

Memory, Databases, and
Files

Exploring Palm OS

®

Written by Greg Wilson
Edited by Jean Ostrem
Technical assistance from Arve Hjonnevag, , Raj Mojumder, Justin Morey, Jie Su

Copyright © 1996–2004, PalmSource, Inc. and its affiliates. All rights reserved. This technical documentation contains
confidential and proprietary information of PalmSource, Inc. (“PalmSource”), and is provided to the licensee (“you”)
under the terms of a Nondisclosure Agreement, Product Development Kit license, Software Development Kit license
or similar agreement between you and PalmSource. You must use commercially reasonable efforts to maintain the
confidentiality of this technical documentation. You may print and copy this technical documentation solely for the
permitted uses specified in your agreement with PalmSource. In addition, you may make up to two (2) copies of this
technical documentation for archival and backup purposes. All copies of this technical documentation remain the
property of PalmSource, and you agree to return or destroy them at PalmSource’s written request. Except for the
foregoing or as authorized in your agreement with PalmSource, you may not copy or distribute any part of this
technical documentation in any form or by any means without express written consent from PalmSource, Inc., and
you may not modify this technical documentation or make any derivative work of it (such as a translation,
localization, transformation or adaptation) without express written consent from PalmSource.

PalmSource, Inc. reserves the right to revise this technical documentation from time to time, and is not obligated to
notify you of any revisions.

THIS TECHNICAL DOCUMENTATION IS PROVIDED ON AN “AS IS” BASIS. NEITHER PALMSOURCE NOR ITS
SUPPLIERS MAKES, AND EACH OF THEM EXPRESSLY EXCLUDES AND DISCLAIMS TO THE FULL EXTENT
ALLOWED BY APPLICABLE LAW, ANY REPRESENTATIONS OR WARRANTIES REGARDING THIS TECHNICAL
DOCUMENTATION, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION
ANY WARRANTIES IMPLIED BY ANY COURSE OF DEALING OR COURSE OF PERFORMANCE AND ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT,
ACCURACY, AND SATISFACTORY QUALITY. PALMSOURCE AND ITS SUPPLIERS MAKE NO
REPRESENTATIONS OR WARRANTIES THAT THIS TECHNICAL DOCUMENTATION IS FREE OF ERRORS OR IS
SUITABLE FOR YOUR USE. TO THE FULL EXTENT ALLOWED BY APPLICABLE LAW, PALMSOURCE, INC. ALSO
EXCLUDES FOR ITSELF AND ITS SUPPLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR TORT
(INCLUDING NEGLIGENCE), FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL,
EXEMPLARY OR PUNITIVE DAMAGES OF ANY KIND ARISING OUT OF OR IN ANY WAY RELATED TO THIS
TECHNICAL DOCUMENTATION, INCLUDING WITHOUT LIMITATION DAMAGES FOR LOST REVENUE OR
PROFITS, LOST BUSINESS, LOST GOODWILL, LOST INFORMATION OR DATA, BUSINESS INTERRUPTION,
SERVICES STOPPAGE, IMPAIRMENT OF OTHER GOODS, COSTS OF PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES, OR OTHER FINANCIAL LOSS, EVEN IF PALMSOURCE, INC. OR ITS SUPPLIERS HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR IF SUCH DAMAGES COULD HAVE BEEN
REASONABLY FORESEEN.

PalmSource, Palm OS, Palm Powered, Graffiti, HotSync, and certain other trademarks and logos are trademarks or
registered trademarks of PalmSource, Inc. or its affiliates in the United States, France, Germany, Japan, the United
Kingdom, and other countries. These marks may not be used in connection with any product or service that does not
belong to PalmSource, Inc. (except as expressly permitted by a license with PalmSource, Inc.), in any manner that is
likely to cause confusion among customers, or in any manner that disparages or discredits PalmSource, Inc., its
licensor, its subsidiaries, or affiliates. All other product and brand names may be trademarks or registered trademarks
of their respective owners.

IF THIS TECHNICAL DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE SOFTWARE AND OTHER
DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT TO THE LICENSE AGREEMENTS
ACCOMPANYING THE SOFTWARE AND OTHER DOCUMENTATION.

Exploring Palm OS: Memory, Databases, and Files
Document Number 3108-003
November 9, 2004
For the latest version of this document, visit
http://www.palmos.com/dev/support/docs/.

PalmSource, Inc.
1240 Crossman Avenue
Sunnyvale, CA 94089
USA
www.palmsource.com

http://www.palmos.com/dev/support/docs/
http://www.palmsource.com

Exploring Palm OS: Memory, Databases, and Files

iii

Table of Contents

About This Document xvii

The

Exploring Palm OS

 Seriesxvii
Additional Resources xviii
Changes to This Document xviii

3108-002 . xviii
3108-001 . xviii

Part I: Concepts

1 Memory 3

Memory Architecture . 3
The Dynamic Heaps 4
The Storage Heaps . 4
Heap Details. . 5
Chunks . . 5

The Memory Manager. 7
Allocating and Freeing Memory Chunks 8
Manipulating Chunk Contents 8

Summary of Memory Management 9

2 Palm OS Databases 11

Database Overview . 11
Schema Databases 13
Resources and Resource Databases 14
Uniquely Identifying Databases 14
Database Attributes. 14
Automatic Database Backup and Restore 15

Working with Schema Databases 16
Schemas and Tables. 17
Schema Database Rows 28
Cursors . 36
Secure Databases . 47
Concurrent Database Access 52

iv

 Exploring Palm OS: Memory, Databases, and Files

Working with Non-Schema Databases 54
Structure of a Non-Schema Database Header. 55
Working with Non-Schema Databases 57
Record Attributes 59
Resource Databases. 60

Data Manager Tips . 65
File Streaming Layer 66

Using the File Streaming API 67

3 Virtual File Systems 69

VFS Manager . 69
The VFS Manager, the Data Manager, and File Streaming APIs 69
Checking for the Presence of the VFS Manager 70

Standard Directories 71
Applications on Cards. 72
Volume Operations . 74

Hidden Volumes . 76
Matching Volumes to Slots. 76
Naming Volumes. 77

File Operations . 78
Common Operations 78
Naming Files . 80
Working with Palm OS Databases 81

Directory Operations 86
Directory Paths . 86
Common Operations 87
Enumerating the Files in a Directory 88
Determining the Default Directory for a Particular File Type . 89
Default Directories Registered at Initialization 90

Custom Calls. 92
Custom I/O . 93

Summary of VFS Manager 94

Exploring Palm OS: Memory, Databases, and Files

v

Part II: Reference

4 Data Manager 99

Data Manager Structures and Types 100
CategoryID . 100
DatabaseID . 100
DmBackupRestoreStateType 100
DmDatabaseInfoType 101
DmFindType . 103
DmOpenModeType 103
DmOpenRef . 104
DmResourceID . 105
DmResourceType 105
DmSearchStateType 105
DmSortRecordInfoType 106
DmStorageInfoType 107

Data Manager Constants. 108
Non-Schema Database Record Attributes 108
Database Attributes 109
Miscellaneous Data Manager Constants 111
Data Manager Error Codes 112

Data Manager Functions and Macros 119
DmArchiveRecord 119
DmAttachRecord. 120
DmAttachResource 122
DmBackupFinalize 123
DmBackupInitialize 124
DmBackupUpdate 125
DmCloseDatabase 128
DmCloseIteratorByTypeCreator 128
DmCreateDatabase 129
DmCreateDatabaseFromImage. 131
DmCreateDatabaseFromImageV50 132
DmCreateDatabaseV50 133
DmDatabaseInfo 134

vi

 Exploring Palm OS: Memory, Databases, and Files

DmDatabaseInfoV50 135
DmDatabaseProtectV50 137
DmDatabaseSize 138
DmDatabaseSizeV50 139
DmDeleteCategory 140
DmDeleteDatabase 141
DmDeleteDatabaseV50 143
DmDeleteRecord 144
DmDetachRecord 145
DmDetachResource. 146
DmFindDatabase. 147
DmFindDatabaseByTypeCreator 148
DmFindDatabaseV50 149
DmFindRecordByID 150
DmFindRecordByOffsetInCategory 150
DmFindResource. 152
DmFindResourceType 153
DmGet1ResourceV50 154
DmGetAppInfo . 155
DmGetAppInfoIDV50 155
DmGetDatabaseLockState 156
DmGetDatabaseV50 157
DmGetFallbackOverlayLocale 158
DmGetLastErr . . 158
DmGetNextDatabaseByTypeCreator 160
DmGetNextDatabaseByTypeCreatorV50 163
DmGetOpenInfo 165
DmGetOverlayDatabaseLocale. 166
DmGetOverlayDatabaseName 167
DmGetOverlayLocale 167
DmGetPositionInCategory 168
DmGetRecord . 169
DmGetRecordAttr 169
DmGetRecordCategory 170
DmGetRecordID 171

Exploring Palm OS: Memory, Databases, and Files

vii

DmGetRecordSortPosition. 172
DmGetResource . 173
DmGetResourceByIndex 174
DmGetResourceV50 175
DmGetStorageInfo 176
DmHandleFree . 176
DmHandleLock . 177
DmHandleResize. 177
DmHandleSize. . 178
DmHandleUnlock 178
DmInitiateAutoBackupOfOpenDatabase 179
DmInsertionSort . 180
DmMoveCategory 181
DmMoveRecord . 182
DmNewHandle . 183
DmNewRecord . 183
DmNewResource 184
DmNextOpenDatabase 185
DmNextOpenDatabaseV50 186
DmNextOpenResDatabase 187
DmNextOpenResDatabaseV50 188
DmNumDatabases 189
DmNumDatabasesV50 189
DmNumRecords 190
DmNumRecordsInCategory 190
DmNumResources 191
DmOpenDatabase 192
DmOpenDatabaseByTypeCreator 194
DmOpenDatabaseByTypeCreatorV50 195
DmOpenDatabaseInfoV50 196
DmOpenDatabaseV50 197
DmOpenDBNoOverlay 199
DmOpenDBNoOverlayV50 200
DmOpenIteratorByTypeCreator 201
DmPtrResize . 202

viii

 Exploring Palm OS: Memory, Databases, and Files

DmPtrSize. . 203
DmPtrUnlock . 203
DmQueryNextInCategory 204
DmQueryRecord 205
DmQuickSort . 206
DmRecordInfoV50 207
DmRecoverHandle 208
DmReleaseRecord 208
DmReleaseResource 209
DmRemoveRecord 209
DmRemoveResource 210
DmRemoveSecretRecords 211
DmResetRecordStates. 212
DmResizeRecord 212
DmResizeResource 213
DmResourceInfo 214
DmResourceInfoV50 215
DmRestoreFinalize 216
DmRestoreInitialize 217
DmRestoreUpdate 218
DmSearchRecordOpenDatabases 222
DmSearchResourceOpenDatabases 223
DmSet . 223
DmSetDatabaseInfo 224
DmSetDatabaseInfoV50 226
DmSetDatabaseProtection 228
DmSetFallbackOverlayLocale 229
DmSetOverlayLocale 230
DmSetRecordAttr 230
DmSetRecordCategory 231
DmSetRecordID . 232
DmSetRecordInfoV50 233
DmSetResourceInfo 234
DmStrCopy . 235
DmWrite . 236

Exploring Palm OS: Memory, Databases, and Files

ix

DmWriteCheckV50 236
Application-Defined Functions 237

DmCompareFunctionType 237

5 File Stream 239

File Stream Structures and Types 239
FileHand . 239

File Stream Constants 240
File Stream Error Codes 240
Primary Open Modes 241
Secondary Open Modes 242
Miscellaneous File Stream Constants 242
FileOpEnum . 243
FileOriginEnum . 246

File Stream Functions and Macros. 246
FileClearerr . 246
FileClose . 247
FileControl . 247
FileDelete . 248
FileDeleteV50 . 249
FileDmRead . . 249
FileEOF . 250
FileError . 251
FileFlush . 251
FileGetLastError 252
FileOpen . 252
FileOpenV50. . 254
FileRead . 256
FileReadLow . 257
FileRewind . 258
FileSeek . . 258
FileTell . 259
FileTruncate . . 260
FileWrite . 260

x

 Exploring Palm OS: Memory, Databases, and Files

6 Memory Manager 263

Memory Manager Structures and Types 264
LocalID . . 264
MemHeapInfoType 264

Memory Manager Constants 266
Debug Mode Flags 266
Dynamic Heap Options 267
Heap Flags . 268
Memory Manager Error Codes 268
LocalIDKind . 269

Memory Manager Functions and Macros 270
MemCmp . . 270
MemDebugMode 270
MemDynHeapGetInfo 271
MemDynHeapOption. 272
MemDynHeapReleaseUnused 272
MemHandleDataStorage 273
MemHandleFree 273
MemHandleHeapID 274
MemHandleLock. 274
MemHandleNew. 275
MemHandleResize 275
MemHandleSetOwner 276
MemHandleSize . 277
MemHandleUnlock. 277
MemHeapCheck 277
MemHeapCompact. 278
MemHeapDynamic. 279
MemHeapFlags . 279
MemHeapFreeBytes 279
MemHeapID . 280
MemHeapScramble. 281
MemHeapSize . . 281
MemMove . 282
MemNumHeaps 282

