

Returns Returns the following result codes:

errNone
No error.

cncErrObjectNotFound
The specified profile ID is not found.

Comments Each subprofile and macro is expanded by copying the subprofile or
macro definition into the profile in place of its reference.

If there are no subprofiles or macros in the specified profile, then
this function has the same effect as CncProfileLock().

See Also CncProfileRegroupSubmit(), CncSubProfileAssign()

CncProfileUnlock Function
Purpose Unlocks a locked profile without submitting changes to the

Connection Manager database.

Declared In CncMgr.h

Prototype status_t CncProfileUnlock(uint32_t lockedId)

Parameters → lockedId
ID of a profile to unlock.

Returns Returns the following result codes:

Connection Manager Reference
CncRegisterPluginModule

100 PalmSource FrameMaker Templates

errNone
No error.

cncErrInvalidParam
The specified profile ID is not a locked profile.

See Also CncProfileSubmit()

CncRegisterPluginModule Function
Purpose Registers a code module that contains one or more plug-ins with the

Connection Manager and adds the description to the database.

Declared In CncMgr.h

Prototype status_t CncRegisterPluginModule(uint32_t dbType,
uint32_t dbCreator, uint16_t rsrcId)

Parameters → dbType
Type of the code module.

→ dbCreator
Creator ID of the code module.

→ rsrcId
Code resource ID of the code module.

Returns The ID of the newly added plug-in code module, or 0 if an error
occurs. If the code module is already registered, this function
returns the ID of the registered module without affecting the
Connection Manager database.

Comments This function does not need a session with the Connection Manager.
A module can use this function at boot time, before the Connection
Manager thread is running.

The referenced code module is sublaunched twice. The code must
respond to the sysCncPluginLaunchCmdGetPlugins launch
code to pass back the plug-in definitions, and then to
sysCncPluginLaunchCmdRegister if more initialization is
needed after the plug-ins are registered with the Connection
Manager. For more information on these launch commands, refer to
Exploring Palm OS: Programming Basics.

Connection Manager Reference
CncSubProfileAssign

PalmSource FrameMaker Templates 101

CncSubProfileAssign Function
Purpose Changes a subprofile in an expanded profile to a different

subprofile, which is also expanded within the main profile.

Declared In CncMgr.h

Prototype status_t CncSubProfileAssign(uint32_t lockedId,
int16_t itemIndex, uint32_t newRefId)

Parameters → lockedId
ID of a locked, expanded profile within which to change a
subprofile.

→ itemIndex
Index of the subprofile to change. The index refers to the
index of the BEGIN tag that marks the subprofile. The first
BEGIN block within a profile has an index of 0.

→ newRefId
ID of a profile to substitute as a subprofile into the main
profile in place of the subprofile identified by itemIndex.

Returns Returns the following result codes:

errNone
No error.

cncErrObjectNotFound
The specified profile ID is not found.

Comments This function works only if the profile was expanded by a call to
CncProfileUngroup(), where the regroupTags parameter was
set to true.

See Also CncProfileRegroupSubmit()

Connection Manager Reference
CncSubProfileAssign

102 PalmSource FrameMaker Templates

Part II
Exchange Manager

The Exchange Manager manages the sending and receiving of typed
data objects.

Object Exchange 105

Exchange Manager Reference 159

Exploring Palm OS: High-Level Communications 105

4
Object Exchange
The simplest form of communication for a Palm OS® application to
implement is the sending and receiving of typed data objects, such
as MIME data, databases, or database records.

You use the Exchange Manager to send and receive typed data
objects. The Exchange Manager interface is independent of the
transport mechanism. You can use Bluetooth, email, IR, SMS, or any
other protocol that has an Exchange Manager plug-in called an
exchange library.

This chapter describes how applications use the Exchange Manager
to send and receive typed data objects. It covers the following
topics:

• About the Exchange Manager

• Initializing the Exchange Socket Structure

• Registering for Data

• Registering to Receive Unwrapped Data

• Receiving Data

• Sending and Receiving Databases

• Requesting Data

• Sending and Receiving Locally

• Interacting with the Launcher

• HotSync Exchange

• Attachment Support Guidelines

• Summary of Exchange Manager

Object Exchange
About the Exchange Manager

106 Exploring Palm OS: High-Level Communications

About the Exchange Manager
This section explains concepts you need to know before you can
begin using the Exchange Manager. It discusses the following
topics:

• Exchange Libraries

• Typed Data Objects

Exchange Libraries
The Exchange Manager works in conjunction with an exchange
library. Each exchange library is transport-dependent and performs
the actual communication with the remote device. When an
application makes an Exchange Manager call, the Exchange
Manager forwards the request to the appropriate exchange library.
The Exchange Manager’s main duty is to maintain a registry of
which libraries implement each protocol and which applications
receive each type of data. See Figure 4.1.

Figure 4.1 Object exchange using Exchange Manager

The list of available exchange libraries depends on the particular
device hardware and on what other software the user has installed.
Some typically available libraries include: IR Library (IrDA), Local
Exchange Library, SMS (Short Messaging System) Library,
Bluetooth Library, and HotSync® Exchange Library.

App A

App B

App C

Exchange
Manager

Exchange
Manager

Exchange
Library 1

Exchange
Library 2

Exchange
Library 3

Exchange
Library 1

Exchange
Library 2

Exchange
Library 3

App D

App E

App F

Sending Device Receiving Device

Object Exchange
About the Exchange Manager

Exploring Palm OS: High-Level Communications 107

As other exchange libraries become available, users can install them
on their Palm Powered™ handhelds and use the communications
functionality they provide.

Typed Data Objects
The Exchange Manager sends and receives typed data objects. A
typed data object (or object) is a stream of bytes plus some
information about its contents. The content information includes
any of: a creator ID, a MIME data type, or a filename.

The object itself can be in any format, but it’s best to use a
standardized data format rather than a proprietary one if you have
a choice. Table 4.1 lists the standardized data formats that the built-
in Palm OS applications can receive.

NOTE: The MIME type application/vnd.palm has been
registered with the IANA and is preferred over the application/x-
pilot MIME type.

Table 4.1 Built-in applications and standard data types

Application Data Type

Address Book vCards (vcf file extension, text/x-vCard MIME
type). Palm OS supports vCard version 2.1 and
most features of version 3.0 (except for the '\' 'n'
sequence in properties).

Datebook vCalendars (vcs file extension, text/x-vCalendar
MIME type). Palm OS supports vCalendar
version 1.0.

Launcher Palm OS databases (prc, pdb, oprc, and pqa file
extensions, application/x-pilot and application/
vnd.palm MIME types)

Memo Plain text (txt file extension, text/plain MIME
type)

ToDo Not explicitly registered, but receives vCalendar
objects from Datebook as appropriate

Object Exchange
Initializing the Exchange Socket Structure

108 Exploring Palm OS: High-Level Communications

More information on the vCard and vCalendar formats is available
at http://www.imc.org/pdi/. For text, the basic MIME text format
is described in RFC 822 (http://www.ietf.org/rfc/rfc822.txt). Palm
OS builds on that with support for the quoted printable format (for
international character sets) in RFC 2045 (http://www.ietf.org/rfc/
rfc2045.txt) and multipart MIME (for categories) in RFC 2046 (http:/
/www.ietf.org/rfc/rfc2046.txt). Palm OS doesn’t implement
everything in these RFCs, but it does generate and read content that
is compliant with these standards.

If you want your application to receive objects, you must first
register with the Exchange Manager for the type of data you want to
receive. See “Registering for Data” for instructions on how to do so.
You can override the built-in applications by registering for any
data type listed in Table 4.1 and becoming the default application
for that type (but only with the user’s permission). See “Setting the
Default Application” for more information.

If you only want to send data, you do not have to register. Your
application can send data of the types listed in Table 4.1, and the
Exchange Manager ensures that the appropriate application
receives it.

Initializing the Exchange Socket Structure
The Exchange Manager, exchange library, and application use an
exchange socket structure (ExgSocketType) to communicate with
each other. This structure is passed from the application to the
Exchange Manager to the exchange library and vice versa. (The use
of the term “socket” in the Exchange Manager API is not related to
the term “socket” as used in sockets communication programming.)
When your application sends data, you must create this structure
and initialize it with the appropriate information. When you receive
data, this structure provides information about the connection and
the incoming data.

The ExgSocketType structure you use must identify two
important pieces of information:

• the exchange library that should do the sending (see
“Identifying the Exchange Library”)

http://www.imc.org/pdi/
http://www.ietf.org/rfc/rfc822.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2046.txt

Object Exchange
Initializing the Exchange Socket Structure

Exploring Palm OS: High-Level Communications 109

• the type of data being sent (see “Identifying the Type of
Data”)

The socket structure defines other fields that you may use to
provide other information if you want. See the description of the
ExgSocketType structure for complete details.

IMPORTANT: When initializing the ExgSocketType structure,
set all unused fields to 0.

Identifying the Exchange Library
The ExgSocketType structure identifies the library to be used via
a Uniform Resource Locator (URL) in the name field.

When your application sends data, it should always identify which
exchange library to use. (If you do not specify an exchange library,
the IR Library is used to maintain backward compatibility.)

The URL scheme specifies which exchange library to use. The
scheme is the part of the URL that appears before the colon (:). For
example, the scheme in the following URL is “http”

http://www.palmos.com

When you pass the preceding URL to a web browser, the scheme
tells the browser to connect to the server using the HTTP protocol.
Similarly, when you pass the Exchange Manager a URL, the scheme
tells the Exchange Manager which exchange library to use. For
example, the following URL tells the Exchange Manager to connect
to a remote Palm Powered device using the IR Library:

_beam:BusinessCard.vcf

Multiple exchange libraries can register for the same scheme.

On Palm OS, a URL has the following format (in BNF notation):

[?][scheme{;scheme}:]filename

where:

?
If more than one exchange library is registered for the
provided schemes, the Exchange Manager has the user select
the exchange library by displaying the Send With dialog.

Object Exchange
Initializing the Exchange Socket Structure

110 Exploring Palm OS: High-Level Communications

scheme{;scheme}
The URL schemes that identify which exchange library
should be used. If more than one exchange library is
registered for the scheme, the default exchange library is
selected unless the URL begins with a question mark.

As shown, multiple schemes may be provided, separated by
semicolons. Multiple schemes are only supported in
conjunction with the question mark. For example, the string
“?_send;_beam:” has the Exchange Manager display a Send
With dialog that lists all exchange libraries that support
either the _send scheme or the _beam scheme.

filename
The name of the file to send. Typically, this file also has an
extension that is used, if necessary, to determine which
application should receive the data. See “Identifying the Type
of Data” for more information about the file extension.

Palm OS URL schemes all begin with the underscore (_) character.
Standard schemes, such as mailto, are supported without the
underscore.

Palm OS defines some URL prefixes that any application can use to
connect with the installed exchange libraries. A URL prefix is
everything up to and including the colon character. Table 4.2
describes the prefix constants. Note that you generally only need to
use exgBeamPrefix or exgSendPrefix unless a specific
transport is required.

Table 4.2 Exchange Library URL Prefixes

Exchange Library URL Prefix

IR Library exgBeamPrefix

Local Exchange Library exgLocalPrefix

SMS Library kSmsScheme:

Bluetooth Library _btobex:

Mobile Mail Exchange Library exgMobileMailPrefix

and exgMailtoScheme:

HotSync Exchange Library exgDesktopPrefix

Object Exchange
Initializing the Exchange Socket Structure

Exploring Palm OS: High-Level Communications 111

The section “Implementing the Send Command” on page 122
provides more information on using exgSendPrefix or
exgSendBeamPrefix.

The section “HotSync Exchange” on page 138 provides more
information on using exgDesktopPrefix.

The section “Attachment Support Guidelines” on page 142 provides
more information on using exgGetPrefix.

For more information on the SMS exchange library, refer to Chapter
5, “SMS Exchange Library Reference,” in Exploring Palm OS:
Telephony and SMS.

For more information on the Bluetooth exchange library, refer to
Chapter 12, “Bluetooth Exchange Library Support,” in Exploring
Palm OS: Low-Level Communications.

Identifying the Type of Data
When your application sends data, the exchange socket structure
(ExgSocketType) identifies the type of data being sent. It can do
so with one of the following values:

• A MIME type in the type field.

• A file extension for the file in the name field. That is, you
might supply MyDB.pdb as the value of the name field. The
part after the last period (.) is the extension.

In most cases, the data type determines which application receives
the data on the remote side. (If the target field is specified, it
determines which application receives the data instead of the data

Any library that supports the _send
scheme (user’s choice)

exgSendPrefix

Any library that supports the _send
or _beam scheme (user’s choice)

exgSendBeamPrefix

Any library that supports the _get
scheme (user’s choice)

exgGetPrefix

Table 4.2 Exchange Library URL Prefixes (continued)

Exchange Library URL Prefix

Object Exchange
Registering for Data

112 Exploring Palm OS: High-Level Communications

type as described below.) The Exchange Manager maintains a
registry of applications and the types of data each application can
receive. When the Exchange Manager receives an object, it checks
the exchange socket for the data type. It checks the type field first,
and if it is not defined or if no application is registered to receive
that MIME type, it checks the name field for a file extension. This is
discussed in more detail in the “Registering for Data” section.

Note that you may also directly specify which application should
receive the data. To do so, place the creator ID in the target field.
You do not have to specify a MIME type or file extension in this
instance. If the target field is nonzero, the Exchange Manager
checks to see if an application is registered for that creator ID and, if
so, delivers the data directly to that application.

If the target application does not exist, the Exchange Manager
searches the registry as usual. Use the target field only if you
know that you are communicating with a Palm Powered device and
want to explicitly specify which application should receive the data.

An application can register for another application’s creator ID and
receive all objects targeted to that creator ID, but only with the
user’s permission. See “Setting the Default Application” for more
details.

Registering for Data
In most cases, applications that want to receive data from the
Exchange Manager must register for the MIME type and/or file
extension that they want to receive.

To do so, call ExgRegisterDatatype() and pass it five
parameters:

• Your application’s creator ID.

• A constant that identifies the type of data you want to
register to receive: exgRegExtensionID for file extensions,
exgRegTypeID for MIME types, exgRegCreatorID for
creator IDs (see “Setting the Default Application”), or
exgRegSchemeID for URL schemes (see “Requesting a
URL”). Alternatively, you can register for direct delivery of
data (bypassing an email application) by specifying one of
these constants: exgRegDirectExtensionID,

Object Exchange
Registering for Data

Exploring Palm OS: High-Level Communications 113

exgRegDirectCreatorID, or exgRegDirectTypeID. Or,
you can indicate that the application supports data viewing
by specifying one of these constants:
exgRegViewExtensionID, exgRegViewCreatorID, or
exgRegViewTypeID.

• A string that lists the MIME types or file extensions.

• A string containing descriptions of the data you are
registering to receive; these are displayed to preview the data
in the exchange dialog under certain circumstances.

• A flag value of zero.

For example:

ExgRegisterDatatype(beamerCreator,
 exgRegExtensionID, BitmapExt, "bitmap", 0);

General Registration Guidelines
Follow these guidelines when registering for data:

• Register as early as possible.

To ensure that your application can receive data at any time
after it is installed, call ExgRegisterDatatype() in
response to the sysAppLaunchCmdSyncNotify and
sysAppLaunchCmdSystemReset launch codes. The
sysAppLaunchCmdSyncNotify launch code is sent to your
application upon its first installation and any time the
HotSync® operation modifies the application’s database. The
sysAppLaunchCmdSystemReset is sent to your
application when the system is reset.

• It’s best to use a standardized data format rather than a
proprietary one if you have a choice.

• Provide user-friendly descriptive information for the
descriptionsP parameter of ExgRegisterDatatype().
The descriptions are used in dialogs displayed by Exchange
Manager to identify applications or libraries. Use
information that describes the type of information handled,
such as pictures, sounds, contact information, etc. Don’t use
MIME types or file extensions because they are not
meaningful to the average user.

Object Exchange
Registering for Data

114 Exploring Palm OS: High-Level Communications

• Multiple applications can register to receive the same data
type, however, an application must not automatically
register itself as the default application without prompting
the user for permission. The section “Setting the Default
Application” describes this further. An application might
check when it is launched if it is still the default application
(with ExgGetDefaultApplication()). However, it must
honor the user’s choices for handling a particular data type
by saving this information in its database and by providing a
“Don’t ask me again” option regarding changing the default.

• When registering for file extensions, do not include the
period (.) as part of the extension. Register for “TXT”, for
example, not “.TXT”.

• Do not make multiple calls if you want to register for more
than one MIME type or more than one file extension.

Instead, make one call for all file extensions and one call for
all MIME types. Pass a single string containing file extensions
or MIME types separated by a tab (\t) character. For
example, the following call registers the application for two
file extensions, TXT and DOC:

ExgRegisterDatatype(myCreator,
exgRegExtensionID,"TXT\tDOC", "plain text", 0);

• Applications that want to serve as display applications for
specific kinds of data should register to receive data in view
mode by using one of the view mode constants:
exgRegViewExtensionID, exgRegViewCreatorID, or
exgRegViewTypeID. For more details on supporting view
mode, see “Viewing Attachments” on page 143.

Setting the Default Application
Because multiple applications can register for the same data type,
the Exchange Manager supports the concept of a default application
that receives all objects of a particular data type. To set the default
application, call the function ExgSetDefaultApplication().
There is one default application per data type in the registry.

Suppose a device receives a vCard object, and it has three
applications registered to receive vCards. The Exchange Manager
checks the registry to see if any of these applications is assigned as
the default. If so, the default application receives all vCards (unless

Object Exchange
Registering for Data

Exploring Palm OS: High-Level Communications 115

the exchange socket structure’s target field is set). If none of the
three applications is the default, the Exchange Manager chooses
one, and that application receives all vCards.

Do not automatically register as the default application without the
user’s permission. It’s imperative that you allow users to choose
which application is the default. To do so, you could display a panel
via a menu option that shows users the applications that can receive
the same type of data as your application, show them which is the
default, and allow them to select a different default. Use
ExgGetRegisteredApplications() to get a list of all
applications registered to receive the same data type as yours, and
use ExgGetDefaultApplication() to retrieve the current
default, if any. See Listing 4.2 to see how an application performs
this task for the mailto URL scheme.

Listing 4.1 Initializing a List of Registered Applications

void PrvSetMailAppsList(int32_t listSelection)
{
 ControlPtr ctl;
 ListPtr lst;
 uint32_t defaultID;

 ctl = GetObjectPtr(PrefDefaultMailTrigger);
 lst = GetObjectPtr(PrefDefaultMailList);

 // crIDs, appCnt, appNames are all global variables.
 // Get the list of creator IDs if we don’t have it already.
 if(!crIDs) {
 ExgGetRegisteredApplications(&crIDs, &appCnt, &appNames, NULL,
 exgRegSchemeID, "mailto");
 if(appCnt) {
 MemHandle tmpH = SysFormPointerArrayToStrings(appNames, appCnt);
 if(tmpH)
 appNamesArray = MemHandleLock(tmpH);
 else
 return;
 }
 else
 return;
 }

 if(appNamesArray)
 LstSetListChoices(lst, appNamesArray, appCnt);

Object Exchange
Registering for Data

116 Exploring Palm OS: High-Level Communications

 LstSetHeight(lst, appCnt < 6 ? appCnt : 6);

 if(listSelection == -1)
 {
 uint16_t i;
 ExgGetDefaultApplication(&defaultID, exgRegSchemeID, "mailto");

 for(i=0;i<appCnt;i++) {
 if(crIDs[i] == defaultID)
 LstSetSelection(lst, i);
 }
 }
 else
 LstSetSelection(lst, listSelection);

 CtlSetLabel(ctl, appNamesArray[LstGetSelection(lst)]);
}

To become the default application for a data type that a built-in
Palm OS application is registered to receive (see Table 4.1), you must
perform some extra steps to ensure that you can receive that type of
object when it is beamed from a device running Palm OS 3.X. You
must register for the built-in application’s creator ID and become
the default application for that creator ID.

On Palm OS 3.X, the built-in applications always set their creator
IDs in the target field when sending data, causing the data to
always be sent to that application. On Palm OS 4.0 and higher, the
built-in applications still register to receive the same type of data,
but they do not set the target field when sending. This means that
if your application is registered for the same data type and is the
default application, it receives the data from devices running Palm
OS 4.0 and higher as expected, but if the data is sent from a device
running Palm OS 3.X, you still won’t receive that data because it is
specifically targeted for the built-in application.

To solve this problem, the ExgRegisterDatatype() function
supports registering for another application’s creator ID. Listing 4.2
shows how an application that receives vCards might set the default
application after allowing the user to select the default from a list,
assuming the list is initialized with code similar to that in Listing
4.1.

Object Exchange
Registering for Data

Exploring Palm OS: High-Level Communications 117

Note that, as with all data types, your application won’t receive the
data targeted for the other application unless yours is the default
application for that creator ID.

Listing 4.2 Setting the default application for vCards

uint32_t PilotMain (uint16_t cmd, void *cmdPBP, uint16_t launchFlags)
{
 ...
 // Register for vCard MIME type, extension, and Address Book’s creator ID.
 // At this point, we are not the default application so we do not receive
 // vCards. We still must register upon install so that our application
 // appears in the preferences list when the user chooses the default
 // application for vCards.
 case sysAppLaunchCmdSyncNotify:
 case sysAppLaunchCmdSystemReset:
 char addressCreatorStr[5];

 // Create a string from Address Book’s creator ID.
 MemMove(addressCreatorStr, sysFileCAddress, 4);
 addressCreatorStr[4] = chrNull;

 ExgRegisterDatatype(crID, exgRegTypeID, "text/x-vCard", "vCard", 0);
 ExgRegisterDatatype(crID, exgRegExtensionID, "vcf", "vCard", 0);
 ExgRegisterDatatype(crID, exgRegCreatorID, addressCreatorStr, NULL, 0);
 ...
}

static void PrefApply (void)
{
 MemHandle h;
 FieldType *fld;
 ControlType *ctl;
 uint16_t listItem;

 // Set the default vCard app
vif(appCnt && crIDs)
 {
 uint32_t crID;
 char addressCreatorStr[5];

 // Create a string from Address Book’s creator ID.
 MemMove(addressCreatorStr, sysFileCAddress, 4);
 addressCreatorStr[4] = chrNull;

 listItem = LstGetSelection(GetObjectPtr(PrefDefaultAppList));
 crID = crIDs[listItem];

Object Exchange
Registering for Data

118 Exploring Palm OS: High-Level Communications

 ExgSetDefaultApplication(crID, exgRegTypeID, "text/x-vCard");
 ExgSetDefaultApplication(crID, exgRegExtensionID, "vcf");
 ExgSetDefaultApplication(crID, exgRegCreatorID, addressCreatorStr);
 }
}

Registering to Receive Unwrapped Data
In rare circumstances, you can register to receive data that is sent
enclosed in another object.

For example, suppose you have a stock quote application that wants
to receive vStock objects. If the device is sent an email message that
has the vStock object attached, your application may want to
register to receive the vStock object directly rather than having the
email application receive it. To do so, call
ExgRegisterDatatype() and pass one of the direct delivery
constants (exgRegDirectCreatorID,
exgRegDirectExtensionID, or exgRegDirectTypeID) as the
second parameter.

If you want to register to receive an object when it is sent as part of
another object, you probably also want to receive it when it is sent
by itself. This requires two calls to ExgRegisterDatatype(): one
with one of the direct delivery constants, and one without.

ExgRegisterDatatype(myCreator, exgRegDirectExtensionID, "TXT\tDOC",
 "plain text", 0);
ExgRegisterDatatype(myCreator, exgRegExtensionID, "TXT\tDOC", "plain text", 0);

Thus, you might make four calls to ExgRegisterDatatype():

• one call to register for the file extensions

• one call to register for file extensions that are sent as part of
another object

• one call to register for MIME types

• one call to register for MIME types that are sent as part of
another object

As mentioned previously, it’s rare for an application to register to
receive unwrapped data directly. It’s more common for one
application (such as an email application) to receive the entire

Object Exchange
Sending Data

Exploring Palm OS: High-Level Communications 119

compound object and then unwrap and disperse the enclosed
objects using the Local Exchange Library. See “Sending and
Receiving Locally” and “Attachment Support Guidelines” for more
information.

Sending Data
This section describes how to send data using the Exchange
Manager. It discusses the following topics:

• Sending a Single Object

• Sending Multiple Objects

• Implementing the Send Command

For information about sending data as an attachment from a
messaging application such as email or SMS, see “Attachment
Support Guidelines” on page 142.

Sending a Single Object
The most common use of the Exchange Manager is to send or
receive a single object. To send an object, do the following:

1. Create and initialize an ExgSocketType data structure with
information about which library to use and the data to be
sent. See “Initializing the Exchange Socket Structure” for
more information.

2. Call ExgPut() to establish the connection with the exchange
library.

3. Call ExgSend() one or more times to send the data.

In this function, you specify the number of bytes to send. You
may need to call it multiple times if you don’t send all the
data in the first call.

4. Call ExgDisconnect() to end the connection.

A zero (0) return value indicates a successful transmission.
However, this doesn’t necessarily mean that the receiver kept
the data. If the target application for an object doesn’t exist
on the receiving device, the data is discarded; or the user can
decide to discard any received objects.

Object Exchange
Sending Data

120 Exploring Palm OS: High-Level Communications

Note that the ExgSend() function blocks until it returns. However,
most libraries provide a user interface dialog that keeps the user
informed of transmission progress and allows them to cancel the
operation.

The Exchange Manager automatically displays error dialogs as well,
if errors occur. You must check for error codes from Exchange
Manager routines, but you don’t need to display an error dialog if
you get one because the Exchange Manager handles this for you.

For example, Listing 4.3 shows how to send the current draw
window from one Palm Powered handheld to another Palm
Powered handheld.

Listing 4.3 Sending data using Exchange Manager

status_t SendData(void)
{
 ExgSocketType exgSocket;
 uint32_t size = 0;
 uint32_t sizeSent = 0;
 status_t err = 0;
 BitmapType *bmpP;

 // copy draw area into the bitmap
 SaveWindow();
 bmpP = PrvGetBitmap(canvasWinH, &size, &err);
 // Is there data in the field?
 if (!err && size) {
 // important to init structure to zeros...
 MemSet(&exgSocket,sizeof(exgSocket),0);
 exgSocket.description = "Beamer picture";
 exgSocket.name = "Beamer.pbm";
 exgSocket.length = size;
 err = ExgPut(&exgSocket);
 if (!err) {
 sizeSent = ExgSend(&exgSocket,bmpP,size,&err);
 ExgDisconnect(&exgSocket,err);
 }
 }
 if (bmpP) MemPtrFree(bmpP);
 return err;
}

Object Exchange
Sending Data

Exploring Palm OS: High-Level Communications 121

Sending Multiple Objects
If the exchange library supports it, you can send multiple objects in
a single connection. To send multiple objects, do the following:

1. Create and initialize an ExgSocketType data structure with
information about which library to use and the data to be
sent. See “Initializing the Exchange Socket Structure” for
more information. You might also supply a value for the
count field to specify how many objects are to be sent.

2. Call ExgConnect() to establish the connection with the
exchange library.

3. For each object, do the following:

a. Call ExgPut() to signal the start of a new object.

b. Call ExgSend() one or more times to send the data.

You may need to call it multiple times if you don’t send
all the data in the first call.

4. Call ExgDisconnect() to end the connection.

A zero (0) return value indicates a successful transmission.
However, this doesn’t necessarily mean that the receiver kept
the data. If the target application for an object doesn’t exist on
the receiving device, the data is discarded; or the user can
decide to discard any beamed objects.

The ExgConnect() call is optional. Some exchange libraries, such
as the IR Library, support the sending of multiple objects but do not
support ExgConnect(). If ExgConnect() returns an error, the
first call to ExgPut() initiates the connection. You should only
continue to send objects if the first ExgPut() call succeeds. See
Listing 4.4. Libraries that support the ExgConnect() call also
support sending multiple objects without using ExgConnect().

Listing 4.4 Sending multiple objects

Boolean isConnected = false;
err = ExgConnect(&exgSocket); //optional
if (!err)
 isConnected = true;
if (!err || err == exgErrNotSupported) {
 while (/* we have objects to send */) {
 err = ExgPut(&exgSocket);

Object Exchange
Receiving Data

122 Exploring Palm OS: High-Level Communications

 if (!isConnected && !err)
 isConnected = true; //auto-connected on first put.
 sizeSent = ExgSend(&exgSocket,dataP,size,&err);
 if (err)
 break;
 }
}
if (isConnected)
 ExgDisconnect(&exgSocket, err);

Implementing the Send Command
The built-in applications support a Send menu command. The
purpose of this command is to allow the user to send data using any
available transport mechanism.

The Exchange Manager defines a _send URL scheme. The intent is
that any exchange library that supports sending is registered for the
_send scheme. Currently, the Bluetooth, HotSync, SMS, and Mobile
Mail libraries are registered for this scheme on release ROMs. The IR
Library is not registered for the _send scheme.

To implement the Send command in your application, construct a
URL that has the prefix exgSendPrefix, and send the data in the
normal manner. You can also use the exgSendBeamPrefix instead
so that the user can select from all exchange libraries registered for
either sending or beaming (which includes the IR Library). Both of
these prefixes begin with a question mark, causing the Exchange
Manager to display a dialog if it finds more than one exchange
library registered for the specified schemes.

For an example of how to implement the Send command, see the
Memo application example code distributed with the Palm OS SDK.

Receiving Data
To have your application receive data from the Exchange Manager,
do the following:

1. Register for the type of data you want to receive. See
“Registering for Data” on page 112 for more information.

Object Exchange
Receiving Data

Exploring Palm OS: High-Level Communications 123

2. Handle the launch code sysAppLaunchCmdExgAskUser if
you want to control the user confirmation dialog that is
displayed. See “Controlling the Exchange Dialog” on
page 123 for more information.

3. Handle the launch code
sysAppLaunchCmdExgReceiveData to view and/or
receive the data. See “Receiving the Data” on page 126 for
more information on receiving the data, and see “Viewing
Attachments” on page 143 for more information about
viewing the data; it’s best to follow the guidelines in “Put
with View Mode” on page 147.

4. If you want, handle sysAppLaunchCmdGoTo to display the
record.

Controlling the Exchange Dialog
When the Exchange Manager receives an object and decides that
your application is the target for that object, it sends your
application a series of launch codes. The first launch code your
application receives, in most cases, is
sysAppLaunchCmdExgAskUser.

NOTE: The Exchange Manager allows the exchange library to
turn off the user confirmation dialog. In this case, your application
does not receive the sysAppLaunchCmdExgAskUser launch
code.

The Exchange Manger sends this launch code because it is about to
display the exchange dialog, which asks the user to confirm the
receipt of data. The launch code is your opportunity to accept the
data without confirmation, reject the data without confirmation, or
replace the exchange dialog.

Responding to this launch code is optional. If you don’t respond,
the Exchange Manager calls ExgDoDialog() to display the
exchange dialog.

The ExgDoDialog() function allows you to specify that the dialog
display a category pop-up list. This pop-up list allows the user to
receive the data into a certain category in the database, but the pop-
up list is not shown by default. If you want the exchange dialog to

Object Exchange
Receiving Data

124 Exploring Palm OS: High-Level Communications

display the pop-up list, you must respond to
sysAppLaunchCmdExgAskUser and call ExgDoDialog()
yourself. Pass a pointer to an ExgDialogInfoType structure. The
ExgDialogInfoType structure is defined as follows:

typedef struct {
 uint16_t version;
 DmOpenRef db;
 uint16_t categoryIndex;
} ExgDialogInfoType;

→ version
Set this field to 0 to specify version 0 of this structure.

→ db
A pointer to an open database that defines the categories the
dialog should display.

← categoryIndex
The index of the category in which the user wants to file the
incoming data.

If db is valid, the function extracts the category information from
the specified database and displays it in a pop-up list. Upon return,
the categoryIndex field contains the index of the category the
user selected, or dmUnfiledCategory if the user did not select a
category.

If the call to ExgDoDialog() is successful, your application is
responsible for retaining the value returned in categoryIndex
and using it to file the incoming data as a record in that category.
One way to do this is to store the categoryIndex in the socket’s
appData field (see ExgSocketType) and then extract it from the
socket in your response to the launch code
sysAppLaunchCmdExgReceiveData. See Listing 4.5 for an
example.

Listing 4.5 Extracting the category from the exchange socket

uint16_t categoryID = (ExgSocketType *)cmdPBP->appData;

/* Receive the data, and create a new record using the
 received data. indexNew is the index of this record. */
if (category != dmUnfiledCategory){

Object Exchange
Receiving Data

Exploring Palm OS: High-Level Communications 125

 uint16_t attr;
 status_t err;
 err = DmRecordInfo(dbP, indexNew, &attr, NULL, NULL);

 // Set the category to the one the user specified, and
 // mark the record dirty.
 if ((attr & dmRecAttrCategoryMask) != category) {
 attr &= ~dmRecAttrCategoryMask;
 attr |= category | dmRecAttrDirty;
 err = DmSetRecordInfo(dbP, indexNew, &attr, NULL);
 }
}

Some of the Palm OS built-in applications (Address Book, Memo,
and ToDo) use this method of setting the category on data received
through beaming. Refer to the example code provided in the Palm
OS SDK for these applications for a more complete example of how
to use ExgDoDialog().

When you explicitly call ExgDoDialog(), you must set the
result field of the sysAppLaunchCmdExgAskUser launch code’s
parameter block to either exgAskOk (upon success) or
exgAskCancel (upon failure) to prevent the system from
displaying the dialog a second time.

Getting the Object Description
The user might need more information about the object being
received, so the Exchange Manager displays information about the
object in the exchange dialog. Some exchange libraries do not
transmit information for the exchange socket’s description field,
so the Exchange Manager must provide another means of supplying
the user with information about the data being received.

The Exchange Manager displays the first item that it locates in the
following list:

• The data’s description from the exchange socket’s
description field

• The filename in the socket’s name field

• The receiving application’s description as stored in the
exchange registry (you pass this description to
ExgRegisterDatatype() when registering)

Object Exchange
Receiving Data

126 Exploring Palm OS: High-Level Communications

• The MIME type in the socket’s type field

• The file extension in the socket’s name field

If you want to support viewing the data in an application, the
Exchange Manager can launch a display application with the launch
code sysAppLaunchCmdExgReceiveData. Display applications
should register both file extension(s) and MIME type(s) of data that
they can handle. Ideally, display applications should register for
receiving data in view mode by registering with one or more of the
view mode data type constants: exgRegViewExtensionID,
exgRegViewCreatorID, or exgRegViewTypeID. Refer to
“General Registration Guidelines” on page 113.

For detailed information about supporting data viewing, see
“Viewing Attachments” on page 143; particularly, you should
follow the guidelines in “Put with View Mode” on page 147. This
information applies not only to email attachments, but to any
incoming data.

Receiving the Data
If the Exchange Manager receives exgAskOk in response to the
exchange dialog or the sysAppLaunchCmdExgAskUser launch
code, the next step is to launch the application with
sysAppLaunchCmdExgReceiveData. This launch code tells the
application to actually receive the data.

To respond to this launch code, do the following:

1. Call ExgAccept() to accept the connection.

2. Call ExgReceive() one or more times to receive the data.

In this function you specify the number of bytes to receive,
and ExgReceive() returns the number of bytes that were
received. You may need to call it multiple times if data is
remaining to be received after the first and subsequent calls.

Note that in the socket structure, the length field may not
be accurate, so in your receive loop you should be flexible in
handling more or less data than length specifies.

3. If you want your application launched again with the
sysAppLaunchCmdGoTo launch code, place your
application’s creator ID in the ExgSocketType’s

Object Exchange
Receiving Data

Exploring Palm OS: High-Level Communications 127

goToCreator field and supply the information that should
be passed to the launch code in the gotoParams field. (The
ExgSocketType structure is the parameter block for the
sysAppLaunchCmdExgReceiveData launch code.)

4. Call ExgDisconnect() to end the connection.

A zero (0) return value indicates a successful transmission.

After your application returns from
sysAppLaunchCmdExgReceiveData, if the goToCreator
specifies your application’s creator ID and if the exchange library
supports it, your application is launched with
sysAppLaunchCmdGoto. In response to this launch code, your
application should launch, open its database, and display the record
identified by the recordNum field (or matchCustom field) in the
parameter block. The Exchange Manager always does a full
application launch with sysAppLaunchCmdGoto, so your
application has access to global variables; however, if you also use
this launch code to implement the global find facility, you may not
have access to global variables in that instance. The example code in
Listing 4.6 checks to see if globals are available, and if so, calls
StartApplication to initialize them.

Listing 4.6 Responding to sysAppLaunchCmdGoto

case sysAppLaunchCmdGoto:
 if (launchFlags & sysAppLaunchFlagNewGlobals) {
 err = StartApplication();
 if (err) return err;
 GoTo(cmdPBP, true);
 EventLoop();
 StopApplication();
 } else {
 GoTo(cmdPBP, false);
}

Not all exchange libraries support using the
sysAppLaunchCmdGoto launch code after the receipt of data.

Because Palm OS supports multiple object exchange, there is no
guarantee that your application is the one that is launched at the
end of a receipt of data. If multiple objects are being received, it is
possible for another application to receive data after yours and to

Object Exchange
Receiving Data

128 Exploring Palm OS: High-Level Communications

set the goToCreator field to its own creator ID. In this case, the last
application to set the field is the one that is launched.

Listing 4.7 shows a function that receives a data object and sets the
goToCreator and goToParams.

Listing 4.7 Receiving a data object

status_t ReceiveData(ExgSocketPtr exgSocketP)
{
 status_t err;
 MemHandle dataH;
 uint16_t size;
 uint8_t *dataP;
 int16_t len;
 uint16_t dataLen = 0;

 if (exgSocketP->length)
 size = exgSocketP->length;
 else
 size = ChunkSize;
 dataH = MemHandleNew(size);
 if (!dataH) return -1; //
 // accept will open a progress dialog and wait for your receive commands
 err = ExgAccept(exgSocketP);
 if (!err){
 dataP = MemHandleLock(dataH);
 do {
 len = ExgReceive(exgSocketP,&dataP[dataLen], size-dataLen,&err);
 if (len && !err) {
 dataLen+=len;
 // resize block when we reach the limit of this one...
 if (dataLen >= size) {
 MemHandleUnlock(dataH);
 err = MemHandleResize(dataH,size+ChunkSize);
 dataP = MemHandleLock(dataH);
 if (!err) size += ChunkSize;
 }
 }
 }
 while (len && !err);

 MemHandleUnlock(dataH);

 ExgDisconnect(exgSocketP,err); // closes transfer dialog

 if (!err) {

Object Exchange
Sending and Receiving Databases

Exploring Palm OS: High-Level Communications 129

 exgSocketP->goToCreator = beamerCreator;
 exgSocketP->goToParams.matchCustom = (uint32_t)dataH;
 }
 }
 // release memory if an error occured
 if (err) MemHandleFree(dataH);
 return err;
}

Sending and Receiving Databases
It’s common to want to send and receive an entire database using
the Exchange Manager. For example, you might want to allow your
application’s users to share their versions of the PDB file associated
with your application by beaming that file to each other.

Sending and receiving a database involves the extra steps of
flattening the database into a byte stream when sending and un-
flattening it upon return.

In addition to the process documented in this section, you can now
also use the Data Manager function DmBackupUpdate() to flatten
a database into a bye stream, and DmRestoreUpdate() to restore a
database from a byte stream. These functions are more flexible than
the Exchange Manager functions.

Sending a Database
To send a database, do the following:

1. Create and initialize an ExgSocketType data structure with
information about which library to use and the data to be
sent. See “Initializing the Exchange Socket Structure” for
more information.

2. Call ExgPut() to establish the connection with the exchange
library.

3. Call ExgDBWrite() and pass it a pointer to a callback
function in your application that it can use to send the
database. You make the call to ExgSend() in that function.

4. Call ExgDisconnect() to end the connection.

Object Exchange
Sending and Receiving Databases

130 Exploring Palm OS: High-Level Communications

The ExgDBWrite() function takes as parameters the local ID of the
database to be sent and a pointer to a callback function. You may
also pass in the name of the database as it should appear in a file list
and any application-specific data you want passed to the callback
function. In this case, you would pass the pointer to the exchange
socket structure as the application-specific data. If you need any
other data, create a structure that contains the exchange socket and
pass a pointer to that structure instead.

The write callback function is called as many times as is necessary to
send the data. It takes three arguments: a pointer to the data to be
sent, the size of the data, and the application-specific data passed as
the second argument to ExgDBWrite().

Listing 4.8 shows an example of how to send a database. The
SendMe() function looks up the database creator ID and passes it
to the SendDatabase() function. The SendDatabase() function
creates and initializes the exchange socket structure and then passes
all that information along to the ExgDBWrite() function. The
ExgDBWrite() function locates the database in the storage heap,
translates it into a stream of bytes and passes that byte stream as the
first argument to the write callback function WriteDBData().
WriteDBData() forwards the exchange socket and the data stream
to the ExgSend() call, sets its size parameter to the number of
bytes sent (the return value of ExgSend()), and returns any error
returned by ExgSend().

Listing 4.8 Sending a database

// Callback for ExgDBWrite to send data with Exchange Manager
status_t WriteDBData(const void* dataP, uint32_t* sizeP, void* userDataP)
{
 status_t err;

 sizeP = ExgSend((ExgSocketPtr)userDataP, (void)dataP, *sizeP, &err);
 return err;
}

status_t SendDatabase (LocalID dbID, CharPtr nameP, CharPtr descriptionP)
{
 ExgSocketType exgSocket;
 status_t err;

 // Create exgSocket structure

Object Exchange
Sending and Receiving Databases

Exploring Palm OS: High-Level Communications 131

 MemSet(&exgSocket, sizeof(exgSocket), 0);
 exgSocket.description = descriptionP;
 exgSocket.name = nameP;

 // Start an exchange put operation
 err = ExgPut(&exgSocket);
 if (!err) {
 err = ExgDBWrite(WriteDBData, &exgSocket, NULL, dbID);
 err = ExgDisconnect(&exgSocket, err);
 }
 return err;
}

// Sends this application
status_t SendMe(void)
{
 status_t err;
 // Find our app using its internal name
 LocalID dbID = DmFindDatabase(0, "Beamer");
 if (dbID)
 err = SendDatabase(dbID, "Beamer.prc", "Beamer application");
 else
 err = DmGetLastErr();
 return err;
}

Note that there is nothing about ExgDBWrite() that is tied to the
Exchange Manager, so it may be used to send a database using other
transport mechanisms as well. For example, if you wanted to
transfer a database from your Palm Powered handheld to your
desktop PC using the serial port, you could use ExgDBWrite() to
do so.

Receiving a Database
The Launcher application receives databases with the .prc or .pdb
file extension. If you want your application to be launched when the
database is received, you can use a different extension and handle
receiving the database within your application. For example, a book
reader application might want to be launched when the user is
beamed a book. In this case, the book reader application might use
an extension such as .bk for the book databases.

Object Exchange
Requesting Data

132 Exploring Palm OS: High-Level Communications

You receive a database by responding to the same launch codes that
you do for receiving any other data object (see “Receiving Data”);
however, your response to the
sysAppLaunchCmdExgReceiveData launch code is a little
different:

1. Call ExgAccept() to accept the connection.

2. Call ExgDBRead() and pass it a pointer to a callback
function in your application that it can use to read the
database. You make the call to ExgReceive() in that
function.

3. Call ExgDisconnect() to end the connection.

The ExgDBRead() function takes as parameters two pointers to
callback functions. The first callback function is a function that is
called multiple times to read the data. The second function is used if
the database to be received already exists on the device.

Requesting Data
This section describes how to use the Exchange Manager to request
data. It covers:

• Sending a Get Request for a Single Object

• Responding to a Get Request

• Two-Way Communications

• Requesting a URL

Some exchange libraries may allow you to request data from a
remote device through a call to ExgGet(). If supported, you can
use ExgGet() to implement two-way communications between
two Palm Powered devices.

NOTE: The only standard exchange library that supports
ExgGet() is the Local Exchange Library; currently there are no
transports that support remote get requests.

For information on using ExgGet() to attach a document to a
message from a messaging application, see “Sending an Attachment
from a Messaging Application” on page 150.

Object Exchange
Requesting Data

Exploring Palm OS: High-Level Communications 133

Sending a Get Request for a Single Object
To request data from a remote device, do the following:

1. Create and initialize an exchange socket structure
(ExgSocketType) as described in “Initializing the Exchange
Socket Structure”section. The data structure should identify
the exchange library and the type of data that your
application wants to receive.

2. Call ExgGet() to establish the connection and request the
data.

In response, the exchange library establishes a connection
with the remote device, and upon return has data that your
application should receive. If the remote device is a Palm
Powered device, the exchange library obtains this data from
an application on the remote side using the process described
in the “Responding to a Get Request” section.

3. Call ExgReceive() one or more times to receive the data.

4. Call ExgDisconnect() to end the connection.

Responding to a Get Request
When the Exchange Manager receives a get request, it launches the
appropriate application with the launch code
sysAppLaunchCmdExgGetData. Applications can register their
support for the Get mechanism by registering to handle the _get
scheme.

NOTE: Since no standard transports support remote get
requests, this section describes how to support a local get
request.

Your response to the sysAppLaunchCmdExgGetData launch code
should be to send the requested data:

1. Present a document selection screen so that the user can
choose an object to send.

2. Set the name, type, and description fields in the socket.

3. Call ExgAccept(). (Do not call ExgPut().)

4. Call ExgSend() one or more times.

Object Exchange
Requesting Data

134 Exploring Palm OS: High-Level Communications

5. Call ExgDisconnect() when finished.

For more information on supporting the Get mechanism, see
“Sending an Attachment from a Messaging Application” on
page 150.

See the “Sending a Single Object” section for more information on
sending objects.

Two-Way Communications
You can use ExgGet() and ExgPut() in combination with the
ExgConnect() call to have your application perform two-way
communication. For example, you may want to implement two-way
communication in a multiuser game.

In such a situation, one device acts as a client and the other acts as a
server. The client calls ExgConnect(), which tells the exchange
library that a connection is established to perform multiple
operations, such as the sending of multiple objects. The client then
calls ExgGet() or ExgPut() repeatedly and calls
ExgDisconnect() when finished. On the server device, the
appropriate application is launched for each of these requests. The
server also calls ExgDisconnect() when it is done sending or
receiving each object. The swapping of client and server roles is not
supported.

Remember that not all exchange libraries support ExgConnect()
and ExgGet(). If either one of these returns an error, your
application should assume that this feature is not available.

Getting the Sender’s URL
For some applications, you might need to know the URL that
addresses the remote device from which you are receiving data.
This is especially useful for games and other two-way
communications. You can get the URL after calling ExgAccept()
by calling ExgControl() and passing the exgLibCtlGetURL
operation code.

Not all exchange libraries support this operation. The Bluetooth
exchange library does support it, and you can find more

Object Exchange
Requesting Data

Exploring Palm OS: High-Level Communications 135

information in Chapter 12, “Bluetooth Exchange Library Support,”
in Exploring Palm OS: Low-Level Communications.

Requesting a URL
In addition to requesting data with an ExgGet() call, you can
request a URL with a ExgRequest() call. The idea behind the
ExgRequest() call is to follow the model of pull technology. You
could, for example, implement a web browser if you had an
exchange library that supported the HTTP protocol. You could then
send an ExgRequest() call with an exchange socket containing a
URL such as http://www.palmos.com and receive the web page
in response.

The fundamental differences between ExgRequest() and
ExgGet() are:

• ExgRequest() does not automatically send the data back to
the application that requested it. With ExgRequest(),
when the exchange library receives the requested data, it has
the Exchange Manager send it to the default application for
that data type.

• Applications can register for URLs sent using
ExgRequest(). ExgRequest() first looks for an exchange
library that handles the URL scheme. If it cannot find one, it
looks for an application instead. If it finds an application, it
launches it with the sysAppLaunchCmdGoToURL launch
code.

For example, suppose an application that handles email
registers for the mailto URL scheme. If another application
wants to implement an email command, it could do so by
calling ExgRequest() and passing an exchange socket with
a URL that begins with mailto. In response to this
command, the Exchange Manager launches the application
that handles email, allowing the user to compose the email.

For information on another method of implemented email and
attaching a document to a message, see “Sending an Attachment
from a Display Application” on page 154.

Object Exchange
Sending and Receiving Locally

136 Exploring Palm OS: High-Level Communications

Sending and Receiving Locally
Most of this chapter has described how to use the Exchange
Manager to send data to a remote device and receive data from a
remote device.

You may also use the Exchange Manager to exchange data with
other applications on the local device. To do so, use the Local
Exchange Library. You might want to do so in the following
circumstances:

• You might have an application that creates some sort of event
in the Datebook application. Your users might have an
application that they use in place of the built-in Datebook. To
ensure that the appointment is sent to the user’s chosen
application, you can send that data as a vCalendar object
using the Local Exchange Manager. This way, whichever
application is the default in the Exchange Manager registry is
the one that receives your vCalendar.

• Your application receives compound data objects, such as
email messages that contain attachments intended for other
applications. As described in the “Registering to Receive
Unwrapped Data” section, exchange libraries can “unwrap”
a compound object and deliver the objects it contains
directly; however, doing so is the exception the rule.

It’s much more common for the email message to be sent to
the email application and have the attachments delivered to
the appropriate applications only when the user requests it.
In response to a user request, the email application extracts
the attached object and uses the Local Exchange Library to
send it to the application that should receive it, for viewing
and/or storage. For detailed guidelines on handling
attachments, see “Attachment Support Guidelines” on
page 142.

• Your application exchanges data with a remote device, and
you want to debug the code that interacts with the Exchange
Manager. In this case, using the Local Exchange Library
causes your application to send data in loopback mode,
where it is also the recipient of the data.

Object Exchange
Sending and Receiving Locally

Exploring Palm OS: High-Level Communications 137

To use the Local Exchange Library, do the following:

1. Use a URL in the name field of the ExgSocketType
structure to identify the Local Exchange Library. Begin the
URL with the constant string exgLocalPrefix.

2. If you want to suppress the exchange dialog, create and
initialize an ExgLocalSocketInfoType structure and
assign it to the socket’s socketRef field.

typedef struct {
 Boolean freeOnDisconnect;
 Boolean noAsk;
 ExgPreviewInfoType *previewInfoP;
 ExgLocalOpType op;
 FileHand tempFileH;
} ExgLocalSocketInfoType;

where the following are parameters you might want to set:

freeOnDisconnect Determines whether the structure is freed
when the ExgDisconnect() call is made.
The default is true. In general, code that
allocates a structure should be responsible
for freeing that structure. Therefore, if you
have allocated
ExgLocalSocketInfoType, you should
set this field to false and explicitly free the
structure when you are finished with it.

noAsk Set to true to disable the display of the
exchange dialog. For example, if you want to
create a vCalendar object and send it to the
datebook application in response to a user
command, you probably want to set noAsk
to true so that the user does not have to
confirm the receipt of the data they just
requested you to send.

previewInfoP A pointer to an ExgPreviewInfoType
structure, used to display a preview of the
data. The preview feature is deprecated and
is maintained only for backward
compatibility.

Object Exchange
Interacting with the Launcher

138 Exploring Palm OS: High-Level Communications

All other fields are set by the Local Exchange Library. If you
don’t create this structure, the library does it for you;
therefore, you only need to create this structure if you want
to supply non-default values for the noAsk or
previewInfoP fields.

3. You can suppress the display of the progress dialogs that the
exchange libraries typically display by setting the noStatus
field of the ExgSocketType structure to true.

4. Send and receive data in the normal manner. See “Sending
Data” and “Receiving Data” for details.

Interacting with the Launcher
When you beam an application from the Launcher, other databases
can be automatically beamed with it. If the application has an
associated overlay database, the overlay is beamed along with the
application. You do not have to perform any extra work to allow
this to happen. This bundling behavior is available only when
beaming from the launcher, not if an application manually beams an
application.

In addition to beaming overlays, you can set up a record database so
that the Launcher beams it along with the application database and
the overlay. For example, a dictionary application might have its
dictionary data in an associated database. When a user beams the
dictionary application to another user, the dictionary data should be
beamed along with the application itself. To allow this to happen,
you set the bit dmHdrAttrBundle in the database’s attributes.

If you beam an application plus databases to a device running Palm
OS 4.0 or higher, the user sees a single confirmation message. If you
beam the application to a device running Palm OS 3.X, the device
receives only the application database and displays an alert saying
that it cannot receive the other databases.

HotSync Exchange
HotSync Exchange allows a Palm OS Cobalt device and a desktop
computer running the Palm Desktop to exchange files in their native
formats. For example, HotSync Exchange enables installation of

Object Exchange
HotSync Exchange

Exploring Palm OS: High-Level Communications 139

JPEG (.JPG) files to a handheld image viewer via the standard
HotSync desktop install tool and the HotSync exchange library,
provided the viewer application has registered with the Exchange
Manager for the .JPG extension. This feature eliminates the need for
the viewer application developer to write a custom conduit to pack
JPEG data into the Palm OS database format.

Similarly, the viewer application can send JPEG files via the
Exchange Manager directly to the desktop where HotSync stores
them in standard .JPG format.

HotSync Exchange also supports bundled install, which is the
installation of an application and its data files in a single HotSync
session. Bundled install requires the newly installed application to
register for its data types with the Exchange Manager when it
receives the sysAppLaunchCmdSyncNotify launch code. This
allows the HotSync exchange library to deliver the data files when it
receives the subsequent sysNotifySyncFinishEvent.

For more information about the desktop side of HotSync Exchange,
refer to the book Introduction to Conduit Development.

Note that HotSync Exchange is supported only by Palm OS devices
running Palm OS Cobalt.

Sending Files with HotSync Exchange
Applications use the HotSync exchange library to send files to a
HotSync desktop. The HotSync exchange library supports the
following Exchange Manager schemes:

• The desktop scheme (_desktop). This scheme supports direct
exchange of a file to a HotSync desktop.

• The _send scheme. This scheme allows users to send data
using any transport that supports this scheme, such as the
HotSync exchange library.

These schemes support the exchange of files during a HotSync
operation to a directly connected desktop.

Neither scheme supports the specification of a target desktop in the
Exchange URL, so the file will, by default, be sent during the next
HotSync operation to any desktop. However, the user may select a
specific target desktop for each file pending HotSync Exchange via

Object Exchange
HotSync Exchange

140 Exploring Palm OS: High-Level Communications

the HotSync client user interface, if desired (see below). This will
cause the file to be sent during the next HotSync operation with the
selected desktop.

Example
The following example illustrates the data flow involving the
HotSync exchange library and the desktop. Say that a device
application wants to transfer palmuser.id to the desktop. The user
also wants to install the picture mountain.jpg to the handheld to
view on a registered JPEG picture viewer.

Figure 4.2 HotSync Exchange example

Prior to the HotSync Operation

Before the HotSync operation the following operations are
performed:

The user queues the file mountain.jpg for install to the handheld
during a subsequent HotSync. The file is queued in a user-specific
download folder on the desktop.

HotSync
exchange

library

JPEG viewer
application

Device
application

Temporary
Cache

mountains.jpg

Temporary
Cache

palmuser.id

HotSync
exchange

install conduit

palmuser.id

mountains.jpg

DesktopPalm Device

Object Exchange
HotSync Exchange

Exploring Palm OS: High-Level Communications 141

The device application uses the Exchange Manager API to do the
following (represented by red lines in the figure):

1. Initialize the ExgSocketType structure with the file name
palmuser.id.

2. Call ExgPut(). This causes the HotSync exchange library to
allocate a temporary cache to store the data. It also stores
information about the pending transaction in a catalog of
pending desktop exchanges.

3. Call ExgSend() to fill the database with the data.

4. Call ExgDisconnect() to close the cache. The data is then
queued until it can be successfully sent during a HotSync
operation.

During the HotSync Operation

During the HotSync Exchange operation, the conduit performs
several actions, represented by the black lines in the figure.

The HotSync Exchange conduit first checks if there are any pending
handheld-to-desktop transfer requests for the local desktop by
examining the handheld exchange catalog mentioned above. Since
the conduit finds an entry, it proceeds to create a desktop file with
the associated file name (palmuser.id) in the user’s directory on the
desktop that contains the contents of the associated temporary
cache. Afterwards, the conduit deletes the catalog entry and the
temporary cache from the handheld.

The conduit then checks to see if there are any files to be installed to
the device. It finds mountains.jpg and creates a cache named
mountains.jpg on the handheld.

After the HotSync Operation

After the HotSync operation the following operations are
performed (represented by blue lines in the figure):

The system launches newly installed applications and applications
whose data has been modified by the HotSync operation. At this
point newly installed applications can register supported file types
with the Exchange Manager. (So, if the HotSync operation had
installed a JPEG viewer, it would now register for .JPG files). When
the HotSync exchange library receives the
sysNotifySyncFinishEvent notification, it searches for

Object Exchange
Attachment Support Guidelines

142 Exploring Palm OS: High-Level Communications

temporary HotSync caches. On finding mountains.jpg, it opens the
cache and calls ExgNotifyReceive(). This causes the Exchange
Manager to launch the viewer for JPEG files and transfer the file
mountains.jpg to it. The application may choose to convert and
store it in a Palm OS database. When the application calls
ExgDisconnect(), the HotSync exchange library deletes the
temporary cache created by the conduit.

The HotSync exchange library disables the confirm receipt dialog
that is normally displayed when data is sent via the Exchange
Manager. Thus there is no user interface on the handheld device
during a successful desktop to handheld exchange.

Attachment Support Guidelines
This section outlines how Palm OS applications should interoperate
to exchange email attachments. On other platforms attachments are
stored intermediately on a file system for the handover between a
messaging application (email, instant messaging, etc.) and a display
application (word processor, image viewer, etc.). On Palm OS,
which doesn’t provide a file system, the Exchange Manager enables
data exchange between applications.

The following sections describe how applications should use the
Exchange Manager to handle attachments. These guidelines were
designed with the following goals:

• Leveraging existing capabilities of today’s applications.

• Ensuring backwards compatibility with Palm OS 4 by using
existing standard mechanisms.

• Providing a good user experience.

Application providers are strongly encouraged to follow these
guidelines to enable a consistent user experience on Palm OS.

The following topics are covered:

• Viewing Attachments

• Sending an Attachment from a Messaging Application

• Sending an Attachment from a Display Application

• Email Application Guidelines

Object Exchange
Attachment Support Guidelines

Exploring Palm OS: High-Level Communications 143

The Attachment Support sample code shows how to implement the
guidelines covered in this section. It is available in the Developer
Knowledge Base at http://kb.palmsource.com/

Viewing Attachments
Messaging applications should leverage dedicated display
applications already available on the device rather than
implementing their own content viewers. Passing data from the
messaging application to a display application is facilitated by the
Exchange Manager.

NOTE: The data viewing mechanism described here can be
used for more than just viewing email attachments. It can be used
as a general purpose mechanism to view any data incoming via
the Exchange Manager. Follow the guidelines for display
applications to support data viewing in a display application.

There are two methods of exchanging attachments:

• Regular Put: This is the standard put mechanism (using
ExgNotifyReceive() or ExgPut()). It is backwards
compatible with older applications that don’t know about
attachment support.

• Put with View Mode: This method defines an enhanced view
mode. It enables display applications to distinguish between
data sent for temporary viewing versus data sent to be
accepted into the database.

Additionally, this method defines a return mechanism to the
messaging application. This allows display applications to
execute a full launch of one or more other applications before
returning control to the messaging application.

Regular Put

This method, which has been around for several years, enables an
application to send data to another application. Older display
applications, which are not attachment aware, will simply accept
the data into their database and not return to the messaging
application. (The user needs to return via the launcher). Although

http://kb.palmsource.com/

Object Exchange
Attachment Support Guidelines

144 Exploring Palm OS: High-Level Communications

this behavior doesn’t present an optimal user experience, it provides
a way to take advantage of older applications.

Newer applications, which follow the guidelines outlined in this
section, provide the user with the option to return to the messaging
application (for example, via a Done button). The recommended
method is that the display application simply exits. The system will
automatically launch the previous application (implicit launch of
the messaging application).

The interaction between the messaging application, Exchange
Manager, and the display application for a regular Put operation is
shown in Figure 4.3. Specific guidelines for messaging applications
and display applications follow the figure.

Figure 4.3 Regular Put operation

Messaging Application Display ApplicationExchange Manager

Register MIME type and file extension
with Exchange Manager

Messaging application selects the destination application based on MIME type and/or file extension of data and sends
data object to Exchange Manager (using its own exchange library)

(Implementation of preview is not
recommended, as it will be deprecated
in the future)

- ExgNotifyReceive sysAppLaunchCmdExgAskUser

sysAppLaunchCmdExgPreview

Display application receives data from Exchange Manager (via sub-launch)

sysAppLaunchCmdExgReceiveData - ExgAccept
- ExgReceive
- ExgDisconnect

Messaging application launches the display application (via full launch). Display application presents the data and then
exits. If an application exits, Palm OS automatically launches the previous application (messaging application).

sysAppLaunchCmdGoto

implicit sysAppLaunchCmdGoto

- Display data
- Provide user with option to exit
application
- Application exits

- ExgNotifyGoto

Continues...

Object Exchange
Attachment Support Guidelines

Exploring Palm OS: High-Level Communications 145

Guidelines for Messaging Applications

To handle attachment viewing with the regular Put method,
messaging applications should follow these guidelines:

• Messaging applications are strongly encouraged to
implement their own exchange library to support the Put
mechanism (minimal implementation of accept/receive/
disconnect).

Although Put can be implemented without an exchange
library (by using ExgPut(), ExgSend(), and
ExgDisconnect()), this implementation is slow, especially
for large attachments, because the Exchange Manager first
reads and copies all the data before handing it over to the
display application.

• Messaging applications can query the Exchange Manager
registry to determine if a dedicated application is available to
handle a specific content type (use
ExgGetRegisteredTypes()). If no application can handle
the attachment, the messaging application may convert the
content into a different format that can be displayed on the
device. The conversion might take place either on the client
side or, in the case of a distributed email solution, on a server
or desktop computer. For example, if no application has
registered with the Exchange Manager to handle HTML
content, the email application could convert it to text and
display it itself.

• Whenever possible, messaging applications should include
the MIME type information (besides the file extension) when
sending data to the Exchange Manager. File extensions do
not uniquely identify the content of a document. In some
cases, the same file extension has been used for different file
formats (for example, “.doc”). Refer to IANA (http://
www.iana.org/assignments/media-types/) for the official
list of registered MIME types.

Some notes on MIME types: MIME type information in the
Content-Type field of email messages isn’t always reliable.
Some email programs use non-registered MIME types (for
example, application/powerpoint instead of application/
vnd.ms-powerpoint) or use a generic MIME type (for
example, application/octet) when attaching documents. It is
recommended that email applications analyze the Content-

http://www.iana.org/assignments/media-types/
http://www.iana.org/assignments/media-types/

Object Exchange
Attachment Support Guidelines

146 Exploring Palm OS: High-Level Communications

Type field carefully (including file extensions), and map it to
the correct MIME type before passing this information to the
Exchange Manager. Developers of messaging applications
are encouraged to present a list of applications that can
handle the attachment, instead of simply using the default
application. (The ExgGetRegisteredApplications()
function allows messaging applications to query for
applications that have registered for a specific MIME type or
file extension).

• Messaging applications should send only one data object
(document) at a time to a document application in a single
connection. Although the exchange library is capable of
handling multiple objects in a single connection, the
assumption is that a display application can display only one
document at a time.

• For regular Put, the default Exchange Manager dialog (“Do
you want to accept…”) should not be disabled. (Use
ExgNotifyReceive()(…,0) in the exchange library).

• Messaging applications are responsible for transport-related
encoding and decoding of the content. All content exchanged
with a display application happens in binary format.

Guidelines for Display Applications

To handle attachment viewing with the regular Put method, display
applications should follow these guidelines:

• Display applications should register both file extension(s)
and MIME type(s) of data that they can handle. Refer to
“General Registration Guidelines” on page 113.

• Applications should be prepared to receive invalid data and
deal with this situation gracefully.

• Applications that accept data or documents into their
databases should avoid unnecessary duplication. For
instance, if a user views an attachment several times, the data
should not be duplicated.

• Applications should provide the user with an option to
return to the messaging application (for example, a Done
button).

• Display applications and messaging applications exchange
data in its normal binary format. Messaging applications will

Object Exchange
Attachment Support Guidelines

Exploring Palm OS: High-Level Communications 147

encode/decode the data according to their transport
requirements.

Put with View Mode

This method defines an extension to the standard Put mechanism. It
allows display applications to implement a special view mode
where data is displayed, but not automatically added to the
application’s database. During view mode, the default Exchange
Manager “Accept…” dialog can be disabled, which saves the user
an extra step.

Moreover, view mode defines a mechanism to return to the
messaging application across an arbitrary number of nested
launches of other applications. This is useful, for instance, when a
messaging application hands a .zip or .tar file to a decompression
utility application that, after the user chooses a specific document,
sends the content to the appropriate display application.

Implementation of the view mode requires collaboration of both the
messaging and display applications. Display applications indicate
support for view mode by using the following exchange registry
IDs during registration:

// New Exchange registry IDs for View registry. Don’t change values!
#define exgRegViewExtensionID 0xff8d // filename ext. registry for View
#define exgRegViewTypeID 0xff8e // MIME type registry for View

ExgRegisterDatatype(…,exgRegViewExtensionID,…,…,…);
ExgRegisterDatatype(…,exgRegViewTypeID,…,…,…);

These two exchange registry IDs, one for file extensions and the
other for MIME types, allow display applications to support view
mode only for a subset of the content they usually accept.

Before a messaging application calls ExgNotifyReceive(), it
must first check if the receiving application supports view mode for
the content that is to be sent. If the display application supports
view mode, the messaging application must add its own GoTo
information to the ExgSocketType structure. Figure 4.4 shows the
interaction between the applications and the Exchange Manager in
more detail.

Object Exchange
Attachment Support Guidelines

148 Exploring Palm OS: High-Level Communications

Figure 4.4 Put with view mode

Guidelines for Messaging Applications

Messaging applications are strongly encouraged to support view
mode.

Messaging Application Display ApplicationExchange Manager

Register MIME types and file
extensions for which view mode is
supported.

Messaging application checks if receiving display application supports view mode. If so, it adds its own GoTo
information and sends the data object to the Exchange Manager.

(Happens only for applications that
don't support view mode. Otherwise
the exgNoAsk flag disables Ask and
Preview.)