Exploring Palm OS: Memory, Databases, and Files

xi

MemNumRAMHeaps 282
MemPtrDataStorage 283
MemPtrFree . . 283
MemPtrHeapID . 284
MemPtrNew. . 284
MemPtrRealloc . 285
MemPtrRecoverHandle 286
MemPtrResize . . 286
MemPtrSetOwner 287
MemPtrSize . 287
MemPtrUnlock . 288
MemSet . . 288
MemSetDebugMode 289

7 Schema Databases 291

Schema Databases Structures and Types 291
DbColumnPropertySpecType 291
DbColumnPropertyValueType 292
DbMatchModeType 293
DbSchemaColumnData 293
DbSchemaColumnDefnType 294
DbSchemaColumnProperty 295
DbSchemaColumnType 296
DbSchemaColumnValueType 297
DbShareModeType 298
DbTableDefinitionType 299

Schema Databases Constants 300
Schema Database Row Attributes 300
Table Column Attributes 301
Schema Database Access Rule Action Types 301
Cursor Open Flags 302
Miscellaneous Schema Database Constants 303
DbFetchType . 304

Schema Databases Functions and Macros 305
DbAddCategory . 305

xii

 Exploring Palm OS: Memory, Databases, and Files

DbAddColumn . 306
DbAddSortIndex 308
DbAddTable . . 310
DbArchiveRow . 311
DbCloseDatabase 312
DbCopyColumnValue 312
DbCopyColumnValues 314
DbCreateDatabase 316
DbCreateSecureDatabase 318
DbCreateSecureDatabaseFromImage 320
DbCursorArchiveAllRows. 321
DbCursorBindData 322
DbCursorBindDataWithOffset 323
DbCursorClose . 324
DbCursorDeleteAllRows 325
DbCursorFlushCache 326
DbCursorGetCurrentPosition 326
DbCursorGetCurrentRowID 327
DbCursorGetPositionForRowID 328
DbCursorGetRowCount. 329
DbCursorGetRowIDForPosition 329
DbCursorIsBOF . 330
DbCursorIsDeleted 330
DbCursorIsEOF . 331
DbCursorMove . 331
DbCursorMoveFirst 332
DbCursorMoveLast 333
DbCursorMoveNext 334
DbCursorMovePrev 334
DbCursorRelocateRow 335
DbCursorMoveToRowID 336
DbCursorOpen . 337
DbCursorOpenWithCategory 338
DbCursorRemoveAllRows 340
DbCursorRequery 341

Exploring Palm OS: Memory, Databases, and Files

xiii

DbCursorSetAbsolutePosition 342
DbCursorUpdate. 343
DbDeleteRow . 344
DbEnableSorting 345
DbGetAllColumnDefinitions. 346
DbGetAllColumnPropertyValues 347
DbGetAllColumnValues. 349
DbGetCategory . 350
DbGetColumnDefinitions 351
DbGetColumnID 353
DbGetColumnPropertyValue 354
DbGetColumnPropertyValues 355
DbGetColumnValue 357
DbGetColumnValues 359
DbGetRowAttr. . 360
DbGetRuleSet . 361
DbGetSortDefinition 362
DbGetTableForRow. 363
DbGetTableName 364
DbGetTableSchema 365
DbHasSortIndex . 366
DbHasTable . 366
DbInsertRow . 367
DbIsCursorID . 368
DbIsRowID . 369
DbIsRowInCategory 369
DbIsSortingEnabled 371
DbMoveCategory 372
DbNumCategory. 374
DbNumColumns 375
DbNumSortIndexes 376
DbNumTables . 377
DbOpenDatabase 378
DbOpenDatabaseByName. 379
DbReleaseStorage 380

xiv

 Exploring Palm OS: Memory, Databases, and Files

DbRemoveCategory 381
DbRemoveCategoryAllRows 383
DbRemoveColumn 384
DbRemoveColumnProperty 386
DbRemoveRow . 387
DbRemoveSecretRows 388
DbRemoveSortIndex 389
DbRemoveTable . 390
DbSetCategory. . 391
DbSetColumnPropertyValue 392
DbSetColumnPropertyValues 394
DbSetRowAttr . . 395
DbWriteColumnValue 396
DbWriteColumnValues 400

8 VFS Manager 403

VFS Manager Structures and Types 404
FileInfoType . 404
FileOrigin . . 405
FileRef . 405
VFSAnyMountParamType 405
VFSPOSEMountParamType 406
VFSSlotMountParamType 407
VolumeInfoType 408

VFS Manager Constants 409
VFS Manager Error Codes 409
Defined File Systems 411
Open Mode Constants 412
File and Directory Attributes 413
Volume Attributes 413
Volume Mount Classes 414
Date Types . 414
Seek Origins . 415
Iterator Controls and Constants 415
Volume Mount Flags 416

Exploring Palm OS: Memory, Databases, and Files

xv

Miscellaneous Constants and Definitions 416
VFS Manager Functions and Macros 417

VFSCustomControl 417
VFSDirCreate . 419
VFSDirEntryEnumerate 420
VFSExportDatabaseToFile 422
VFSExportDatabaseToFileCustom 423
VFSExportDatabaseToFileCustomV40. 424
VFSExportDatabaseToFileV40 426
VFSFileClose . 428
VFSFileCreate . 428
VFSFileDBGetRecord 429
VFSFileDBGetResource 431
VFSFileDBInfo . . 432
VFSFileDelete . 435
VFSFileEOF . 436
VFSFileGetAttributes 437
VFSFileGetDate . 438
VFSFileOpen . 439
VFSFileOpenFromURL 440
VFSFileRead . . 442
VFSFileReadData. 443
VFSFileRename . 444
VFSFileResize . 446
VFSFileSeek . . 447
VFSFileSetAttributes 448
VFSFileSetDate . 449
VFSFileSize . 450
VFSFileTell . 451
VFSFileWrite . 452
VFSGetDefaultDirectory 453
VFSImportDatabaseFromFile 454
VFSImportDatabaseFromFileCustom 456
VFSImportDatabaseFromFileCustomV40 458
VFSImportDatabaseFromFileV40 460

xvi

 Exploring Palm OS: Memory, Databases, and Files

VFSRegisterDefaultDirectory 461
VFSUnregisterDefaultDirectory 463
VFSVolumeEnumerate 464
VFSVolumeFormat 465
VFSVolumeGetLabel 468
VFSVolumeInfo . 469
VFSVolumeMount 470
VFSVolumeSetLabel 473
VFSVolumeSize . 474
VFSVolumeUnmount 475

Application-Defined Functions 476
VFSExportProcPtr 476
VFSImportProcPtr 477

Index 479

Exploring Palm OS: Memory, Databases, and Files

xvii

About This

Document

This book documents Palm OS

®

 databases, how memory is
managed in Palm OS, and how Palm OS applications can use the
Virtual File System to access files on expansion media.

The

Exploring Palm OS

 Series

This book is a part of the

Exploring Palm OS

 series. Together, the
books in this series document and explain how to use the APIs
exposed to third-party developers by the fully ARM-native versions
of Palm OS, beginning with Palm OS Cobalt. Each of the books in
the

Exploring Palm OS

 series explains one aspect of the Palm
operating system, and contains both conceptual and reference
documentation for the pertinent technology.

IMPORTANT:

The

Exploring Palm OS

 series is intended for
developers creating native applications for Palm OS Cobalt. If you
are interested in developing applications that work through PACE
and that also run on earlier Palm OS releases, read the latest
versions of the

Palm OS Programmer’s API Reference

 and

Palm

OS Programmer’s Companion

 instead.

As of this writing, the complete

Exploring Palm OS

 series consists of
the following titles:

•

Exploring Palm OS: Programming Basics

•

Exploring Palm OS: Memory, Databases, and Files

•

Exploring Palm OS: User Interface

•

Exploring Palm OS: User Interface Guidelines

 (coming soon)

•

Exploring Palm OS: System Management

•

Exploring Palm OS: Text and Localization

•

Exploring Palm OS: Input Services

•

Exploring Palm OS: High-Level Communications

•

Exploring Palm OS: Low-Level Communications

About This Document

Additional Resources

xviii

 Exploring Palm OS: Memory, Databases, and Files

•

Exploring Palm OS: Telephony and SMS

•

Exploring Palm OS: Multimedia

•

Exploring Palm OS: Security and Cryptography

•

Exploring Palm OS: Creating a FEP

 (coming soon)

•

Exploring Palm OS: Porting Applications to Palm OS Cobalt

•

Exploring Palm OS: Palm OS File Formats

 (coming soon)

Additional Resources

• Documentation

PalmSource publishes its latest versions of this and other
documents for Palm OS developers at

http://www.palmos.com/dev/support/docs/

• Training

PalmSource and its partners host training classes for Palm OS
developers. For topics and schedules, check

http://www.palmos.com/dev/training

• Knowledge Base

The Knowledge Base is a fast, web-based database of
technical information. Search for frequently asked questions
(FAQs), sample code, white papers, and the development
documentation at

http://www.palmos.com/dev/support/kb/

Changes to This Document

This section describes the changes made in each version of this
document.

3108-002

Minor editorial corrections.

3108-001

The first release of this document for Palm OS Cobalt, version 6.0.

http://www.palmos.com/dev/support/docs/
http://www.palmos.com/dev/training
http://www.palmos.com/dev/support/kb/

Part I
Concepts

This part contains conceptual and “how to” information on the
Palm OS

®

 memory system; the Data Manager, file streaming, and
the VFS Manager. The Data Manger manages databases used to
contain both programs and data. File streaming presents another
way to access the contents of large “classic” Palm OS databases.
And the VFS Manager allows you to work with the contents of files
on expansion media: SD cards, Memory Stick media, and the like.

The conceptual material is organized into the following chapters:

Memory . 3

Palm OS Databases 11

Virtual File Systems 69

Exploring Palm OS: Memory, Databases, and Files

3

1

Memory

This chapter helps you understand memory use on Palm OS

®

.

• Memory Architecture discusses how memory is structured
on Palm OS. It examines the structure of the basic building
blocks of Palm OS memory: heaps, chunks, and records.

• The Memory Manager discusses how to use the Palm OS
Memory Manager in your applications.

IMPORTANT:

Do not confuse the handheld’s RAM with read/
write memory on expansion cards, such as SD cards or Memory
Stick media. You access expansion cards through a different API.
See Chapter 3, “Virtual File Systems,” on page 69 for more
information.

Memory Architecture

IMPORTANT: This section describes the current
implementation of Palm OS memory architecture. This
implementation may change as Palm OS evolves. Do not rely on
implementation-specific information described here; instead,
always use the API provided to manipulate memory.

The Palm OS divides the total available RAM store into two logical
areas: dynamic heaps and the storage heaps. A process’s dynamic
heap is used as working space for temporary allocations, and is
analogous to the RAM installed in a typical desktop system. RAM
not reserved for dynamic use is designated for the storage heaps
and is analogous to disk storage on a typical desktop system.

Because power is always applied to the memory system, the
dynamic and storage heaps preserve their contents when the

Memory
Memory Architecture

4 Exploring Palm OS: Memory, Databases, and Files

handheld is turned “off” (that is, when it is in low-power sleep
mode). Storage heaps are preserved even when the handheld is
explicitly reset (unless the user performs a hard reset, in which case
the storage heaps are reinitialized).

The Dynamic Heaps
The dynamic heap provides memory for dynamic allocations. From
this heap the system provides memory for dynamic data such as
global variables, system dynamic allocations, application stacks,
temporary memory allocations, and application dynamic
allocations (such as those performed when the application calls
malloc() or MemHandleNew()). Each process has an independent
dynamic heap that is created and destroyed along with the process.

The entire amount of RAM reserved for the dynamic heaps is
always dedicated to this use, regardless of whether it is actually
used for allocations. The size of the dynamic area of RAM on a
particular handheld varies according to the OS version running, the
amount of physical RAM available, the requirements of pre-
installed software such as the TCP/IP stack or IrDA stack, and any
other licensee requirements.

The Storage Heaps
The remaining portion of RAM not dedicated to use by the dynamic
heaps is configured as a set of storage heaps and is used to hold
nonvolatile user data such as appointments, to do lists, memos,
address lists, and so on. An application accesses a storage heap by
calling Data Manager functions such as DmNewHandle(). Storage
heaps retain their contents through soft reset cycles.

The size of the storage heap available on a particular handheld
varies according to the OS version that is running; the amount of
physical RAM and ROM that is available; and the storage
requirements of end-user application software such as the Address
Book, Date Book, or third-party applications.

Note that you typically work with the storage heap by manipulating
databases. See Chapter 2, “Palm OS Databases,” for information on
creating and accessing Palm OS databases.

Memory
Memory Architecture

Exploring Palm OS: Memory, Databases, and Files 5

Heap Details
A heap is a contiguous area of memory used to contain and manage
one or more smaller chunks of memory. When applications work
with memory (for instance, allocate, resize, or free) they usually
work with chunks of memory. An application can specify whether
to allocate a new chunk of memory in a dynamic heap or a storage
heap. The Memory Manager and the Data Manager each manages
their respective heaps, rearranging chunks as necessary to
defragment the heaps and merge free space.

Heaps in the Palm OS environment are referenced through heap
IDs. A heap ID is a unique 16-bit value that is used to identify a
heap within the Palm OS address space. The three defined heaps
IDs are:

Chunks
In the Palm OS environment, all data are stored in chunks. A chunk
is an area of contiguous memory between 1 byte and slightly less
2^26 bytes in a storage heap, or 2^31 bytes in a dynamic heap.