- Select target application based on file
extension/ MIME type.
- Check if receiving application
supports view mode.
- If so, add my own gotoCreator
and gotoParams info in
ExgSocketType structure.
- Disable "Accept" dialog by using
exgNoAsk flag in the
ExgNotifyReceive call.
- ExgNotifyReceive

sysAppLaunchCmdExgAskUser

sysAppLaunchCmdExgPreview

Exchange Manager selects destination application based on MIME type or file extension of data and launches the
application.

sysAppLaunchCmdExgReceiveData - ExgAccept
- If gotoCreator is non-zero, save
senders GoTo information and add my
own GoTo info.
- ExgReceive (Only store data
temporarily)
- ExgDisconnect

Display application receives data from Exchange Manager (via sub-launch). It saves the GoTo information of the
messaging application and adds its own GoTo information.

sysAppLaunchCmdGoto

sysAppLaunchCmdGoto

- Display data
- Provide user with option to
permanently store the received data
and/or to exit application.
- Return to messaging application
using the saved GoTo info in
SysUIAppSwitch .

- ExgNotifyGoto

Continues...

Display application displays data (via full launch). It has the ability to launch or sub-launch an arbitrary number of
applications, before returning control back to the messaging application (launched with Goto).

Object Exchange
Attachment Support Guidelines

Exploring Palm OS: High-Level Communications 149

In addition to the guidelines defined in “Regular Put” on page 143,
messaging applications that want to take advantage of display
applications with view mode support must follow these guidelines:

• Messaging applications must check if the receiving
application supports view mode, before adding their own
GoTo information. The default “Accept” dialog can be
disabled only if the target application supports view mode,
resides on the same device, and if GoTo information is
added.

ExgGetRegisteredApplications(…, …, …,
exgRegViewExtensionID,…)
ExgGetRegisteredApplications(…, …, …, exgRegViewTypeID,…)
…
if (supportsView) {
 add_my_GoTo_info();
 ask = exgNoAsk;
}
ExgNotifyReceive(…, ask);

• If the receiving application does not support view mode, the
gotoCreator field and the goToParams structure fields in
the ExgSocketType structure passed to
ExgNotifyReceive() (or ExgPut()) must be set to zero
and the “Accept” dialog must not be disabled. The reason for
this is that some applications (for example, certain built-in
PIM applications) that don't support view mode, use some
goToParams fields to determine certain states. Supplying
wrong information could lead to unwanted behavior.

• When a messaging application is relaunched after view
mode, it should return to the same state it was in when the
display application was launched. Especially, the same
message should be displayed and any splash screens should
be skipped.

Guidelines for Display Applications

In addition to the guidelines defined in “Regular Put” on page 143,
display applications that want to implement view mode support
must follow these guidelines:

• Support for view mode must be indicated by registering with
the Exchange Manager like this:

Object Exchange
Attachment Support Guidelines

150 Exploring Palm OS: High-Level Communications

// New Exchange registry IDs for View registry. Don't change values!
#define exgRegViewExtensionID 0xff8d // filename extension ID
#define exgRegViewTypeID 0xff8e // MIME type registry

ExgRegisterDatatype(…,exgRegViewExtensionID,…,…,…);
ExgRegisterDatatype(…,exgRegViewTypeID,…,…,…);

• Always check if your application is called in view mode by
checking if goToCreator information is available (in the
ExgSocketType structure).

• When applications receive data in view mode, the data
should be stored temporarily and not automatically accepted
into the application database. Instead, the user should be
given the option to save the data. To save memory space,
temporary data should be removed before the application
exists.

• Applications that support view mode must provide an
option to return to the messaging application (for example, a
Done button). Returning to the messaging application must
be implemented by actively launching the messaging
application (with SysUIAppSwitch() or the
AppLaunchWithCommand() macro), using the GoTo
information provided by the messaging application.

Sending an Attachment from a Messaging
Application
Traditionally, when the user composes a message, messaging
applications provide an option to select a document and attach it to
the outgoing message. This has not been straightforward on Palm
Powered devices in the past, since the Palm OS doesn't provide a file
system. These guidelines define a standard way to implement this
feature using the Exchange Manager's Get mechanism. This
mechanism isn't limited to attachment support, but rather defines a
general import mechanism.

The process of selecting an attachment includes two steps:

1. Let the user select the application where the data is stored.

2. Launch this application and let the user pick from a list of
data objects.

Object Exchange
Attachment Support Guidelines

Exploring Palm OS: High-Level Communications 151

The idea is to enable users to perform a data lookup by application
(in contrast to a path lookup on other platforms). This fits the Palm
OS model where data is associated with one particular application.
The application that stores the data is responsible for providing the
user interface in step 2. This makes it possible to present a user
interface that is optimized for that particular data type. For instance,
a calendar application can present information in an appropriate
calendar context rather then as a simple list, allowing for a better
user experience.

The Get mechanism requires implementation for both the
messaging application as well as the display application. Although
the Get mechanism has been available since Palm OS 4, it hasn't
been widely used yet by applications, due to lack of guidelines and
usage scenarios. However, with more and more applications
supporting the exchange of native file formats across different
platforms, this situation will change rapidly.

To leverage the existing Get mechanism for the purpose of
supporting attachments, a new _get exchange scheme has been
defined (similar to _local or _send). Display applications must
register this scheme with the Exchange Manager to let other
applications know that they support the Get mechanism.

Figure 4.5 shows the interaction between the applications and the
Exchange Manager.

Object Exchange
Attachment Support Guidelines

152 Exploring Palm OS: High-Level Communications

Figure 4.5 Sending attachment from messaging application

NOTE: There are bugs in some versions of Palm OS that
prevent using the Get mechanism as documented here. The
Attachment Support sample code shows how to work around
these problems. It is available in the Developer Knowledge Base
at http://kb.palmsource.com/

Messaging Application Display ApplicationExchange Manager

- ExgRegisterDatatype("_get")

Messaging application requests a list of applications that support the Get mechanism (_get scheme) and displays it. It
lets the user make a selection and requests data from that application using the local exchange library.

- ExgGetRegisteredApplica
tions("_get")
- Display list of applications with
attachment support. User makes
selection.
- Set exgSocket.target according
to selection.
- Allocate and initialize memory for
exgSocket.name /type/
description .
- Set exgSocket.name = "_local:"
- ExgGet

Exchange Manager sub-launches the selected display application.

sysAppLaunchCmdExgGetData

- Display document selection screen.
- Copy name, type and description info
into provided exgSocket.name /type/
description buffers.
- ExgAccept
- ExgSend
- ExgDisconnect

The display application presents a screen allowing the user to choose a data object (document). After the user makes
a selection, the data object is sent to the messaging application.

- ExgReceive
- ExgDisconnect
- Free memory allocated for
exgSocket.name /type/
description .

Messaging application adds the data object as an attachment to the message.

http://kb.palmsource.com/

Object Exchange
Attachment Support Guidelines

Exploring Palm OS: High-Level Communications 153

Guidelines for Messaging Applications

To handle attachment sending, messaging applications should
follow these guidelines:

• Messaging Applications must use the _get scheme to
identify the available display applications that implement
attachment support.

• Messaging applications should offer a way to add multiple
attachments to a message by repeating the attachment
selection process.

• Messaging application should never try to read/write
directly from/to the databases of other applications.
Database formats might change or databases might be
encrypted. Using the Exchange Manager not only prevents
database corruption by other applications but also ensures
interoperability between 68K and ARM applications.

• Before calling ExgGet(), messaging applications must:

– allocate buffers for the exgSocket.name,
exgSocket.type, and exgSocket.description
fields. The size of these buffers are:

description: exgMaxDescriptionLength + 1

type: exgMaxTypeLength + 1

name: exgMaxTypeLength + 1 (same as for type)

– initialize all buffers with zeros

– set exgSocket.name to “_local:”

Guidelines for Display Applications

To handle attachment sending from a messaging application,
display applications should follow these guidelines:

• Applications must register the _get scheme with the
Exchange Manager if they implement attachment support.
Refer to “General Registration Guidelines” on page 113.

• Applications must not send more then one data object for
every ExgGet() request.

• When responding to a sysAppLaunchCmdExgGetData
launch code, an application should copy the file name, type,
and description information of the content into the supplied

Object Exchange
Attachment Support Guidelines

154 Exploring Palm OS: High-Level Communications

exgSocket.name, exgSocket.type, and
exgSocket.description fields. Memory for these fields
has been allocated by the calling application. The usable size
of these fields is:

– name: exgMaxTypeLength (same as type)

– type: exgMaxTypeLength

– description: exgMaxDescriptionLength

Applications should first check if memory was allocated
(check for NULL pointers) before writing to the buffers. An
application should never allocate or reallocate memory for
these fields itself.

If the exgSocket.name field contains a scheme (for
example, "_local:"), this scheme information should not
be overwritten. Rather, name information should be
appended to the scheme (for example,
"_local:myname.txt").

• Display applications should provide a familiar document
selection screen, similar to the document list users might see
when they usually launch the display application.

• When responding to a sysAppLaunchCmdExgGetData
launch code, applications may support requests for a specific
record (for example, via an application-specific URL scheme
passed in the name field of the ExgSocketType structure).
Such a request should be handled without a user interface.

A display application may be launched with a full launch in
response to a get request. This implementation is shown in detail in
the Attachment Support sample code. It is available in the
Developer Knowledge Base at http://kb.palmsource.com/

Sending an Attachment from a Display
Application
Any display application should be able to send data to another
device using any messaging application as a transport. For instance,
a user could send a JPEG image from an image viewer to another
person via email. This feature is implemented via the Exchange
Manager using the _send URL scheme. Because the send capability
is has been available since Palm OS 4, many existing display
applications already support it.

http://kb.palmsource.com/

Object Exchange
Attachment Support Guidelines

Exploring Palm OS: High-Level Communications 155

Guidelines for Messaging Applications

To handle attachment sending from a display application,
messaging applications should follow these guidelines:

• Messaging applications must provide an exchange library
that supports the _send URL scheme and register the
scheme with the Exchange Manager (see “General
Registration Guidelines” on page 113.). Email applications
will prompt the user for additional information (recipient
information, subject line, etc.) and add the received data as
an attachment to the message.

• Messaging applications should be able to accept any content
type to act as a transport mechanism.

Guidelines for Display Applications

To handle attachment sending, display applications should follow
these guidelines:

• Display applications must use the _send URL scheme to
send data to the Exchange Manager. The Send mechanism is
a general mechanism that provides the user with a choice of
all the transport mechanisms available on the device that
support the _send scheme (for example, Bluetooth, email,
etc.).

The sample code below shows how to send or beam data.
The question mark in the name field means that on OS 4.0
and higher, it'll display a dialog to let the user choose which
transport to use (for example, IR, Bluetooth, SMS, etc.).

status_t err;
ExgSocketType exgSocket;

// Fill out exgSocket with the description of the data and the
// package's "address"
MemSet(&exgSocket, sizeof(exgSocket), 0);
exgSocket.description = "SuperApp data";
exgSocket.name = "?_send;_beam:SuperAppData.sad";
exgSocket.type = "application/x-superappdata";

err = ExgPut(&exgSocket); // open the connection
ExgSend(&exgSocket, theData, theDataSize, &err); // send the data
err = ExgDisconnect(&exgSocket, err); // that's all!

Object Exchange
Attachment Support Guidelines

156 Exploring Palm OS: High-Level Communications

• Display applications must set at least the type information
(exgSocket.type). Name information
(exgSocket.name), including file extension and description
information (exgSocket.description), should also be
provided. This allows messaging applications to format
outgoing messages correctly, with the proper MIME content-
type fields.

Email Application Guidelines
Email applications should follow these guidelines to support the
mailto scheme and the helper APIs.

Support for Mailto URL Scheme

Applications like a web browser must be able to launch an email
application to start composing a new message. In contrast to the
_send scheme, the mailto URL automatically implies email as a
transport medium and allows applications to provide additional
information, like recipients, subject line, etc.

Therefore:

• Email applications must implement the mailto URL scheme
and register the scheme with the Exchange Manager. For
more information on the mailto scheme, see RFC 2368 at
http://www.ietf.org/rfc/rfc2368.txt

• The application must display the message content before a
message is sent. This prevents malicious applications from
sending uncontrolled spam without the user’s knowledge.

Support for Helper API

Messaging applications should register their services with the
helper API as described in “Helper Notifications” on page 66 in
Exploring Palm OS: Programming Basics. In particular, email
applications should support the mail service class.

http://www.ietf.org/rfc/rfc2368.txt

Object Exchange
Summary of Exchange Manager

Exploring Palm OS: High-Level Communications 157

Summary of Exchange Manager
Exchange Manager Functions

Sending Data

ExgSend()

ExgPut()

ExgDBWrite()

Receiving Data

ExgReceive()

ExgAccept()

ExgDBRead()

Registering for Data

ExgRegisterDatatype()

ExgSetDefaultApplication()

ExgRegisterData()

Requesting Data

ExgGet() ExgRequest()

Connecting and Disconnecting

ExgDisconnect() ExgConnect()

Displaying the Exchange Dialog

ExgDoDialog()

Obtaining Registry Information

ExgGetTargetApplication()

ExgGetRegisteredApplications
()

ExgGetRegisteredTypes()

ExgGetDefaultApplication()

Querying the Exchange Library

ExgControl()

For Exchange Library Use Only

ExgNotifyReceive()

ExgNotifyPreview()

ExgNotifyGoto()

Object Exchange
Summary of Exchange Manager

158 Exploring Palm OS: High-Level Communications

Exploring Palm OS: High-Level Communications 159

5
Exchange Manager
Reference
This chapter describes the Exchange Manager API declared in the
header file ExgMgr.h and the Exchange Local Library API declared
in the header file ExgLocalLib.h. It discusses the following
topics:

• Exchange Manager Data Structures

• Exchange Manager Constants

• Exchange Manager Launch Codes

• Exchange Manager Functions

• Application-Defined Functions

For more information on the Exchange Manager, see Chapter 4,
“Object Exchange,” on page 105.

Exchange Manager Data Structures

ExgAskParamType Struct
Purpose The ExgAskParamType structure is the parameter block for the

sysAppLaunchCmdExgAskUser launch code.

Declared In ExgMgr.h

Prototype typedef struct {
 ExgSocketPtr socketP;
 ExgAskResultType result;
 uint8_t reserved;
 uint16_t padding_1;
} ExgAskParamType;

Exchange Manager Reference
ExgCtlGetURLType

160 Exploring Palm OS: High-Level Communications

Fields ↔ socketP
Socket pointer (see ExgSocketType).

← result
One of the ExgAskResultType enumerated values.

→ reserved
Reserved for future use.

→ padding_1
Padding; not used.

ExgCtlGetURLType Struct
Purpose The ExgCtlGetURLType structure identifies the URL of a remote

device as returned by the ExgControl()function with the
exgLibCtlGetURL operation code.

Declared In ExgMgr.h

Prototype typedef struct ExgCtlGetURLType{
 ExgSocketType *socketP;
 char *URLP;
 uint16_t URLSize;
 uint16_t padding;
} ExgCtlGetURLType;

Fields socketP
Pointer to the socket structure (see ExgSocketType).

URLP
Pointer to the URL string.

URLSize
Size of the URL string.

padding
Padding; not used.

ExgGoToType Struct
Purpose The ExgGoToType structure defines the goToParams field of the

ExgSocketType structure. Applications that want to be launched
after the data is received place their creator IDs in the
goToCreator field and define the goToParams field. The values

Exchange Manager Reference
ExgLocalSocketInfoType

Exploring Palm OS: High-Level Communications 161

in this structure are copied to the sysAppLaunchCmdGoTo launch
code’s parameter block.

Declared In ExgMgr.h

Prototype typedef struct {
 LocalID dbID;
 uint32_t recordNum;
 uint32_t uniqueID;
 uint32_t matchCustom;
} ExgGoToType;

Fields dbID
The local ID of the database that contains the added record.

recordNum
The index of the record that was added.

uniqueID
The unique ID of the record that was added. This field is not
used.

matchCustom
Application-specific information.

ExgLocalSocketInfoType Struct

Purpose The ExgLocalSocketInfoType structure identifies information
specific to the Local Exchange Library. The socketRef field of the
ExgSocketType structure is set to this structure when you send
and receive data using the Local Exchange Library. The Local
Exchange Library creates this structure if it does not already exist.
You only need to create it if you want to supply non-default values
for the noAsk or previewInfoP fields.

Declared In ExgLocalLib.h

Prototype typedef struct {
 Boolean freeOnDisconnect;
 Boolean noAsk;
 ExgPreviewInfoType *previewInfoP;
 void *tempFileH;
 status_t err;
 ExgLocalOpType op;
} ExgLocalSocketInfoType;

Exchange Manager Reference
ExgLocalSocketInfoType

162 Exploring Palm OS: High-Level Communications

Fields freeOnDisconnect
Determines whether the structure is freed when the
ExgDisconnect() call is made. The default is true. In
general, code that allocates a structure should be responsible
for freeing that structure. Therefore, if you have allocated
ExgLocalSocketInfoType, you should set this field to
false and explicitly free the structure when you are finished
with it.

noAsk
Set to true to disable the display of the exchange dialog. For
example, if you want to create a vCalendar object and send it
to the Datebook application in response to a user command,
you probably want to set noAsk to true so that the user
does not have to confirm the receipt of the data they just
requested you to send.

previewInfoP
A pointer to an ExgPreviewInfoType structure. The
preview feature is deprecated and is maintained only for
backward compatibility.

tempFileH
A temporary buffer that the Local Exchange Library uses. Do
not set this field directly; the Local Exchange Library should
set it.

err
The error code returned from the Local Exchange Library. Do
not set this field directly; the Local Exchange Library should
set it.

op
The operation in progress. Do not set this field directly. The
Local Exchange Library sets this field to one of the following
constants:

exgLocalOpNone
No operation in progress.

exgLocalOpPut
A send is in progress.

exgLocalOpAccept
A receive is in progress.

Exchange Manager Reference
ExgPreviewInfoType

Exploring Palm OS: High-Level Communications 163

exgLocalOpGet
A get is in progress.

exgLocalOpGetSender
The library is receiving information from the sending
application during a get operation.

ExgPreviewInfoType Struct
Purpose The ExgPreviewInfoType structure provides information to the

ExgNotifyPreview() function. The preview feature is
deprecated and is maintained only for backward compatibility.
Applications should no longer implement preview via this
mechanism, but should follow the data viewing guidelines
described in “Put with View Mode” on page 147.

Declared In ExgMgr.h

Prototype typedef struct {
 uint16_t version;
 uint16_t padding1;
 ExgSocketType *socketP;
 uint16_t op;
 uint16_t padding2;
 char *string;
 uint32_t size;
 RectangleType bounds;
 uint16_t types;
 uint16_t padding3;
 status_t error;
} ExgPreviewInfoType;

Fields version
Set this field to 0 to specify version 0 of this structure.

padding1
Padding; not used.

socketP
A pointer to the socket structure (see ExgSocketType). The
name field must identify the exchange library from which
data should be received, and the target or type field
should be defined as well.

Exchange Manager Reference
ExgPreviewInfoType

164 Exploring Palm OS: High-Level Communications

op
One of the following constants:

exgPreviewDialog
Display a modal dialog containing the preview. This
constant is only used in situations where one
application launches another to display data.

exgPreviewDraw
The preview is a graphic.

exgPreviewLongString
The preview is a long string.

exgPreviewQuery
Ask the application which preview operations it
supports. The answer is returned in the types field. If
the application does not support any preview modes,
the error field contains exgErrNotSupported.

exgPreviewShortString
The preview is a short string.

padding2
Padding; not used.

string
A buffer into which the application places the string preview
if exgPreviewLongString or exgPreviewShortString
is specified in op.

size
The allocated size of the string field.

bounds
The bounds of the rectangle in which the application draws
the graphic if exgPreviewDraw is specified in op.

types
Upon return from an exgPreviewQuery operation, a bit
field identifying the types of previews the application
supports.

padding3
Padding; not used.

Exchange Manager Reference
ExgSocketType

Exploring Palm OS: High-Level Communications 165

error
The error code returned from the application. If errNone,
the preview operation was successful.

ExgSocketType Struct
Purpose The ExgSocketType structure defines an Exchange Manager

socket, which is passed to most Exchange Manager functions. The
ExgSocketPtr type points to a ExgSocketType structure.

Declared In ExgMgr.h

Prototype typedef struct ExgSocketTag {
 uint16_t libraryRef;
 uint16_t socketRefSize;
 uint32_t socketRef;
 uint32_t target;
 uint32_t count;
 uint32_t length;
 uint32_t time;
 uint32_t appData;
 uint32_t goToCreator;
 ExgGoToType goToParams;
 uint16_t localMode:1;
 uint16_t packetMode:1;
 uint16_t noGoTo:1;
 uint16_t noStatus:1;
 uint16_t preview:1;
 uint16_t cnvFrom68KApp:1;
 uint16_t acceptedSocket:1;
 uint16_t reserved:9;
 uint8_t componentIndex;
 uint8_t padding_1;
 char *description;
 char *type;
 char *name;
} ExgSocketType;
typedef ExgSocketTag *ExgSocketPtr;

Note that when data is received, some of the fields in this structure
may not have values. When you are sending data, it is
recommended that you provide values for all of these fields, but you
should not rely on receiving values for the fields marked optional.

Exchange Manager Reference
ExgSocketType

166 Exploring Palm OS: High-Level Communications

Fields libraryRef
The exchange library in use. When an application or library
receives a socket, this field is already assigned. This is no
longer used for ARM code development, but is kept for
compatibility with 68K exchange libraries.

When sending data, applications may identify the exchange
library they want to connect with by providing a URL in the
name field, and should use 0 for the libraryRef field.

socketRefSize
Size of the data block referenced by socketRef, if
socketRef is a pointer to a data block.

socketRef
The connection identifier. This value is supplied by the
exchange library when a connection is established. It
contains any necessary library-specific data. For an ARM
exchange library, this must be a single data block without
pointer references to other blocks.

target
The creator ID of the application that should receive the
message.

count
The number of objects in this connection, usually 1
(optional).

length
The total byte count for all objects being sent (optional).

time
The last modified time of object (optional).

appData
Application-specific information (optional). For an ARM
exchange library, do not pass pointer values here; only the 32-
bit value itself is safe.

goToCreator
The creator ID of the application to launch using the
sysAppLaunchCmdGoTo launch code after the item is
received if noGoTo is 0. The value is assigned by the
application that receives the object. See the Comments
section in ExgDisconnect() for more information.

Exchange Manager Reference
ExgSocketType

Exploring Palm OS: High-Level Communications 167

goToParams
If goToCreator is specified, then this field contains data
that is copied into the launch code’s parameter block. See
ExgGoToType.

localMode
Deprecated; set to 0. To use local exchange, specify a URL
with the exgLocalPrefix. (Note that this flag still works
for backward compatibility.)

packetMode
Deprecated; set to 0.

noGoTo
Set to 1 to disable launching the application with
sysAppLaunchCmdGoTo. The default is 0.

noStatus
If true, the exchange library should not display a progress
dialog. If false, the library can display a progress dialog.
The default is false.

The Exchange Manager sets and clears this bit at various
times while data is received. Applications may also want to
set this bit if they use the Local Exchange Library and want to
prevent the progress dialog from being displayed during a
send.

preview
If true, a preview is in progress. The
ExgNotifyPreview() function sets this bit while the
preview takes place and clears it when the preview is
finished. Exchange libraries should not discard any data
while a preview is in progress because the full data must be
sent later if the receiving user accepts it. The preview feature
is deprecated and is maintained only for backward
compatibility.

cnvFrom68KApp
If set to 1, indicates that the socket was created by a 68K
application. This lets the library know that it may need to
convert some data (such as the socketRef data).

acceptedSocket
If set to 1, indicates that this socket was passed into
ExgAccept().

Exchange Manager Reference
Exchange Manager Constants

168 Exploring Palm OS: High-Level Communications

reserved
Reserved system flags.

componentIndex
The Exchange Manager C++ component holding this socket
(if any). Nonzero for valid sockets.

padding_1
Padding; not used.

description
A pointer to the text description of the object (optional).

type
A pointer to the MIME type of the object (optional).

name
The name of the object being sent. This can be a URL whose
scheme identifies the exchange library to connect with.

If the name has a colon, it is treated as a URL.

Exchange Manager Constants

ExgAskResultType Enum
Purpose The ExgAskResultType enum defines possible values for the

result field of the ExgAskParamType launch code parameter
block.

Declared In ExgMgr.h

Prototype typedef enum {
 exgAskDialog,
 exgAskOk,
 exgAskCancel
} ExgAskResultType;

Constants exgAskDialog
The Exchange Manager should display a dialog that prompts
the user to confirm the receipt of data. See ExgDoDialog().

exgAskOk
Accept the data.

Exchange Manager Reference
Registry ID Constants

Exploring Palm OS: High-Level Communications 169

exgAskCancel
Reject the data.

Registry ID Constants
Purpose The registry ID constants are used in the Exchange Manager

registry. Exchange libraries register for the URL prefixes they
handle, and applications register for the types of data they receive.
The registry ID constants specify which type of data is being
registered for.

Declared In ExgMgr.h

Constants #define exgRegCreatorID 0xfffb
Register for a creator ID. The target field of the
ExgSocketType contains the creator ID of the application
that should receive the data. Typically, the application with
the matching creator ID receives the data, but it is possible
for one application to register for another’s creator ID and
receive data in its place.

#define exgRegSchemeID 0xfffc
Register for a URL scheme. Typically, only exchange libraries
register for URL schemes. Applications can register for URL
schemes, but they only receive the URL when
ExgRequest() is called. If the name field of the
ExgSocketType contains a colon (:), the portion of the URL
before the colon is the URL scheme. The default library
registered for URLs with that scheme will handle the
message.

#define exgRegExtensionID 0xfffd
Register for a filename extension. If the name field of the
ExgSocketType contains a period (.), the portion of the
name after the last period is the filename extension. The
application registered to handle files of that extension will
handle the message.

#define exgRegTypeID 0xfffe
Register for a MIME type. If the type field of the
ExgSocketType contains a value, the application registered
to receive that MIME type handles the message.

Exchange Manager Reference
Predefined URL Schemes

170 Exploring Palm OS: High-Level Communications

#define exgRegDirectCreatorID 0xffeb
Register for a creator ID for direct delivery. The target field
of the ExgSocketType contains the creator ID of the
application that should directly receive the data instead of an
email application. (This is used instead of the exgUnwrap
flag and must not be used with it.)

#define exgRegDirectExtensionID 0xffed
Register for a filename extension for direct delivery. If the
name field of the ExgSocketType contains a period (.), the
portion of the name after the last period is the filename
extension. The application registered to handle files of that
extension will handle the message, instead of an email
application. (This is used instead of the exgUnwrap flag and
must not be used with it.)

#define exgRegDirectTypeID 0xffee
Register for a MIME type for direct delivery. If the type field
of the ExgSocketType contains a value, the application
registered to receive that MIME type handles the message
instead of an email application. (This is used instead of the
exgUnwrap flag and must not be used with it.)

#define exgRegViewCreatorID 0xff8b
Register for a creator ID for view mode. The target field of
the ExgSocketType contains the creator ID of an
application that can be used to view the data.

#define exgRegViewExtensionID 0xff8d
Register for a filename extension for view mode. If the name
field of the ExgSocketType contains a period (.), the
portion of the name after the last period is the filename
extension. The application registered to handle files of that
extension can be used to view the data.

#define exgRegViewTypeID 0xff8e
Register for a MIME type. If the type field of the
ExgSocketType contains a value, the application registered
to receive that MIME type can be used to view the data.

Predefined URL Schemes
Purpose The Exchange Manager provides these predefined URL schemes,

for which exchange libraries can register.

Exchange Manager Reference
Predefined URL Prefixes

Exploring Palm OS: High-Level Communications 171

Declared In ExgMgr.h and ExgLocalLib.h

Constants #define exgBeamScheme "_beam"
The URL scheme for Beam commands. By default, the IR
Library handles this scheme.

#define exgSendScheme "_send"
The URL scheme for Send commands. The purpose of the
Send command is to provide a choice of transport
mechanisms to the user; therefore, any exchange library that
sends data should register for this scheme.

#define exgGetScheme "_get"
The URL scheme for the Get mechanism.

#define exgLocalScheme "_local"
The URL scheme for the Local Exchange Library.

Predefined URL Prefixes
Purpose The Exchange Manager provides these prefixes, which can be used

to construct URLs appropriate for the name field of the
ExgSocketType structure. When sending data, applications
provide a URL to identify the exchange library that should
transport the data.

Declared In ExgMgr.h

Constants #define exgBeamPrefix exgBeamScheme ":"
The URL to beam data.

#define exgSendPrefix "?" exgSendScheme ":"
A URL for the general Send command. Because this URL
begins with a question mark (?), the Exchange Manager
displays a dialog with a list of exchange libraries registered
for the exgSendScheme. The user then chooses the desired
exchange library.

#define exgSendBeamPrefix "?" exgSendScheme ";"
exgBeamScheme ":"

A URL for the general Send command. The Exchange
Manager displays a dialog with a list of exchange libraries
registered for either the exgSendScheme or the
exgBeamScheme.

Exchange Manager Reference
Exchange Manager Launch Codes

172 Exploring Palm OS: High-Level Communications

#define exgLocalPrefix exgLocalScheme ":"
The URL for using the Local Exchange Library.

#define exgGetPrefix exgGetScheme ":"
The URL for using the Get mechanism.

Exchange Manager Launch Codes

sysAppLaunchCmdExgAskUser
Purpose The Exchange Manager sends this launch code to an application

when data has arrived for that application. This launch code allows
the application to tell the Exchange Manager not to display the
exchange dialog, which it uses to have the user confirm the receipt
of data. If the application does not handle this launch code, the
default course of action is that the Exchange Manager displays the
exchange dialog.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdExgAskUser 27

Parameters The launch code’s parameter block pointer references a
ExgAskParamType structure.

Comments Applications may want to respond to this launch code under these
circumstances:

• To reject all incoming data or to reject data under certain
circumstances without first prompting the user. To reject
incoming data, set the result field of the parameter block to
exgAskCancel and then return.

• To receive incoming data without confirmation. To
automatically receive incoming data, set the result field to
exgAskOk.

• To provide a user confirmation dialog with extra
functionality. This is described in more detail below.

The Exchange Manager allows applications to provide extra
functionality in the exchange dialog. You can have the dialog
include a category pop-up list from which the user chooses a
category in which to file the incoming data. If you want to provide a

Exchange Manager Reference
sysAppLaunchCmdExgGetData

Exploring Palm OS: High-Level Communications 173

category pop-up list, call the ExgDoDialog() function in response
to this launch code and pass it a database that contains the
categories to be listed. See the description of this function for more
information.

Applications may also bypass the call to ExgDoDialog()
altogether and provide their own dialogs.

If an application responds to this launch code, it must set the
result field in the parameter block to the appropriate value.
Possible values are defined by the ExgAskResultType enum.

If you don’t use the default version of the dialog, return exgAskOk
if the user confirmed or exgAskCancel if the user canceled. If you
don’t set the result field properly, two dialogs are displayed.

See Also sysAppLaunchCmdExgPreview, and Chapter 6, “Common
Launch Codes,” in Exploring Palm OS: Programming Basics

sysAppLaunchCmdExgGetData
Purpose The Exchange Manager sends this launch code when the exchange

library requests data to be sent to a remote device. That is, an
application on a remote device has called the ExgGet() function to
request data, and the Exchange Manager has determined that the
launched application should handle the request.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdExgGetData 59

Parameters The parameter block sent with this launch code is a pointer to the
ExgSocketType structure corresponding to the Exchange
Manager connection on which the data is to be sent. You pass this
socket pointer to ExgAccept(). For more details, see “Responding
to a Get Request” on page 133.

Comments To respond to this launch code, applications should accept a
connection with ExgAccept(), use ExgSend() to send the data,
and call ExgDisconnect() when finished.

See Also Chapter 6, “Common Launch Codes,” in Exploring Palm OS:
Programming Basics

Exchange Manager Reference
sysAppLaunchCmdExgPreview

174 Exploring Palm OS: High-Level Communications

sysAppLaunchCmdExgPreview
Purpose Sent after sysAppLaunchCmdExgAskUser to have the application

display the preview in the exchange dialog.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdExgPreview 57

Parameters The launch code’s parameter block pointer references a
ExgPreviewInfoType structure.

Comments This launch command is deprecated and is maintained only for
backward compatibility. Applications should no longer implement
preview via this mechanism, but should follow the data viewing
guidelines described in “Put with View Mode” on page 147.

See Also Chapter 6, “Common Launch Codes,” in Exploring Palm OS:
Programming Basics

sysAppLaunchCmdExgReceiveData
Purpose The Exchange Manager sends this launch code following the

sysAppLaunchCmdExgAskUser and
sysAppLaunchCmdExgPreview launch codes to notify the
application that it should receive the data (assuming that the
application or the user has indicated the data should be received).

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdExgReceiveData 26

Parameters The parameter block sent with this launch code is a pointer to the
ExgSocketType structure corresponding to the Exchange
Manager connection on which the data is arriving. Pass this pointer
to the ExgAccept() function to begin receiving the data. For more
details, see “Receiving the Data” on page 126.

Comments The application should use Exchange Manager functions to receive
the data and store it or do whatever it needs to with the data.
Specifically, most applications should respond to this launch code
by calling ExgAccept() to accept the connection and then
ExgReceive() to receive the data.

Note that the application may not be the active application, and
thus may not have globals available when it is launched with this

Exchange Manager Reference
ExgAccept

Exploring Palm OS: High-Level Communications 175

launch code. You can check if you have globals by using this code in
the PilotMain() function:

Boolean appIsActive = launchFlags & sysAppLaunchFlagSubCall;

The appIsActive value is true if your application is active and
globals are available; otherwise, you won’t be able to access any of
your global variables during the receive operation.

See Also Chapter 6, “Common Launch Codes,” in Exploring Palm OS:
Programming Basics

Exchange Manager Functions

ExgAccept Function
Purpose Accepts a connection from a remote device.

Declared In ExgMgr.h

Prototype status_t ExgAccept (ExgSocketPtr socketP)

Parameters → socketP
A pointer to the socket structure (see ExgSocketType).

Returns Returns one of the following error codes:

Other error codes depend on the exchange library.

Comments Applications call this function when launched with the
sysAppLaunchCmdExgReceiveData or
sysAppLaunchCmdExgPreview launch code. The launch code
contains socketP in its parameter block. Applications should pass
this socket to ExgAccept() to accept the connection, then call

errNone Success

exgErrBadLibrary Couldn’t find default exchange library

exgErrNotSupported A preview is in progress, and the
exchange library doesn’t support
preview mode

Exchange Manager Reference
ExgConnect

176 Exploring Palm OS: High-Level Communications

ExgReceive() one or more times to receive the data, and then call
ExgDisconnect() to disconnect.

NOTE: Don’t create the socket on the receiving side of an
exchange. The socket is passed to you in the command
parameter block of the sysAppLaunchCmdExgReceiveData or
sysAppLaunchCmdExgPreview launch code.

See Also ExgConnect(), ExgPut(), ExgGet()

ExgConnect Function
Purpose Establishes a connection with a remote socket.

Declared In ExgMgr.h

Prototype status_t ExgConnect (ExgSocketPtr socketP)

Parameters → socketP
A pointer to the socket structure (see ExgSocketType).
Specify a URL in the name field and 0 for the libraryRef
field.

Returns Returns one of the following error codes:

Other error codes depend on the exchange library.

Comments Applications can call this function to initiate a connection for
sending multiple objects or for performing two-way

errNone Success

exgErrBadLibrary Couldn’t find exchange library

exgErrNotSupported The library doesn’t support the
operation specified in socketP

exgErrUserCancel The user cancelled the connection
operation

exgMemError There isn’t enough free memory to
respond to the request

exgErrNotEnoughPower The battery does not have enough
power to perform the operation

Exchange Manager Reference
ExgConnect

Exploring Palm OS: High-Level Communications 177

communications. Some exchange libraries support sending multiple
objects but do not support this call. See “Sending Multiple Objects”
on page 121 for more information.

Before calling this function, the application must initialize the
socketP parameter. The socket should identify the exchange
library to connect with by providing a URL in the name field. The
default exchange library registered for that type of URL handles the
connection.

To provide users with a choice of transport mechanisms, specify a
URL that begins with a question mark (?). The Exchange Manager
displays a dialog with a list of all exchange libraries that respond to
URLs of the specified type. If only one exchange library is registered
for this URL scheme, no dialog is displayed.

For example, many applications support a Send command. This
command generates a URL with the prefix exgSendPrefix (see
Predefined URL Prefixes). The Exchange Manager displays a dialog
containing a list of libraries registered for that URL scheme. The
user selects an exchange library, and that library’s
ExgLibConnect() function is called.

If the library is not specified by URL, the Exchange Manager by
default uses the IR Library; however, if the localMode flag is set,
the Local Exchange Library is used instead.

In addition to specifying the library, you can set the count field in
socketP before making this call to indicate the number of objects
that are going to be sent. Use a count of 0 if the number of objects
isn’t known in advance.

If no error is returned from ExgConnect(), applications can follow
this call either by sending multiple objects or requesting data from
the remote device or both. To send an object, call ExgPut() at the
beginning of each object and call ExgSend() one or more times per
object to send the data. To request data from the remote device, use
ExgGet() (and then use ExgReceive() to receive the requested
data). You can use these calls in combination with each other to
support two-way communications. After all of the objects have been
sent and received, call ExgDisconnect() to disconnect.

Exchange Manager Reference
ExgControl

178 Exploring Palm OS: High-Level Communications

IMPORTANT: Not all exchange libraries support the sending of
multiple objects or using ExgGet() to request data.

See Also ExgPut(), ExgAccept(), ExgGet()

ExgControl Function
Purpose Requests that an exchange library perform an operation.

Declared In ExgMgr.h

Prototype status_t ExgControl (ExgSocketType *socketP,
uint16_t op, void *valueP,
uint16_t *valueLenP)

Parameters → socketP
A pointer to the socket structure (see ExgSocketType).
Specify a URL in the name field and 0 for the libraryRef
field.

→ op
A constant identifying the operation that the exchange
library should perform. See the Comments section for more
information.

↔ valueP
Upon entry, a parameter that the exchange library requires to
perform the operation, if any. Most operations do not require
an input parameter. Upon return, contains the result of the
operation.

↔ valueLenP
The size of the valueP buffer. The size is updated upon
return to show the actual length of the content returned.

Returns Returns one of the following error codes:

errNone Success

exgErrBadLibrary Couldn’t find the requested exchange
library

exgErrNotSupported The exchange library does not support the
requested operation

Exchange Manager Reference
ExgControl

Exploring Palm OS: High-Level Communications 179

Other error codes depend on the exchange library.

Comments The Exchange Manager uses this function to request information
from the exchange library. Applications may also call this function.

The Exchange Manager defines and uses a set of operation constants
that it might send to any exchange library. These constants begin
with the prefix exgLibCtlGet. The type of the variable pointed to
by valueP depends on the type of operation to be performed. Table
5.1 lists and describes the predefined Exchange Manager operations.

Table 5.1 ExgControl operations for all exchange libraries

Operation
exgLibCtlGet...

value Data Type Description

Preview Boolean. Output only. Returns true if the exchange library
supports preview mode or false if
not. If the exchange library does not
respond to this operation, it is
assumed to support preview mode.
The preview feature is deprecated
and is maintained only for backward
compatibility.

Title String buffer of size
exgTitleBufferSize
bytes. Output only.

Returns the name of the exchange
library as it should appear in the
Send dialog. All exchange libraries
must respond to this operation.

Exchange Manager Reference
ExgControl

180 Exploring Palm OS: High-Level Communications

An exchange library may also define its own operations. Operations
specific to an exchange library are numbered starting at
exgLibCtlSpecificOp.

The socketP passed to this function must identify an exchange
library with a URL in the name field. The Comments section in
ExgConnect() describes how an application should identify the
exchange library.

URL ExgCtlGetURLType
structure.

Returns the URL that addresses the
remote device from which you
receive data. You can get the URL
after calling ExgAccept().

Version uint16_t. Output only. Returns the version of the exchange
library API that this library
implements. The constant
exgLibAPIVersion defines the
current version number. If the
exchange library does not respond
to this operation, the library
supports the version of the Exchange
Library API defined in Palm OS 4.0.

Table 5.1 ExgControl operations for all exchange libraries

Operation
exgLibCtlGet...

value Data Type Description

Exchange Manager Reference
ExgDBRead

Exploring Palm OS: High-Level Communications 181

ExgDBRead Function
Purpose Converts a Palm OS database from its internal format and writes it

to storage RAM.

Declared In ExgMgr.h

Prototype status_t ExgDBRead (ExgDBReadProcPtr readProcP,
ExgDBDeleteProcPtr deleteProcP,
void *userDataP, DatabaseID *dbIDP,
Boolean *needResetP, Boolean keepDates)

Parameters → readProcP
A pointer to a function that reads in the database and passes
it to ExgDBRead(). See ExgDBReadProcPtr() for details.

→ deleteProcP
A pointer to a function that is called if a database with an
identical name already exists on the device. See
ExgDBDeleteProcPtr() for details.

→ userDataP
A pointer to any data you want to pass to either the
readProcP or deleteProcP functions. Often, this
parameter is used to pass the ExgSocketType that is
required by many Exchange Manager functions.

← dbIDP
The ID of the database that ExgDBRead() created on the
local device.

← needResetP
Set to true by ExgDBRead() if the
dmHdrAttrResetAfterInstall attribute bit is set in the
received database.

→ keepDates
Specify true to retain the creation, modification, and last
backup dates as set in the received database header. Specify
false to reset these dates to the current date.

Returns Returns errNone if successful; otherwise, returns one of the data
manager error codes (dmErr...) or a callback-specific error code.
(If the readProcP function returns an error, it is also returned by
ExgDBRead().)

Comments This function converts data received from an exchange library or
from any other transport mechanism into a Palm OS database and

Exchange Manager Reference
ExgDBRead

182 Exploring Palm OS: High-Level Communications

stores that database in the storage heap. It is not required that you
use this function in conjunction with Exchange Manager calls. That
is, it’s possible to use this function to perform other operations, such
as converting a database created on the desktop computer to a Palm
OS formatted database in the storage heap.

The primary use of this function, however, is to receive a database
that has been beamed onto the device. In this case, call
ExgDBRead() in response to the launch code
sysAppLaunchCmdExgReceiveData after calling ExgAccept()
to accept the connection. Place the call to ExgReceive() in the
read callback function you passed as the readProcP parameter.
Pass the ExgSocketType structure returned from ExgAccept()
in the userDataP parameter so that you have access to it in the
read callback function.

The read callback function performs the actual reading of data.
ExgDBRead() calls the read callback function multiple times. Each
time, the sizeP parameter contains the number of bytes
ExgDBRead() expects the data returned in dataP to contain. It’s
important for the read callback function to set the number of bytes
(in sizeP) that it actually placed in dataP if it’s not the same as
what ExgDBRead expected. ExgDBRead() stops calling the read
callback function after 0 is returned in sizeP.

The callback function you pass in deleteProcP handles the case
where the database being read already exists on the device. It is
called only in that circumstance. The callback function may want to
close the database if it is open, change the existing database’s name,
or delete the existing database to allow an overwrite. See
ExgDBDeleteProcPtr() for more information.

See Also ExgDBWrite()

Exchange Manager Reference
ExgDBWrite

Exploring Palm OS: High-Level Communications 183

ExgDBWrite Function
Purpose Converts a given Palm OS database from its internal format on the

local device and writes it using a function you supply.

Declared In ExgMgr.h

Prototype status_t ExgDBWrite
(ExgDBWriteProcPtr writeProcP,
void *userDataP, const char *nameP,
DatabaseID dbID)

Parameters → writeProcP
A pointer to a function that writes out the database identified
by dbID. See ExgDBWriteProcPtr() for details.

→ userDataP
A pointer to any data you want to pass to the writeProcP
function. Often, this parameter is used to pass the
ExgSocketType that is required by many Exchange
Manager functions.

→ nameP
A pointer to the name of the database that you want
ExgDBWrite() to write. This database is passed to
writeProcP.

→ dbID
The ID of the database that you want ExgDBWrite() to pass
to writeProcP. If you don’t supply an ID, then nameP is
used to search for the database by name.

Returns Returns errNone if successful; otherwise, returns one of the data
manager error codes (dmErr...) or a callback-specific error code.
(If the writeProcP function returns an error, it is also returned by
ExgDBWrite().)

Comments This function converts a Palm OS formatted database on the storage
heap into a stream of bytes that can be sent over the Internet or over
any other transport mechanism. It is not required that you use this
function in conjunction with Exchange Manager calls.

The primary use of this function, however, is to write a database
that is going to be beamed onto another device. In this case, call
ExgDBWrite() after establishing the connection with ExgPut().
Place the call to ExgSend() in the write callback function you
passed as the writeProcP parameter. Pass the ExgSocketType

Exchange Manager Reference
ExgDisconnect

184 Exploring Palm OS: High-Level Communications

structure returned from ExgSend() in the userDataP parameter
so that you have access to it in the write callback function.

The write callback function performs the actual writing of data.
ExgDBWrite() calls the write callback function multiple times.
Each time, the sizeP parameter contains the number of bytes of
dataP that are to be written. If the write callback function didn’t
handle it all, it’s important that it set in sizeP the number of bytes
that it did handle successfully. ExgDBWrite() stops calling the
write callback function after 0 is returned in sizeP.

See Also ExgDBRead()

ExgDisconnect Function
Purpose Terminates an Exchange Manager transfer and disconnects.

Declared In ExgMgr.h

Prototype status_t ExgDisconnect (ExgSocketPtr socketP,
status_t error)

Parameters → socketP
A pointer to the socket structure (see ExgSocketType)
identifying the connection to terminate.

→ error
Any error that occurred. This parameter tells the exchange
library why the connection is being broken. Normally the
error code from ExgSend() or ExgReceive() is passed in
here.

Returns Returns one of the following error codes:

Other error codes depend on the exchange library.

Comments Applications must call this function when finished sending data or
receiving data. It terminates the connection made with
ExgConnect(), ExgAccept(), ExgPut(), or ExgGet().

errNone Success

exgErrBadLibrary Couldn’t find default exchange library

exgMemError Couldn’t read data to send

exgErrUserCancel User cancelled transfer

Exchange Manager Reference
ExgDisconnect

Exploring Palm OS: High-Level Communications 185

In the error parameter, pass any error that occurs during the
application loop, including errors returned from other Exchange
Manager functions. This ensures that the connection is shut down
knowing that it failed rather than succeeded.

It’s especially important to check the result code from this function,
since this will tell you if the transfer was successful. An errNone
return value means that the item was delivered to the destination
successfully. It does not mean that the user on the other end actually
kept the data.

ExgDisconnect() is used after sending and receiving. When
receiving, the application can insert its creator ID into the
goToCreator field in the socket structure and add other goto
information in the goToParams field. After the application returns
from the sysAppLaunchCmdExgReceiveData launch code, the
exchange library may call ExgNotifyGoto(), which launches the
goToCreator application with the standard launch code
sysAppLaunchCmdGoTo.

IMPORTANT: Placing your creator ID in the goToCreator field
is not a guarantee that you receive this launch code, because
Palm OS supports the sending of multiple objects at once. Thus,
another application might overwrite the goToCreator field after
your application has disconnected, making that application the
recipient of the launch code.

Note that some exchange libraries wait to establish a connection
until ExgDisconnect() is called. The IR Library, for example,
buffers the data that it receives and then waits until
ExgDisconnect() to actually send this data unless
ExgConnect() is called to establish a multi-object send
connection.

The Exchange Manager does not automatically launch the
goToCreator application, if one was provided, upon return from
this function. Exchange libraries that want this behavior must
explicitly call ExgNotifyGoto().

See Also ExgReceive(), ExgSend()

Exchange Manager Reference
ExgDoDialog

186 Exploring Palm OS: High-Level Communications

ExgDoDialog Function
Purpose Displays a dialog that allows users to accept or reject the receipt of

data.

Declared In ExgMgr.h

Prototype Boolean ExgDoDialog (ExgSocketType *socketP,
ExgDialogInfoType *infoP, status_t *errP)

Parameters → socketP
A pointer to the socket structure (see ExgSocketType)
identifying the connection.

Applications can obtain the socket structure from the
sysAppLaunchCmdExgAskUser launch code parameter
block.

↔ infoP
A pointer to an ExgDialogInfoType structure (see the
Comments section below).

← errP
errNone if no error, or the error code if an error occurred.
Currently, no errors are returned.

Returns Returns true if the user clicks the OK button on the dialog, or
false otherwise.

Comments This function displays the exchange dialog, which prompts the user
to accept or reject incoming data.

By default, the Exchange Manager calls this function if the receiving
application doesn’t handle the sysAppLaunchCmdExgAskUser
launch code or if it returns exgAskDialog from the launch code
handler. When the Exchange Manager calls ExgDoDialog(), the
dialog displays a message similar to “Do you want to accept ‘John
Doe’ into Address Book?” and allows the user to accept or reject the
data. If the user clicks OK, the data should be received as an unfiled
record.

The Exchange Manager attempts to display a preview of the data in
the exchange dialog to provide users with enough information to
determine if they want to accept or reject the data. To display the
preview data, it calls ExgNotifyPreview(). See the
ExgNotifyPreview() function’s description for more
information.

Exchange Manager Reference
ExgDoDialog

Exploring Palm OS: High-Level Communications 187

Applications may also want to allow users to select a category in
which to accept the incoming data. To do so, handle
sysAppLaunchCmdExgAskUser to call ExgDoDialog() directly
and pass it a pointer to an ExgDialogInfoType structure. The
ExgDialogInfoType structure is defined as follows:

typedef struct {
 uint16_t version;
 DmOpenRef db;
 uint16_t categoryIndex;
} ExgDialogInfoType;

→ version
Set this field to 0 to specify version 0 of this structure.

→ db
A pointer to an open database that defines the categories the
dialog should display.

← categoryIndex
The index of the category in which the user wants to file the
incoming data.

If db is valid, the function extracts the category information from
the specified database and displays it in a pop-up list. Upon return,
the categoryIndex field contains the index of the category the
user selected, or dmUnfiledCategory if the user did not select a
category.

If the call to ExgDoDialog() is successful, your application is
responsible for retaining the value returned in categoryIndex
and using it to file the incoming data as a record in that category.
One way to do this is to store the categoryIndex in the socket’s
appData field (see ExgSocketType) and then extract it from the
socket in your response to the launch code
sysAppLaunchCmdExgReceiveData. For example:

if (cmd == sysAppLaunchCmdExgReceiveData) {
 uint16_t category =
 (ExgSocketPtr)cmdPBP->appData;
 /* other declarations */

/* Receive the data, and create a new record
 using the received data. indexNew is the
 index of this record. */

Exchange Manager Reference
ExgGet

188 Exploring Palm OS: High-Level Communications

 if (category !- dmUnfiledCategory) {
 uint16_t attr;
 status_t err;
 err = DmRecordInfo(dbP, indexNew, &attr,
 NULL, NULL);

 // Set the category to the one the user
 // specified, and mark the record dirty.
 if ((attr & dmRecAttrCategoryMask) !=
 category) {
 attr &= ~dmRecAttrCategoryMask;
 attr |= category | dmRecAttrDirty;
 err = DmSetRecordInfo(dbP, indexNew,
 &attr, NULL);
 }
 }
}

Some of the Palm OS built-in applications (Address Book, Memo,
and ToDo) use this method of setting the category on data received
through beaming. Refer to the example code for these applications
provided in the SDK for a more complete example of how to use
ExgDoDialog.

When you explicitly call ExgDoDialog(), you must set the
result field of the sysAppLaunchCmdExgAskUser launch code’s
parameter block to either exgAskOk (upon success) or
exgAskCancel (upon failure) to prevent the system from
displaying the dialog a second time.

ExgGet Function
Purpose Establishes a connection and requests an object from a remote or

local device.

Declared In ExgMgr.h

Prototype status_t ExgGet (ExgSocketPtr socketP)

Parameters → socketP
A pointer to the socket structure (see ExgSocketType).
Specify a URL in the name field and 0 for the libraryRef
field. The target or type fields should identify the data
being requested.

Exchange Manager Reference
ExgGet

Exploring Palm OS: High-Level Communications 189

Returns Returns one of the following error codes:

Other error codes depend on the exchange library.

Comments Applications use this function to request data (initiate a send) from
a remote or local device. Not all exchange libraries support this
operation; among the exchange libraries built into the Palm OS only
the Local Exchange library supports it.

Before calling this function, the application must initialize the
socketP parameter. The socket should identify the exchange
library to connect with by providing a URL in the name field. The
default exchange library registered for the URL’s scheme handles
the connection. The socket should also specify what data it is
requesting by providing values for at least one of the target,
name, and type fields. Specifying the data in the name field is the
most common method.

To provide users with a choice of transport mechanisms, the
application can provide a URL that begins with a question mark (?).
The Exchange Manager displays a dialog with a list of all exchange
libraries that respond to URLs of the specified type. If only one
exchange library is registered for this URL scheme, no dialog is
displayed.

If the library is not specified by URL, the Exchange Manager by
default uses the IR Library; however, if the localMode flag is set,
the Local Exchange Library is used instead.

Applications can use ExgGet() to initiate a send from the Local
Exchange Library. For more information, see “Sending and
Receiving Locally” on page 136.

errNone Success

exgErrBadLibrary Couldn’t find default exchange library

exgErrUserCancel The user cancelled the operation

exgMemError There is not enough free memory to
perform the operation

exgErrNotSupported The exchange library doesn’t support
this function

Exchange Manager Reference
ExgGetDefaultApplication

190 Exploring Palm OS: High-Level Communications

If no error is returned, applications should follow this call with one
or more calls to ExgReceive(), to receive the data, or
ExgDisconnect(), to disconnect.

See Also ExgPut(), ExgConnect()

ExgGetDefaultApplication Function
Purpose Retrieves the default application for the specified type of data or the

default exchange library for URLs with the specified scheme.

Declared In ExgMgr.h

Prototype status_t ExgGetDefaultApplication
(uint32_t *creatorIDP, uint16_t id,
const char *dataTypeP)

Parameters ← creatorIDP
A pointer to the creator ID of the default application or
default exchange library.

→ id
The registry ID constant identifying the type of data in
dataTypeP. See Registry ID Constants.

→ dataTypeP
A pointer to a string that contains the type of data for which
to retrieve the default application or library. If dataTypeP is
a file extension, do not include the period (.). If it is a URL, do
not include the colon (:).

Returns Returns errNone if a match was found or
exgErrNoKnownTarget if there is no default application or library
for this type of data.

Comments You might use this function to see which application on this device
will receive a particular type of data or to see which library on this
device handles URLs of a particular scheme.

For example, to find out which application receives TXT files on this
device, do the following:

uint32_t creatorID;
status_t error;
error = ExgGetDefaultApplication(&creatorID,
 exgRegExtensionID, "TXT");

Exchange Manager Reference
ExgGetRegisteredApplications

Exploring Palm OS: High-Level Communications 191

if (!error) {
 //creatorID contains default application.

To find out which exchange library handles URLs that use the beam
prefix, do the following:

uint32_t creatorID;
status_t error;
error = ExgGetDefaultApplication(&creatorID,
 exgRegSchemeID, exgBeamScheme);
if (!error) {
 //creatorID contains default library.

It’s possible to have several applications registered to receive the
same type of data, but none of them is the default. When the
Exchange Manager receives an object of that type, it selects an
application to receive the data, and it selects that same application
every time. The selected application effectively becomes the default
for the data type even though it is not explicitly set as the default. If
this is the case, the ExgGetDefaultApplication() function
returns the creator ID of this de-facto default application.

See Also ExgGetRegisteredApplications(),
ExgGetRegisteredTypes(), ExgRegisterDatatype(),
ExgSetDefaultApplication()

ExgGetRegisteredApplications Function
Purpose Retrieves a list of all applications registered to receive data of a

specified type.

Declared In ExgMgr.h

Prototype status_t ExgGetRegisteredApplications
(uint32_t **creatorIDsP, uint32_t *numAppsP,
char **namesP, char **descriptionsP,
uint16_t id, const char *dataTypeP)

Parameters ← creatorIDsP
An array of the creator IDs of the applications registered to
receive objects of this type. Pass NULL for this parameter if
you only want to know how many applications are registered
for this type.

Exchange Manager Reference
ExgGetRegisteredApplications

192 Exploring Palm OS: High-Level Communications

← numAppsP
The number of applications registered to receive objects of
this type. This is the number of elements in the
creatorIDsP array, the namesP array, and the
descriptionsP array.

← namesP
A packed list of strings, suitable for passing to
SysFormPointerArrayToStrings(), containing the
names of the applications or libraries. Each string is no more
than exgMaxTitleLen characters. Pass NULL for this
parameter if you don’t want to retrieve it.

← descriptionsP
A packed list of strings, suitable for passing to
SysFormPointerArrayToStrings(), containing the
descriptions of the applications or libraries. Descriptions are
specified when the applications or libraries register for data.
Each string is no more than exgMaxDescriptionLength
characters. Pass NULL for this parameter if you don’t want to
retrieve it.

→ id
The registry ID constant identifying the type of data in
dataTypeP. See Registry ID Constants.

→ dataTypesP
A pointer to a tab-delimited, null-terminated string listing
the items to register. (Use \t for the tab character.) Each item
in the string must be no more than exgMaxTypeLength
characters. There can be no more than 16 types total.

Returns Returns errNone upon success or exgMemError if the function
cannot allocate space for the creator IDs, names, or descriptions.

IMPORTANT: This function allocates enough space for the
creatorIDsP, namesP, and descriptionsP arrays as long as
you do not pass NULL for the parameters. You are still
responsible for freeing these arrays.

Comments You might use this function to see which applications on this device
can receive a particular type of data or to see which libraries on this
device handle URLs of a particular scheme. You can also use it to
built a list of choices from which the user can select a default

Exchange Manager Reference
ExgGetRegisteredTypes

Exploring Palm OS: High-Level Communications 193

application or default exchange library for a particular data type or
URL scheme.

The Exchange Manager itself uses
ExgGetRegisteredApplications() to find exchange libraries
when it is given a URL that begins with a question mark (?). It
displays the returned list to the user in the Send With dialog.

See Also ExgGetDefaultApplication(),
ExgGetRegisteredTypes(), ExgRegisterDatatype(),
ExgSetDefaultApplication()

ExgGetRegisteredTypes Function
Purpose Retrieve a list of all data types for which a registration exists.

Declared In ExgMgr.h

Prototype status_t ExgGetRegisteredTypes
(char **dataTypesP, uint32_t *sizeP,
uint16_t id)

Parameters ← dataTypesP
A packed list of strings, suitable for passing to
SysFormPointerArrayToStrings(), containing a sorted
list of data types for which a registration exists. Each string is
no more than exgMaxTypeLength characters.

← sizeP
The number of elements in the dataTypesP array.

→ id
The type of data to search for. For example, you can search
for all registered creator IDs, all registered MIME types, and
so on.

Returns Returns errNone upon success or exgMemError if the function
cannot allocate space for the data types array.

IMPORTANT: This function allocates enough space for the
dataTypesP array as long as you do not pass NULL for the
parameter. You are still responsible for freeing this array.

Exchange Manager Reference
ExgGetTargetApplication

194 Exploring Palm OS: High-Level Communications

Comments This function could be used to create an application that allows
users to choose the default application for each data type.

See Also ExgGetDefaultApplication(),
ExgGetRegisteredApplications(),
ExgRegisterDatatype(), ExgSetDefaultApplication()

ExgGetTargetApplication Function
Purpose Retrieves the application that should receive a specific message.

This function does not search for libraries.

Declared In ExgMgr.h

Prototype status_t ExgGetTargetApplication
(ExgSocketType *socketP, Boolean unwrap,
uint32_t *creatorIDP, char *descriptionP,
uint32_t descriptionSize)

Parameters → socketP
A pointer to the socket structure (see ExgSocketType). The
structure should contain values for the target, type, or
name fields.

→ unwrap
If true, only an application that registered to receive the
data type with the exgUnwrap flag set should be the target
application. If false, the target application should be an
application that registered with the exgUnwrap flag clear.
Note that usage of the exgUnwrap flag is deprecated.

← creatorIDP
The creator ID of the application that should receive this
object.

↔ descriptionP
The application’s description from the registry, if any.

→ descriptionSize
The size of the descriptionP buffer.

Returns Returns one of the following error codes:

Exchange Manager Reference
ExgGetTargetApplication

Exploring Palm OS: High-Level Communications 195

Comments The Exchange Manager uses this function to determine which
application should be launched to receive incoming data.
Applications and libraries may call this function as well.

ExgGetTargetApplication() determines the target application
by doing the following:

• If the socketP->target field contains a creator ID, the
Exchange Manager searches the registry to see if an
application is registered for that creator ID as the default
application. If the registry does not contain an entry for the
creator ID, it checks to see if the application identified by the
creator ID is installed on this device. If an application is
found for the target, that is the application returned.

• If the socketP->type field contains a MIME type, the
Exchange Manager searches the registry for an application
registered to receive objects of that type. If one is found, that
is the application returned.

• If the socketP->name field contains a period (.), the portion
after the last period is taken to be the file extension. The
Exchange Manager searches the registry for an application
registered to receive a file with the specified extension. If one
is found, that is the application returned. If not,
exgErrNoKnownTarget is returned.

If more than one application is registered for the target, type, or file
extension, this function returns the one that is registered as the
default. If no application is registered as the default, then a specific
application is chosen. The Exchange Manager chooses this same
application each time. That is, each time a file with a TXT extension
is sent with no target or MIME type specified, the
ExgGetTargetApplication() returns the same application to
handle the receipt.

errNone Success

exgErrTargetMissing The target field contains a creator ID,
but the application with that creator ID
does not exist

exgErrNoKnownTarget No application is registered to receive
the data type

Exchange Manager Reference
ExgNotifyGoto

196 Exploring Palm OS: High-Level Communications

Set the unwrap parameter to true if the object was sent as part of
another object, such as a vStock object that was sent as an
attachment to an email message. In this case, the Exchange Manager
searches for an application that registered to receive the target, the
type, or the file extension of the vStock object with the exgUnwrap
flag set. If an application is found, the vStock object is delivered, and
the exchange library should discard the object that contained it (the
email message). If there is no application registered to receive the
data with the exgUnwrap flag set, this function returns
exgErrNoKnownTarget. In this case, the exchange library should
call ExgNotifyReceive() again passing the entire email message
instead of just the vStock attachment.

See Also ExgSetDefaultApplication(), ExgNotifyPreview(),
ExgNotifyReceive(), ExgRegisterDatatype()

ExgNotifyGoto Function
Purpose Launches the target application using sysAppLaunchCmdGoTo.

Declared In ExgMgr.h

Prototype status_t ExgNotifyGoto (ExgSocketType *socketP,
uint16_t flags)

Parameters → socketP
A socket identifying the object to deliver (see
ExgSocketType). The goToCreator field contains the
application to be launched, and the goToParams field
contains data for the launch code’s parameter block.

→ flags
Not currently used. Pass 0 for this parameter.

Returns Returns one of the following error codes:

errNone Success or the goToCreator field is
empty

Exchange Manager Reference
ExgNotifyPreview

Exploring Palm OS: High-Level Communications 197

Comments Exchange libraries call this function if they want to support
immediate display of the received object. Applications do not call
this function.

Most exchange libraries should call ExgNotifyGoto() after the
return from ExgNotifyReceive() so that the user can inspect the
newly received data. If the exchange library is most often used by a
single application that does not require the launch code, this call to
ExgNotifyGoto() can be skipped. For example, the SMS Library
does not call ExgNotifyGoto(). SMS messages are received by
the SMS Messenger application, which does not launch upon
receiving data.

ExgNotifyGoto() launches an application only if one is specified
in the goToCreator field and the noGoTo parameter is false. If a
goToCreator is not specified, it is not considered an error. This
gives the application a way to override the default behavior.

See Also ExgNotifyReceive(), ExgDisconnect()

ExgNotifyPreview Function
Purpose Gets a description of the data to be received for the exchange dialog.

Declared In ExgMgr.h

Prototype status_t ExgNotifyPreview
(ExgPreviewInfoType *infoP)

Parameters ↔ infoP
An ExgPreviewInfoType structure containing
information about the operation.

Returns Returns one of the following error codes:

dmErr... (one of the data
manager error codes)

The specified application could not
be found

memErrNotEnoughSpace Not enough memory available to
create the launch code’s parameter
block

Exchange Manager Reference
ExgNotifyPreview

198 Exploring Palm OS: High-Level Communications

Other error codes depend on the application.

Comments The ExgDoDialog() function calls this function to get a
description of the data to show in the exchange dialog. Exchange
libraries might want to call this function in certain circumstances.
An application rarely calls this function, but it may do so if it
displays its own dialog in response to the launch code
sysAppLaunchCmdExgAskUser.

The preview feature is deprecated and is maintained only for
backward compatibility. Applications should no longer implement
preview via this mechanism, but should follow the data viewing
guidelines described in “Put with View Mode” on page 147.

This function provides to the exchange dialog the first of the
following object descriptions that it finds:

• the data’s description from socketP->description

• the filename in socketP->name

• the target application’s description as stored in the exchange
registry

• the MIME type in socketP->type

• the file extension in socketP->name

See Also ExgNotifyReceive(), ExgDisconnect()

errNone Success

exgErrNotSupported The exchange library doesn’t support
preview mode

exgErrNoKnownTarget There is no application registered to
receive the type of object

Exchange Manager Reference
ExgNotifyReceive

Exploring Palm OS: High-Level Communications 199

ExgNotifyReceive Function
Purpose Delivers an object to the appropriate application using the registry.

Declared In ExgMgr.h

Prototype status_t ExgNotifyReceive
(ExgSocketType *socketP, uint16_t flags)

Parameters ↔ socketP
A pointer to the socket structure (see ExgSocketType).

→ flags
A bit field. Pass 0 or a combination of the following constants
(OR the constants together to specify more than one):

exgUnwrap
The object being delivered should only be handled by
an application that registered to receive it with the
exgUnwrap flag set.

exgNoAsk
Do not ask the user to confirm receipt of data. If this
constant is passed, the target application does not
receive the sysAppLaunchCmdExgAskUser launch
code, and the Exchange Manager does not call
ExgDoDialog() to display the user confirmation
dialog.

exgGet
Specifies that this is a request for the application to
send data rather than to receive data.

Returns Returns one of the following error codes:

Other error codes depend on the application that is launched.

errNone Success

exgErrTargetMissing The target field contains a creator ID,
but the application with that creator ID
does not exist

exgErrNoKnownTarget No application is registered to receive
the data type

exgErrUserCancel The user cancelled the operation

Exchange Manager Reference
ExgNotifyReceive

200 Exploring Palm OS: High-Level Communications

Comments Exchange libraries call this function to initiate a receive operation on
the receiving device. Applications do not call this function.

The ExgNotifyReceive() function uses
ExgGetTargetApplication() to determine which application
should receive the data, then sends that application the appropriate
launch codes.

If the flags parameter is 0, a receive operation is assumed. The
ExgNotifyReceive() function does the following:

1. It sends the application the
sysAppLaunchCmdExgAskUser launch code.

2. If the application returns exgAskDialog or does not
respond to the launch code, it calls ExgDoDialog(), which
sends the application the sysAppLaunchCmdExgPreview
launch code to have the application receive preview data for
the dialog.