Every memory chunk used to hold storage data (as opposed to
memory chunks that store dynamic data) is a record in a database
implemented by the Palm OS Data Manager.

Heap ID Heap Managed By

0 Dynamic heap Memory
Manager

1 Storage heap for classic and
extended record databases, and
extended resource databases except
for those that contain ARM-native
code.

Data Manager

2 ROM heap Data Manager

3 Storage heap for schema databases
and resource databases containing
ARM-native code.

Data Manager

Memory
Memory Architecture

6 Exploring Palm OS: Memory, Databases, and Files

Memory chunks can be movable or immovable. When working
with a storage heap, applications need to store data in movable
chunks whenever feasible, thereby allowing the operating system to
move chunks as necessary to create contiguous free space in
memory for allocation requests. In a dynamic heap, on the other
hand, applications should use the standard C APIs for working with
memory (malloc(), free(), and the like); the standard C APIs
have no concept of movable chunks.

When an application requests an immovable chunk it receives a
pointer to that chunk. The pointer is simply that chunk’s address in
memory. Because the chunk cannot move, its pointer remains valid
for the chunk’s lifetime; thus, the pointer can be passed “as is” to the
caller that requested the allocation.

When an application requests a movable chunk, the operating
system generates a pointer to that chunk, just as it did for the
immovable chunk, but it does not return the pointer to the caller.
Instead, it stores the pointer to the chunk, called the master chunk
pointer, in a master pointer table that is used to track all of the
movable chunks in the heap, and returns a reference to the master
chunk pointer. This reference to the master chunk pointer is known
as a handle. It is this handle that the operating system returns to the
caller that requested the allocation of a movable chunk.

Using handles imposes a slight performance penalty over direct
pointer access but permits the operating system to move chunks
around in the heap without invalidating any chunk references that
an application might have stored away. As long as an application
uses handles to reference data, only the master pointer to a chunk
needs to be updated when the chunk is moved during heap
defragmentation.

An application typically locks a chunk handle for a short time while
it has to read or manipulate the contents of the chunk. The process
of locking a chunk tells the Memory or Data Manager to mark that
data chunk as immobile; a pointer to the chunk is returned that your
application can use to manipulate the chunk contents. When an
application no longer needs the data chunk, it should unlock the
handle immediately to keep heap fragmentation to a minimum.

Chunks maintain a lock count. A count of zero indicates that the
chunk is movable. Every time you lock a chunk, its lock count is

Memory
The Memory Manager

Exploring Palm OS: Memory, Databases, and Files 7

incremented. You can lock a chunk a maximum of 14 times before
an error is returned. (Unmovable chunks hold the value 15 in the
lock field.) Unlocking a chunk decrements the value of the lock field
by 1. When the lock count is reduced to 0, the chunk is again free to
be moved by the operating system.

IMPORTANT: Note that any handle is good only until the
system is reset. When the system resets, it reinitializes all
dynamic memory areas and relaunches applications. Therefore,
you must not store a handle in a database.

Internally each chunk is located by means of a local ID. The local ID
of immovable chunk is a pointer to the chunk; the local ID of
movable chunk is equivalent to the chunk handle.

Owner ID

In previous versions of Palm OS, the operating system used an
owner ID to associate that chunk with an application. Because the
dynamic heap of the main UI application is always destroyed and
recreated during an application switch, owner IDs of memory
chunks don’t make sense in Palm OS Cobalt. The Memory Manager
APIs for managing owner IDs exist for compatibility reasons;
setting the owner ID of a chunk doesn’t make the chunk persistent
across application switches as in previous versions of Palm OS.

The Memory Manager
The Palm OS Memory Manager is responsible for maintaining the
location and size of every memory chunk in the dynamic heaps. It
provides an API for allocating new chunks, disposing of chunks,
resizing chunks, locking and unlocking chunks, and compacting
heaps when they become fragmented.

IMPORTANT: In Palm OS Cobalt the Memory Manager APIs
exist mainly for use by the Data Manager to manage storage
heaps. Application developers should use the standard C library
functions such as malloc() and free() to manage dynamic
memory.

Memory
The Memory Manager

8 Exploring Palm OS: Memory, Databases, and Files

Allocating and Freeing Memory Chunks
To allocate a movable chunk, call MemHandleNew() and pass the
desired chunk size. To free a memory chunk given its handle, call
MemHandleFree(). The Memory Manager provides similar
functions that work with immovable chunks: MemPtrNew()
allocates a memory chunk and returns a pointer to it, while
MemPtrFree() frees a chunk given its pointer.

NOTE: You cannot allocate a zero-size chunk.

The size of a chunk can be obtained with either MemHandleSize()
or MemPtrSize(), depending on whether you have the chunk’s
handle or a pointer to its data. To resize a movable chunk use
MemHandleResize(). When resizing immovable chunks
MemPtrRealloc() is recommended; although there is a function
called MemPtrResize(), it should only be relied upon when you
are making the chunk smaller since it can’t increase the size of an
immovable chunk unless there is free space in the heap immediately
following the chunk.

If you have a pointer to a locked, movable chunk, you can recover
the handle by calling MemPtrRecoverHandle().

Manipulating Chunk Contents
Because you have a pointer to any immovable chunk you’ve
allocated with MemPtrNew, you can read or write that chunk’s
contents directly. Before you can read or write data to a movable
chunk, however, you must call MemHandleLock() to lock it and
get a pointer to it. Then, when you no longer need direct access to
the chunk’s contents, call MemHandleUnlock(). (Note that after a
call to MemHandleUnlock, the pointer your application was using
to access the chunk’s contents is no longer valid.)

The Memory Manager provides three utility functions that you can
use when working with the contents of a chunk:

• MemMove() moves memory from one place to another.

• MemSet() fills memory with a specific value.

• MemCmp() compares two regions of memory.

Memory
Summary of Memory Management

Exploring Palm OS: Memory, Databases, and Files 9

Note that in Palm OS Cobalt, however, applications should
normally use the standard C library functions such as memmove()
or memcpy(), memset(), and memcmp() to manage dynamic
memory.

Summary of Memory Management
Memory Manager Functions

Allocating and Freeing Memory

MemHandleFree()
MemHandleLock()
MemHandleNew()
MemHandleUnlock()

MemPtrFree()
MemPtrNew()
MemPtrUnlock()

Resizing Chunks

MemHandleResize()
MemHandleSize()
MemPtrRealloc()

MemPtrResize()
MemPtrSize()

Working With Memory

MemCmp()
MemMove()
MemSet()

MemDynHeapReleaseUnused()
MemHeapCompact()

Chunk Information

MemHandleDataStorage()
MemHandleHeapID()
MemHandleSetOwner()

MemPtrDataStorage()
MemPtrRecoverHandle()
MemPtrSetOwner()

Heap Information

MemDynHeapGetInfo()
MemDynHeapOption()
MemHeapCheck()
MemHeapDynamic()
MemHeapFlags()
MemHeapFreeBytes()

MemHeapID()
MemHeapSize()
MemNumHeaps()
MemNumRAMHeaps()
MemPtrHeapID()

Memory
Summary of Memory Management

10 Exploring Palm OS: Memory, Databases, and Files

Debugging

MemDebugMode()
MemSetDebugMode()

MemHeapScramble()

Memory Manager Functions

Exploring Palm OS: Memory, Databases, and Files 11

2
Palm OS Databases
This chapter describes how to work with Palm OS® databases. Two
separate header files declare the APIs you use:
SchemaDatabases.h (documented in Chapter 7, “Schema
Databases,” on page 291) and DataMgr.h (documented in Chapter
4, “Data Manager,” on page 99). In addition, the File Streaming
APIs, which allow you to access classic databases using a
mechanism very similar to UNIX file streams, are declared in
FileStream.h (and documented in Chapter 5, “File Stream,” on
page 239).

This chapter is divided into the following major sections:

Database Overview 11

Working with Schema Databases 16

Working with Non-Schema Databases 54

File Streaming Layer 66

IMPORTANT: To access data or resources on secondary
storage (such as expansion cards), you use a different set of
APIs. See Chapter 3, “Virtual File Systems,” on page 69 for more
information.

Database Overview
A traditional file system first reads all or a portion of a file into a
memory buffer from disk, using or updating the information in the
memory buffer, and then writes the updated memory buffer back to
disk. Because Palm Powered™ handhelds have limited amounts of
dynamic RAM and use nonvolatile RAM instead of disk storage, a
traditional file system is not optimal for storing and retrieving Palm
OS user data. Thus, except when working with expansion media (an
SD card, Memory Stick, and the like), Palm OS doesn’t make use of

Palm OS Databases
Database Overview

12 Exploring Palm OS: Memory, Databases, and Files

a traditional file system. Instead of files, Palm OS applications work
with databases.

Databases organize related rows (for schema databases) or records
(for non-schema databases); each belongs to one and only one
database. A database may be a collection of all address book entries,
all datebook entries, and so on. A Palm OS application can create,
delete, open, and close databases as necessary, just as a traditional
file system can create, delete, open, and close a traditional file.

For those new to Palm OS programming, the term “database” can
be somewhat misleading. Palm OS Cobalt supports three different
types of database, some of which look more like conventional
databases than others. Schema databases, which were introduced in
Palm OS Cobalt, bear a strong resemblance to relational databases.
Data is organized into tables, which consist of rows and columns.
Schema databases use the concept of a schema to define the
structure of a table row. Unlike relational databases, however,
schema databases don’t allow you to perform joins and other
complex operations.

The other two database types are classified as “non-schema”
databases because they are significantly less structured. There are
two supported non-schema database types:

• Classic databases are supported for compatibility with
earlier versions of Palm OS. All versions of Palm OS back to
Palm OS 1.0 support this database format, and this is the
format used by applications running on Palm OS Cobalt
through PACE.

• Extended databases are an “extended” version of classic
databases. There are three primary differences between
classic and extended databases: extended databases records
can exceed 64K in length (classic records cannot); extended
databases are uniquely identified by a combination of name
and creator ID (classic databases are uniquely identified by
name alone); and extended databases can store data using
the processor’s native endianness (classic databases must
store record data using big-endianness, for compatibility
with the 68K-based Dragonball CPU used in the early Palm
OS devices).

Palm OS Cobalt applications that must remain compatible with an
earlier OS release—perhaps a version of the application exists that

Palm OS Databases
Database Overview

Exploring Palm OS: Memory, Databases, and Files 13

runs on earlier versions of Palm OS and this application must be
able to work with the earlier version’s data—will use classic
databases. Those Palm OS Cobalt applications that don’t have such
a compatibility requirement should use either extended or schema
databases instead. Which to use depends on the nature of the
application. Schema databases provide a great deal of support for
organizing the database contents and for security, at the expense of
performance. Extended databases, on the other hand, are faster to
read and write, but less secure and less structured—meaning that
your application has to do the work of maintaining and interpreting
record contents itself.

Schema Databases
Non-schema databases treat their contents as lists of mostly opaque
records. The Data Manager knows just enough about each record to
understand category assignment, modification status, and deletion
status. Applications are entirely responsible for structuring and
interpreting database record contents. Traditional Palm OS
applications, written for 68K-based handhelds and for PACE, work
exclusively with classic databases.

Schema databases add a layer of abstraction to the record contents.
This extra layer of abstraction allows you to create more flexible
applications, with improved sharing of data between applications.
Because the Data Manager knows more about the structure of the
database rows, it can provide additional capabilities, such as
system-managed, optimized, and internationalized sorting. It lets
you bind variables to various row fields, so as you move from one
row to another the bound variables are automatically updated with
the contents of the corresponding row’s fields. And, you can create
cursors, subsets of a database table’s rows selected and sorted based
upon application-specific criteria. Schema databases have other
advantages as well:

• They provide more standardized data storage.

• Schema databases make synchronization simpler and more
efficient.

• Schema databases can be more easily extended with
additional fields.

Palm OS Databases
Database Overview

14 Exploring Palm OS: Memory, Databases, and Files

• It is much easier to create conduits for schema databases, and
it is easier to integrate a schema database with a database on
the desktop computer or on a server.

Resources and Resource Databases
Applications can use the Data Manager to retrieve and save chunks
of data conveniently. Non-schema databases that are designated as
resource databases tag each chunk of data with a unique resource
type and resource ID. These tagged data chunks are called
resources. Resource databases are almost identical in structure to
other non-schema databases except for a slight amount of increased
storage overhead per resource record (two extra bytes).

Resources are typically used to store the user interface elements of
an application, such as images, fonts, dialog layouts, and so forth.
Part of building an application involves creating these resources and
merging them with the actual executable code. In the Palm OS
environment, an application is, in fact, simply a resource database
with the executable code stored as one or more code resources and
the graphics elements and other miscellaneous data stored in the
same database as other resource types.

Applications may also find resource databases useful for storing
and retrieving application preferences, saved window positions,
state information, and so forth. These preferences settings can be
stored in a separate resource database.

Uniquely Identifying Databases
As in previous releases of Palm OS, classic databases must be
uniquely identified by name. Schema and extended databases,
however, are uniquely identified by a combination of the database’s
name and its creator ID. Thus, schema and extended database
names need only be unique for a single creator ID: two such
databases with the same name can reside on a single handheld as
long as their creator IDs differ.

Database Attributes
In addition to the records that make up the database’s contents—
and in addition to the schemas that define the structure of the rows

Palm OS Databases
Database Overview

Exploring Palm OS: Memory, Databases, and Files 15

in a schema database table—all Palm OS databases have a set of
flags that describe various aspects of the database itself, plus a set of
dates identifying when the database was created, last modified, and
last backed up. As well, non-schema databases have an Application
Info block to hold application settings and the like, and a Sort Info
block to control the ordering of database records (schema databases
use a different mechanism to control row ordering; see “Cursors” on
page 36).

You obtain the database attribute flags and dates, along with
handles for the Sort Info block and the Application Info block if
working with a non-schema database, by calling
DmDatabaseInfo().

Automatic Database Backup and Restore
Palm OS Cobalt version 6.1 can be configured by a licensee to back
up the contents of the RAM storage heaps to some sort of non-
volatile NAND flash. In the event that the RAM storage heaps are
corrupted or are lost for some reason, the storage heaps can then be
restored to their saved state. This provides an additional level of
data reliability beyond what’s already provided by HotSync.
Devices without backup batteries may take advantage of this
backup and restore capability to prevent data loss between power
on/off sessions.

For security, the backup is performed to a private internal VFS
volume that can only be accessed by the Data Manager, only for
purposes of backup and restore.

Backup is triggered on a limited set of events:

• Database close. Any time that a database is closed, the
database is backed up to the non-volatile store.

• Database create. Upon creation, the database is backed up.
This takes care of installed databases that are never modified
and thus not otherwise backed up.

• A successful call to DmSetDatabaseInfo(). Whenever a
call to DmSetDatabaseInfo() succeeds, the database
information is backed up to the non-volatile store.

• Device sleep. Whenever the device goes to sleep as a result of
the normal system sleep functionality, the Data Manager

Palm OS Databases
Working with Schema Databases

16 Exploring Palm OS: Memory, Databases, and Files

iterates through all open databases and backs them up to the
non-volatile store. This takes care of those databases that are
opened by an application and not closed until the application
exits, and those databases that are opened by background
threads that are running when the system goes to sleep.

• An explicit call to
DmInitiateAutoBackupOfOpenDatabase().

Every time the device resets with an indication that the contents of
RAM may have been lost, the backup volume is restored to RAM.
Before restoring the backup contents, a consistency check is
performed on the backup and an attempt is made to fix any
inconsistencies. Databases are only restored under these
circumstances; developers cannot trigger a database restore
programmatically.

Working with Schema Databases
Schema databases consist of one or more tables. All of the rows in a
given table have the same structure.

All data in a schema database table is represented in the form of
two-dimensional tables. A table contains zero or more rows and one
or more columns. All rows in a table have the same sequence of
columns, but with a different series of values in those columns. Note
that a row doesn’t have to have a value for a column; the special
value NULL can be used to indicate that the value is undefined.

As with a relational database, operations are defined by logic, not by
the position of a row within a table. That is, you ask for all rows
where (x = 3) and not for the first, third, and fifth rows, for example.
The rows of a schema database table are in arbitrary order—the
order in which they appear doesn’t necessarily reflect the order in
which they were entered or in which they are stored.

One of the strengths of the relational approach (which applies to
schema databases) is that you can deal with the data as information
and, ideally, not worry about the details of how it is represented or
physically maintained in the database itself. Having to deal with
these kinds of implementation details makes extended and classic
databases more difficult to manage.

Palm OS Databases
Working with Schema Databases

Exploring Palm OS: Memory, Databases, and Files 17

Schemas and Tables
In Palm OS Cobalt, a schema is simply the collective definitions of a
table’s columns. While there is no single structure or identifier that
represents a schema, the DbTableDefinitionType structure
contains a count of the number of columns in the table and a series
of pointers to the structures that define those table columns:
essentially, the schema (this structure also contains the table’s name,
which isn’t part of the schema itself).

Each schema database can be heterogeneous in that it can support
multiple tables. Because each table’s definition includes the column
definitions for that table—the schema—two tables can have the
same schema, yet changes to one table’s schema doesn’t affect the
other.

Tables can be defined at the time a database is created, or added
later.

Schema access is gated by the access restrictions for the database.
Read-only access to a database implies read-only access to all of that
database’s schemas (and thus any attempt to modify the schema
will fail). See “Secure Databases” on page 47 for more information
on database access restrictions.

Logical (External) vs. Physical (Internal) Views

Schemas allow the Data Manager to decouple the logical (external)
view of your data from the physical (internal) view. When working
with a schema database you manipulate row data in terms of data
types defined in the column property sets—this is the logical data
view. In actual fact, however, the Data Manager stores row data
internally in an unpublished variant format: the physical data view.
This decoupling facilitates changes to internal data formats without
affecting existing database consumers.

Data types defined in column property sets are Palm OS primitives
or their vectors. The Data Manager converts between its physical
data types and the logical data types that are enforced during field
get and set operations.

Palm OS Databases
Working with Schema Databases

18 Exploring Palm OS: Memory, Databases, and Files

Column Properties

A schema is a collection of column property sets. A column
property set is represented as a DbSchemaColumnDefnType
structure. This structure contains the following:

ID: A 32-bit application-defined identifier. This ID must be
unique for a given table.

Name: An application-defined name for the column. The column
name must be unique for a given table. It can be up to 32
bytes in length, including the terminating null character, and
must be a valid SQL identifier consisting only of 7-bit ASCII
characters. The column name is stored in a single
application-defined language encoding.

Data Type: The type of data contained within the database column.

Size: The size, in bytes, for the column. For columns that contain
variable-length strings, blobs, and vectors, this is the
maximum size of the string, blob, or vector. For all other
types this is the actual size of the type.

Attributes: A set of flags that indicate whether the column data can
be modified, whether the column was added to the table after
the table was created, and whether or not the column data
will be synchronized. (Modifications made to a “non-
syncable” column’s data don’t change the modification state
for the row, and thus by themselves don’t cause the row to be
synchronized during a HotSync operation.)

These are built-in column properties provided by the Data Manager.
In addition to these built-in properties, you can define custom
properties for a column: properties that facilitate application-
specific semantics for columns. For more information on
manipulating the column definitions that make up a schema, see
“Working with Column Definitions” on page 23.

Column Data Types

Palm OS Cobalt schema databases support the column data types
listed in Table 2.1.

Palm OS Databases
Working with Schema Databases

Exploring Palm OS: Memory, Databases, and Files 19

Table 2.1 Supported schema column data types

Palm Primitive/
Logical Types

Description Storage
Requirement

Range/Size

uint8_t Unsigned char 1 byte 0 to 255

uint16_t Unsigned short int 2 bytes 0 to 65535

uint32_t Unsigned int 4 bytes 0 to 4294967295

uint64_t 8 bytes

int8_t Signed char 1 byte -128 to 127

int16_t Signed short int 2 bytes -32768 to 32767

int32_t Signed int 4 bytes -2147483648 to
2147483647

int64_t 8 bytes

float Float 4 bytes

double Double 8 bytes

Boolean True /False value 1 byte 0 or 1

DateTimeType Date-Time type 14 bytes

DateType Date expressed as an
absolute date

2 bytes

TimeType 2 bytes

time_t (dbDateTimeSecs) Time
in seconds since the UNIX
epoch

4 bytes -2147483648 to
2147483647

char Fixed-length character
string

m bytes,
where m is the
statically-
defined length
and 1 <= m <=
255

1 <= m <= 255,
where m is the
maximum defined
length.

Palm OS Databases
Working with Schema Databases

20 Exploring Palm OS: Memory, Databases, and Files

VarChar Variable-length character
string

n+4, where n
is the actual
string length
and where n
<= m. m is the
maximum
defined length
and 1 <= m <=
232

1 <= m <= 232,
where m is the
maximum defined
length.

blob Variable-length array of
bytes.

n+4, where n
is the actual
string length
and where n
<= m. m is the
maximum
defined length
and 1 <= m <=
232

1 <= m <= 232,
where m is the
maximum defined
length.

Vector Variable-length vectors of
Palm primitive numeric,
string, and date-time types.
See Table 2.2, below, for a
list of supported vector
types.

n+4, where n
is the number
of bytes
needed to
contain the
vector.

232 bytes.

Table 2.2 Supported vector types

Vector Types Usage

uint8_t vectors uint8_t[]

uint16_t vectors uint16_t[]

uint32_t vectors uint32_t[]

Table 2.1 Supported schema column data types (continued)

Palm Primitive/
Logical Types

Description Storage
Requirement

Range/Size

Palm OS Databases
Working with Schema Databases

Exploring Palm OS: Memory, Databases, and Files 21

NOTE: In a string vector, the null characters must be interpreted
as encoding-dependent null characters instead of null bytes. A
null character may be multi-byte for a specific encoding scheme.

Database, Table, and Column Identifiers

Schema databases are uniquely identified by a combination of their
name and their creator code. However, most of the schema database
functions take database identifiers of the type DatabaseID. The
function DmFindDatabase() returns a database ID for an existing
database, while DbCreateDatabase() creates a new database
(given a name, creator code, and type) and returns a database ID for
the newly-created database.

Database tables are identified by name. There is no need for a
numeric “table identifier.” However, each database does maintain
an array of tables that you can access by index. This array is zero-
based; its indices range from zero to n-1, where n is the number of

uint64_t vectors uint64_t[]

float vectors float[]

double vectors double[]

Boolean vectors Boolean[]

DateTimeType
vectors

DateTimeType[]

DateType vectors DateType[]

TimeType vectors TimeType[]

String vectors Array of null-terminated strings, with an
extra terminating null character marking
the end of the vector. For instance, using 7-
bit ASCII:
"String1\0String2\0String3\0\0"

Table 2.2 Supported vector types (continued)

Vector Types Usage

Palm OS Databases
Working with Schema Databases

22 Exploring Palm OS: Memory, Databases, and Files

tables defined for that database. This value can be obtained by
calling DbNumTables(). Given the index of a table within a
database, you can translate it into the table’s name by calling
DbGetTableName().

A column is uniquely identified by either the column’s descriptive
name or by a 32-bit ID (both must be unique). These application-
defined column names and IDs allow multiple applications within a
given application context to share a common semantic
understanding of a given column type. For instance, two
applications might select a name of “EMNO” for the employee
number column of the “EMPLOYEE” database and use column-
based search and retrieval of values in the column named ”EMNO”.
The design-time specification of both column identifiers and table
names facilitates the development of public metadata interfaces for
databases and encourages generic data exchange based on these
interfaces.

As with tables in a database, you can iterate through the columns in
a table. To obtain the number of columns in a given table, call
DbNumColumns(). You can retrieve the definitions for each of the
columns in the row by calling DbGetColumnDefinitions(). To
obtain the ID of an individual column given its index (which again
ranges from 0 to n-1, where n is the number of columns in the table),
use DbGetColumnID().

Creating, Modifying, and Deleting Tables

You can create tables either at the time you create a database or after
the fact. Each table is a DbTableDefinitionType structure; this
structure contains the table’s name and an array of column
definitions. Allocate memory as needed for the
DbTableDefinitionType structures (and for the
DbSchemaColumnDefnType structures needed to define the
table’s columns), and initialize them as appropriate for your
application. Then, either supply them when creating your database
(with DbCreateDatabase() or DbCreateSecureDatabase(),
as appropriate), or add them to an existing database with
DbAddTable().

You can remove a table from a database only if the table contains no
non-deleted rows. If the table contains non-deleted rows, create a
cursor that selects all of the table’s rows, and then call

Palm OS Databases
Working with Schema Databases

Exploring Palm OS: Memory, Databases, and Files 23

DbCursorRemoveAllRows(). Once the table is empty, call
DbRemoveTable() to remove the table from the database.

When modifying an existing table, you are limited to adding and
removing columns and modifying custom column properties. Get
the existing table definition by calling DbGetTableSchema(). Use
DbAddColumn() to add a a column to an existing table.

Working with Column Definitions

Each table maintains a list of column definitions. As discussed in
“Database, Table, and Column Identifiers” on page 21, given an
index into that list you can obtain the corresponding column ID.
This ID is necessary to work with individual columns, but isn’t
needed to obtain the complete set of column definitions that make
up a schema.

To obtain the column definitions for a table, you can use one of two
functions. DbGetAllColumnDefinitions() retrieves all column
definitions for the specified table, while
DbGetColumnDefinitions() retrieves one or more column
definitions for the table—supply an array of column IDs indicating
which column definitions are to be retrieved. Both functions return
an array of column definitions (DbSchemaColumnDefnType
structures); when you are done with this array you must release the
memory consumed by the array with a call to
DbReleaseStorage().

In addition to any custom properties you define for a column
definition, all columns have a set of built-in properties. These built-
in properties are read-only, to prevent applications from modifying
existing data row columns in a way that can impact other data
consumers. Each built-in property has a corresponding constant
definition that can be used as input to a generic accessor—
DbGetColumnPropertyValue()—that retrieves the value of the
specified column property. The constant definitions for the built-in
properties are predefined; see “DbSchemaColumnProperty” on
page 295 for the constants themselves. The following are the built-in
properties for a column:

• Name (must be unique)

• Data type

Palm OS Databases
Working with Schema Databases

24 Exploring Palm OS: Memory, Databases, and Files

• Size (maximum byte size for variable-length strings, blobs,
and vectors)

• Attributes

Unlike the built-in properties, custom properties may be read,
written and deleted. Custom property IDs must fall outside the
built-in property ID range. That is, they must be greater than
dbColumnPropertyUpperBound.