3. It sends the application the
sysAppLaunchCmdExgReceiveData launch code to tell
the application to receive the data.

If the flags field contains the exgNoAsk flag, the first and second
steps are skipped.

If the flags field contains exgGet, this function is a request for
data to send to the remote device, not a request to receive data from
the remote device. In this case, ExgNotifyReceive() launches
the target application with the sysAppLaunchCmdExgGetData
launch code.

If the flags field has the exgUnwrap bit set, it means that the
object to be received was sent as part of another object, and it should
only be sent to an application that registered to receive it with the
exgUnwrap flag set. For example, if the exchange library receives
an email message with an attached vStock object, the exchange
library may call ExgNotifyReceive() with the exgUnwrap flag
set and a socket that describes the vStock data type to see if there is
an application that registered to receive it directly. If no application
is registered to receive vStock objects with the exgUnwrap flag set,
ExgNotifyReceive() returns exgErrNoKnownTarget. The
exchange library should then call ExgNotifyReceive() again,
but this time without the exgUnwrap flag and with a socket that

Exchange Manager Reference
ExgPut

Exploring Palm OS: High-Level Communications 201

describes the email message data type. This second call sends the
object to the application registered to receive the email message
rather than its vStock attachment. That application may extract the
vStock attachment from the message and use the Local Exchange
Library to send it to an application registered to receive vStock
objects normally (without the exgUnwrap flag).

See Also ExgNotifyPreview()

ExgPut Function
Purpose Initiates the transfer of data to the destination device.

Declared In ExgMgr.h

Prototype status_t ExgPut (ExgSocketPtr socketP)

Parameters → socketP
Pointer to the socket structure (see ExgSocketType).
Specify a URL in the name field. The structure should also
contain a value for the target or type fields.

Returns Returns one of the following error codes:

Other error codes depend on the exchange library.

Comments Applications call this function to start a send operation.

If the connection does not already exist, this function establishes
one. You must create and initialize an ExgSocketType structure
containing information about the data to send and the destination
application. All unused fields in the structure must be set to 0.

errNone Success

exgErrBadLibrary Couldn’t find default exchange
library

exgMemError Not enough memory to initialize
transfer

exgErrNotEnoughPower The battery does not have enough
power to perform the operation

Exchange Manager Reference
ExgReceive

202 Exploring Palm OS: High-Level Communications

If no error is returned, this call must be followed by ExgSend(), to
begin sending data, or ExgDisconnect(), to disconnect. You may
want to call ExgSend() multiple times to send the data in chunks.

The socket’s name field must identify by URL the library that
performs the transfer. The socket should also specify what data is
being sent by providing values for at least one of the target and
type fields.

To provide users with a choice of transport mechanisms, the
application can provide a URL that begins with a question mark (?).
The Exchange Manager displays a dialog with a list of all exchange
libraries that respond to URLs of the specified type. If only one
exchange library is registered for this URL scheme, no dialog is
displayed.

For example, many applications support a Send command. This
command generates a URL with the prefix exgSendPrefix (see
Predefined URL Prefixes). The Exchange Manager displays a dialog
containing a list of libraries registered for that URL scheme. The
user selects an exchange library, and that library’s ExgLibSend()
function is called.

If the library is not specified by URL, the Exchange Manager by
default uses the IR Library; however, if the localMode flag is set,
the Local Exchange Library is used instead.

See Also ExgDisconnect(), ExgSend(), ExgConnect()

ExgReceive Function
Purpose Receives data from a remote device.

Declared In ExgMgr.h

Prototype uint32_t ExgReceive (ExgSocketPtr socketP,
void *bufP, uint32_t bufLen, status_t *err)

Parameters → socketP
A pointer to the socket structure (see ExgSocketType).

← bufP
A pointer to the buffer in which to receive the data.

Exchange Manager Reference
ExgReceive

Exploring Palm OS: High-Level Communications 203

→ bufLen
The number of bytes to receive.

← err
A pointer to an error code result.

Returns Returns the number of bytes actually received. A zero result
indicates the end of the transmission.

An error code is returned in the address indicated by err. The error
code exgErrUserCancel is returned if the user cancels the
operation. The error code exgErrNotSupported is returned if the
application calls this function during a preview and the exchange
library does not have any more data available or does not support
preview.

Comments Applications call this function in the following circumstances:

• In response to the sysAppLaunchCmdExgReceiveData
launch code, following a successful call to ExgAccept().

• In response to the sysAppLaunchCmdExgPreview launch
code, following a successful call to ExgAccept().

• To receive requested data following a successful call to
ExgGet().

After receiving the data, applications call ExgDisconnect() to
terminate the connection.

This function blocks the application until the end of the
transmission or until the requested number of bytes has been
received. However, exchange libraries can provide their own user
interface that is shown during this call, is updated as necessary, and
allows the user to cancel the operation in progress.

See Also ExgNotifyReceive()

Exchange Manager Reference
ExgRegisterDatatype

204 Exploring Palm OS: High-Level Communications

ExgRegisterDatatype Function
Purpose Registers an application to receive a specific type of data, or

registers an exchange library to handle specific URL schemes.

Declared In ExgMgr.h

Prototype status_t ExgRegisterDatatype (uint32_t creatorID,
uint16_t id, const char *dataTypesP,
const char *descriptionsP, uint16_t flags)

Parameters → creatorID
The creator ID of the registering application or exchange
library.

→ id
A registry ID constant identifying the type of the items being
registered. See Registry ID Constants.

→ dataTypesP
Pointer to a tab-delimited, null-terminated string listing the
items to register. (Use "\t" for the tab character.) To
unregister, pass a NULL value. Each item in the string must be
no more than exgMaxTypeLength characters. There can be
no more than 16 types total.

NOTE: If specifying file extensions, do not include the period (.)
that precedes the extension. If specifying URL prefixes, do not
include the colon (:) at the end of the prefix.

→ descriptionsP
Pointer to a tab-delimited, null-terminated string that lists
descriptions for the items in the dataTypesP parameter.
(Use "\t" for the tab character.) Each description must be no
longer than exgMaxDescriptionLength. Pass NULL to
leave out the descriptions.

There must either be one description for all types or the
number of descriptions must match the number of types.

The descriptions are used in dialogs displayed by Exchange
Manager to identify applications or libraries, so they should
be user-friendly. Use information that describes the type of
information handled, such as pictures, sounds, contact
information, etc. Don’t use MIME types or file extensions
because they are not meaningful to the average user.

Exchange Manager Reference
ExgRegisterDatatype

Exploring Palm OS: High-Level Communications 205

→ flags
Always pass zero for this parameter. (This was formerly used
for the exgUnwrap flag, but that is now deprecated.)

Returns Returns errNone if successful, exgMemError if there is not
enough memory to save the registration info, or one of the data
manager error codes (dmErr...).

Comments Both applications and exchange libraries use this function to register
with the Exchange Manager to receive certain types of data.

Applications must register with the Exchange Manager to receive
data objects that do not specifically target that application using the
creator ID in the target field.

Exchange libraries register to receive data with certain URL
schemes. Otherwise, the IR Library handles all incoming data for
which a library could not be found.

Both applications and libraries should register to receive data as
soon as possible after they are installed and as soon as possible after
a hard reset. For example, applications can call
ExgRegisterDatatype() in response to the
sysAppLaunchCmdSyncNotify launch code, which they receive
immediately after install. Exchange libraries implemented as
applications can also use this strategy. Exchange libraries
implemented as shared libraries should call
ExgRegisterDatatype() in their startup functions.

Make only one call to ExgRegisterDatatype() per registry type.
If you want to register to receive multiple items, use a tab character
(\t) to separate the items. If you were to, for example, make one call
to register for the DOC file extension and one call to register for the
TXT extension, the second call overwrites the first.

Specify exgRegExtensionID to register to receive data that has a
filename with a particular extension. For example, if your
application wants to receive files with a TXT extension, it could
register like this:

ExgRegisterDatatype(myCreator,
 exgRegExtensionID, "TXT", NULL, 0);

Exchange Manager Reference
ExgRegisterDatatype

206 Exploring Palm OS: High-Level Communications

If the application wants to receive files with a TXT extension or with
a DOC extension, it could register like this:

ExgRegisterDatatype(myCreator,
 exgRegExtensionID, "TXT\tDOC", NULL, 0);

Specify exgRegTypeID to register to receive data with a specific
MIME type. For example, if your application wants to receive
“setext” text files, it could register like this:

ExgRegisterDatatype(myCreator, exgRegTypeID,
"text/x-setext", NULL, 0);

Specify exgRegCreatorID to register to receive data targeted for a
particular creator ID. For example, if your application wants to
handle all data intended for the ToDo application, it could register
like this:

char toDoCreatorStr[5];
MemMove(toDoCreatorStr, sysFileCToDo, 4);
toDoCreatorStr[4] = chrNull;
ExgRegisterDatatype(myCreator, exgRegCreatorID,
 toDoCreatorStr, NULL, 0);

NOTE: To override one application’s receipt of data, you need
to also set your application as the default for this creator ID. See
ExgSetDefaultApplication().

Most exchange libraries will want to register for a unique URL
scheme that identifies only that library, plus they should register for
a more general scheme, such as the send scheme
(exgSendScheme), which causes the library to be listed in the Send
With dialog when the user performs the Send command. The
registry ID constant for URL prefixes is exgRegSchemeID.

ExgRegisterDatatype(myLibCreator,
 exgRegSchemeID, myScheme "\t" exgSendScheme,
 NULL, 0);

Registrations are active until a hard reset or until the application or
library is removed. The registration information is preserved across

Exchange Manager Reference
ExgRegisterData

Exploring Palm OS: High-Level Communications 207

a soft reset. When an application is removed, its registry
information is also automatically removed from the registry, so
there is not normally a need to unregister. If you want to unregister,
you can call ExgRegisterDatatype() with a NULL value for the
dataTypesP parameter.

Multiple applications can be registered to receive the same type of
data. If this is the case, the application that is registered as the
default (using ExgSetDefaultApplication()) is the one that
receives the data unless the exchange socket explicitly specifies
another application should receive it. If there is no default specified,
the Exchange Manager determines a default.

Multiple libraries may also be registered to receive the same type of
URL. In this case, if the URL begins with a question mark (?), the
Exchange Manager displays a dialog so that the user can select
which exchange library to use. If the URL does not begin with a
question mark, the exchange library registered as the default is
used. If there is no default specified, the Exchange Manager
determines a default.

See Also ExgRegisterData(), ExgGetTargetApplication(),
ExgPut(), ExgGetDefaultApplication(),
ExgGetRegisteredApplications(),
ExgGetRegisteredTypes()

ExgRegisterData Function
Purpose Registers an application to receive a specific type of data. This

function is deprecated and replaced with
ExgRegisterDatatype().

Declared In ExgMgr.h

Prototype status_t ExgRegisterData (uint32_t creatorID,
uint16_t id, const char *dataTypesP)

Parameters → creatorID
Creator ID of the registering application.

→ id
Registry ID identifying the type of the items being registered.
Specify exgRegExtensionID or exgRegTypeID.

Exchange Manager Reference
ExgRequest

208 Exploring Palm OS: High-Level Communications

→ dataTypesP
Pointer to a tab-delimited, null-terminated string listing the
items to register. (Use \t for the tab character.) These include
file extensions or MIME types. To unregister, pass a NULL
value.

Returns Returns errNone if successful, otherwise, one of the data manager
error codes (dmErr...).

Comments Applications that wish to receive data from anything other than
another Palm Powered™ handheld running the same application
must use this function to register for the kinds of data they can
receive. Call this function when your application is loaded on the
device.

ExgRequest Function
Purpose Requests some data from an exchange library or an application

using a URL.

Declared In ExgMgr.h

Prototype status_t ExgRequest (ExgSocketType *socketP)

Parameters → socketP
Pointer to the socket structure (see ExgSocketType).
Specify a URL in the name field.

Returns Returns one of the following error codes:

Other error codes depend on the exchange library or application.

Comments The ExgRequest() function is similar to ExgGet() in that both
are used to request data. The difference is that the application that
calls ExgGet() is always the application that receives the data.

errNone Success

exgErrBadLibrary Couldn’t find default exchange
library

exgErrNotEnoughPower The device does not have enough
power to perform the operation

sysErrLibNotFound Couldn’t find library or application
to respond to URL

Exchange Manager Reference
ExgSend

Exploring Palm OS: High-Level Communications 209

When you call ExgRequest(), the application that receives the
data is the application that is registered to receive it. For example,
using ExgRequest(), it is possible for one application to use the
Exchange Manager to retrieve a vCard using any supported
transport mechanism and have that data sent directly to the
Address Book application instead of to the calling application.

The socketP passed to this function identifies the exchange library
using a URL in the name field. The application must know before-
hand the proper URL prefix for the exchange library with which it
wants to connect. See Predefined URL Prefixes for a list of URL
prefixes that the Exchange Manager provides.

If the provided URL begins with a question mark (?) and there are
several exchange libraries registered for the specified URL scheme,
the Exchange Manager displays a dialog from which the user selects
the appropriate transport mechanism.

If the Exchange Manager cannot find a library that is registered for
the specified URL, it assumes that an application is registered to
receive the URL, and it launches that application with the
sysAppLaunchCmdGoToURL launch code.

See Also ExgGet(), ExgNotifyReceive()

ExgSend Function
Purpose Sends data to the destination device.

Declared In ExgMgr.h

Prototype uint32_t ExgSend (ExgSocketPtr socketP,
const void *bufP, uint32_t bufLen,
status_t *err)

Parameters → socketP
A pointer to the socket structure (see ExgSocketType). A
value must be provided for the name field. The structure
should also contain values for the target or type fields.

→ bufP
A pointer to the data to send.

→ bufLen
The number of bytes to send.

Exchange Manager Reference
ExgSetDefaultApplication

210 Exploring Palm OS: High-Level Communications

← err
A pointer to an error code result.

Returns Returns either the same number of bytes as specified in bufLen, or
0 if nothing was sent. An error code is returned in the address
indicated by err. The error code exgErrUserCancel is returned if
the user cancels the operation.

Comments Call this function one or more times to send all the data, following a
successful call to ExgPut(). After sending the data, call
ExgDisconnect() to terminate the connection.

The exchange library may break large amounts of data into multiple
packets or assemble small send commands together into larger
packets, but the application will not be aware of these transport
level details.

This function blocks the application until all the requested data is
sent. However, the exchange library may provide its own user
interface that is updated as necessary and allows the user to cancel
the operation in progress.

See Also ExgReceive(), ExgGet()

ExgSetDefaultApplication Function
Purpose Sets the application that receives a specified type of data by default.

This function also sets the default exchange library that handles
particular URL schemes.

Declared In ExgMgr.h

Prototype status_t ExgSetDefaultApplication
(uint32_t creatorID, uint16_t id,
const char *dataTypeP)

Parameters → creatorID
The creator ID of the application or library that should
become the default for this type of data.

→ id
A registry ID constant identifying the type of data in
dataTypeP. See Registry ID Constants.

Exchange Manager Reference
ExgSetDefaultApplication

Exploring Palm OS: High-Level Communications 211

→ dataTypesP
A pointer to a null-terminated string containing the desired
type of data.

NOTE: If specifying a file extension, do not include the period (.)
that precedes the extension. If specifying a URL prefix, do not
include the colon (:) at the end of the prefix.

Returns Returns errNone upon success or exgErrNoKnownTarget if the
specified application is not registered to receive the specified data
type.

Comments This function sets the default application that receives data of a
certain type when no target is specified; and it sets the default
exchange library that handles URLs with a certain prefix.

We strongly recommend that applications allow the user to
determine which application should become the default recipient
for a data type. To do so, an application can use
ExgGetRegisteredApplications() to get the list of
applications registered for the same type of data as it is, and then
display a dialog listing those applications and allow the user to
select it. Then it should call ExgSetDefaultApplication() with
the user-specified default.

If you call ExgSetDefaultApplication() with an application
or library that is already the default, this function has no effect.

An application can become the default for its own creator ID even if
it has not specifically registered to receive its own creator ID. That
is, suppose several applications are registered to receive objects
targeted for the ToDo application’s creator ID. The ToDo application
itself is not registered for its own creator ID, as it is not necessary to
do so. However, an application can use code like the following to set
the ToDo application as the default for its own creator ID.

char toDoCreatorStr[5];
MemMove(toDoCreatorStr, sysFileCToDo, 4);
toDoCreatorStr[4] = chrNull;
ExgSetDefaultApplication(sysFileCToDo,
 exgRegCreatorID, toDoCreatorStr);

See Also ExgGetDefaultApplication(), ExgRegisterDatatype()

Exchange Manager Reference
Application-Defined Functions

212 Exploring Palm OS: High-Level Communications

Application-Defined Functions

ExgDBDeleteProcPtr Function
Purpose Handles the case where a database with an identical name already

exists on the device.

Declared In ExgMgr.h

Prototype Boolean (*ExgDBDeleteProcPtr) (const char *nameP,
uint16_t version, DatabaseID dbID,
void *userDataP)

Parameters → nameP
A pointer to the name of the identical database.

→ version
The version of the identical database.

→ dbID
The database ID of the identical database.

→ userDataP
The userDataP parameter you passed to ExgDBRead(). If
used, this parameter contains any application-specific data
you find necessary. If the ExgDBReadProcPtr() function is
implemented using Exchange Manager calls, this often
contains the ExgSocketType structure.

Returns Return true to have the ExgDBRead() function continue to read
the database. Use this return value if you have deleted or moved the
existing database or if you want the database to be overwritten.
Return false to have ExgDBRead() exit without reading the
database.

Comments This function is called if the Data Manager can’t create the incoming
database because a database with the same name already exists. You
should delete the existing database or take some other action, such
as changing the database name. It is appropriate to prompt the user
before choosing to delete or move the database.

Exchange Manager Reference
ExgDBReadProcPtr

Exploring Palm OS: High-Level Communications 213

ExgDBReadProcPtr Function
Purpose Reads in the database and pass it to ExgDBRead().

Declared In ExgMgr.h

Prototype status_t (*ExgDBReadProcPtr) (void *dataP,
uint32_t *sizeP, void *userDataP)

Parameters ← dataP
A pointer to a buffer where this function should place the
database data. This buffer is allocated in the dynamic heap
by ExgDBRead; you don’t need to use DmWrite() when
filling it.

↔ sizeP
The size of dataP. This value is set by ExgDBRead() to the
number of bytes it expects to receive in dataP. You must set
this value to the number of bytes you return in dataP (if it’s
not the same).

→ userDataP
The userDataP parameter you passed to ExgDBRead().
Pass the ExgSocketType structure if you implement this
function using Exchange Manager calls.

Returns Return an error number, or errNone if there is no error. If this
function returns an error, ExgDBRead() deletes the database it was
creating, cleans up any memory it allocated, then exits, returning
the error passed back from this function.

Comments ExgDBRead() is commonly used to receive a database from a beam
or from some other transport mechanism. In this case, an
appropriate implementation of this callback function is to call
ExgReceive() as shown here:

status_t MyReadDBProc (void *dataP, uint32_t *sizeP,
 void *userDataP)
{
 status_t err = errNone;
 //userDataP contains ExgSocketType pointer.
 *sizeP =
 ExgReceive((ExgSocketType *)userDataP,
 dataP, *sizeP, &err);
 return err;
}

Exchange Manager Reference
ExgDBWriteProcPtr

214 Exploring Palm OS: High-Level Communications

ExgDBWriteProcPtr Function
Purpose Writes out the database.

Declared In ExgMgr.h

Prototype status_t (*ExgDBWriteProcPtr) (const void *dataP,
uint32_t *sizeP, void *userDataP)

Parameters → dataP
A pointer to a buffer containing the database data, placed
there by ExgDBWrite().

↔ sizeP
The number of bytes placed in dataP by ExgDBWrite(). If
you were unable to write out or send all of the data in this
chunk, on exit, set sizeP to the number of bytes you did
write.

→ userDataP
The userDataP parameter you passed to ExgDBWrite().
You can use it for application-specific data. Pass the
ExgSocketType structure if you implement this function
using Exchange Manager calls.

Returns Return an error number, or errNone if there is no error. If this
function returns an error, ExgDBWrite closes the database it was
reading, cleans up any memory it allocated, then exits, returning the
error passed back from this function.

Comments ExgDBWrite() is commonly used to write a database that is going
to be beamed to another device (or sent through some other
transport mechanism). In this case, an appropriate implementation
of this callback function is to call ExgSend() as shown here:

status_t MyWriteDBProc (void *dataP, uint32_t *sizeP,
 void *userDataP)
{
 status_t err = errNone;
 //userDataP contains ExgSocketType pointer.
 *sizeP =
 ExgSend((ExgSocketType *)userDataP,
 dataP, *sizeP, &err);
 return err;
}

Part III
Personal Data
Interchange

The Palm OS® provides the PDI library API for exchanging Personal
Data Interchange (PDI) information with other devices and media.
The PDI reader and writer objects make use of the United Data
Access (UDA) Manager to manage input and output data streams.

Personal Data Interchange 217

Personal Data Interchange Reference 247

Unified Data Access Manager Reference 285

Exploring Palm OS: High-Level Communications 217

6
Personal Data
Interchange
The Palm OS® provides the PDI library API for exchanging Personal
Data Interchange (PDI) information with other devices and media.
This chapter contains the following sections that describe how to
use the Palm OS PDI library:

• About Personal Data Interchange briefly introduces the PDI
standard and provides links to sources of more complete
information.

• About the PDI Library describes how the Palm OS PDI
library implements PDI reader and writer objects for
exchanging information.

• Using the PDI Library describes how to use the functions in
the PDI library.

• Using UDA for Different Media describes how you can use
the Unified Data Access (UDA) Manager to access data from
different media in your PDI reader or writer.

• Using a PDI Reader - An Example provides a detailed walk-
through of a code segment that creates a PDI reader and then
uses it to parse vCard information.

• Using a PDI Writer - An Example provides a detailed walk-
through of a code segment that creates a PDI writer and then
uses it to generate vCal information.

For detailed information about the PDI library data types, constants,
and functions, see Chapter 7, “Personal Data Interchange
Reference,” on page 247.

The PDI reader and writer objects make use of the United Data
Access (UDA) Manager to manage input and output data streams.
“Using UDA for Different Media” on page 236 provides an
overview of using the UDA Manager. The reference information for
UDA functions is in Chapter 8, “Unified Data Access Manager
Reference,” on page 285.

Personal Data Interchange
About Personal Data Interchange

218 Exploring Palm OS: High-Level Communications

About Personal Data Interchange
Personal data interchange involves the exchange of information
using a communications medium. The Palm OS PDI Library
facilitates the exchange of information using standard vObjects,
including data formatted according to vCard and vCal standards.

The vObject standards are maintained by a group known as the
versit consortium, which consists of individuals from a number of
companies and institutions. The best information about the PDI
standards can be found at the consortium’s web site:

http://www.imc.org/pdi/

These standards are finding increased use in a number of computers
and handheld devices that wish to exchange personal data such as
business card and calendar information.

The PDI Library provides a PdiReaderType object for reading
vObjects from an input stream, and a PdiWriterType object for
writing vObjects to an output stream. The input streams and output
streams can be connected to various data sources.

About vObjects
This section provides a brief overview of vObject standards. Two
common vObject types are vCards and vCals:

• vCards are used to exchange virtual business card
information electronically. Each vCard can include a large
variety of personal and business information about an
individual, including name, address, and
telecommunications numbers.

• vCals are used to exchange virtual calendaring and
scheduling information electronically. Each vCal can include:

– vEvent objects, each of which represents a scheduled
amount of time on a calendar

– vTodo objects, each of which defines an action item or
assignment

http://www.imc.org/pdi/

Personal Data Interchange
About Personal Data Interchange

Exploring Palm OS: High-Level Communications 219

Overview of vObject Structure
This section provides a brief overview of vObject standards,
including the vCard and vCal standards. Each vObject standard
provides the same, basic organizational structure:

• Each vObject is a collection of one or more property
definitions.

• Each property definition contains a name, a value, and an
optional collection of property parameter definitions.

• Each property parameter definition contains a name and a
value. Each parameter value qualifies the property definition
with additional information.

• A property value can be structured to contain multiple
values. The values are typically separated with commas or
semicolons.

The vObject standards also allow developers to add custom
extensions. All vObject readers that conform to the standard,
including the PdiReaderType object, can read these extensions,
though not all readers will act upon the information contained in
them.

Each property has the following syntax:

PropertyName [';' Parameters] ':' PropertyValue

Note that property and parameter names are case insensitive.

Listing 6.1 shows a typical vCard definition.

Listing 6.1 Example of a vCard definition

BEGIN:VCARD
VERSION:2.1
N:Smith, John;M.;Mr.; Esq.
TEL;WORK;VOICE; MSG:+1 (408) 555-1234
TEL;CELL:+1 (408) 555-4321
TEL;WORK;FAX:+1 (408) 555-9876
ADR;WORK;PARCEL;POSTAL;DOM:Suite 101;1 Central St.;Any
 Town;NC;28654
END:VCARD

Each line in Listing 6.1 is a property definition, with the exception of
the next to last line, which is a continuation of the ADR property

Personal Data Interchange
About Personal Data Interchange

220 Exploring Palm OS: High-Level Communications

definition, and begins with white space. Each property definition is
delimited by a CR/LF sequence.

The BEGIN, VERSION, and END lines are examples of simple
property definitions.

The N (Name) property has a structured value. The components of
the name are separated by semicolons.

Each TEL (Telephone) property has parameters that qualify the kind
of telephone number that is being specified.

The ADR (Address) property has parameters and a structured value.

NOTE: The vObject specifications also allow long lines of text to
be folded. This means that wherever you can have white space
in a property definition, you can insert a CR/LF followed by white
space, as shown in the next to last line in Listing 6.1 When the
vObject reader finds a CR/LF followed by white space, it unfolds
the text back into one long line.

Grouping vObjects

You can specify multiple vObjects in a single vObject data stream.
You can also specify a vObject as the value of a property; for
example, you can include a vCard as the value of the ADR property
of another vCard.

Grouping Properties

You can specify a name for a group of related properties within a
vObject. The name is a single character that you use as a prefix to
each property in the group.

One use of this facility is to group a comment that describes a
property with the property to keep the two together. For example,
the following creates a group named G that includes a vCard home
telephone property with a comment property:

G.TEL;HOME:+1 (831) 555-1234
G.Note: This is my home office number.

Personal Data Interchange
About the PDI Library

Exploring Palm OS: High-Level Communications 221

Encodings

The default encoding for vObject properties is 7-bit. You can
override this encoding for individual property values by using the
ENCODING parameter. You can specify various encoding values,
including BASE64, QUOTED-PRINTABLE, and 8-BIT.

Character Sets

The default character set for vObject properties is ASCII. You can
override the character set for individual property values by using
the CHARSET parameter. You can specify any character set that has
been registered with the Internet Assigned Numbers Authority
(IANA). For example, to specify the Latin/Hebrew encoding, you
would use the value ISO-8859-8.

The system automatically converts incoming property values from
the vObject character set to the device character set by using the
Text Manager.

Finding More Information

For a complete description of the vObject specifications, visit the
versit consortium’s web site:

http://www.imc.org/pdi/

About the PDI Library
The Palm OS PDI library is a shared library that provides objects
and functions for:

• Reading vCard objects from an input data stream. The
section Creating a PDI Reader describes how to create and
use a PDI reader, and the section Using a PDI Reader - An
Example provides an example of reading vCard data from an
input stream.

• Writing vCard objects to an output data stream. The section
Creating a PDI Writer describes how to create and use a PDI
reader, and the section Using a PDI Writer - An Example
provides an example of reading vCard data from an input
stream.

http://www.imc.org/pdi/

Personal Data Interchange
About the PDI Library

222 Exploring Palm OS: High-Level Communications

The PDI library handles reading and writing objects in a number of
different formats, and from or to a variety of media. For more
information about specifying the media, see “Using UDA for
Different Media” on page 236.

PDI Property and Parameter Types
The PDI library provides constants that you can use with the reader
and writer objects to specify property information. These include
the following types of constants that specify vObject standard
entities:

• The Property Name constants represent the PDI property
names. Each of the property name constants starts with the
kPdiPRN_ prefix. For example, the kPdiPRN_ADR constant
represents the ADR property name. For more information, see
the section “Property Name Constants” on page 255.

• The Property Value Field constants represent the position of
property value fields for properties with structured field
values. Each of the property value field constants starts with
the kPdiPVF_ prefix. For example, the
kPdiPVF_ADR_COUNTRY constant represents the COUNTRY
field of an ADR property value. For more information, see the
section “Property Value Field Constants” on page 256.

• The Parameter Name constants represent the names of
vObject property parameters. Each of the parameter name
constants starts with the kPdiPAN_ prefix. For example, the
kPdiPAN_Type constant represents the TYPE parameter,
and the kPdiPAN_Encoding constant represents the
ENCODING parameter. For more information, see the section
“Parameter Name Constants” on page 254.

• The Parameter Value constants represent the combined
name and value of parameters. Each of the parameter value
constants starts with the kPdiPAV_ prefix. For example,
kPdiPAV_ENCODING_BASE64 constant represents the
Base64 encoding. For more information, see the section
“Parameter Value Constants” on page 254.

For a complete list of all of these constants, see the PdiConst.h
file.

Personal Data Interchange
About the PDI Library

Exploring Palm OS: High-Level Communications 223

The PDI Library Properties Dictionary
The PDI library features a dictionary that stores information about
the properties that are considered “well-known.” A well-known
property is one that is defined in one of the vObject standard
specifications, including the vCard and vCal standards. Both of
these standards can be found online at the PDI developer’s web
page:

http://www.imc.org/pdi/pdiproddev.html

PDI readers and writers use information in the properties dictionary
to determine how to read or write a certain property. Specifically,
the dictionary stores information about the format of each property
value; the reader uses this information to correctly parse the
property value, and the writer uses this information to correctly
format the written value. This information is important because
some property values are structured with multiple fields, while
others contain a single value field.

For example, the standard address (ADR) property has a structured
value with seven required fields, and the fields are separated by
semicolons. The dictionary stores this information, and the PDI
reader then knows to read seven, semicolon-separated fields when
parsing an ADR property.

By default, each PDI reader and writer uses a standard dictionary
when parsing input and generating output. You can, however,
override this behavior to parse or generate the value for a property
in some other way. For more information, see “Reading Property
Values” on page 230 and “Writing Property Values” on page 236.

You can also amend or replace the dictionary to add parsing and/or
generation of customized PDI properties for your application. For
more information, see “Adding Custom Extensions” on page 234.

PDI Readers
The PDI library provides the PDI reader object for reading and
parsing vObject input. A PDI reader object is a structure that stores
the current state of parsing through a PDI input stream.

http://www.imc.org/pdi/pdiproddev.html

Personal Data Interchange
About the PDI Library

224 Exploring Palm OS: High-Level Communications

The PDI reader parses the input stream one property at a time,
starting with the Begin Object property and finishing with the End
Object property.

The PdiReaderType structure stores a variety of information
about the current state of parsing the input stream, including the
following information about the current property:

• the encoding and character set

• the type of the current property, parameter, and property
value

• the name of the current property and parameter

• the current property’s value string

• a mask of the parsing events encountered for the current
property

About Parsing Events

The PDI reader records each parsing event that it encounters while
processing a property. For example, when it parses a BEGIN:VCARD
property, the PDI reader records the
kPdiBeginObjectEventMask, and when it parses a property
name, the PDI reader records the kPdiPropertyNameEventMask.

Each event is represented by one of the reader event constants,
described in “Reader Event Constants” on page 261. The PDI reader
records the event by adding (OR’ing) the event constant into the
events field of the PdiReaderType structure.

You can determine if a specific event has occurred while parsing the
current property by testing that event’s constant against the events
field in the reader structure. For example, the following statement
returns false if the end of the input stream was reached.

return((reader->events & kPdiEOFEventMask)==0);

PDI Writers
The PDI library provides the PDI writer object for writing vObject
output. A PDI writer object is a structure that stores the current state
of and manages the generation of PDI data.

Personal Data Interchange
About the PDI Library

Exploring Palm OS: High-Level Communications 225

The PDI writer sends data to the output stream one property at a
time, starting with the Begin Object property and finishing with the
End Object property.

The PdiWriterType structure stores information about the
current state of writing the output stream, including the following:

• the encoding and character set of the current property

• the mode used to write the current property value, which
specifies how the property value is structured

• the number of required fields for the current property value

Format Compatibility
The PDI library can read and write data streams in the following
formats:

• vCard 3.0

• vCard 2.1

• vCal 1.0

• iCalendar

• Palm format

You can use the PDI library to convert an input data stream that
uses one format into an output data stream in another format. For
more information, see “Specifying PDI Versions” on page 236.

Compatibility with Earlier Versions of the Palm OS

The PDI library has been designed to maintain compatibility with
versions of the Palm OS earlier than 4.0, which means that you can
use the library functions to receive vObjects from or send vObjects
to devices that use those earlier versions.

To take advantage of this compatibility, the PDI library has been
built to send or receive data in different formats, one of which is the
format supported by versions of the Palm OS earlier than 4.0 that
included the ImcUtils implementation.

To include support for this compatibility in a PDI Reader, specify
the kPdiOpenParser constant in your call to the
PdiReaderNew() function.

Personal Data Interchange
Using the PDI Library

226 Exploring Palm OS: High-Level Communications

To include support for this compatibility in a PDI Writer, specify the
kPdiPalmCompatibility option when calling the
PdiWriterNew() function.