For a given column, define custom properties using
DbSetColumnPropertyValue() or
DbSetColumnPropertyValues(). If the specified property ID
does not exist, a custom property is created with the specified ID
and value. If the specified property ID exists, its value is updated to
the new value.

The value of any property—whether built-in or custom—can be
obtained by calling either DbGetColumnPropertyValue(), to
obtain a single property value, or
DbGetColumnPropertyValues() to obtain multiple property
values at one time.

To remove a property from a given column, call
DbRemoveColumnProperty(). Note that this function is very
different from DbRemoveColumn(): whereas
DbRemoveColumnProperty() removes only a property from a
column, DbRemoveColumn() removes an entire column from a
table, along with that column’s data.

Row Attributes

Schema database rows can have the attributes listed in Table 2.3.

Palm OS Databases
Working with Schema Databases

Exploring Palm OS: Memory, Databases, and Files 25

NOTE: The Data Manager does not place any semantics on the
read-only attribute. It is up to the application to enforce the read-
only semantics.

The read-only attribute is used to support certain record sharing
scenarios that allow a user to view a record, but not to modify it.
Note that schemas also allow the definition of “always writable”
columns that allow particular fields to be writable in a read-only
row. This might be used, for example, in a calendar event for a TV
show that is read-only (you can’t reschedule the show); the field
containing the alarm information would be “always writable”
allowing each user the option of setting an alarm.

Table 2.4 lists the functions that you use to get and set a schema
database row’s row ID, category, and attributes.

Table 2.3 Schema database row attributes

Attribute Description

dbRecAttrArchive The row’s data is preserved
until the next HotSync. When
the dbRecAttrArchive bit is
set, the dbRecAttrDelete bit
is set as well, so archived rows
are otherwise treated like
deleted rows.

dbRecAttrDelete The row has been deleted.

dbRecAttrReadOnly The row is read-only, and
cannot be written to.

dbRecAttrSecret The row is private.

Palm OS Databases
Working with Schema Databases

26 Exploring Palm OS: Memory, Databases, and Files

Categories

Categories are a user-controlled means of grouping or filtering
records or rows. Non-schema databases allow records to be a
member of only one of 15 categories, or “Unfiled.” Schema database
rows, on the other hand, can be a member of any combination of up
to 255 categories (or none—the equivalent of “Unfiled”). Thus,
where in a extended database a record might, say, have to either fall
into the “Personal” or “Business” category, in a schema database a
row could fall into both.

As with non-schema databases, category information is local to a
database. However, unlike non-schema databases which store
information about that database’s categories in the Application Info
block, schema databases rely upon an internal “category info” block
to contain this information.

Information about the database’s categories, such as the number
and names of the categories, as well as the order in which they occur
in a UI list, is controlled by the Category Manager. The Data
Manager is only responsible for managing the category membership
of individual database rows.

Category membership for a row is limited to the maximum number
of categories that can be defined locally in a schema database. Since
the maximum number of categories a database can support is

Table 2.4 Functions used to access row information

Category Functions

Local ID DbCursorGetCurrentRowID()
DbCursorGetRowIDForPosition()

Category Membership DbAddCategory()
DbGetCategory()
DbIsRowInCategory()
DbNumCategory()
DbRemoveCategory()
DbSetCategory()

Attributes DbGetRowAttr()
DbSetRowAttr()

Palm OS Databases
Working with Schema Databases

Exploring Palm OS: Memory, Databases, and Files 27

limited to 255, any given row can only be a member of up to 255
categories.

In a non-schema database, records are always in one category
(“Unfiled” is just a specific category). In a schema database, rows
may be in one category, multiple categories, or none. The notion of
“Unfiled” as a category doesn’t make sense here since rows
shouldn’t be able to be in the “Unfiled” category and in other
categories at the same time. Because applications can display or
perform other operations on rows with no category membership, a
row that is a member of no database categories could be thought of
as “Unfiled.” Note that the Category Manager controls how rows
with no category membership are displayed to end users.

The Data Manager stores category IDs as category membership
information for a record or row. Storing category IDs abstracts the
Data Manager from any modifications performed on the internal
category structure, such as adding or deleting a category.

The following functions let you manipulate a schema database
row’s category membership:

DbSetCategory()
Sets category membership for a single database row.

DbAddCategory()
Makes the specified row a member of one or more additional
categories.

DbGetCategory()
Retrieves the category membership for the specified row.

DbNumCategory()
For a specified row, determines how many categories the row
is a member of.

DbRemoveCategory()
Removes category membership in the specified categories
from a single row.

These functions let you manipulate rows that meet the given
category membership criteria:

DbIsRowInCategory()
Determines if a row has membership for the specified
categories, depending on the given match mode criteria.

Palm OS Databases
Working with Schema Databases

28 Exploring Palm OS: Memory, Databases, and Files

DbMoveCategory()
Replaces one or more categories with the specified category
for all rows, depending on the given match mode criteria.

DbRemoveCategoryAllRows()
Removes category membership in the specified categories
from all rows in the database, depending on the match mode
criteria.

DbCursorOpenWithCategory()
Creates and opens a cursor containing all rows in the
specified table that conform to a specified set of flags,
ordered as specified. Rows are filtered based upon category
membership.

The Application Info Block

Schema databases don’t have a dedicated Application Info block.
For application-specific data of the type found in a non-schema
database’s Application Info block, create a database table
specifically for this purpose.

Schema Database Rows
As discussed in “Schemas and Tables” on page 17, a schema
database table can have zero or more rows, and each row within the
table shares a common structure, or schema.

Rows are identified by a 32-bit identifier that is unique within the
database. You supply the row ID (or, often, the cursor ID as
discussed under “Cursors” on page 36) when archiving rows,
copying row contents, deleting rows, and the like. In the rare
instance that you find yourself with a row ID independent of the
table from which it came, you can determine to which table the row
belongs by calling DbGetTableForRow().

Creating New Rows

To create a row, construct an array of
DbSchemaColumnValueType structures, one for each of the row’s
values. To add your row to a table (you can’t add a row to a
database without adding it to a database table), you pass the
structures to DbInsertRow(). Assuming that the row was added
to the table successfully, this function returns the row ID of your

Palm OS Databases
Working with Schema Databases

Exploring Palm OS: Memory, Databases, and Files 29

new row. Optionally, you can add an “empty” row by calling
DbInsertRow() without supplying the
DbSchemaColumnValueType structures. See the description of
DbInsertRow() for more information.

Rows added to a table are added to the end of the database. You
aren’t given the opportunity to specify the position of the row
within the table. The schema database APIs also don’t include a
function for altering the position of a row within a table. That is
because when working with schema database rows you often are
working within the context of a cursor, within which you can
perform such operations.

Reading Data

Columns in a row are identified either by a 32-bit application-
defined ID or by an index. The index is zero-based and ranges from
0 <= index < n, where n is the number of columns in the schema.
Note that the index of columns added after the schema is initially
created may change, so do not make persistent references to table
columns by their index.

Individual row column values may only be extracted using column
IDs. The Data Manager provides a function that returns a column’s
ID given its index: DbGetColumnID().

DbGetColumnValue() retrieves a single column value. This
function is restrictive, however, in the sense that it does not allow
value retrieval into user-allocated buffers but always returns a
reference to a storage heap buffer. Also, for greater efficiency most
applications will want to retrieve multiple columns using either
DbGetColumnValues() or DbCopyColumnValues().

For columns containing string or vector data, you can retrieve
partial column values through the use of an offset. This is useful for
columns containing large strings or blobs where, for space efficiency
it makes sense to only read or write a portion of the column’s data.

When retrieving values, you can retrieve them either by copy or by
reference.

Value Copy: You allocate output buffers, enclose each in a
DbSchemaColumnValueType structure, and pass them to
the Data Manager by calling either DbCopyColumnValue()

Palm OS Databases
Working with Schema Databases

30 Exploring Palm OS: Memory, Databases, and Files

or DbCopyColumnValues(). The Data Manager then
copies column data into the buffers.

Value Reference: You call either DbGetAllColumnValues(),
DbGetColumnValues(), or DbGetColumnValue(), and
receive back references to column data. This saves RAM by
not requiring an additional buffer for column value storage.
When you are done working with the data, you must
explicitly release the Data Manager-allocated buffer with
DbReleaseStorage(), which unlocks the row.

The storage locality of the buffers for the various value retrieval
functions is detailed in Table 2.5 for different database types.

The code excerpt in Listing 2.1 illustrates how you can retrieve a
single column value with DbGetColumnValue().

Listing 2.1 Retrieving a single column value

status_t errCode;
char nameP[25];
void *valueP;
uint32_t valueSize;
uint32_t columnID = 768;

Table 2.5 Buffer storage locality for column value retrieval
functions

Function Non-Secure Secure

DbGetAllColumnValues()
DbGetColumnValues()
DbGetColumnValue()

Data Manager returns
references to storage-
heap-based column
values.

Data Manager returns
references to dynamic-
heap-based column
values. References to
storage heap values are
not returned for secure
databases.

DbCopyColumnValue()
DbCopyColumnValues()

Data Manager copies
column values to user-
allocated dynamic heap
storage.

Data Manager copies
column values into user-
allocated dynamic heap
storage.

Palm OS Databases
Working with Schema Databases

Exploring Palm OS: Memory, Databases, and Files 31

errCode = DbGetColumnValue(dbRef, rowID, columnID, 0,
 &valueP, &valueSize);
if (errNone == errCode){
 // process each column value
 memcpy(nameP, valueP, valueSize);
} else {
 ErrDisplay("Error in retrieving column value");
 return errCode;
}

// release storage heap buffer returned by the Data Manager
DbReleaseStorage(dbRef, valueP);

The code in Listing 2.2 is similar to the above, but it shows how to
use DbGetAllColumnValues() to retrieve every column value
for a database row with a single call.

Listing 2.2 Retrieving all column values

DbSchemaColumnValueType *columnValueArray;
status_t errCode;
uint32_t numColumns;

errCode = DbGetAllColumnValues(dbRef, rowID,
 &numColumns, &columnValueArray);
if (errNone == errCode){
 // iterate through the column value array
 for (int i=0; i<numColumns; i++){
 if (errNone == columnValueArray[i].errCode){
 // process each column value
 } else {
 // handle error in retrieving column value.
 ErrDisplay("Error in retrieving column value");
 break;
 }
 }
} else {
 ErrDisplay("Error in retrieving column values");
 return errCode;
}

// Release storage heap buffer returned by the Data Manager
// This invalidates all columnValueArray[i].columnData
// references.

Palm OS Databases
Working with Schema Databases

32 Exploring Palm OS: Memory, Databases, and Files

DbReleaseStorage(dbRef, columnValueArray);
}

In addition to retrieving a single column value or all column values,
you can set up an array of column IDs and use
DbGetColumnValues() to retrieve a subset of the row’s values.
Listing 2.3 illustrates the use of DbGetColumnValues() in this
way.

Listing 2.3 Retrieving multiple, specific column values

DbSchemaColumnValueType *columnValueArray;
status_t errCode;
uint32_t columnIDArray[] = {768, 770, 771};
uint32_t numColumns = sizeof(columnIDArray)/sizeof(uint32_t);

errCode = DbGetColumnValues(dbRef, rowID, numColumns,
 columnIDArray, &columnValueArray);
if (errNone == errCode){
 // iterate through the column value array
 for (int i=0; i<numColumns; i++){
 if (errNone == columnValueArray[i].errCode){
 // process each column value
 } else {
 // handle error in retrieving column value.
 ErrDisplay("Error in retrieving column");
 break;
 }
 }
} else {
 ErrDisplay("Error in retrieving column values");
 return errCode;

// Release storage heap buffer returned by the Data Manager.
// This invalidates all columnValueArray[i].columnData
// references.
DbReleaseStorage(dbRef, columnValueArray);

As a final example, Listing 2.4 shows how to retrieve multiple
column values but have them copied into pre-allocated buffers by
DbCopyColumnValues().

Palm OS Databases
Working with Schema Databases

Exploring Palm OS: Memory, Databases, and Files 33

Listing 2.4 Copying multiple, specific column values

DbSchemaColumnValueType columnValueArray[4];
uint32_t numColumns = sizeof(columnValueArray) /
 sizeof(DbColumnValueType);
uint32_t rowIndex;
status_t errCode;

typedef struct {
 char userName[20];
 char userAddressLine1[25];
 char userAddressLine2[25];
 char userAddressLine3[25];
} userDetailsType;
userDetailsType user;

columnValueArray[0].columnID = 768;
columnValueArray[0].data = user.userName;
columnValueArray[0].dataSize = sizeof(user.userName);

columnValueArray[1].columnID = 770;
columnValueArray[1].data = user.userAddressLine1;
columnValueArray[1].dataSize = sizeof(user.userAddressLine1);

columnValueArray[2].columnID = 771;
columnValueArray[2].data = user.userAddressLine2;
columnValueArray[2].dataSize = sizeof(user.userAddressLine2);

columnValueArray[3].columnID = 772;
columnValueArray[3].data = user.userAddressLine3;
columnValueArray[3].dataSize = sizeof(user.userAddressLine3);

errCode = DbCopyColumnValues(dbRef, rowID,
 numColumns, columnValueArray);
if (errNone == errCode){
 // iterate through the column value array to check
 // for retrieval errors
 for (int i =0 ; i < numColumns; i++){
 // process the user name column
 // process each column value directly from the user
 // structure or from columnValueArray[i].data.
 if (errNone == columnValueArray[0].errCode)
 FldSetTextPtr(fldP, user.username);
 else {
 // handle error in retrieving column value.
 ErrDisplay("Error in retrieving column value");
 break;
 }

Palm OS Databases
Working with Schema Databases

34 Exploring Palm OS: Memory, Databases, and Files

 // similarly, process the other columns…
 }
} else {
 ErrDisplay("Error in retrieving column values");
 return errCode;
}

// no storage heap buffer release required here as column
// values are retrieved in a user-allocated buffer

Writing Data

Just as you can read either a single column value or multiple
column values, you can also write a single column value or multiple
column values. DbWriteColumnValue() writes a single column
value to the database. As when reading, for greater efficiency when
writing more than one column value call
DbWriteColumnValues() rather than calling
DbWriteColumnValue() multiple times.

Partial column value writes are also possible for string, blob and
vector columns through the use of an offset. This is useful for
columns that contain large strings or blobs where, for space
efficiency reasons, it makes sense to only write a portion of the
column value.

When calling either of these DbWrite...() functions, the Data
Manager copies the input data values to the storage heap as row
data. Because the database now contains a copy of the data, you
may then free the input data.

Listing 2.5 shows how to use DbWriteColumnValue() to write a
single column value to a schema database.

Listing 2.5 Writing a single column value

uint32_t columnID = 1034;
char newName[] = “Terrence”;
uint32_t nameSize = strlen(newName) + 1; // include the null
int32_t oldSize = -1; // replace the entire column’s data

// this will overwrite old name with new name. Other
// variations are possible depending on
// combinations of bytesToReplace and srcBytes

Palm OS Databases
Working with Schema Databases

Exploring Palm OS: Memory, Databases, and Files 35

if (errNone != DbWriteColumnValue(dbRef, &rowID,
 columnID, 0, oldSize, newName, nameSize)) {
 // handle error in writing column value.
 ErrDisplay("Error in writing column value");
}

Listing 2.6 shows how to use DbWriteColumnValues() to write
multiple column values to a schema database.

Listing 2.6 Writing multiple column values

DbSchemaColumnValueType columnValueArray[3];
uint32_t columnIDArray[] = {1034, 1035, 1036};
uint32_t numColumns = sizeof(columnIDArray)/sizeof(uint32_t);
status_t errCode;

typedef struct {
 uint32_t orderID;
 char orderType[4];
 uint32_t orderQuantity;
} orderDetailsType;

orderDetailsType order;

columnValueArray[0].data = order.orderID;
columnValueArray[0].dataSize = sizeof(order.orderID);
columnValueArray[0].columnID = columnIDArray[0];

columnValueArray[1].data = order.orderType;
columnValueArray[1].dataSize = sizeof(order.orderType);
columnValueArray[1].columnID = columnIDArray[1];

columnValueArray[2].data = order.orderQuantity;
columnValueArray[2].dataSize = sizeof(order.orderQuantity);
columnValueArray[2].columnID = columnIDArray[2];

if (errNone != DbWriteColumnValues(dbRef, &rowID,
 numColumns, columnValueArray)){
 // handle error in writing column value.
 ErrDisplay("Error in writing column value");
}

Palm OS Databases
Working with Schema Databases

36 Exploring Palm OS: Memory, Databases, and Files

Deleting Rows

Delete individual database rows by calling DbDeleteRow(). To
delete a set of rows in a single table, create a cursor that identifies
those rows and then call DbCursorDeleteAllRows().

Cursors
Cursors simplify data access for schema databases. A cursor is a
logical view of a subset of rows from a table, ordered as specified by
the cursor. Once a cursor is created, applications can iterate the rows
from the cursor, retrieve data from rows in the cursor, and to write
data to rows in the cursor.

Cursors are temporary. They are not saved with the database.
Cursors are simple to create and an application can have multiple
cursors active at the same time, including multiple cursors on the
same table.

With the exception of DbInsertRow(), schema database functions
with row access semantics can take either a row ID or a cursor ID as
a parameter. These are both uint32_t values and generally may be
used interchangeably. The Data Manager derives the actual type of
the parameter based on a value-encoding scheme it uses for row
IDs; this scheme ensures that a row ID is always differentiable from
a cursor ID. If you need to know whether a given identifier is a row
ID or a cursor ID (or neither), you can make use of the functions
DbIsRowID() and DbIsCursorID().

The rows in a cursor needn’t be sorted. A cursor that is opened
unsorted is said to use the default sort index. In this instance, the
string you supply for the sql parameter in the
DbCursorOpen...() call should consist of the name of the table
containing the database rows to be included and an optional
WHERE clause indicating which of the table’s rows should be
included in the cursor. (See “The WHERE Clause” on page 41 for
more information on the WHERE clause.)

Creating Cursors

Create a cursor with DbCursorOpen() or
DbCursorOpenWithCategory(). To create a cursor you supply a
reference to an open database; a SELECT statement that specifies the

Palm OS Databases
Working with Schema Databases

Exploring Palm OS: Memory, Databases, and Files 37

database table from which the rows are to be taken, an optional
selection criteria (WHERE clause), and an optional sort criteria
(ORDER BY clause); and a set of flags that indicate whether deleted
or secret rows should be included in the cursor, whether the rows
should be sorted by category, and so on. (See “Cursor Open Flags”
on page 302 for the complete set). If you use
DbCursorOpenWithCategory() you also can limit the rows in
the cursor to those that meet the specified category criteria.

IMPORTANT: The sort index—that is, the SELECT statement—
that you supply when creating the cursor must have been added
to the table prior to its use in the DbCursorOpen... call. See
the documentation for the DbAddSortIndex() function for more
information.

The SELECT Statement

You use a limited form of the standard SQL SELECT statement to
specify the rows that make up the cursor and the order in which
those rows are to occur. You pass this SELECT statement, as an
ASCII string, to DbCursorOpen...(). The following is the basic
format of the schema database SELECT statement:

[SELECT * FROM] tableName [WHERE column op arg]
[ORDER BY (col1, col2, ...) [DESC | ASC | CASED | CASELESS]
[, col...]]

“SELECT * FROM” is entirely optional; its inclusion has no effect at
this point: schema database cursors don’t do projection. tableName is
the only required part of this statement, and must identify the table
from which the cursor rows are to be taken. The optional WHERE
clause allows you to filter the rows to be included in the cursor; see
“The WHERE Clause” on page 41 for a complete description of this
clause.

The ORDER BY clause, also optional, controls the sorting of the
rows within the cursor. Schema databases support two levels of sort
keys, using parenthesis to identify the levels. The ORDER BY clause
is perhaps best illustrated by way of example:

myTable ORDER BY LNAME, FNAME DESC, (34, 56) ASC CASED

Palm OS Databases
Working with Schema Databases

38 Exploring Palm OS: Memory, Databases, and Files

The rows are sorted according to the column names and IDs as
listed here. The first column (“LNAME”, in the above example) gets
the highest priority. The second column (“FNAME”, in the above
example) determines the order within duplicate values of the first.
And the third column determines the order within duplicate values
of the second. In this example the third column ID is a two-level
key: column 34 is used unless that column is empty, in which case
column 56 is used instead. DESC, ASC, and CASED are options that
clarify how the sort is performed. The following options are
allowed:

DESC
(or DESCENDING): sort in descending order.

ASC
(or ASCENDING): sort in ascending order. This is the default if
neither DESC or ASC is specified.

CASED
Take case into account when sorting.

CASELESS
Ignore case when sorting. This is the default if neither CASED
or CASELESS is specified.

Before you can use the SELECT statement when opening a cursor
(other than one corresponding to the default sort index), you must
have added to the database a sort index with a matching SELECT
statement . This is done for efficiency reasons: schema databases
maintain a list of rows in sorted order for each of the database’s sort
indices, and as a row is added, deleted, or modified the record lists
for each sort index that applies to that row are updated. Because the
lists are maintained in sorted order, the Data Manager doesn’t have
to perform a sort operation when you open a cursor that
corresponds to an existing sort index.

Sort Indicies

Sort indices allow you to specify how table rows should be
automatically sorted. These sort indices are maintained by the Data
Manager and are stored as part of the database. Any application that
has read authorization for a database can use the sort indices for
that database. Any application that has write authorization for the
database can add, remove, or edit the sort indices for a database.

Palm OS Databases
Working with Schema Databases

Exploring Palm OS: Memory, Databases, and Files 39

There is no limit to the number of sort indices that you can define
for a database, although for performance reasons you should limit
the number of sort indices to a small number. Large numbers of sort
indices affect the performance of adding, deleting, and modifying
rows, because all indices must be adjusted appropriately as data in
the database changes.

When creating a sort index, you use the format discussed under
“The SELECT Statement” on page 37 to specify the table name and
the keys (by column name or ID) that constitute the sort index. A
sort index can sort on multiple keys; one of those keys is designated
as the primary sort key. The other key specifications are optional
and constitute the secondary sort keys.

Each key definition consists of the set of columns that constitute the
key, the sort order (ascending or descending), and an indication as
to whether or not row comparisons should be made in a case-
sensitive manner. A key can be composed of multiple columns,
although all of a key’s columns must be of the same type. During a
sort index update, when comparing two rows, if a row does not
contain data in the first column of the sort key, the next specified
column is checked and so on until a column with data is found. If
the data in these two columns is equal, the next non-empty specified
columns are checked.

The Data Manager uses its own internal sorting and comparison
routines to keep the index automatically sorted. Whenever a field is
updated, all indices (except the default index) that use that field are
automatically updated.

Sort indices support the data types listed in Table 2.6. Only columns
of the listed types may be used for the sort indices. For dbChar and
dbVarChar data types, you can indicate whether or not a case-
sensitive comparison should be performed. Note that the Data
Manager relies upon the Text Manager comparison APIs when
comparing these data types. This ensures correct sorting with the
appropriate case-sensitivity on localized string data. (Data is sorted
using the current system locale.) Blob data (dbBlob) is compared
using a simple memcmp().

Palm OS Databases
Working with Schema Databases

40 Exploring Palm OS: Memory, Databases, and Files

Application-provided comparison functions are not supported by
sort indices, due to the performance overhead of having to call and
potentially launch an application each time a field is modified.

Add a sort index to a database with DbAddSortIndex(). If you no
longer need a particular sort index you can improve the efficiency of
the database by removing it (so that the database no longer has to
maintain a list of rows in sorted order for that sort index) by calling
DbRemoveSortIndex(). Use the following functions to further
manipulate the sort indices in a schema database:

DbNumSortIndexes()
Get the number of sort indices defined for a given database.
Within a database the defined sort indices have index values
that range from 0 to one less than this number. Thus this
function is particularly useful when iterating through a
database’s sort indices.

DbGetSortDefinition()
Get a sort index given its position in the list of sort indices
defined for a database.

DbHasSortIndex()
Determine whether a particular sort index has been defined
for a database. This function takes the same string that you

Table 2.6 Data types supported by sort indices

dbUInt8 dbUInt16

dbUInt32 dbUInt64

dbInt8 dbInt16

dbInt32 dbInt64

dbFloat dbDouble

dbBoolean dbDateTime

dbDate dbTime

dbChar dbVarChar

dbBlob

Palm OS Databases
Working with Schema Databases

Exploring Palm OS: Memory, Databases, and Files 41

supply when adding a sort index to a database or opening a
cursor.

When you no longer need a particular cursor, call
DbCursorClose() to free all resources associated with the cursor.

An application can temporarily suspend automatic sorting of the
currently opened database by calling DbEnableSorting() with
the enable parameter set to false. This can be useful when doing
a bulk update to the database, or during synchronization. Calling
DbEnableSorting() with the enable parameter set to true will
re-enable automatic sorting and causes the indices to be re-sorted.

The WHERE Clause

The Data Manager parses WHERE clauses and uses the information
provided by applications to filter the set of rows returned as
members of a cursor. For example, an application might request a
cursor containing all rows where the value is greater then 42.

The general format of the WHERE clause is:

column_name_or_ID operator value

In an SQL string the WHERE clauses must come after the table
name and before an ORDER BY clause if one is provided. A simple
example is “table WHERE AGE >= 42”; the resulting cursor
would only contain rows where the value of the column named
“AGE” is greater than or equal to 42.

NOTE: Although the general format of the WHERE clause
indicates that you can use a column ID in place of the column
name, this may not be supported in future releases. Developers
should use column names when specifying a WHERE clause.

Complex requests are supported by using the operators AND and OR.
Both of these operators take WHERE clauses as their operands,
allowing you to string requests together. OR has a lower operator
precedence then AND, so all of the AND conditions are evaluated
before the OR conditions. You can use parenthesis to group sub-
clauses if operator precedence is an issue.

Palm OS Databases
Working with Schema Databases

42 Exploring Palm OS: Memory, Databases, and Files

The PS_LIKE operator allows applications to perform sub-string
matching. The operand is compared with the value in the requested
column using the TxtFindString() function. Positive matches
are added to the cursor, while non-matches are not.

The IS NULL and IS NOT NULL operators allow you to determine
if a column has a value or is NULL. A NULL column value represents
a lack of any value for a column. These operators may be used on all
column types.