International Considerations
The PDI library handles various character sets, including all those
supported by the Text Manager. If you specify the CHARSET
parameter in the input stream, the PDI reader will correctly read the
property value.

If you specify an unknown character set, the current character set
becomes unknown, as represented by the charEncodingUnknown
constant.

The system automatically converts incoming property values from
the vObject character set to the device character set by using the
Text Manager.

Features Not Yet Supported
The PDI library included with Palm OS Cobalt does not handle the
following features:

• Multi-part MIME messages are not handled.

• The XML version of vObjects is not supported.

• Applications ignore grouping. The PDI reader parses group
identifiers, but ignores them. However, the name of the
group most recently parsed is stored in the groupName field
of the PdiReaderType object.

Using the PDI Library
This section describes how to use the functions in the PDI library to
read or write PDI content. Figure 6.1 shows the typical sequences of
calls that you make to read or write vObjects.

To read vObjects, you need to:

• create a PDI reader

• read each property in the input stream:

– read the property name

Personal Data Interchange
Using the PDI Library

Exploring Palm OS: High-Level Communications 227

– read any parameters for the property

– read the property value

• delete the PDI reader

To write vObjects, you need to:

• create a PDI writer

• write each property to the output stream:

– write the property name

– write any parameters for the property

– write the property value

• delete the PDI writer

The remainder of this section describes the following operations:

• Creating a PDI Reader

• Reading Properties

• Creating a PDI Writer

• Writing Property Values

• Specifying PDI Versions

• Using UDA for Different Media

The section “Using a PDI Reader - An Example” on page 238
provides a detailed example of creating a PDI Reader and using it to
import vCard data into a database.

The section “Using a PDI Writer - An Example” on page 241
provides a detailed example of creating a PDI Writer and using it to
export data from a database in vCal format.

Personal Data Interchange
Using the PDI Library

228 Exploring Palm OS: High-Level Communications

Figure 6.1 Using the PDI library

PdiReaderNew

PdiReadProperty
 to read BEGIN:VCARD

PdiReadProperty
 to read each property

PdiReadPropertyField
 to read each field

of the current property

and its parameters

to create PDI Reader

vCard data

Process vCard data; for example,
create a record from the data and
add the record to a database

READING DATA WRITING DATA

PdiWriterNew

PdiWriteProperty
 to write each property

PdiWritePropertyValue
 to write the value

of the current property

and its parameters

to create PDI Writer

PdiWriteBeginObject
to write BEGIN:VCARD

PdiWriterDelete
 to delete PDI Writer

PdiReaderDelete
 to delete PDI Reader

repeat for each
property

Personal Data Interchange
Using the PDI Library

Exploring Palm OS: High-Level Communications 229

Creating a PDI Reader
To create a PDI reader, you need to first access the library, and then
call the PdiReaderNew() function, which is declared as follows:

PdiReaderType* PdiReaderNew(UDAReader *input,
uint16_t optionFlags)

The PdiReaderNew() parameters are:

• The Unified Data Access (UDA) input stream to use with the
reader. The UDA Manager allows you to read input from
various sources, including strings and the Exchange
Manager. For more information, see “Using UDA for
Different Media” on page 236.

• Option flags that control the parsing behavior of the reader,
including its default encoding and compatibility settings.
The option flags are described in “Reader and Writer Options
Constants” on page 259.

Once you have created the reader, you can use it to parse properties
from the input stream. The section “Using a PDI Reader - An
Example” on page 238 provides an example of creating and using a
PDI reader.

Reading Properties
To read PDI property data with a PDI reader, you need to call the
data reading functions:

• PdiReadProperty() reads a property and all of its
parameters from the input stream.

• PdiReadPropertyName() reads just the name of the next
property from the input stream. You can call this function if
you want to then handle the reading of the property’s
parameters individually.

• PdiReadParameter() reads a single parameter and its
value from the input stream.

• PdiReadPropertyField() reads a property value field. A
property value can a simple value, or it can be structured to
contain multiple fields that are separated by commas or
semicolons, as described in “Reading Property Values” on
page 230.

Personal Data Interchange
Using the PDI Library

230 Exploring Palm OS: High-Level Communications

The most common way to read input data is to follow these steps:

• Call PdiReadProperty() to read the vObject Begin
property. For example, if you are reading vCards, you can
call PdiReadProperty until it reads the
kPdiPRN_BEGIN_VCARD property from the input stream.

• Once you have found the beginning of the object, repeatedly
call PdiReadProperty() to read the next property and its
parameters.

• For each property, call the PdiReadPropertyField()
function as required to read the fields of the property.

• Continue reading properties until you read the vObject End
property. For vCards, you process properties until
PdiReadProperty() reads the kPdiPRN_END_VCARD
property from the input stream.

Examining Property Information

After calling a property-reading function, you can access fields of
the PdiReaderType object to determine information about the
current property. The current property is the one that is currently
being parsed, or which has just been parsed.

For example, you can examine the property field of the
PdiReaderType object to determine which type of property has
just been read, or you can call the PdiParameterPairTest()
macro to determine if a certain parameter pair was present in the
property definition.

Reading Property Values
Some properties have simple values and others have structured
values. A structured property value has multiple fields that are
separated by commas or semicolons.

For example, the following phone property definition has a simple
value:

TEL;CELL:+1 (408) 555-4321

Note that the phone property contains a semicolon to separate the
CELL parameter from the property name. Each property’s value
follows the colon in the definition.

Personal Data Interchange
Using the PDI Library

Exploring Palm OS: High-Level Communications 231

The following name property definition has a structured value that
contains five fields separated by semicolons:

N:Smith; John;M.;Mr.; Esq.

You must pass a parameter to the PdiReadPropertyField()
function to tell it how to process a property value. To specify how
the field is formatted, use one of the property value format
constants described in “Property Value Format Constants” on
page 257.

You can specify kPdiDefaultFields to allow the PDI reader to
determine the property value format. The reader looks up the
property name in the dictionary to determine its format.

• Specify kPdiNoFields to have the reader parse the entire
value in one operation.

• Specify kPdiCommaFields or kPdiSemicolonFields to
have the reader parse a single field from the value.

• Specify kPdiConvertComma or kPdiConvertSemicolon
to have the reader parse all of the fields in a value into a
single value.

You can usually specify kPdiDefaultFields and allow the PDI
Reader to use the information in the dictionary to properly parse the
value. However, this might not always meet your needs, especially
if your input stream contains custom properties.

Table 6.1 shows the results of using the different format constants to
read the same property from the input stream. The example
property is a standard address (ADR) property that has a structured
value with seven, semicolon-delimited fields:

ADR:postoffice;extended;street;locale;region;postal_code;country

Note that since the ADR property is defined in the vCard standard as
a structured value with seven, semicolon-delimited field, the PDI
library dictionary defines its default format as kPdiSemicolon.

Personal Data Interchange
Using the PDI Library

232 Exploring Palm OS: High-Level Communications

Table 6.1 Parsing a structured value with different value
format types

Value format type Description of PdiReadPropertyField() results

kPdiNoFields One call returns the entire value as a string:

"postoffice;extended;street;locale;region;postal_code;co
untry"

kPdiSemicolon Each call returns a single, semicolon-delimited field
from the value. For example:
• the first call returns "postoffice"
• the second call returns "extended"
• the third call returns "street"

kPdiComma Each call returns a single, comma-delimited field from
the value. For example, if the input string is
"postoffice,extended,street," then:
• the first call returns "postoffice"
• the second call returns "extended"
• the third call returns "street"

kPdiConvertSemicolon One call returns the entire value as a string that has
newline characters wherever a semicolon appeared in
the input:

"postoffice
extended
street
locale
region
postal_code
country"

Personal Data Interchange
Using the PDI Library

Exploring Palm OS: High-Level Communications 233

Reading Value Fields One At a Time

If you are reading the fields in a structured value one at a time, and
you don’t know the exact number of fields, you can call
PdiReadPropertyField() repeatedly until it returns a nonzero
result.

For example, the following code segment from the
DateTransfer.c program parses each field of the EXDATE
property value fields:

Listing 6.2 Reading an undetermined number of value fields

while (PdiReadPropertyField(reader, &tempP, kPdiResizableBuffer,
 kPdiSemicolonFields) == 0)
 {
 // Resize handle to hold exception
 err = MemHandleResize(exceptionListH,
sizeof(ExceptionsListType) + sizeof(DateType) * exceptionCount);
 ErrFatalDisplayIf(err != 0, "Memory full");
 // Lock exception handle
 exceptionListP = MemHandleLock(exceptionListH);
 // Calc exception ptr

kPdiConvertComma One call returns the entire value as a string that has
newline characters wherever a comma appeared in the
input:

"postoffice
extended
street
locale
region
postal_code
country"

kPdiDefaultFields Same as kPdiSemicolon, because the PDI library
dictionary defines the property value format of the ADR
field as kPdiSemicolon.

Table 6.1 Parsing a structured value with different value
format types (continued)

Value format type Description of PdiReadPropertyField() results

Personal Data Interchange
Using the PDI Library

234 Exploring Palm OS: High-Level Communications

 exceptionP = (DateType*)((uint32_t)exceptionListP
 + (uint32_t)sizeof(uint16_t)
 + (uint32_t)(sizeof(DateType) * exceptionCount));
 // Store exception into exception handle
 MatchDateTimeToken(tempP, exceptionP, NULL);
 // Increase exception count
 exceptionCount++;
 // Unlock exceptions list handle
 MemHandleUnlock(exceptionListH);
 }

NOTE: If you leave fields in a structured value unread, the next
call to PdiReadProperty will skip over them and correctly find
the beginning of the next property.

Adding Custom Extensions

The vObject standards are extensible, which means that you can add
custom properties to vCards and other vObjects. The PDI library
handles these custom properties; however, you must either add an
entry to the library’s dictionary for each custom property, or specify
a constant other than kPdiDefaultFields when parsing the
property’s value.

Each PDI reader object and each PDI writer object can have a
custom dictionary associated with it. You can configure the custom
dictionary to amend or to replace the standard, built-in dictionary.

To associate a custom dictionary with a reader or writer, you need to
first create the dictionary with the You can then call the
PdiDefineReaderDictionary() function to associate that
dictionary with a reader object or call the
PdiDefineWriterDictionary() function to associate the
dictionary with a writer object.

Creating a PDI Writer
To create a PDI writer, you need to first access the library, and then
call the PdiWriterNew() function, which is declared as follows:

PdiWriterType* PdiWriterNew(UDAWriter *output,
uint8_t optionFlags)

Personal Data Interchange
Using the PDI Library

Exploring Palm OS: High-Level Communications 235

The PdiWriterNew() parameters are:

• The UDA output stream to use with the writer. For more
information, see “Using UDA for Different Media” on
page 236.

• Option flags that control the output generation behavior of
the writer, including its default encoding and compatibility
settings. The option flags are described in “Reader and
Writer Options Constants” on page 259.

Once you have created the writer, you can use it to generate
properties to the output stream. The section “Using a PDI Writer -
An Example” on page 241 provides an example of creating and
using a PDI writer.

Writing Properties
To write PDI data with a PDI writer, you need to call the data
writing functions. The most commonly used functions are:

• PdiWriteBeginObject(), which writes a vObject Begin
tag to the output stream.

• PdiWriteEndObject(), which writes a vObject End tag to
the output stream.

• PdiWriteProperty(), which writes a property to the
output stream.

• PdiWritePropertyValue(), which writes a property
value to the output stream.

The most common way to write output data is to follow these steps:

• Call PdiWriteBeginObject() to write the vObject Begin
property. For example, if you are writing vCards, you call
PdiWriteBeginObject() to write the
kPdiPRN_BEGIN_VCARD property to the output stream.

• For each property that you want to write, call
PdiWriteProperty() to write the next property and its
parameters, and then call the PdiWritePropertyValue()
function to write the property’s value.

• Call PdiWriteEndObject() to write the vObject End
property. For example, if you are writing vCards, you call

Personal Data Interchange
Using UDA for Different Media

236 Exploring Palm OS: High-Level Communications

PdiWriteEndObject() to write the
kPdiPRN_END_VCARD property to the output stream.

Writing Property Values
In many cases, you can simply call the
PdiWritePropertyValue() function to write a value to the
output stream. If a value contains a variable number of fields, you
can instead use the PdiWritePropertyFields() to write the
fields from an array. Or you can use the
PdiWritePropertyStr() to write multiple fields separated by
commas or semicolons.

Specifying PDI Versions
The PDI library options constants control how the PDI reader and
PDI writer operate. These options are described in “Reader and
Writer Options Constants” on page 259.

Using UDA for Different Media
The PDI reader and writer objects use Unified Data Access (UDA)
Manager objects for reading from and writing to a variety of media.
The UDA data types, constants, and functions are documented in
Chapter 8, “Unified Data Access Manager Reference,” on page 285.
This section provides an overview of using UDA objects with the
PDI library.

About the UDA Library
The UDA Manager provides an abstract layer for reading, filtering,
and writing data to and from different media. The UDA Manager
provides three general purpose object types:

• UDAReaderType objects (UDA Readers) read data from an
input stream.

• UDAFilterType objects (UDA Filters) take input from UDA
Readers or UDA Filters, perform some encoding or decoding
operations, and output the data to a memory buffer.

Personal Data Interchange
Using UDA for Different Media

Exploring Palm OS: High-Level Communications 237

• UDAWriterType objects (UDA Writers) write data to a filter
or an output stream.

The UDA Manager provides general purpose functions for creating
these object types. In addition, the UDA Manager provides built-in
object types for working with memory buffers and the Exchange
Manager.

NOTE: The implementation of the UDA Manager in Palm OS
Cobalt does not provide built-in filter objects.

Interfacing with the Exchange Manager

The UDA Manager provides two functions for interfacing with the
Exchange Manager:

• The UDAExchangeReaderNew() function creates a UDA
Reader object that reads data from an Exchange Manager
socket.

• The UDAExchangeWriterNew() function creates a UDA
Writer object that writes data to an Exchange Manager
socket.

The Exchange Manager, which is described in Chapter 4, “Object
Exchange,” on page 105, provides a mechanism for reading typed
data in a transport-independent manner.

When you use the UDA interface to the Exchange Manager, you add
the benefits of a simple, uniform way to read and write data in a
transport-independent manner. This allows you to create PDI
readers and writers that can work on data that is stored on a variety
of media types.

If you wish to parse PDI objects from memory, you can use an object
created by the UDAMemoryReaderNew() function instead of an
Exchange Manager reader object.

The PDI Reader example in the next section reads its data from an
Exchange Manger socket, using the UDAExchangeReaderNew()
function to create the reader object.

The PDI Writer example in “Using a PDI Writer - An Example” on
page 241 writes its data to an Exchange Manager socket, using the
UDAExchangeWriterNew() function to create the writer object.

Personal Data Interchange
Using a PDI Reader - An Example

238 Exploring Palm OS: High-Level Communications

Using a PDI Reader - An Example
This section provides an example of reading PDI data from an input
stream and storing it in a database. This example is from the
AddressTransfer.c file, which is located inside of the
Examples/Address/Src folder.

Listing 6.3 shows the TransferReceiveData() function from the
AddressTransfer.c sample program. This function controls the
reading of vCard data into the address database by performing the
following operations:

• Calls the ExgAccept() function to accept a connection from
a remote device.

• Calls the UDAExchangeReaderNew() function to create an
input data stream for connection with the Exchange
Manager.

• Calls the PdiReaderNew() function to create a new PDI
reader object that reads from the input stream.

• Repeatedly calls the local function
TransferImportVCard() to read vCard data and store it
into the address database. This function is described in the
next section, Importing vCard Data Into a Database.

• Calls the ExgDisconnect() function to terminate the
transfer and close the connection.

• Deletes the PDI reader and UDA input stream objects.

Listing 6.3 Reading a PDI input stream

extern Err TransferReceiveData(DmOpenRef dbP, ExgSocketPtr exgSocketP)
{
 volatile Err err;
 PdiReaderType* reader = NULL;
 UDAReader* stream = NULL;

 if ((err = ExgAccept(exgSocketP)) != 0)
 return err;
 if ((stream = UDAExchangeReaderNew(exgSocketP)) == NULL)
 {
 err = exgMemError;
 goto errorDisconnect;
 }
 if ((reader = PdiReaderNew(stream, kPdiOpenParser)) == NULL)

Personal Data Interchange
Using a PDI Reader - An Example

Exploring Palm OS: High-Level Communications 239

 {
 err = exgMemError;
 goto errorDisconnect;
 }
 reader->appData = exgSocketP;
 ErrTry
 {
 while(TransferImportVCard(dbP, reader, false, false)){};
 }
 ErrCatch(inErr)
 {
 err = inErr;
 } ErrEndCatch
 if (err == errNone && exgSocketP->goToParams.uniqueID == 0)
 err = exgErrBadData;
errorDisconnect:
 if (reader)
 PdiReaderDelete(&reader);
 if (stream)
 UDADelete(stream);
 ExgDisconnect(exgSocketP, err); // closes transfer dialog
 err = errNone; // error was reported, so don't return it
 return err;
}

Importing vCard Data Into a Database

The TransferImportVCard() function imports a vCard record
from an input stream. Listing 6.4 shows the basic outline of the
TransferImportVCard() function; you can review the entire
function by viewing the AddressTransfer.c file, which is
located inside of the Examples/Address/Src folder.

Listing 6.4 Importing vCard data into a database

Boolean TransferImportVCard(DmOpenRef dbP, PdiReaderType* reader,
 Boolean obeyUniqueIDs, Boolean beginAlreadyRead)
{

... // local declarations and initialization code

 ErrTry
 {
 phoneField = firstPhoneField;
 if (!beginAlreadyRead)
 {

Personal Data Interchange
Using a PDI Reader - An Example

240 Exploring Palm OS: High-Level Communications

 PdiReadProperty(reader);
 beginAlreadyRead = reader->property == kPdiPRN_BEGIN_VCARD;
 }
 if (!beginAlreadyRead)
 ErrThrow(exgErrBadData);
 PdiEnterObject(reader);
 PdiDefineResizing(reader, 16, tableMaxTextItemSize);
 while (PdiReadProperty(reader) == 0
 && (property = reader->property) != kPdiPRN_END_VCARD)
 {
 switch(property)
 {
 case kPdiPRN_N:
 PdiReadPropertyField(reader,(char **) &newRecord.fields[name],
 kPdiResizableBuffer, kPdiDefaultFields);
 PdiReadPropertyField(reader, (char **) &newRecord.fields[firstName],
 kPdiResizableBuffer, kPdiDefaultFields);
 break;
 case kPdiPRN_NOTE:
 PdiDefineResizing(reader, 16, noteViewMaxLength);
 PdiReadPropertyField(reader, char **) &newRecord.fields[note],
 kPdiResizableBuffer, kPdiNoFields);
 PdiDefineResizing(reader, 16, tableMaxTextItemSize);
 break;

,,, // other cases here for other properties

 }
 } // end while
 if (newRecord.fields[name] != NULL
 && newRecord.fields[company] != NULL
 && newRecord.fields[firstName] != NULL
 && StrCompare(newRecord.fields[name],
 newRecord.fields[company]) == 0)
 { // if company & name fields are identical, assume company only
 MemPtrFree(newRecord.fields[name]);
 newRecord.fields[name] = NULL;
 }
AddRecord:
 err = AddrDBNewRecord(dbP, (AddrDBRecordType*) &newRecord,
 &indexNew);
 if (err)
 ErrThrow(exgMemError);

 ... // handle category assignment here

 } //end of ErrTry
 if (error == exgErrBadData)

Personal Data Interchange
Using a PDI Writer - An Example

Exploring Palm OS: High-Level Communications 241

 return false;
 if (error != errNone)
 ErrThrow(error);
 return ((reader->events & kPdiEOFEventMask) == 0);
}

The TransferImportVCard() function performs the following
operations:

• Calls the PdiReadProperty() function to read the
BEGIN:VCard property from the input stream.

• Calls the PdiEnterObject() function to notify the PDI
library that it is reading a new object from the input stream.

• Calls the PdiDefineResizing() function to set the
maximum buffer size for reading properties for the address
card.

• Repeatedly calls the PdiReadProperty() function to read
properties of the address card. This repeats until
PdiReadProperty() reads the END:VCard property,
which indicates the end of data for the address card.

• For each address card property, calls
PdiReadPropertyField() as required to read the values
associated with the property. For example, when it reads the
kPdiPRN_N name property, AddrImportVCard() calls
PdiReadPropertyField() twice: once to read the last
name, and a second time to read the first name.

• Creates a new address record and adds it to the Address
Book database.

• Deallocates memory that it has allocated and performs other
cleanup operations.

Again, note that Listing 6.4 only shows the outline of this function.
You can find the entire function in the AddressTransfer.c file.

Using a PDI Writer - An Example
This section provides an example of writing PDI data from a
database record to an output stream. This example is from the
ToDoTransfer.c file, which is located inside of the Examples/
ToDo/Src folder.

Personal Data Interchange
Using a PDI Writer - An Example

242 Exploring Palm OS: High-Level Communications

Listing 6.5 shows an example of creating and using a PDI writer.
The ToDoSendRecordTryCatch() function controls the writing
of data from the To Do database to vCal objects by performing the
following operations:

• Calls the PdiWriterNew() function to create a new PDI
writer object that writes to the UDA output stream specified
by the media parameter.

• Calls the PdiWriteBeginObject() function to write the
BEGIN:VCAL property to the output stream.

• Calls the PdiWriteProperty() function to write the
VERSION property, and then calls the
PdiWritePropertyValue() function to write the version
value.

• Calls the ToDoExportVCal() function to write the To Do
record, as described in the next section, Exporting vCal Data
From a Database.

• Calls the PdiWriteEndObject() function to write the
END:VCAL property to the output stream.

• Deletes the PDI writer object.

Listing 6.5 Writing a PDI Output Stream

static Err ToDoSendRecordTryCatch (DmOpenRef dbP, int16_t recordNum,
 ToDoDBRecordPtr recordP, UDAWriter* media)
{
 volatile Err error = 0;
 PdiWriterType* writer;

 writer = PdiWriterNew(media, kPdiPalmCompatibility);
 if (writer)
 {
ErrTry
 {
 PdiWriteBeginObject(writer, kPdiPRN_BEGIN_VCALENDAR);
 PdiWriteProperty(writer, kPdiPRN_VERSION);
 PdiWritePropertyValue(writer, (char*)"1.0", kPdiWriteData);
 ToDoExportVCal(dbP, recordNum, recordP, writer, true);
 PdiWriteEndObject(writer, kPdiPRN_END_VCALENDAR);
 }
ErrCatch(inErr)
 {
 error = inErr;

Personal Data Interchange
Using a PDI Writer - An Example

Exploring Palm OS: High-Level Communications 243

 } ErrEndCatch
 PdiWriterDelete(&writer);
 }
 return error;
}

Exporting vCal Data From a Database

The ToDoExportVCal() function exports a vCal record from the
To Do database to an output stream. Listing 6.6 shows the basic
outline of the ToDoExportVCal() function; you can review the
entire function by viewing the ToDoTransfer.c file, which is
located inside of the Examples/Address/Src folder.

Listing 6.6 Exporting vCal data from a database

extern void ToDoExportVCal(DmOpenRef dbP, int16_t index,
ToDoDBRecordPtr recordP, uint16_t PdiWriterType* writer, Boolean
writeUniqueIDs)
{
char * note;
uint32_t uid;
char tempString[tempStringLengthMax];
uint16_t attr;
...

 PdiWriteBeginObject(writer, kPdiPRN_BEGIN_VTODO);
 // Emit the Category
 PdiWriteProperty(writer, kPdiPRN_CATEGORIES);
 // ...code to create the property string (tempString)
 PdiWritePropertyValue(writer, tempString, kPdiWriteText);

 // Code to emit the record information, including the:
 // - due date
 // - completed flag
 // - priority value
 // - description text
...

 // Emit the note
 if (*note != ’\0’)
 {
 PdiWriteProperty(writer, kPdiPRN_ATTACH);
 PdiWritePropertyValue(writer, note, kPdiWriteText);
 }

Personal Data Interchange
Summary of Personal Data Interchange

244 Exploring Palm OS: High-Level Communications

 // Emit an unique id
 if (writeUniqueIDs)
 {
 PdiWriteProperty(writer, kPdiPRN_UID);
 // Get the record’s unique id and append to the string.
 DmRecordInfo(dbP, index, NULL, &uid, NULL);
 StrIToA(tempString, uid);
 PdiWritePropertyValue(writer, tempString, kPdiWriteData);
 }

 PdiWriteEndObject(writer, kPdiPRN_END_VTODO);
}

The ToDoExportVCal() function performs the following
operations:

• Calls the PdiWriteBeginObject() function to write the
BEGIN:VTODO property to the output stream.

• Calls the PdiWriteProperty() function to write the
category information for the To Do record.

• Calls the PdiWriteProperty() function to write other
information for the To Do record, including the due date,
completed flag, priority value, and description text.

• Calls the PdiWriteProperty() function to write the note
and again to write a unique ID for the note.

• Calls the PdiWriteEndObject() function to write the
END:VTODO property to the output stream.

Again, note that Listing 6.6 only shows the outline of this function.
You can find the entire function in the ToDoTransfer.c file.

Summary of Personal Data Interchange
PDI Library Functions

Object Creation and Deletion

PdiReaderNew()
PdiReaderDelete()

PdiWriterNew()
PdiWriterDelete()

Property Reading

Personal Data Interchange
Summary of Unified Data Access Manager

Exploring Palm OS: High-Level Communications 245

Summary of Unified Data Access Manager

PdiDefineResizing()
PdiEnterObject()
PdiParameterPairTest()
PdiReadParameter()

PdiReadProperty()
PdiReadPropertyField()
PdiReadPropertyName()

Property Writing

PdiSetCharset()
PdiSetEncoding()
PdiWriteBeginObject()
PdiWriteEndObject()
PdiWriteParameter()

PdiWriteParameterStr()
PdiWriteProperty()
PdiWritePropertyBinaryValue()
PdiWritePropertyFields()
PdiWritePropertyStr()
PdiWritePropertyValue()

Property Dictionary

PdiDefineReaderDictionary() PdiDefineWriterDictionary()

UDA Manager Functions

UDAControl()
UDADelete()
UDAEndOfReader()
UDAFilterJoin()
UDAInitiateWrite()

UDAMoreData()
UDARead()
UDAWriterFlush()
UDAWriterJoin()

Object Creation

UDAExchangeReaderNew()
UDAExchangeWriterNew()

UDAMemoryReaderNew()

PDI Library Functions

Personal Data Interchange
Summary of Unified Data Access Manager

246 Exploring Palm OS: High-Level Communications

Exploring Palm OS: High-Level Communications 247

7
Personal Data
Interchange
Reference
This chapter provides reference material for the Personal Data
Interchange (PDI) library, which provides tools for reading and
writing vObjects, including vCards and vCals. This chapter
discusses the following topics:

• PDI Library Data Structures

• PDI Library Constants

• PDI Library Functions

The header file PdiLib.h declares the Personal Data Interchange
library API. The header file PdiConst.h declares the constants that
you use with the PDI library.

For information about how to use the functions and constants
described in this chapter, see Chapter 6, “Personal Data
Interchange,” on page 217.

PDI Library Data Structures
This section describes the data structures used with the PDI library
functions.

PdiDictionary Typedef
Purpose The PdiDictionary type is a simple typedef that represents an

internal, binary object.

Prototype typedef uint8_t PdiDictionary;

Personal Data Interchange Reference
PdiReaderType

248 Exploring Palm OS: High-Level Communications

PdiReaderType Struct
Purpose The PdiReaderType data structure represents a PDI reader object,

which you use to read data from an input stream.

Prototype typedef struct PdiReaderTag {
 Err16 errorLowWord;
 uint16_t encoding;
 uint8_t fieldNum;
 CharEncodingType charset;
 uint16_t written;
 uint16_t property;
 uint16_t propertyValueType;
 uint16_t parameter;
 uint16_t padding1;
 uint32_t parameterPairs[8];
 uint16_t customFieldNumber;
 uint16_t padding2;
 void *appData;
 uint16_t pdiRefNum;
 uint16_t events;
 char *groupName;
 char *propertyName;
 char *parameterName;
 char *parameterValue;
 char *propertyValue;
} PdiReaderType

Fields errorLowWord
The most recent error.

encoding
The type of encoding for the property value.

fieldNum
The current field number.

charset
The character set of the property value.

written
The number of characters that have currently been written to
the buffer.

property
The ID of the current property.

Personal Data Interchange Reference
PdiReaderType

Exploring Palm OS: High-Level Communications 249

propertyValueType
The value type of the current property value.

parameter
The ID of the most recently parsed parameter name.

padding1
Padding; not used.

parameterPairs
An integer array with bits set for each parameter value that
has been parsed for the current property value.

NOTE: You must use the PdiParameterPairTest macro to
access this field.

customFieldNumber
The number of the custom field parsed by the reader for the
current property. Custom fields are used in the Address
Book.

padding2
Padding; not used.

appData
Application-dependent data field.

pdiRefNum
The library reference number associated with this reader.
This is no longer used for ARM code development, but is
kept for compatibility with code written for the 68K
environment.

events
The mask of events handled by the reader in its most recent
operation. This is a combination of some number of the event
constants described in Reader Event Constants.

groupName
The group name for the current property.

propertyName
The name of the current property.

parameterName
The name of the current parameter.

Personal Data Interchange Reference
PdiWriterType

250 Exploring Palm OS: High-Level Communications

parameterValue
The value of the current parameter.

propertyValue
The current property value string.

PdiWriterType Struct
Purpose The PdiWriterType data structure represents a PDI writer object,

which you use to write data to an output stream.

Prototype typedef struct _PdiWriter {
 Err16 errorLowWord;
 uint16_t encoding;
 CharEncodingType charset;
 uint8_t padding1[2];
 uint32_t reserved;
 void *appData;
 uint16_t pdiRefNum;
 uint16_t padding2;
} PdiWriterType

Fields errorLowWord
The most recent error.

encoding
The type of encoding for the property value.

charset
The character set of the property value.

padding1
Padding; not used.

reserved
Reserved for future use.

appData
Application-dependent data field.

pdiRefNum
The library reference number associated with this reader.
This is no longer used for native code development, but is
kept for compatibility with code written for the 68K
environment.

Personal Data Interchange Reference
Buffer Management Constants

Exploring Palm OS: High-Level Communications 251

padding2
Padding; not used.

PDI Library Constants
This section describes the constants used in the PDI library, which
include the following constant types:

• Buffer Management Constants

• Encoding Type Constants

• Error Code Constants

• Parameter Name Constants

• Parameter Value Constants

• Property Name Constants

• Property Type Constants

• Property Value Field Constants

• Property Value Format Constants

• Reader and Writer Options Constants

• Reader Event Constants

• Value Type Constants

Buffer Management Constants
You use the buffer management constants to determine how buffers
are managed in the PDI reader.

Constant Value Description

kPdiResizableBuffer 0xFFFF Indicates that the buffer can be
automatically resized by the PDI
library.

Personal Data Interchange Reference
Encoding Type Constants

252 Exploring Palm OS: High-Level Communications

Encoding Type Constants
You use the encoding type constants to specify the type of encoding
used in a vObject reader or writer.

kPdiDefaultBufferMaxSize 0x3FFF The default maximum buffer size, in
bytes. You can change the maximum
size of a reader’s buffer by calling the
PdiDefineResizing() function.

kPdiDefaultBufferDeltaSize 0x0010 The default number of bytes by
which the input buffer is grown when
the PDI library performs automatic
resizing. You can change the delta
amount of a reader’s buffer by calling
PdiDefineResizing() function.

Constant Value Description

Constant Value Description

kPdiASCIIEncoding 0 The vObject is not encoded.

kPdiQPEncoding kPdiPAV_ENCODING_
QUOTED_PRINTABLE

The vObject uses the quoted
printable encoding.

kPdiB64Encoding kPdiPAV_ENCODING_
BASE64

The vObject uses Base 64
encoding. The writer outputs
"ENCODING=BASE64."

kPdiBEncoding kPdiPAV_ENCODING_B The vObject uses Base 64
encoding. This is the same as
the kPdiB64Encoding value,
except that the PDI writer
outputs "ENCODING=B."

This encoding is used with the
vCard 3.0 standard.

Personal Data Interchange Reference
Error Code Constants

Exploring Palm OS: High-Level Communications 253

Error Code Constants
The PDI library functions return the error code constants shown in
the following table to indicate their status.

kPdiEscapeEncoding 0x8000 The vObject uses escapes for
special characters.

kPdiNoEncoding 0x8001 The PDI writer does not
encode the vObject value.

Constant Value Description

Constant Description

pdiErrRead An error occurred while
reading from the input stream.

pdiErrWrite An error occurred while writing
to the output stream.

pdiErrNoPropertyName An attempt was made to write a
property value before the
property name was written.

pdiErrNoPropertyValue The application did not write
the last property value.

pdiErrMoreChars The buffer is full. Superfluous
characters have been discarded.

pdiErrNoMoreFields There are no more property
fields to read.

pdiErrOpenFailed The PDI library could not be
opened.

pdiErrCloseFailed The PDI library could not be
closed. This can occur if another
application is using the library.

Personal Data Interchange Reference
Parameter Name Constants

254 Exploring Palm OS: High-Level Communications

Parameter Name Constants
The PdiConst.h file defines several parameter name constants
that you can use to specify the name of a parameter in functions that
use parameter names. The parameter name constants have the
following format:

kPdiPAN_parameterName

where parameterName is replaced by a parameter name.

The following table shows examples of parameter name constants.
For a complete list, see the PdiConst.h file.