Table 2.7 lists the supported operators and the column types they
can be used with.

Table 2.7 WHERE clause operators

Operator Name Supported Operand Types

= Equal to dbBoolean, dbUInt32,
dbInt32, dbUInt16,
dbInt16, dbUInt8,
dbInt8,
dbDateTimeSecs,
dbVarChar

<> Not equal to dbBoolean, dbUInt32,
dbInt32, dbUInt16,
dbInt16, dbUInt8,
dbInt8,
dbDateTimeSecs,
dbVarChar

< Less than dbUInt32, dbInt32,
dbUInt16, dbInt16,
dbUInt8, dbInt8,
dbDateTimeSecs,
dbVarChar

<= Less than or
equal to

dbUInt32, dbInt32,
dbUInt16, dbInt16,
dbUInt8, dbInt8,
dbDateTimeSecs,
dbVarChar

Palm OS Databases
Working with Schema Databases

Exploring Palm OS: Memory, Databases, and Files 43

Moving Through the Rows in a Cursor

When you create a cursor, the Data Manager takes a snapshot of the
cursor’s row IDs. This snapshot is used for iterating rows and is not
affected by sorting updates. This is important to note, since
operations that affect the number and order of rows in a database
table won’t affect the cursor contents until you explicitly refresh the
cursor with DbCursorRequery().

Cursors have a concept of a current row. When you open a cursor
the current row is initially positioned at the first row.
DbCursorMove() alters that current position: it can be used in a
variety of ways. For convenience, the Data Manager includes a set
of macros that simplify the process of altering the current row
position:

DbCursorMoveFirst()
Moves the current row position to the first row in the cursor.

> Greater than dbUInt32, dbInt32,
dbUInt16, dbInt16,
dbUInt8, dbInt8,
dbDateTimeSecs,
dbVarChar

>= Greater than or
equal to

dbUInt32, dbInt32,
dbUInt16, dbInt16,
dbUInt8, dbInt8,
dbDateTimeSecs,
dbVarChar

PS_LIKE PalmSource Like dbVarChar

AND And Other WHERE clauses

OR Or Other WHERE clauses

IS NULL Is NULL All

IS NOT NULL Is not NULL All

Table 2.7 WHERE clause operators (continued)

Operator Name Supported Operand Types

Palm OS Databases
Working with Schema Databases

44 Exploring Palm OS: Memory, Databases, and Files

DbCursorMoveLast()
Moves the current row position to the last row in the cursor.

DbCursorMoveNext()
Moves the current row position one row forward.

DbCursorMovePrev()
Moves the current row position one row backward.

DbCursorMoveToRowID()
Move the current row position to the row with the specified
ID.

DbCursorSetAbsolutePosition()
Moves the current row position to the row with the specified
index.

IMPORTANT: The first row in a cursor has an index value
(position) of 1, similar to ODBC and JDBC. This differs from other
aspects of schema database programming: the first column in a
table has an index value of zero, and the first table in a database
also has an index value of zero.

These macros, plus the fact that an error code is returned if you
attempt to move beyond the bounds of the cursor, make it simple to
iterate through a cursor’s rows. See Listing 2.7 for an example of
how to do this.

Listing 2.7 Iterating through a cursor’s rows

status_t err;

err = DbCursorMoveFirst(myCursor);
if(err == errNone){
 while(!DbCursorIsEOF(myCursor)){
 // do something with the row data here, using the
 // cursor to indicate the current row. Like this:
 DbCopyColumnValue(dbRef, myCursor, ...);

 DbCursorMoveNext(myCursor);
 }
}

Palm OS Databases
Working with Schema Databases

Exploring Palm OS: Memory, Databases, and Files 45

Because the various Data Manager functions that accept a row ID
also accept a cursor ID, you needn’t obtain the row ID of the current
cursor row. As shown in the above example, just supply the cursor
ID when calling a function such as DbCopyColumnValue().

Rows that have been modified are not moved to their new sort
position until DbCursorRequery() is called. Similarly, any newly-
added rows are not available to the cursor until
DbCursorRequery() is called. By calling DbCursorRequery(),
you can refresh the cursor at any time to reflect the latest changes
and sorting. Note that when a refresh occurs the current row may
move to a new position and future move operations will move from
the new position, not the old position. For example, if you change
the data in the current row such that the row would wind up at the
end of the cursor, and you then call DbCursorRequery(), a
subsequent call to DbCursorMoveNext() will result in a
dmErrCursorEOF error.

Data Variable Binding

Cursors allow you to bind variables to columns of the schema.
When a variable is bound to a column, that variable is automatically
updated with the field value of the current row in the cursor
whenever the cursor’s current position is changed. You needn’t call
DbGetColumnValues(); the data is automatically copied to the
bound variables for you.

When calling DbCursorBindData() (or
DbCursorBindDataWithOffset()), you must specify the ID of
the column to which the variable is to be bound, a pointer to a data
buffer (the bound variable), the length of that buffer, a pointer to a
separate variable to hold the size of the data returned in the data
buffer if the column type is one that has varying length, and a
pointer to a variable that will receive an error code that is set each
time the variable is updated. The error code will be set to errNone
if the data is copied to the bound variable successfully, to
dmErrNoColumnData if the column contains no data, or to some
other value if an error of a different sort occurred.

The DbCursorBindDataWithOffset() function is similar to
DbCursorBindData() but adds an extra parameter that lets you
specify a byte offset into the field’s data. The data copied to the

Palm OS Databases
Working with Schema Databases

46 Exploring Palm OS: Memory, Databases, and Files

variable is taken from the database field at the specified offset. This
allows you to bind a subset of the field data to a variable.

You need to call DbCursorBindData() (or
DbCursorBindDataWithOffset()) once for each column that
you want to automatically retrieve or set data. It is not necessary to
bind every column in the schema; only bind those that you are
interested in. See Listing 2.8 for an example of how to use data
variable binding.

Listing 2.8 Data variable binding example

uint32_t cursor;
char name[32];
char phone[24];
uint32_t sizeName;
uint32_t sizePhone;
status_t errName;
status_t errPhone;

dbRef = DbOpenDatabase(dbID, dmModeReadWrite, dbShareNone,
 idSortByName);

// Create the cursor
err = DbCursorOpen(dbRef, selectString, 0, &cursor);

// Bind the local variables to columns
DbCursorBindData(cursor, idColName, name, 32, &sizeName,
&errName);
DbCursorBindData(cursor, idColPhone, phone, 24, &sizePhone,
 &errPhone);

// Read and display all rows in the cursor
err = DbCursorMoveFirst(cursor);
while (err == errNone){
 // Data is now in bound variables, so display it
 DisplayNameAndPhone(name, sizeName, phone, sizePhone);

 // Get data for next row
 err = DbCursorMoveNext(cursor);
}

// Change the field values in the 5th row in cursor
DbCursorMoveTo(cursor, 4);
strcpy(name, "John Doe");
sizeName = strlen(name);

Palm OS Databases
Working with Schema Databases

Exploring Palm OS: Memory, Databases, and Files 47

strcpy(phone, "555-1234");
sizePhone = strlen(phone);
err = DbCursorUpdate(cursor);

DbCursorClose(cursor);

Variable binding can also be used to write data to the database.
Simply set each bound variable to its desired value, then call
DbCursorUpdate(). All values are written to the database for the
current row. Note that for varying-length types (dbVarChar and
dbBlob) you should also set the corresponding dataSize
variable—specified when you bound the variable to the schema
column—to indicate the size of the data to be written back to that
field.

NOTE: You must call DbCursorUpdate() each time you wish
to update a schema database row with the contents of its bound
variables. Changing the cursor’s current position transfers data
from the row to the bound variables; it doesn’t automatically
transfer data from the bound variables to the row’s fields.

Secure Databases
Some applications need to create secure databases that restrict
access to the database. The Data Manager supports the creation of
secure databases that are protected by application-defined access
rules, which are also known as rule sets.

To create a secure database, use DbCreateSecureDatabase().
When a secure database is initially created, it is completely
protected and cannot be opened until access rules allowing read or
write access have been defined for the database.
DbCreateSecureDatabase() returns an initial rule set for the
newly-created secure database. The initial rule set contains only one
rule that allows the calling application, and no other, to modify the
database’s access rules. This is known as modify access.

There are six different actions that can be used in access rules:

dbActionRead

dbActionWrite

Palm OS Databases
Working with Schema Databases

48 Exploring Palm OS: Memory, Databases, and Files

dbActionDelete

dbActionSchemaEdit

dbActionBackup

dbActionRestore

Access rules can require a digital signature, require a password,
require a PIN, or allow unrestricted access. You can define different
access rules for each of the different actions defined by the Data
Manager. For example, a secure database could be configured to
allow read access to anyone, but require a password for all other
access. Creating access rules that require digital signatures provides
for databases that can only be accessed by applications that have the
correct digital signature. For more information about access rules,
see Exploring Palm OS: Security and Cryptography.

Security is maintained at the database level, not for each individual
row. All rows in the database have the same level of security. There
is no way to assign different levels of security for different rows in
the same database.

Secure databases are only visible to the Data Manager process. They
are stored in the Data Manager’s private secure storage heap,
separate from unsecured databases. Applications can use the Data
Manager catalog functions, such as DmFindDatabase(), to
determine if the secure database exists. But the database data is not
available to an application until the application, the user, or both
have been authorized.

When an application requests access to a secure database, the Data
Manager first calls the Authorization Manager to verify that the
current user and/or application has rights to access the database. If
the Authorization Manager approves access to the secure database,
the Data Manager copies the requested rows to the application
process as needed. For read operations the database data is copied
from the Data Manager’s private secure storage heap to the
application’s dynamic heap. Note since the data is copied to the
application’s dynamic heap, the data is writable. Even though it is
writable, the application must still call the appropriate Data
Manager write functions to update the data. Writing directly to the
copy of the data in the dynamic heap has no effect on the row data
in the database.

Palm OS Databases
Working with Schema Databases

Exploring Palm OS: Memory, Databases, and Files 49

The Data Manager requires dbActionRead authorization when
using the following functions on a secure database:

• DbOpenDatabase() with read-only mode

• DbOpenDatabaseByTypeCreator() with read-only mode

The Data Manager requires dbActionWrite authorization when
using the following functions on a secure database:

• DbOpenDatabase() with write-only mode or read-write
mode

• DbOpenDatabaseByTypeCreator() with write-only
mode or read-write mode

• DmSetDatabaseInfo()

• DmSetDatabaseProtection()

The Data Manager requires dbActionDelete authorization when
using the following functions on a secure database:

• DmDeleteDatabase()

The Data Manager requires dbActionSchemaEdit authorization
when using following APIs on a secure database:

• DbAddSchema()

• DbAddColumn()

• DbRemoveSchema()

• DbRemoveColumn()

• DbSetColumnPropertyValue()

• DbSetColumnPropertyValues()

• DbRemoveColumnProperty()

The Data Manager requires dbActionBackup authorization when
using the following functions on a secure database:

• DmBackupInitialize()

• DmBackupUpdate()

• DmBackupFinalize()

The Data Manager requires dbActionRestore authorization
when using the following functions on a secure database:

• DmRestoreInitialize()

Palm OS Databases
Working with Schema Databases

50 Exploring Palm OS: Memory, Databases, and Files

• DmRestoreUpdate()

• DmRestoreFinalize()

All other Data Manager functions do not require authorization
when used on a secure database, because they either require a
previous open call before they can be used, or they do not perform
an operation that necessitates authorization.

Once a secure database has been successfully authorized and
opened, the Data Manager places a special key in the calling
application’s process that indicates that the process has been
authorized to use the database. All Data Manager functions that
take a DmOpenRef as a parameter use this special key as proof that
the application is allowed access. This allows the Data Manager to
detect forged DmOpenRefs without needing to call the
Authorization Manager for every function. The key is revoked
when the database is closed.

The Data Manager also provides a function, DbGetRuleSet(),
that allows an application to get the current rule set for a secure
database. Once the rule set is obtained, the application can modify
the access rules for the secure database—provided that the
application has modify access. Once a secure database is open, any
change in the access rules do not apply until the database is
reopened.

Note that the Data Manager does not provide functions for creating
or modifying the access rules, only functions for creating secure
databases. Your application must use functions provided by the
Authorization Manager and the Authentication Manager to define
the access rules for a secure database.

Secure Databases and HotSync Operations

The Data Manager restricts access to a secure database to only those
applications and users authorized by the database’s access rules.
During a sync operation the HotSync® client on the handheld uses
Data Manager functions to access the handheld databases on behalf
of the conduits running on the desktop. The HotSync client
application must be able to access secure databases that need to be
synchronized or backed up.

Palm OS Databases
Working with Schema Databases

Exploring Palm OS: Memory, Databases, and Files 51

In order for an application to ensure that its secure database is
syncable, it must modify the database access rules so that the
HotSync client has special “bypass” access using the
AzmLibSetBypass() function. When the HotSync client is given
bypass access, any conduit on the desktop is able to access the
database (the HotSync process does not provide a way to restrict
access on a per-conduit basis). The bypass access must be made for
each action needed. Since you can grant the HotSync client bypass
access for each action separately, you can, for example, give the
HotSync client read access, but not write or delete access.