Parameter Value Constants
The PdiConst.h file defines several parameter value constants
that you can use to specify the name and value of a parameter in
functions that use name and value pairs. The parameter value
constants have the following format:

kPdiPAV_parameterName_parameterValue

where parameterName is replaced by a parameter name and
parameterValue is replaced by a parameter value.

The following table shows examples of parameter value constants.
For a complete list, see the PdiConst.h file.

Constant Description

kPdiPAN_TYPE The TYPE parameter.

kPdiPAN_ENCODING The ENCODING parameter.

kPdiPAN_STATUS The STATUS parameter.

Personal Data Interchange Reference
Property Name Constants

Exploring Palm OS: High-Level Communications 255

Property Name Constants
The PdiConst.h file defines several property name constants that
you can use to specify the name of a PDI property in functions that
use property names. The property name constants have the
following format:

kPdiPRN_propertyName

where propertyName is replaced by a property name.

The following table shows examples of property name constants.
For a complete list, see the PdiConst.h file.

Constant Description

kPdiPAV_TYPE_VIDEO The parameter name is TYPE
and the parameter value is
VIDEO.

kPdiPAV_ENCODING_BASE64 The parameter name is
ENCODING and parameter value
is BASE64.

kPdiPAV_ENCODING_8BIT The parameter name is
ENCODING and the parameter
value is 8BIT.

kPdiPAV_STATUS_ACCEPTED The parameter name is STATUS
and the parameter value is
ACCEPTED.

Constant Description

kPdiPRN_ADR The ADR property.

kPdiPRN_BDAY The BDAY property.

kPdiPRN_BEGIN The BEGIN property.

kPdiPRN_BEGIN_VCARD The BEGIN:VCARD property.

Personal Data Interchange Reference
Property Type Constants

256 Exploring Palm OS: High-Level Communications

Property Type Constants
You use the property type constants defined in PdiConst.h to
specify the data type of a property.

Property Value Field Constants
The PdiConst.h file defines several property value field constants
that you can use to specify the position of a PDI property value field

Constant Description

kPdiType_URI The data is a uniform resource
identifier.

kPdiType_UTC_OFFSET The data is an offset from UTC
to local time.

kPdiType_RECUR The data is a specification of a
recurrence rule.

kPdiType_PERIOD The data is a precise period of
time.

kPdiType_CAL_ADDRESS Calendar user data.

kPdiType_BINARY Binary data.

kPdiType_TEXT Text data.

kPdiType_FLOAT Floating-point data.

kPdiType_DURATION Time duration data.

kPdiType_DATE_TIME Calendar date and time data.

kPdiType_BOOLEAN Boolean data.

kPdiType_INTEGER Signed integer data.

kPdiType_TIME Time-of-day data.

kPdiType_VCARD vCard data.

kPdiType_PHONE_NUMBER Phone number data.

Personal Data Interchange Reference
Property Value Format Constants

Exploring Palm OS: High-Level Communications 257

in functions that use fields. The property value field constants have
the following format:

kPdiPVF_propertyValueField

where propertyValueField is replaced by a property value field name.

The following table shows examples of property name constants.
For a complete list, see the PdiConst.h file.

Property Value Format Constants
Some properties have structured values, which are values that
contain multiple fields. These fields are typically separated by
commas or semicolons in the vObject input or output stream. You
use the property value format constants with the
PdiReadPropertyField() and PdiWritePropertyStr()
functions to specify how to handle fields in a structured value.

Constant Description

kPdiPVF_ADR_POST_OFFICE The property value field that
stores the post office portion of
the address.

kPdiPVF_ADR_EXTENDED The property value field that
stores the extended portion of
the address.

kPdiPAN_ADR_COUNTRY The property value field that
stores the country portion of
the address.

Personal Data Interchange Reference
Property Value Format Constants

258 Exploring Palm OS: High-Level Communications

Constant Value Description

kPdiNoFields 0 There are no fields in the property
value; PdiReadPropertyField()
reads the entire value, or
PdiWritePropertyStr() specifies
that the entire value should be written.

kPdiCommaFields 1 Fields are separated with comma (“,“)
characters;
PdiReadPropertyField() reads
one field, or
PdiWritePropertyStr() specifies
that one field should be written.

kPdiSemicolonFields 2 Fields are separated with semicolon
(“;“) characters;
PdiReadPropertyField() reads
one field, or
PdiWritePropertyStr() specifies
that one field should be written.

kPdiDefaultFields 4 The parser decides the property value
format, based on the property name.

kPdiConvertComma 8 Fields are separated with comma
characters;
PdiReadPropertyField() reads the
entire value and converts each comma
into a newline (“\n“) character.

kPdiConvertSemicolon 16 Fields are separated with semicolon
characters;
PdiReadPropertyField() reads the
entire value and converts each
semicolon into a newline (“\n“)
character.

Personal Data Interchange Reference
Reader and Writer Options Constants

Exploring Palm OS: High-Level Communications 259

Reader and Writer Options Constants
You use the reader and writer option constants to control how the
PDI reader (parser) reads values from the input stream or to control
how the PDI writer (generator) writes values to the output stream.

Constant Value Description

kPdiEnableFolding 1 Enables folding of properties in the
output stream.

Folding is a mechanism for breaking
long lines to allow them to be
transmitted without change. If you
specify this flag, the PDI library folds
long lines.

Note that folding is not compatible
with versions of the Palm OS® earlier
than 4.0.

Also note that other encoding formats,
including quoted-printable and Base
64, define their own mechanisms for
splitting long lines.

kPdiEnableQuotedPrintable 2 Enables quoted-printable encoding in
the output stream and makes it the
default encoding.

This is an encoding format for non-
ASCII values. You must have this
enabled for compatibility with versions
of the Palm OS earlier than 4.0.

If you do not specify this option, the
default encoding is Base 64.

Personal Data Interchange Reference
Reader and Writer Options Constants

260 Exploring Palm OS: High-Level Communications

kPdiEscapeMultiFieldValues 4 For compatibility with versions of the
Palm OS earlier than 4.0.

You must enable this for compatibility
with versions of the Palm OS earlier
than 4.0. However, some non-Palm PDI
software does not support this format.

For more information about
compatibility with earlier versions of
the Palm OS, see “Format
Compatibility” on page 225.

kPdiPalmCompatibility 6 This is a combination of
kPdiEscapeMultiFieldValues |
kPdiEnableQuotedPrintable |
kPdiBypassLocaleCharEncoding.

It forces the PDI writer to generate
output that is compatible with versions
of the Palm OS earlier than 4.0.

kPdiEnableB 8 Enables base 64 encoding in the output
stream, and tells the PDI writer to
output "ENCODING=B" instead of
"ENCODING=BASE64" when encoding a
value with Base 64.

Note: the vCard 3.0 standard has
replaced the earlier
ENCODING=BASE64 with
ENCODING=B. The meaning is the
same.

kPdiOpenParser 16 Specifies that the PDI reader is open to
all formats, including Palm and others.

kPdiBypassLocaleCharEncodi
ng

32 Bypasses the default character
encoding for reading and writing.

Constant Value Description

Personal Data Interchange Reference
Reader Event Constants

Exploring Palm OS: High-Level Communications 261

Reader Event Constants
The PDI reader event constants specify the events that the reader
has handled during the current read operation. The event values are
combined together and stored in the events field of the PDI reader
object. You can use them to test whether the reader handled a
certain event.

Constant Value Description

kPdiEOFEventMask 1 End of file was reached.

kPdiGroupNameEventMask 2 A group name was found.

kPdiPropertyNameEventMask 4 A property name was
found.

kPdiParameterNameEventMask 8 A parameter name was
found.

kPdiParameterValueEventMask 16 A parameter value was
found.

kPdiPropertyDefinedEventMask 32 A property definition was
found; this implies that the
“:” separator character was
found.

kPdiPropertyValueEventMask 64 An entire property value
was found

kPdiPropertyValueFieldEventMask 128 A value field was found;
this implies that the “;” or
CR/LF separator character
was found.

kPdiPropertyValueItemEventMask 256 A value item was found;
this implies that the “,” or
CR/LF separator character
was found.

Personal Data Interchange Reference
Value Type Constants

262 Exploring Palm OS: High-Level Communications

Value Type Constants
You can use the following constants to specify data typing
information for the PdiWritePropertyBinaryValue(),
PdiWritePropertyFields(), and
PdiWritePropertyValue() functions.

kPdiPropertyValueMoreCharsEventMask 512 The buffer that you
provided was not large
enough. The superfluous
characters have been
discarded.

kPdiBeginObjectEventMask 1024 The object begin indicator
BEGIN was reached.

kPdiEndObjectEventMask 2048 The object end indicator
END was reached.

kPdiPropertyValueCRLFEventMask 4096 Not used.

Constant Value Description

Constant Value Description

kPdiWriteData 0 The value is data. The PDI writer does not
compute a character set. You can use this for
binary data or pure ASCII data.

kPdiWriteText 8 The value is text data. The PDI writer parses
the data character by character to compute the
correct charset and character encoding for the
data.

kPdiWriteMultiline 16 Explicitly specifies that the value contains
special characters, such as newlines, and must
be encoded. If this flag is not specified, the
encoding is determined by the applied
character set.

Personal Data Interchange Reference
PdiDefineReaderDictionary

Exploring Palm OS: High-Level Communications 263

PDI Library Functions

PdiDefineReaderDictionary Function
Purpose Installs a new custom dictionary for use with a PDI reader object.

Declared In PdiLib.h

Prototype PdiDictionary *PdiDefineReaderDictionary
(PdiReaderType *ioReader,
PdiDictionary *dictionary,
Boolean disableMainDictionary)

Parameters → ioReader
The PDI reader object with which to associate the dictionary.
This object must have previously been created by a call to the
PdiReaderNew() function.

→ dictionary
A pointer to a dictionary object that was created by the . The
dictionary object is an array of binary data.

→ disableMainDictionary
If true, the main reader dictionary is disabled, and only this
new dictionary is searched for terms; if false, the new
dictionary supplements the main dictionary.

Returns Returns a pointer to the previously installed custom dictionary, or
NULL if there was not a previously installed custom dictionary.

Comments This function installs a dictionary for use with the ioReader object.
The dictionary contains the syntax for extensions or replacements of
the PDI properties about which the PDI reader knows. The reader
knows about properties specified in one of the vObject standards,
including the vCard or vCal standards.

You can uninstall the current custom dictionary by specifying NULL
as the value of the dictionary parameter,

Personal Data Interchange Reference
PdiDefineResizing

264 Exploring Palm OS: High-Level Communications

PdiDefineResizing Function
Purpose Defines the sizing information to use when automatically resizing a

buffer. PDI reader objects read information from the input stream
into a buffer and automatically adjust the buffer size as required.

Declared In PdiLib.h

Prototype status_t PdiDefineResizing
(PdiReaderType *ioReader, uint16_t deltaSize,
uint16_t maxSize)

Parameters → ioReader
The PDI reader object, which was created by a previous call
to the PdiReaderNew() function.

→ deltaSize
The number of bytes by which to grow the buffer when it
needs resizing.

→ maxSize
The maximum allowable size for the buffer.

Returns Returns errNone if successful, and an error code if not successful.

Comments This function redefines the values to use when resizing a buffer. It
does not perform any other actions.

The resizing values are used if your reader runs out of buffer space
when storing input data during the processing of a property value.
If possible, the reader resizes its internal buffer, using the values that
you supply in this function.

The default resizing values apply if you do not call this function.
The default values are:

kPdiDefaultBufferDeltaSize 0x0010

kPdiDefaultBufferMaxSize 0x3FFF

Personal Data Interchange Reference
PdiDefineWriterDictionary

Exploring Palm OS: High-Level Communications 265

PdiDefineWriterDictionary Function
Purpose Installs a new custom dictionary for use with a PDI writer object.

Declared In PdiLib.h

Prototype PdiDictionary *PdiDefineWriterDictionary
(PdiWriterType *ioWriter,
PdiDictionary *dictionary,
Boolean disableMainDictionary)

Parameters → ioWriter
The PDI writer object with which to associate the dictionary.
This object must have previously been created by a call to the
PdiWriterNew() function.

→ dictionary
A pointer to a dictionary object that was created by the . The
dictionary object is an array of binary data.

→ disableMainDictionary
If true, the main dictionary is disabled, and only this new
dictionary is searched for terms; if false, the new dictionary
supplements the main dictionary.

Returns Returns a pointer to the previously installed custom dictionary, or
NULL if there was not a previously installed custom dictionary.

Comments This function installs a dictionary for use with the ioWriter object.
The dictionary contains the syntax for extensions or replacements of
the PDI properties about which the PDI writer knows. The writer
knows about properties specified in one of the vObject standards,
including the vCard or vCal standards.

You can uninstall the current custom dictionary by specifying NULL
as the value of the dictionary parameter,

Personal Data Interchange Reference
PdiEnterObject

266 Exploring Palm OS: High-Level Communications

PdiEnterObject Function
Purpose Tells the PDI library to enter into a recursively-defined object.

Declared In PdiLib.h

Prototype status_t PdiEnterObject (PdiReaderType *ioReader)

Parameters → ioReader
The PDI reader object, which was created by a previous call
to the PdiReaderNew() function.

Returns Returns errNone if successful, and an error code if not successful.

Comments Some vObjects recursively define other vObjects. Your application
can choose whether or not to enter and parse the recursively defined
objects.

If you want to parse the nested object definition, you need to call
this function; otherwise, all of the properties of the nested object are
skipped when the next call is made to the PdiReadProperty() or
PdiReadPropertyName() functions.

Call this function after a BEGIN_VObject statement of the nested
object has been parsed.

PdiLibClose Function
Purpose Decrements a reference count of PdiLibOpen() calls.

Declared In PdiLib.h

Prototype status_t PdiLibClose (void)

Parameters None.

Returns Returns 0 if no other application uses the library. Returns
pdiErrCloseFailed if the library is in use by another
application.

Comments This function is no longer needed for ARM code development, but
is kept for compatibility with code written for the 68K environment.

See Also PdiLibOpen()

Personal Data Interchange Reference
PdiParameterPairTest

Exploring Palm OS: High-Level Communications 267

PdiLibOpen Function
Purpose Increments a reference count of PdiLibOpen() calls.

Declared In PdiLib.h

Prototype status_t PdiLibOpen (void)

Parameters None.

Returns Returns errNone.

Comments This function is no longer needed for ARM code development, but
is kept for compatibility with code written for the 68K environment.

See Also PdiLibClose()

PdiParameterPairTest Macro
Purpose Determines if the reader has already parsed the specified parameter

value or name-value pair.

Declared In PdiLib.h

Prototype #define PdiParameterPairTest (reader, pair)

Parameters → reader
The PDI reader object, which was created by a previous call
to the PdiReaderNew() function.

→ pair
The ID of the parameter. This must be one of the Parameter
Value Constants.

Returns Returns true if the specified parameter name-value pair has been
parsed for the current property, and false if not.

Comments Some vObject generators do not specify the parameter name if the
name is considered evident from the context. This means that both
of the following constructs are considered proper:

Name=Value

Value

The PdiParameterPairTest macro returns true if the value has
been parsed in either format. For example,

PdiParameterPairTest(reader, kPdiPAV_TYPE_WORK)

Personal Data Interchange Reference
PdiReaderDelete

268 Exploring Palm OS: High-Level Communications

returns true for either of the following:

Type=WORK

WORK

PdiReaderDelete Function
Purpose Delete a PDI reader object that is associated with the specified

library number.

Declared In PdiLib.h

Prototype void PdiReaderDelete (PdiReaderType **ioReader)

Parameters ↔ ioReader
A pointer to the PDI reader object, which was created by a
previous call to the PdiReaderNew() function.

Returns Returns nothing.

Comments This function deletes the UDAReader object associated with the
reader object and frees the memory that was allocated for the reader
object. The ioReader parameter is set to NULL.

See Also PdiReaderNew()

PdiReaderNew Function
Purpose Create and initialize a new PDI reader object for use with the

specified PDI library number.

Declared In PdiLib.h

Prototype PdiReaderType *PdiReaderNew
(UDAReaderType *input, uint16_t version)

Parameters → input
The Unified Data Access (UDA) input object associated with
the reader.

→ version
Options to control the parsing behavior of the reader. You can
use a combination of the Reader and Writer Options
Constants.

Personal Data Interchange Reference
PdiReadParameter

Exploring Palm OS: High-Level Communications 269

Returns Returns a pointer to the new PDI reader object. Returns NULL if the
reader cannot be created.

Comments The current implementation of the PdiReaderNew() function does
not make use of the optionFlags settings because the reader
knows how to adapt itself to all of the supported formats. The
options will be used in future versions.

The input value is a UDA object for reading data from an input
stream that can be connected to various data sources. For example,
you can use a UDAExchangeReader to read data from the
Exchange Manager, and you can use a UDAStringReader to read
data from a string. For more information about the UDA Manager,
see Chapter 8, “Unified Data Access Manager Reference.”

See Also PdiReaderDelete(), PdiWriterNew()

PdiReadParameter Function
Purpose Read a single parameter name and its value from an input stream.

Declared In PdiLib.h

Prototype status_t PdiReadParameter
(PdiReaderType *ioReader)

Parameters → ioReader
The PDI reader object, which was created by a previous call
to the PdiReaderNew() function.

Returns 0
The parameter and its value were read successfully.

kPdiReadError
The parameter and its value could not be successfully read
from the input stream.

Comments This function initializes the parameterName and parameter
fields of the ioReader object.

This function sets the appropriate bits in the reader’s
parameterValues field if the parameter name is recognized.

If you are reading a property, it’s parameters, and its values
individually, you should call PdiReadPropertyName() before
calling PdiReadParameter() one or more times to read

Personal Data Interchange Reference
PdiReadProperty

270 Exploring Palm OS: High-Level Communications

parameters. Then call PdiReadPropertyField() to read the
property value fields.

See Also PdiReaderNew()

PdiReadProperty Function
Purpose Read the next property and its parameters from the input stream.

Declared In PdiLib.h

Prototype status_t PdiReadProperty
(PdiReaderType *ioReader)

Parameters → ioReader
The PDI reader object, which was created by a previous call
to the PdiReaderNew() function.

Returns Returns errNone if successful. Returns kPdiReadError if an error
occurs.

Comments The PdiReadProperty() function reads a property name and its
parameters, by reading until it encounters the PDI “:“ separator
character.

This function looks each name up in the properties dictionary, and
sets the appropriate bit in the ioReader object structure to indicate
that property-parameter pair has been read. The properties
dictionary stores information about properties that are considered
well known, as described in “The PDI Library Properties
Dictionary” on page 223.

To read a property, you call PdiReadProperty(), followed by a
call or calls to the PdiReadPropertyField() function to read the
property value. For more information, see “Reading Properties” on
page 229.

See Also PdiReaderNew(), PdiReadPropertyField(),
PdiReadPropertyName(), PdiReadParameter()

Personal Data Interchange Reference
PdiReadPropertyField

Exploring Palm OS: High-Level Communications 271

PdiReadPropertyField Function
Purpose Read one field of a property value. The property value can be

structured to contain multiple fields that are separated by commas
or semicolons.

Declared In PdiLib.h

Prototype status_t PdiReadPropertyField
(PdiReaderType *ioReader, char **bufferPP,
uint16_t bufferSize, uint16_t readMode)

Parameters → ioReader
The PDI reader object, which was created by a previous call
to the PdiReaderNew() function.

↔ bufferPP
A pointer to a pointer to the buffer into which the field
characters are stored. Set this value to NULL to allow the PDI
library to manage it.

Note that the PDI library may need to resize the buffer; thus,
the value of this parameter might change.

→ bufferSize
The size, in bytes, of the input buffer for reading the field.

You can use the PdiResizableBuffer constant to specify
that the PDI Library can automatically resize the buffer as
required.

If you do not specify the PdiResizableBuffer value, then
the PDI library assumes that buffer cannot be moved, and
that its size is fixed.

→ readMode
The format of the fields in the property value. Use one of the
Property Value Format Constants.

Returns 0
The field was read successfully.

kPdiNoMoreFieldsError
There are no more fields to read because the entire value has
already been read.

kPdiMoreCharsError
The buffer is not large enough to store the entire field.

Personal Data Interchange Reference
PdiReadPropertyName

272 Exploring Palm OS: High-Level Communications

Comments The value returned in the buffer is terminated with the “\0”
character.

If the field is an empty string, the buffer is erased from memory, and
the value of buffer is set to NULL.

If you specify kPdiResizableBuffer for the value of the
bufferSize parameter, and the buffer needs more space,
PdiReadPropertyField() resizes the buffer for you, which may
cause the value of buffer to be modified.

This function initializes the propertyValue and fieldNum fields
of the ioReader object.

To read a property, you usually call the PdiReadProperty()
function, followed by a call or calls to PdiReadPropertyField()
to read the property value. For more information, see “Reading
Properties” on page 229.

See Also PdiReaderNew(), PdiReadProperty(),
PdiReadPropertyName(), PdiReadParameter()

PdiReadPropertyName Function
Purpose Read a property name from an input stream. Use this function when

you want to parse and process each parameter individually.

Declared In PdiLib.h

Prototype status_t PdiReadPropertyName
(PdiReaderType *ioReader)

Parameters → ioReader
The PDI reader object, which was created by a previous call
to the PdiReaderNew() function.

Returns Returns errNone if successful, and an error code if not successful.

Comments The PdiReadProperty() function reads a property name only,
reading until it encounters the PDI “:“ separator character, or until
it encounters the first parameter “,” separator character.

To then read parameters, call PdiReadParameter() one or more
times. And to read property value fields, call
PdiReadPropertyField().

Personal Data Interchange Reference
PdiSetCharset

Exploring Palm OS: High-Level Communications 273

This function initializes the property and propertyName fields
of the ioReader object.

See Also PdiReaderNew(), PdiReadProperty()

PdiSetCharset Function
Purpose Force the character set of the next property value that is written by

the specified PDI writer.

Declared In PdiLib.h

Prototype status_t PdiSetCharset (PdiWriterType *ioWriter,
CharEncodingType charset)

Parameters → ioWriter
The PDI writer object, which was created by a previous call
to the PdiWriterNew() function.

→ charset
The character set to use for the property value. This must be a
CharEncodingType value that is supported by the device
as a valid value for the dstEncoding parameter passed to
TxtConvertEncoding(). The valid values depend on the
version and locale of the device’s ROM.

Returns Returns errNone if successful, and an error code if not successful.

Comments This function tells ioWriter to use the specified charSet for the
next property value that it writes, rather than computing a character
set for that value. We strongly suggest, however, not to use this
function and to let the PDI library compute and set the character set.

You can determine the current character setting by examining the
charset field of your PDI writer object.

See Also PdiSetEncoding()

Personal Data Interchange Reference
PdiSetEncoding

274 Exploring Palm OS: High-Level Communications

PdiSetEncoding Function
Purpose Force the encoding of the current property value.

Declared In PdiLib.h

Prototype status_t PdiSetEncoding (PdiWriterType *ioWriter,
uint16_t encoding)

Parameters → ioReader
The PDI writer object, which was created by a previous call
to the PdiWriterNew() function.

→ encoding
The encoding to apply to the property value. This must be
one of the Encoding Type Constants.

Returns Returns errNone if successful, and an error code if not successful.

Comments This function changes the encoding for the property value to the
specified encoding value

You can determine the current encoding setting by examining the
encoding field of your PDI writer object.

See Also PdiSetCharset()

PdiWriteBeginObject Function
Purpose Writes a vObject begin tag to an output stream.

Declared In PdiLib.h

Prototype status_t PdiWriteBeginObject
(PdiWriterType *ioWriter,
uint16_t objectNameID)

Parameters → ioWriter
The PDI writer object, which was created by a previous call
to the PdiWriterNew() function.

→ objectNameID
The object name ID. This must be one of the Property Name
Constants that begins an object, including the following:

kPdiPRN_BEGIN_VCAL

kPdiPRN_BEGIN_VCAL

Personal Data Interchange Reference
PdiWriteEndObject

Exploring Palm OS: High-Level Communications 275

kPdiPRN_BEGIN_VCARD

kPdiPRN_BEGIN_VEVENT

kPdiPRN_BEGIN_VFREEBUSY

kPdiPRN_BEGIN_VJOURNAL

kPdiPRN_BEGIN_VTIMEZONE

kPdiPRN_BEGIN_VTODO

Returns Returns errNone if successful, and an error code if not successful.

Comments Call this function to begin writing a vObject to the output stream. It
writes a begin tag such as “BEGIN:VCARD” to the output stream.

See Also PdiWriteEndObject(), PdiWriteProperty()

PdiWriteEndObject Macro
Purpose Writes a vObject end tag to an output stream.

Declared In PdiLib.h

Prototype #define PdiWriteEndObject PdiWriteBeginObject

Parameters → ioWriter
The PDI writer object, which was created by a previous call
to the PdiWriterNew() function.

→ objectNameID
The object name ID. This must be one of the Property Name
Constants that ends an object, including the following:

kPdiPRN_END_VCAL

kPdiPRN_END_VCAL

kPdiPRN_END_VCARD

kPdiPRN_END_VEVENT

kPdiPRN_END_VFREEBUSY

kPdiPRN_END_VJOURNAL

kPdiPRN_END_VTIMEZONE

kPdiPRN_END_VTODO

Returns Returns errNone if successful, and an error code if not successful.

Personal Data Interchange Reference
PdiWriteParameter

276 Exploring Palm OS: High-Level Communications

Comments This macro is defined as PdiWriteBeginObject(). The only
difference is that you should pass one of the properties that ends an
object in the objectNameID parameter.

Use this macro to finish writing a vObject to the output stream. It
writes an end tag such as “END:VCARD” to the output stream.

See Also PdiWriteBeginObject(), PdiWriteProperty()

PdiWriteParameter Function
Purpose Write a parameter, and optionally its name, to an output stream.

Declared In PdiLib.h

Prototype status_t PdiWriteParameter
(PdiWriterType *ioWriter, uint16_t parameter,
Boolean parameterName)

Parameters → ioWriter
The PDI writer object, which was created by a previous call
to the PdiWriterNew() function.

→ parameter
The ID of the parameter. This must be one of the Parameter
Value Constants.

→ parameterName
If this is true, the parameter name, followed by the “=”
symbol, followed by the parameter value is written to the
output stream.

If this is false, only the parameter value is written to the
output stream.

Returns Returns errNone if successful, and an error code if not successful.

Comments Use this function to write a parameter to the output stream. To write
a property, you usually call the PdiWriteProperty() function,
followed by calls to PdiWriteParameter() to write any
parameters, followed by a call to the PdiWritePropertyValue()
function to write the property value. For more information, see
“Writing Properties” on page 235.

You can use the parameterName argument to specify that you
want the parameter name written as well as the parameter value.

Personal Data Interchange Reference
PdiWriteParameterStr

Exploring Palm OS: High-Level Communications 277

For example, the following table shows what is written if the value
of parameter is kPdiPAV_TYPE_HOME.

See Also PdiWriteProperty(), PdiWritePropertyValue(),
PdiWritePropertyFields(), PdiWritePropertyStr(),
PdiWriteParameterStr()

PdiWriteParameterStr Function
Purpose Write a parameter name and the parameter value to an output

stream.

Declared In PdiLib.h

Prototype status_t PdiWriteParameterStr
(PdiWriterType *ioWriter,
const char *parameterName,
const char *parameterValue)

Parameters → ioWriter
The PDI writer object, which was created by a previous call
to the PdiWriterNew() function.

→ parameterName
The name of the parameter. If the value of this is the empty
string or NULL, only the parameter value is written.

→ parameterValue
The parameter value string.

Returns Returns errNone if successful, and an error code if not successful.

Comments This function writes the parameter name, followed by the “=”
symbol, followed by the parameter value, to the output stream. If
parameterName is NULL, or if its value is the empty string, just the
parameter value is written.

This function is similar to the PdiWriteParameter() function.
The difference is that PdiWriteParameterStr() takes the name

Value of parameterName Data written to output stream

true TYPE=HOME

false HOME

Personal Data Interchange Reference
PdiWriteProperty

278 Exploring Palm OS: High-Level Communications

and value of the parameter as strings, while
PdiWriteParameter() takes them as ID constants.

See Also PdiWriteProperty(), PdiWritePropertyValue(),
PdiWritePropertyFields(), PdiWritePropertyStr(),
PdiWriteParameter()

PdiWriteProperty Function
Purpose Writes a property name to an output stream.

Declared In PdiLib.h

Prototype status_t PdiWriteProperty
(PdiWriterType *ioWriter,
uint16_t propertyNameID)

Parameters → ioWriter
The PDI writer object, which was created by a previous call
to the PdiWriterNew() function.

→ propertyNameID
The property name to write. This must be one of the Property
Name Constants.

Returns Returns errNone if successful, and an error code if not successful.

Comments To write a property, you usually call PdiWriteProperty(),
followed by calls to the PdiWriteParameter() function to write
any parameters, followed by a call to the
PdiWritePropertyValue() function to write the property
value. For more information, see “Writing Properties” on page 235.

See Also PdiWritePropertyValue(), PdiWritePropertyFields(),
PdiWritePropertyStr(), PdiWriteParameter()

Personal Data Interchange Reference
PdiWritePropertyBinaryValue

Exploring Palm OS: High-Level Communications 279

PdiWritePropertyBinaryValue Function
Purpose Write a binary property value to an output stream.

Declared In PdiLib.h

Prototype status_t PdiWritePropertyBinaryValue
(PdiWriterType *ioWriter, const char *buffer,
uint16_t size, uint16_t options)

Parameters → ioWriter
The PDI writer object, which was created by a previous call
to the PdiWriterNew() function.

→ buffer
A buffer that contains the binary data.

→ size
The number of bytes of data to write from the buffer.

→ options
The data type. This must be a combination of one or more of
the Value Type Constants.

Returns Returns errNone if successful, and an error code if not successful.

Comments Use this function to write a binary data property value, such as a
sound or an image.

This function encodes the data when it is written. The character set
that gets applied to the data is not computed by this function;
however, you can call the PdiSetCharset() function to set the
character set.

See Also PdiWriteProperty(), PdiWritePropertyFields(),
PdiWritePropertyValue()

Personal Data Interchange Reference
PdiWritePropertyFields

280 Exploring Palm OS: High-Level Communications

PdiWritePropertyFields Function
Purpose Write a structured property value with multiple fields to an output

stream.

Declared In PdiLib.h

Prototype status_t PdiWritePropertyFields
(PdiWriterType *ioWriter, char *fields[],
uint16_t fieldNumber, uint16_t options)

Parameters → ioWriter
The PDI writer object, which was created by a previous call
to the PdiWriterNew() function.

→ fields
An array of strings, each of which is a field of the property
value. Individual fields can be NULL.

→ fieldNumber
The number of fields in the Fields array.

→ options
The data type. This must be a combination of one or more of
the Value Type Constants.

Returns Returns errNone if successful, and an error code if not successful.

Comments Use this function to write a property value that contains multiple
fields.

See Also PdiWritePropertyValue(),
PdiWritePropertyBinaryValue(),
PdiReadPropertyField()

Personal Data Interchange Reference
PdiWritePropertyStr

Exploring Palm OS: High-Level Communications 281

PdiWritePropertyStr Function
Purpose Writes the name of a property to the output stream, and specifies the

property value’s structure for subsequent write operations.

Declared In PdiLib.h

Prototype status_t PdiWritePropertyStr
(PdiWriterType *ioWriter,
const char *propertyName, uint8_t writeMode,
uint8_t requiredFields)

Parameters → ioWriter
The PDI writer object, which was created by a previous call
to the PdiWriterNew() function.

→ propertyName
The name of the property to write.

→ writeMode
The format of the fields in the property value. Use one of the
following Property Value Format Constants:

kPdiNoFields

kPdiCommaFields

kPdiSemicolonFields

→ requiredFields
The number of required fields for the value. This is usually
set to 1.

Returns Returns errNone if successful, and an error code if not successful.

Comments Use this function when you are writing a property that is not in the
dictionary, or when you are writing a property that uses value
formatting that differs from the standard formatting stored in the
dictionary for the property name.

This function writes the property name to the output stream, and
then establishes the structure of the property’s value, including the
number of required fields and the separator character for those
fields. After calling this function, the next call to the
PdiWritePropertyValue() or PdiWritePropertyFields()
functions correctly writes the property value.

See Also PdiWriteProperty(), PdiWritePropertyValue(),
PdiWritePropertyFields(), PdiWriteParameter()

Personal Data Interchange Reference
PdiWritePropertyValue

282 Exploring Palm OS: High-Level Communications

PdiWritePropertyValue Function
Purpose Write a string to the output stream as the entire value of a property.

Declared In PdiLib.h

Prototype status_t PdiWritePropertyValue
(PdiWriterType *ioWriter, char *buffer,
uint16_t options)

Parameters → ioWriter
The PDI writer object, which was created by a previous call
to the PdiWriterNew() function.

→ buffer
The input buffer that contains the string to be written.

→ options
The data type. This must be a combination of one or more of
the Value Type Constants.

Returns Returns errNone if successful, and an error code if not successful.

See Also PdiWriteProperty(), PdiWritePropertyFields(),
PdiWriteParameter(), PdiWritePropertyBinaryValue()

PdiWriterDelete Function
Purpose Delete a PDI output stream object.

Declared In PdiLib.h

Prototype void PdiWriterDelete (PdiWriterType **ioWriter)

Parameters ↔ ioWriter
A pointer to the PDI writer object, which was created by a
previous call to the PdiWriterNew() function.

Returns Returns nothing.

Comments This function frees the memory that was allocated for the writer
object. The ioWriter parameter is set to NULL.

See Also PdiWriterNew()

Personal Data Interchange Reference
PdiWriterNew

Exploring Palm OS: High-Level Communications 283

PdiWriterNew Function
Purpose Initializes a new PDI writer object for use with the specified library

number.

Declared In PdiLib.h

Prototype PdiWriterType *PdiWriterNew
(UDAWriterType *output, uint16_t version)

Parameters → output
The Unified Data Access (UDA) output object associated
with the writer.

→ version
Options to control the behavior of the writer. You can use a
combination of the Reader and Writer Options Constants.

Returns Returns a pointer to the new PDI writer object. Returns NULL if the
reader cannot be created.

Comments The media pointer is copied into a field in the writer object; thus,
you do not need to retain your copy.

See Also PdiWriterDelete(), PdiReaderNew()

Personal Data Interchange Reference
PdiWriterNew

284 Exploring Palm OS: High-Level Communications

Exploring Palm OS: High-Level Communications 285

8
Unified Data Access
Manager Reference
This chapter provides reference material for the Unified Data Access
(UDA) Manager, which provides a mechanism for abstracting read
and write access to different kinds of source and destination media,
including memory and the Exchange Manager.

The Personal Data Interchange (PDI) reader and writer objects use
UDA objects, and you must create UDA objects to use the PDI
functions.

This chapter discusses the following topics:

• UDA Manager Data Structures

• UDA Manager Constants

• UDA Manager Functions

• UDA Object Creation Functions

The header file UDAMgr.h declares the Unified Data Access
Manager API.

You use the UDA Manager in conjunction with the PDI library. For
more information about the PDI library, see Chapter 7, “Personal
Data Interchange Reference,” on page 247.

Chapter 6, “Personal Data Interchange,” on page 217, provides
examples of using the UDA functions with the PDI library.

UDA Manager Data Structures

UDABufferSize Typedef
Purpose The UDABufferSize type is a simple typedef that defines the size

of buffers used with UDA read functions.

Unified Data Access Manager Reference
UDAObjectType

286 Exploring Palm OS: High-Level Communications

Prototype typedef uint16_t UDABufferSize;

UDAObjectType Struct
Purpose The UDAObjectType is the base class for all UDA objects, and

defines the common properties of all of the objects.

Prototype typedef struct UDAObjectTag {
 uint16_t optionFlags;
 uint16_t padding;
 UDADeleteFunction deleteF;
 UDAControlFunction controlF;
} UDAObjectType;

Fields optionFlags
Options for the object. This is a combination of values
described in Object Option Flags.

padding
Padding; not used.

deleteF
The delete function associated with this UDA object.

controlF
The control function associated with this UDA object.

UDAFilterType Struct
Purpose The UDAFilterType represents UDA Filters, which take input

from a UDA Reader or UDA Filter, perform some encoding or
decoding operation, and output the data to a memory buffer.

Prototype typedef struct UDAFilterTag {
 uint16_t optionFlags;
 uint16_t padding;
 UDADeleteFunction deleteF;
 UDAControlFunction controlF;
 UDAReadFunction readF;
 UDAReaderType* upperReader;
} UDAFilterType;

Unified Data Access Manager Reference
UDAReaderType

Exploring Palm OS: High-Level Communications 287

Fields optionFlags
Options for the object. This is a combination of values
described in Object Option Flags.

padding
Padding; not used.

deleteF
The delete function associated with this UDA object.

controlF
The control function associated with this UDA object.

readF
The read function associated with this UDA object.

upperReader
The UDAReaderType or UDAFilterType object that reads
the data that this object outputs.

UDAReaderType Struct
Purpose The UDAReaderType represents UDA Readers, which read input

from a medium.

Prototype typedef struct UDAReaderTag {
 uint16_t optionFlags;
 uint16_t padding;
 UDADeleteFunction deleteF;
 UDAControlFunction controlF;
 UDAReadFunction readF;
} UDAReaderType;

Fields optionFlags
Options for the object. This is a combination of values
described in Object Option Flags.

padding
Padding; not used.

deleteF
The delete function associated with this UDA object.

controlF
The control function associated with this UDA object.

Unified Data Access Manager Reference
UDAWriterType

288 Exploring Palm OS: High-Level Communications

readF
The read function associated with this UDA object.

UDAWriterType Struct
Purpose The UDAWriterType represents UDA Writers, which take data

from a UDA Reader or UDA Filter and write the data to an output
medium.

Prototype typedef struct UDAWriterTag {
 uint16_t optionFlags;
 uint16_t padding;
 UDADeleteFunction deleteF;
 UDAControlFunction controlF;
 UDAWriteFunction initiateWriteF;
 UDAFlushFunction flushF;
 UDAReaderType* upperReader;
} UDAWriterType;

Fields optionFlags
Options for the object. This is a combination of values
described in Object Option Flags.

padding
Padding; not used.

deleteF
The delete function associated with this UDA object.

controlF
The control function associated with this UDA object.

initiateWriteF
The write function associated with this UDA object.

flushF
The flush function associated with this UDA object.

upperReader
The UDAReaderType object that reads the data that this
object writes.

Unified Data Access Manager Reference
Object Option Flags

Exploring Palm OS: High-Level Communications 289

UDA Manager Constants
This section describes the constants used with the UDA Manager,
which include the following constant types:

• Control Flags

• Error Constants

• Object Option Flags

• Miscellaneous Constants

Control Flags
Use the control flag constants to control UDA objects with the
UDAControl() macro.

Error Constants
At the time of this writing, there is only one error constant
associated with the UDA object API.

Object Option Flags
You use the object option flag constants to determine information
about the internal state of UDA objects. Note that the
UDAEndOfReader() and UDAMoreData() macros provide you
with a convenient means of accessing this same information.

Constant Value Description

kUDAReinitialize 1 Used with the UDAControl() macro
to reinitialize the UDA object.

Constant Description

udaErrControl Returned by the UDAControl() macro
when the control parameter is not valid for
the UDA object.

Unified Data Access Manager Reference
Miscellaneous Constants

290 Exploring Palm OS: High-Level Communications

Miscellaneous Constants

UDA Manager Functions

UDAControl Function
Purpose Applies controls to a UDA object.

Declared In UDAMgr.h

Prototype status_t UDAControl (UDAObjectType *ioObject,
uint16_t parameter, ...)

Parameters → ioObject
A pointer to the UDAObjectType object that you want to
control. This can be a UDAReaderType, a UDAFilterType,
or a UDAWriterType object.

→ parameter
The control action that you want applied to the object.

→ ...
Additional parameters, as required for the control and object
type.

Constant Value Description

kUDAEndOfReader 1 Indicates that the UDA reader has
reached the end of its data.

kUDAMoreData 2 Indicates that the UDA reader needs
more space in the read buffer to do its
work.

Constant Value Description

kUDAZeroTerminatedBuffer 0xFFFF Indicates that the buffer is a null-
terminated string. Use this value
when creating or reinitializing a
UDAMemoryReader object.

Unified Data Access Manager Reference
UDADelete

Exploring Palm OS: High-Level Communications 291

Returns Returns errNone if no error, or udaErrorClass if the control
parameter is not valid for the ioObject.

Comments The UDAControl() function applies a control action to a UDA
object. You may need to supply additional parameters, depending
on the object type and control parameter values.

The only control action defined is kUDAReinitialize. You can
use it as shown in Table 8.1.

L

UDADelete Macro
Purpose Deletes a UDA object.

Declared In UDAMgr.h

Prototype #define UDADelete (ioObject)

Parameters → ioObject
A pointer to the UDAObjectType object that you want to
delete. This can be a UDAReaderType, a UDAFilterType,
or a UDAWriterType object.

Returns Returns nothing.

Comments The ioObject pointer is not valid after this macro completes.

Table 8.1 UDAControl actions

Object Type Usage Action

UDAExchangeReaderType UDAControl(myExgRdr,
kUDAReinitialize)

Does nothing

UDAExchangeWriterType UDAControl(myExgWtr,
kUDAReinitialize)

Does nothing

UDAMemoryReaderType UDAControl(myMemRdr,
kUDAReinitialize,
bufferP, bufferSize)

Reinstalls a new buffer
for the memory reader.
See
UDAMemoryReaderNe
w() for more
information about the
parameters.

Unified Data Access Manager Reference
UDAEndOfReader

292 Exploring Palm OS: High-Level Communications

UDAEndOfReader Macro
Purpose Tests if the end of the reader has been reached.

Declared In UDAMgr.h

Prototype #define UDAEndOfReader (ioReader)

Parameters → ioReader
A pointer to a UDAReaderType object.

Returns Returns true if the end of the reader referenced by ioReader has
been reached, and false if not.

Comments The end of the reader has been reached.

UDAFilterJoin Macro
Purpose Joins a filter with a reader.

Declared In UDAMgr.h

Prototype #define UDAFilterJoin (ioFilter, newReader)

Parameters → ioFilter
A pointer to a UDAFilterType object.

→ newReader
A pointer to the UDAReaderType object with which you
want the filter joined.

Returns Returns nothing.

Comments Each UDAFilterType object receives its data from the
UDAReaderType object to which it is joined; this relationship is
established when you create the filter object. You can use this macro
to change the reader with which the filter is joined. Upon
completion, the filter referenced by ioFilter is joined with the
reader referenced by newReader.

Unified Data Access Manager Reference
UDAMoreData

Exploring Palm OS: High-Level Communications 293

UDAInitiateWrite Macro
Purpose Causes the UDAWriterType object to read data and then write that

data to output.

Declared In UDAMgr.h

Prototype #define UDAInitiateWrite (ioWriter)

Parameters → ioWriter
A pointer to a UDAWriterType object.

Returns Returns errNone if successful, and an error code if not.

Comments When you use this macro, the ioWriter reads data from the reader
to which it is joined. It reads data until the reader is empty, and then
writes the data to the output medium.

UDAMoreData Macro
Purpose Tests if there is more data available to read, but not enough room in

the buffer to read it in.

Declared In UDAMgr.h

Prototype #define UDAMoreData (ioReader)

Parameters → ioReader
A pointer to a UDAReaderType object.

Returns Returns true if there is more data available for the reader and
false if there is no more data available.

Comments You can use this macro with UDAReaderType objects to determine
if there is more data waiting to read. This can happen when the
reader’s buffer is full.

Unified Data Access Manager Reference
UDARead

294 Exploring Palm OS: High-Level Communications

UDARead Macro
Purpose Uses the specified UDAReaderType object to read data from the

input source and place that data into the specified buffer.

Declared In UDAMgr.h

Prototype #define UDARead (ioReader, bufferToFillP,
bufferSizeInBytes, error)

Parameters → ioReader
A pointer to a UDAReaderType object that performs the
read.

→ bufferToFillP
A pointer to the buffer into which data is placed.

→ bufferSizeInBytes
The size of the buffer, in bytes.

→ error
A pointer to a status_t value that represents the result of
the read operation; if the operation is successful, the value is
set to errNone.

Returns Returns the number of bytes that were actually read. This value can
be less than or equal to the value of bufferSizeInBytes.

Comments The reader reads from the input source associated with the reader
object and places the data into the specified buffer, reading no more
than bufferSizeInBytes bytes of data.

UDAWriterFlush Macro
Purpose Flushes the buffer used by the UDAWriterType object.

Declared In UDAMgr.h

Prototype #define UDAWriterFlush (ioWriter)

Parameters → ioWriter
A pointer to a UDAWriterType object.

Returns Returns errNone if successful, and an error code if not.

Comments You can use this macro to flush any data remaining in the buffer of
the writer object referenced by ioWriter. This causes any data in
the buffer to be sent to the output medium.

Unified Data Access Manager Reference
UDAExchangeReaderNew

Exploring Palm OS: High-Level Communications 295

UDAWriterJoin Macro
Purpose Joins a writer object to a different reader object.

Declared In UDAMgr.h

Prototype #define UDAWriterJoin (ioWriter, newReader)

Parameters → ioWriter
A pointer to a UDAWriterType object.

→ newReader
A pointer to the UDAReaderType object with which you
want the writer joined.

Returns Returns nothing.

Comments Each UDAWriterType object receives its data from the
UDAReaderType object to which it is joined; this relationship is
established when you create the writer object. You can use this
macro to change the reader with which the writer is joined. Upon
completion, the writer referenced by ioWriter is joined with the
reader referenced by newReader.

UDA Object Creation Functions

UDAExchangeReaderNew Function
Purpose Creates a new UDAReaderType object that you can use to read data

from an Exchange Manager socket.

Declared In UDAMgr.h

Prototype UDAReaderType* UDAExchangeReaderNew
(ExgSocketType *socket)

Parameters → ExgSocketType
A pointer to an ExgSocketType structure that describes the
connection.

Returns Returns a pointer to the newly created UDAReaderType object, or
NULL if the reader could not be created.

Unified Data Access Manager Reference
UDAExchangeWriterNew

296 Exploring Palm OS: High-Level Communications

Comments Use this function to create a UDA Reader object that takes input
from an Exchange Manager socket.

See Also ExgSocketType

UDAExchangeWriterNew Function
Purpose Creates a new UDAWriterType object that you can use to write

data to an Exchange Manager socket.

Declared In UDAMgr.h

Prototype UDAWriterType* UDAExchangeWriterNew
(ExgSocketType *socket,
UDABufferSize bufferSize)

Parameters → ExgSocketType
A pointer to an ExgSocketType structure that describes the
connection.

→ bufferSize
The size, in bytes, of the buffer for the new writer object.

Returns Returns a pointer to the newly created UDA Writer, or NULL if the
writer could not be created.

Comments Use this function to create a UDA Writer object that sends output to
an Exchange Manager socket.

See Also ExgSocketType

UDAMemoryReaderNew Function
Purpose Creates a new UDAReaderType object that you can use to read data

from a memory buffer.

Declared In UDAMgr.h

Prototype UDAReaderType* UDAMemoryReaderNew
(const uint8_t *bufferP,
UDABufferSize bufferSizeInBytes)

Parameters → bufferP
A pointer to a buffer in memory from which data is read.

Unified Data Access Manager Reference
UDAMemoryReaderNew

Exploring Palm OS: High-Level Communications 297

→ bufferSize
The size of the buffer, in bytes. If this value is equal to
kUDAZeroTerminatedBuffer, bufferP must point to a
null-terminated string buffer.

Returns Returns a pointer to the newly created UDAReaderType object, or
NULL if the reader could not be created.

Comments Use this function to create a reader that takes input from memory.

Unified Data Access Manager Reference
UDAMemoryReaderNew

298 Exploring Palm OS: High-Level Communications

Exploring Palm OS: High-Level Communications 299

Index

Symbols
_get 151
_send 122, 154

A
attachments

sending from display application 154
sending from messaging application 150
support guidelines 142
viewing 143
viewing with Put with view 147
viewing with regular Put 143

B
beaming 217
Bluetooth 106

C
CncAsyncNotifyFunc() 101
CncCloseSession() 65
CncConnectionStateType 49
CncConnectReceiveState() 66
CncControlType 51
CncEdgeDelete() 67
CncEdgeNew() 67
CncEditMode 52
cncErrAlreadyDisconnecting 62
cncErrCannotAllocateObject 60
cncErrCommunication 61
cncErrDatabase 61
cncErrExclusiveObject 61
cncErrIndexOutOfRange 61
cncErrInvalidObject 61
cncErrInvalidParam 60
cncErrInvalidPluginModule 60
cncErrMandatoryParameterNotFound 61
cncErrMemory 60
cncErrModuleAlreadyLoaded 61
cncErrNoPluginForm 61
cncErrNotImplemented 60
cncErrObjectAlreadyExists 61
cncErrObjectFull 61
cncErrObjectInUse 61

cncErrObjectNotFound 60
cncErrObjectTableFull 60
cncErrOpenFailed 60
cncErrPluginModuleInitFailed 61
cncErrReadOnlyObject 62
cncErrSessionTableFull 61
cncErrUndeletableObject 62
CncFindOptionsType 53
CncGetOrOpenSession() 68
CncGetSession() 69
CncInfoType 55
CncInterfaceNew() 69
CncMgr.h 49
cncNotifyConnectionStateEvent 64
CncObjectControl() 70
CncObjectDelete() 72
CncObjectFindAll() 72
CncObjectGetIndex() 74
CncObjectGetInfo() 74
CncObjectMoveItem() 75
CncObjectSetInfo() 76
CncParametersFree() 77
CncParametersInit() 77
CncParameterType 58
CncProfileAttach() 78
CncProfileConnect() 79
CncProfileCopy() 80
CncProfileDecode() 81
CncProfileDeleteItem() 82
CncProfileDisconnect() 82
CncProfileEdit() 83
CncProfileEncode() 84
CncProfileFindClose() 85
CncProfileFindConnect() 85
CncProfileFindFirst() 87
CncProfileFindNext() 88
CncProfileGetItemId() 89
CncProfileGetItemIndex() 90
CncProfileGetLength() 91
CncProfileGetParameters() 91
CncProfileInsertItem() 93
CncProfileLock() 94
CncProfileNew() 95

300 Exploring Palm OS: High-Level Communications

CncProfileRegroupSubmit() 96
CncProfileSetParameters() 97
CncProfileSubmit() 98
CncProfileUngroup() 99
CncProfileUnlock() 99
CncRegisterPluginModule() 100
CncSubProfileAssign() 101

D
databases

sending and receiving 129
delete callback function 212
DeleteProc 181, 182, 212
dmHdrAttrBundle 138
dmUnfiledCategory 124, 187

E
email application guidelines 156
email attachments

See attachments
exchange library 106

HotSync 138
local 136

Exchange Manager 105
Exchange Manager reference 159
ExgAccept() 126, 132, 175, 182, 184, 203
exgAskCancel 169, 172
exgAskDialog 168
exgAskOk 126, 168, 172
ExgAskParamType 159
ExgAskResultType 168, 168
exgBeamPrefix 110, 171
exgBeamScheme 171
ExgConnect() 121, 134, 176, 184
ExgControl() 178
ExgCtlGetURLType 160, 180
ExgDBDeleteProcPtr() 212
ExgDBRead() 132, 181, 213
ExgDBReadProcPtr() 213
ExgDBWrite() 129, 183
ExgDBWriteProcPtr() 214
exgDesktopPrefix 110
ExgDialogInfoType 124, 186, 187

ExgDisconnect() 119, 121, 129, 132, 133, 177, 184,
190, 202, 203, 210

ExgDoDialog() 123, 168, 186, 198, 199
exgErrNoKnownTarget 190, 195, 196, 198, 199,

200, 211
exgErrNotSupported 198
exgGet 199
ExgGet() 132, 133, 135, 177, 184, 188, 189, 203
ExgGetDefaultApplication() 115, 190
exgGetPrefix 111, 172
ExgGetRegisteredApplications() 115, 191
ExgGetRegisteredTypes() 193
exgGetScheme 171
ExgGetTargetApplication() 194, 200
ExgGoToType 160
exgLibAPIVersion 180
exgLibCtlGetPreview 179
exgLibCtlGetTitle 179
exgLibCtlGetURL 180
exgLibCtlGetVersion 180
exgLibCtlSpecificOp 180
ExgLocalLib.h 159
exgLocalOpAccept 162
exgLocalOpGet 163
exgLocalOpGetSender 163
exgLocalOpNone 162
exgLocalOpPut 162
ExgLocalOpType 161
exgLocalPrefix 110, 167, 172
exgLocalScheme 171
ExgLocalSocketInfoType 137, 161, 161
exgMaxDescriptionLength 192, 204
exgMaxTitleLen 192
exgMaxTypeLength 192, 193, 204
exgMemError 193, 205
ExgMgr.h 159
exgMobileMailPrefix 110
exgNoAsk 199
ExgNotifyGoto() 185, 196
ExgNotifyPreview() 186, 197
ExgNotifyReceive() 196, 197, 199
exgPreviewDialog 164
exgPreviewDraw 164
ExgPreviewInfoType 137, 163, 197

Exploring Palm OS: High-Level Communications 301

exgPreviewLongString 164
exgPreviewQuery 164
exgPreviewShortString 164
ExgPut() 119, 121, 129, 177, 183, 184, 201, 210
ExgReceive() 132, 133, 177, 182, 190, 202, 213
exgRegCreatorID 112, 169, 206
exgRegDirectCreatorID 118, 170
exgRegDirectExtensionID 118, 170
exgRegDirectTypeID 118, 170
exgRegExtensionID 169, 190
ExgRegisterData() 113, 125, 207
ExgRegisterDatatype() 112, 116, 204
exgRegSchemeID 112, 169, 191, 206
exgRegTypeID 169, 206
exgRegViewCreatorID 170
exgRegViewExtensionID 170
exgRegViewTypeID 170
ExgRequest() 135, 208
ExgSend() 119, 121, 129, 177, 183, 202, 209, 214
exgSendBeamPrefix 111, 122, 171
exgSendPrefix 111, 122, 171
exgSendScheme 171, 206
ExgSetDefaultApplication() 114, 206, 207, 210
ExgSocketType 108, 109, 119, 121, 129, 133, 137,

165, 181, 183
exgTitleBufferSize 179
exgUnwrap 199, 200

H
HotSync exchange 106, 138

I
INetMgr.h 247
IrDA 106

K
kCncAppSwitchMode 53
kCncAvailabilityInfoFlag 62
kCncBinaryParameterType 64
kCncConnectAsynchronous 59
kCncConnectChooserUI 59
kCncConnectDisableFallback 59
kCncConnectDisableReconnection 59

kCncConnectProgressUI 59
kCncControlAvailability 60
kCncControlTest 59
kCncControlUserChange 60
kCncDeleteMode 52
kCncEditMode 53
kCncFindAllCountMax 54
kCncFindAllObjects 53
kCncFindAvailableOnly 54
kCncFindDefault 54
kCncFindInterfaceObjects 53
kCncFindInvisible 54
kCncFindLinkObjects 54
kCncFindPluginObjects 53
kCncFindProfileObjects 54
kCncFindTemplateObjects 54
kCncFindUsableOnly 54
kCncFullMode 53
kCncIntegerParameterType 64
kCncInterfaceObject 63
kCncLinkObject 63
kCncManualIdInfoFlag 63
kCncMoveAsDefault 64
kCncMoveDown 64
kCncMoveLast 64
kCncMoveUp 64
kCncNameInfoFlag 62
kCncNewMode 52
kCncNoDoneButtonMode 53
kCncOptionsClearInfoFlag 62
kCncOptionsInfoFlag 62
kCncOptionsInvertInfoFlag 62
kCncOptionsSetInfoFlag 62
kCncPanelMode 53
kCncPluginObject 63
kCncPriorityInfoFlag 62
kCncProfileMode 52
kCncProfileObject 63
kCncStringParameterType 64
kCncTechnologyMode 52
kCncTemplateObject 63
kCncToggleLinkInfoFlag 63
kCncToggleTemplateInfoFlag 62

302 Exploring Palm OS: High-Level Communications

kCncUndefinedParameterType 63
kSmsScheme 110

L
Launcher 138
Local Exchange Library 136

M
mailto URL scheme 156
MIME data type 107

O
overlays

beaming 138

P
PDI library

about 221
function summary 244
international considerations 226
properties dictionary 223
using 226
using different media with 236
using with UDA 236

PDI properties
about 222
parameter name 222
parameter value 222
property name 222
property value field 222

PDI readers
about 223
creating 229
example of using 238
reading properties 229
reading property values 230

PDI writers
about 224
creating 234
example of using 241
writing property values 236

PdiDefineReaderDictionary() 263
PdiDefineResizing() 264
PdiDefineWriterDictionary() 265

PdiDictionary 247
PdiEnterObject() 266
PdiLibClose() 266
PdiLibOpen() 267
PdiParameterPairTest() 267
PdiReaderDelete() 268
PdiReaderNew() 229, 238, 268
PdiReaderType 226, 230, 248
PdiReadParameter() 229, 269
PdiReadProperty() 229, 270
PdiReadPropertyField() 229, 232, 233, 241, 271
PdiReadPropertyName() 229, 272
PdiSetCharset() 273
PdiSetEncoding() 274
PdiWriteBeginObject() 235, 242, 274
PdiWriteEndObject() 235, 242, 275
PdiWriteParameter() 276
PdiWriteParameterStr() 277
PdiWriteProperty() 235, 278
PdiWritePropertyBinaryValue() 279
PdiWritePropertyFields() 236, 280
PdiWritePropertyStr() 236, 281
PdiWritePropertyValue() 235, 282
PdiWriterDelete() 282
PdiWriterNew() 283
PdiWriterType 250
properties dictionary 223

R
read callback function 213
ReadProc 181

S
scheme 109
Send menu command 122
SMS 106
sysAppLaunchCmdExgAskUser 123, 126, 172,

186, 198, 199
sysAppLaunchCmdExgGetData 133, 173
sysAppLaunchCmdExgPreview 174, 175, 203
sysAppLaunchCmdExgReceiveData 123, 124, 126,

174, 175, 182, 185, 187, 203
sysAppLaunchCmdGoto 123, 161, 185, 196

Exploring Palm OS: High-Level Communications 303

sysAppLaunchCmdGoToURL 135, 209
sysAppLaunchCmdSyncNotify 113, 205
sysAppLaunchCmdSystemReset 113

T
two-way communications 134
typed data object 107

U
UDA library

using with PDI 236
UDABufferSize 285
UDAControl() 290
UDADelete() 291
UDAEndOfReader() 292
UDAExchangeReaderNew() 295
UDAExchangeWriterNew() 296
UDAFilterJoin() 292
UDAFilterType 286
UDAInitiateWrite() 293
UDAMemoryReaderNew() 296
UDAMoreData() 293
UDAObjectType 286
UDARead() 294

UDAReaderType 287
UDAWriterFlush() 294
UDAWriterJoin() 295
UDAWriterType 288
URL 109
URL requests 135
URL scheme 109

V
vCal objects 218
vCalendars 107
vCard objects 218
vCards 107
vEvent objects 218
vObjects

about 218
character sets 221
encodings 221
grouping 220
structure of 219

vTodo 218

W
write callback function 214
WriteProc 183, 214

304 Exploring Palm OS: High-Level Communications

	High-Level Communications
	Table of Contents
	About This Document
	Who Should Read This Book
	What This Book Contains
	Changes to This Book
	The Exploring Palm OS Series
	Additional Resources

	Connection Manager
	Connections
	About the Connection Manager
	Overview
	Terminology
	Connection Profiles
	Security Considerations
	Persistent Connections
	Graph Management

	Using the Connection Manager
	Making a Connection
	Creating a Profile
	Changing a Profile
	Finding Profiles
	Managing Profiles
	Configuring Components
	Invoking a Function in a Profile Plug-In

	Summary of Connection Manager

	Connection Manager Plug-ins
	Network Plug-ins
	IPIF Plug-in
	ILL Plug-in
	PPP Plug-in
	Script Plug-in
	DLE Plug-in
	Examples of Network Profile Strings

	Serial Plug-ins
	Serial Interface
	Serial Plug-in

	USB Plug-in
	Infrared Plug-in
	Bluetooth Plug-in
	Telephony Plug-ins
	Phone Plug-in
	DataCall

	Connection Manager Reference
	Connection Manager Structures and Types
	CncConnectionStateType
	CncControlType
	CncEditMode
	CncFindOptionsType
	CncInfoType
	CncParameterType

	Connection Manager Constants
	Connection Options
	Control Requests
	Error Codes
	Object Information Flags
	Object Types
	Parameter Types
	Profile Move Constants

	Connection Manager Notifications
	cncNotifyConnectionStateEvent

	Connection Manager Functions
	CncCloseSession
	CncConnectReceiveState
	CncEdgeDelete
	CncEdgeNew
	CncGetOrOpenSession
	CncGetSession
	CncInterfaceNew
	CncObjectControl
	CncObjectDelete
	CncObjectFindAll
	CncObjectGetIndex
	CncObjectGetInfo
	CncObjectMoveItem
	CncObjectSetInfo
	CncParametersFree
	CncParametersInit
	CncProfileAttach
	CncProfileConnect
	CncProfileCopy
	CncProfileDecode
	CncProfileDeleteItem
	CncProfileDisconnect
	CncProfileEdit
	CncProfileEncode
	CncProfileFindClose
	CncProfileFindConnect
	CncProfileFindFirst
	CncProfileFindNext
	CncProfileGetItemId
	CncProfileGetItemIndex
	CncProfileGetLength
	CncProfileGetParameters
	CncProfileInsertItem
	CncProfileLock
	CncProfileNew
	CncProfileRegroupSubmit
	CncProfileSetParameters
	CncProfileSubmit
	CncProfileUngroup
	CncProfileUnlock
	CncRegisterPluginModule
	CncSubProfileAssign

	Exchange Manager
	Object Exchange
	About the Exchange Manager
	Exchange Libraries
	Typed Data Objects

	Initializing the Exchange Socket Structure
	Identifying the Exchange Library
	Identifying the Type of Data

	Registering for Data
	General Registration Guidelines
	Setting the Default Application
	Registering to Receive Unwrapped Data

	Sending Data
	Sending a Single Object
	Sending Multiple Objects
	Implementing the Send Command

	Receiving Data
	Controlling the Exchange Dialog
	Getting the Object Description
	Receiving the Data

	Sending and Receiving Databases
	Sending a Database
	Receiving a Database

	Requesting Data
	Sending a Get Request for a Single Object
	Responding to a Get Request
	Two-Way Communications
	Getting the Sender’s URL
	Requesting a URL

	Sending and Receiving Locally
	Interacting with the Launcher
	HotSync Exchange
	Sending Files with HotSync Exchange
	Example

	Attachment Support Guidelines
	Viewing Attachments
	Sending an Attachment from a Messaging Application
	Sending an Attachment from a Display Application
	Email Application Guidelines

	Summary of Exchange Manager

	Exchange Manager Reference
	Exchange Manager Data Structures
	ExgAskParamType
	ExgCtlGetURLType
	ExgGoToType
	ExgLocalSocketInfoType
	ExgPreviewInfoType
	ExgSocketType

	Exchange Manager Constants
	ExgAskResultType
	Registry ID Constants
	Predefined URL Schemes
	Predefined URL Prefixes

	Exchange Manager Launch Codes
	sysAppLaunchCmdExgAskUser
	sysAppLaunchCmdExgGetData
	sysAppLaunchCmdExgPreview
	sysAppLaunchCmdExgReceiveData

	Exchange Manager Functions
	ExgAccept
	ExgConnect
	ExgControl
	ExgDBRead
	ExgDBWrite
	ExgDisconnect
	ExgDoDialog
	ExgGet
	ExgGetDefaultApplication
	ExgGetRegisteredApplications
	ExgGetRegisteredTypes
	ExgGetTargetApplication
	ExgNotifyGoto
	ExgNotifyPreview
	ExgNotifyReceive
	ExgPut
	ExgReceive
	ExgRegisterDatatype
	ExgRegisterData
	ExgRequest
	ExgSend
	ExgSetDefaultApplication

	Application-Defined Functions
	ExgDBDeleteProcPtr
	ExgDBReadProcPtr
	ExgDBWriteProcPtr

	Personal Data Interchange
	Personal Data Interchange
	About Personal Data Interchange
	About vObjects
	Overview of vObject Structure

	About the PDI Library
	PDI Property and Parameter Types
	The PDI Library Properties Dictionary
	PDI Readers
	PDI Writers
	Format Compatibility
	International Considerations
	Features Not Yet Supported

	Using the PDI Library
	Creating a PDI Reader
	Reading Properties
	Reading Property Values
	Creating a PDI Writer
	Writing Properties
	Writing Property Values
	Specifying PDI Versions

	Using UDA for Different Media
	About the UDA Library

	Using a PDI Reader - An Example
	Using a PDI Writer - An Example
	Summary of Personal Data Interchange
	Summary of Unified Data Access Manager

	Personal Data Interchange Reference
	PDI Library Data Structures
	PdiDictionary
	PdiReaderType
	PdiWriterType

	PDI Library Constants
	Buffer Management Constants
	Encoding Type Constants
	Error Code Constants
	Parameter Name Constants
	Parameter Value Constants
	Property Name Constants
	Property Type Constants
	Property Value Field Constants
	Property Value Format Constants
	Reader and Writer Options Constants
	Reader Event Constants
	Value Type Constants

	PDI Library Functions
	PdiDefineReaderDictionary
	PdiDefineResizing
	PdiDefineWriterDictionary
	PdiEnterObject
	PdiLibClose
	PdiLibOpen
	PdiParameterPairTest
	PdiReaderDelete
	PdiReaderNew
	PdiReadParameter
	PdiReadProperty
	PdiReadPropertyField
	PdiReadPropertyName
	PdiSetCharset
	PdiSetEncoding
	PdiWriteBeginObject
	PdiWriteEndObject
	PdiWriteParameter
	PdiWriteParameterStr
	PdiWriteProperty
	PdiWritePropertyBinaryValue
	PdiWritePropertyFields
	PdiWritePropertyStr
	PdiWritePropertyValue
	PdiWriterDelete
	PdiWriterNew

	Unified Data Access Manager Reference
	UDA Manager Data Structures
	UDABufferSize
	UDAObjectType
	UDAFilterType
	UDAReaderType
	UDAWriterType

	UDA Manager Constants
	Control Flags
	Error Constants
	Object Option Flags
	Miscellaneous Constants

	UDA Manager Functions
	UDAControl
	UDADelete
	UDAEndOfReader
	UDAFilterJoin
	UDAInitiateWrite
	UDAMoreData
	UDARead
	UDAWriterFlush
	UDAWriterJoin

	UDA Object Creation Functions
	UDAExchangeReaderNew
	UDAExchangeWriterNew
	UDAMemoryReaderNew

	Index
	Symbols
	A
	B
	C
	D
	E
	H
	I
	K
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W