If the HotSync client is not given bypass access, it is subject to the
normal access rules as defined by the application. For example, if an
application defines the access rules for its database so that only
signed applications have access (read, write, or delete), during a
HotSync operation the database isn’t syncable since the HotSync
client doesn’t have the proper signature required to access the data.
Therefore to allow syncing of the database the application must give
“bypass” access to the HotSync client, which essentially grants
access both to the HotSync client and to any properly-signed
application.

The HotSync client on the handheld maintains a notion of trusted
desktops. The HotSync process doesn’t allow syncing or backing up
of secure databases to non-trusted desktops.

Backing up Secure Databases

When a secure database is backed up to the desktop it is sent to the
desktop in encrypted form and is saved on the desktop encrypted.
During a backup operation the Data Manager encrypts the data.
This differs from a sync operation; when data is sent to the desktop
during synchronization it is sent “in the clear”—it is not encrypted.

Secure databases that were encrypted during backup can only be
decrypted and restored by the Data Manager. The Data Manager
provides special functions to perform the backup and restore
operations: you use a combination of DmBackupInitialize(),
DmBackupUpdate(), and DmBackupFinalize() to back the
database up, and DmRestoreInitialize(),
DmRestoreUpdate(), and DmRestoreFinalize() to restore the
data. Note that these backup and restore functions work with both
secure and non-secure databases.

Palm OS Databases
Working with Schema Databases

52 Exploring Palm OS: Memory, Databases, and Files

Concurrent Database Access
When you open a non-schema database with write access, you have
exclusive access to that database: no one else can open that database
while you have it open, even if they are just opening it with read
access. Or, when you open a non-schema database with read access,
no one else can open that same database with write access. This can
be somewhat restrictive: on a communicator-style device, for
example, if you are editing a record in the address book when the
phone rings, the phone application running in another process
couldn’t open the address book in order to perform a caller-ID
lookup.

Schema databases don’t have this problem because they support
concurrent access to a single database. Note that schema databases
don’t support concurrent write access: only one writer and multiple
readers are allowed.

When opening a schema database you specify a share mode in
addition to an access mode. The following share mode constants are
supported for schema databases. Only one share mode can be
specified when opening a database.

dbShareNone
No one else can open this database.

dbShareRead
Others can open this database with read access.

dbShareReadWrite
Others can open this database with read or write access.

Concurrent write access to the same database is not supported. That
is, specifying an access mode of dmModeReadWrite and a share
mode of dbShareReadWrite is not supported; an error will be
returned if you attempt to open a database with this combination of
access and share modes.

Table 2.8, below, shows all of the allowed combinations of access
modes and share modes, and identifies which combinations can be
used together (those that are marked “OK”).

Palm OS Databases
Working with Schema Databases

Exploring Palm OS: Memory, Databases, and Files 53

When sharing is enabled (that is, when the database is opened with
shared read or shared read/write), the Data Manager server
synchronizes access to the database. The synchronization is done at
the database level. Each schema database function call is atomic,
thus providing data integrity at the function level. Since the Data
Manager doesn’t support multiple applications writing to the same
database, it doesn’t have to deal with issues around concurrent
updates.

As discussed in “Reading Data” on page 29, you can access record
values by copy or by reference. When using the “by reference”
functions to read record values from a database opened with shared
write access, the Data Manager maintains a reference count of the
number of active readers for each row. Applications can only
modify a row if its reference count is 0—that is, if no one is currently
reading that row. This protects the row against concurrent updates.

Whenever a schema database row is modified, added, deleted, or
removed, the row index and any sort indices are automatically
updated. This can only be done when the database is opened with
write access. If another process has concurrently opened the same
database with read access, however, it too will be affected by the
changes to the sort indices. This is not a problem, however, since
cursor shield the application from changes like this.

Table 2.8 Allowable concurrent access/share mode
combinations

Mode=R
Share=None

Mode=R
Share=R

Mode=R
Share=R/W

Mode=R/W
Share=None

Mode=R/W
Share=R

Mode=R
Share=None

sharing not
allowed

sharing not
allowed

sharing not
allowed

sharing not
allowed

sharing not
allowed

Mode=R
Share=R

sharing not
allowed

OK OK sharing not
allowed

sharing not
allowed

Mode=R
Share=R/W

sharing not
allowed

OK OK sharing not
allowed

OK

Mode=R/W
Share=None

sharing not
allowed

sharing not
allowed

sharing not
allowed

sharing not
allowed

sharing not
allowed

Mode=R/W
Share=R

sharing not
allowed

sharing not
allowed

OK sharing not
allowed

sharing not
allowed

Palm OS Databases
Working with Non-Schema Databases

54 Exploring Palm OS: Memory, Databases, and Files

Working with Non-Schema Databases
Schema databases impose a structure upon the data, organizing it
into tables, rows, and columns. Non-schema databases, on the other
hand, impose less overhead and are significantly more flexible. Of
course, your application generally has to do more work when
dealing with non-schema databases, since your application is
entirely responsible for interpreting the structure of each record.

Non-schema databases can either be record or resource databases. A
record database holds application data. Each record can be
structured in any fashion that the application desires. Resource
databases are used to contain executable code, application
resources, and the like.

In Palm OS Cobalt, non-schema databases come in two “flavors”:
classic and extended. Classic databases are provided for
compatibility with previous versions of Palm OS (and with
applications running on Palm OS Cobalt through PACE). Because of
a couple of long-standing limitations, however, unless your
application needs this level of compatibility it should use extended
or schema databases instead. Both classic and extended databases
can be either record or resource databases.

Extended databases are very similar to classic databases. They have
the following differences:

Because the two non-schema database types are so similar, you use
many of the same functions when working with either database
type. One of the most important functions that works only on

Classic Database Extended Database

Records cannot exceed 64 KB in
size.

Records can be more than 64
KB in length.

Are uniquely identified by
name.

Are uniquely identified by a
combination of name and
creator ID.

Data should be stored in big-
endian format (for 68K
compatibility).

Data can be stored in either big-
endian or little-endian format.

Palm OS Databases
Working with Non-Schema Databases

Exploring Palm OS: Memory, Databases, and Files 55

extended databases is DmCreateDatabase(). To create a classic
database, you use DmCreateDatabaseV50() instead. Other
functions behave differently depending on whether you are
operating on a classic or an extended database, and still others—
such as DmFindDatabase()—use parameters to control their
behavior in this area.

Structure of a Non-Schema Database Header
A non-schema database header consists of some basic database
information and a list of records in the database. Each record entry
in the header has the MemHandle of the record, 8 attribute bits, and
a 3-byte unique ID for the record.

This section provides information about database headers,
discussing these topics:

• Database Header Fields

• Structure of a Record Entry in a Non-Schema Database
Header

IMPORTANT: Expect the database header structure to change
in the future. Use the API to work with database structures.

Database Header Fields

The database header has the following fields:

• The name field holds the name of the database.

• The attributes field has flags for the database.

• The version field holds an application-specific version
number for that database.

• The modificationNumber is incremented every time a
record in the database is deleted, added, or modified. Thus
applications can quickly determine if a shared database has
been modified by another process.

• The appInfoID is an optional field that an application can
use to store application-specific information about the
database. For example, it might be used to store user display
preferences for a particular database.

Palm OS Databases
Working with Non-Schema Databases

56 Exploring Palm OS: Memory, Databases, and Files

• The sortInfoID is another optional field an application can
use for storing the ID of a sort table for the database.

• The type and creator fields are each 4 bytes and hold the
database type and creator. The system uses these fields to
distinguish application databases from data databases and to
associate data databases with the appropriate application.

• The numRecords field holds the number of record entries
stored in the database header itself. If all the record entries
cannot fit in the header, then nextRecordList identifies a
recordList that contains the next set of records.

Each record entry stored in a record list has three fields and
is 8 bytes in length. Each entry has the MemHandle of the
record which takes up 4 bytes: 1 byte of attributes and a 3-
byte unique ID for the record. The attribute field, shown
in Figure 2.1, is 8 bits long and contains 4 flags and a 4-bit
category number. The category number is used to place
records into user-defined categories like “business” or
“personal.”

Figure 2.1 Record Attributes

Structure of a Record Entry in a Non-Schema Database Header

Each record entry has the MemHandle of the record, 8 attribute bits,
and a 3-byte unique ID for the record.

The unique ID must be unique for each record within a database. It
remains the same for a particular record no matter how many times
the record is modified. It is used during synchronization with the
desktop to track records on the Palm Powered handheld with the
same records on the desktop system.

Category (4)

secret bit
busy bit

dirty bit

delete bit

Palm OS Databases
Working with Non-Schema Databases

Exploring Palm OS: Memory, Databases, and Files 57

The record attribute bits are set in the following circumstances:

• When the user deletes or archives a record the delete bit is
set. Note, however, that its entry in the database header
remains until the next synchronization with the PC.

• The dirty bit is set whenever a record is updated.

• The busy bit is set when an application currently has a
record locked for reading or writing.

• The secret bit is set for records that should not be
displayed before the user password has been entered on the
handheld.

When a user “deletes” a record on a Palm Powered handheld, the
record’s data chunk is freed, the MemHandle stored in the record
entry is set to 0, and the delete bit is set in the attributes. When the
user archives a record, the deleted bit is also set but the chunk is not
freed and the MemHandle is preserved. This way, the next time the
user synchronizes with the desktop system, the desktop computer
can quickly determine which records to delete (since their record
entries are still around on the handheld). In the case of archived
records, the conduit can save the record data on the desktop before
it permanently removes the record entry and data from the
handheld. For deleted records, the conduit just has to delete the
same record from the desktop before permanently removing the
record entry from the handheld.

Working with Non-Schema Databases
Using the Data Manager is similar to using a traditional file
manager, except that the data is broken down into multiple records
instead of being stored in one contiguous chunk. To create or delete
a database, call DmCreateDatabase() (or, for classic databases,
DmCreateDatabaseV50()) and DmDeleteDatabase().

To open a database for reading or writing, you must first get the
database ID. Calling DmFindDatabase() searches for a database
by name and type (schema, extended, or classic) and returns its
database ID.

After determining the database ID, you can open the database for
read-only or read/write access. When you open a database, the
system locks down the database header and returns a reference to a

Palm OS Databases
Working with Non-Schema Databases

58 Exploring Palm OS: Memory, Databases, and Files

database access structure, which tracks information about the open
database and caches certain information for optimum performance.
The database access structure is a relatively small structure (less
than 100 bytes) allocated in the dynamic heap that is disposed of
when the database is closed.

Call DmDatabaseInfo(), DmSetDatabaseInfo(), and
DmDatabaseSize() to query or set information about a database,
such as its name, size, creation and modification dates, attributes,
type, and creator.

Call DmGetRecord(), DmQueryRecord(), and
DmReleaseRecord() when viewing or updating a database.

• DmGetRecord() takes a record index as a parameter, marks
the record busy, and returns a handle to the record. If a
record is already busy when DmGetRecord() is called, an
error is returned.

• DmQueryRecord() is faster if the application only needs to
view the record; it doesn’t check or set the busy bit, so it’s not
necessary to call DmReleaseRecord() when finished
viewing the record.

• DmReleaseRecord() clears the busy bit, and updates the
modification number of the database and marks the record
dirty if the dirty parameter is true.

To resize a record to grow or shrink its contents, call
DmResizeRecord(). During reallocation, the handle to the record
may change. DmResizeRecord() returns the new handle to the
record.

To add a new record to a database, call DmNewRecord(). This
function can insert the new record at any index position, append it
to the end, or replace an existing record by index. It returns a handle
to the new record.

There are three methods for removing a record:
DmRemoveRecord(), DmDeleteRecord(), and
DmArchiveRecord().

• DmRemoveRecord() removes the record’s entry from the
database header and disposes of the record data.

• DmDeleteRecord() also disposes of the record data, but
instead of removing the record’s entry from the database

Palm OS Databases
Working with Non-Schema Databases

Exploring Palm OS: Memory, Databases, and Files 59

header, it sets the deleted bit in the record entry attributes
field and clears the local chunk ID.

• DmArchiveRecord() does not dispose of the record’s data;
it just sets the deleted bit in the record entry.

Both DmDeleteRecord() and DmArchiveRecord() are useful
for synchronizing information with a desktop computer. Since the
unique ID of the deleted or archived record is still kept in the
database header, the desktop computer can perform the necessary
operations on its own copy of the database before permanently
removing the record from the Palm OS database.

Call DmGetRecordAttr(), DmGetRecordCategory(), and
DmGetRecordID() to retrieve the record information stored in the
database header, and DmSetRecordAttr(),
DmSetRecordCategory(), and DmSetRecordID() to set this
information. Typically, applications set or retrieve the category of a
record, which is stored in the lower four bits of the record’s attribute
field.

To move records from one index to another or from one database to
another, call DmMoveRecord(), DmAttachRecord(), and
DmDetachRecord(). DmDetachRecord() removes a record
entry from the database header and returns the record handle.
Given the handle of a new record, DmAttachRecord() inserts or
appends that new record to a database or replaces an existing record
with the new record. DmMoveRecord() is an optimized way to
move a record from one index to another in the same database.

Record Attributes
Table 2.4 lists the functions that you use to get and set a non-schema
database record’s ID, category, and attributes.

Table 2.9 Functions used to access record information

Non-Schema Database

Local ID DmGetRecordID()
DmSetRecordID()

Palm OS Databases
Working with Non-Schema Databases

60 Exploring Palm OS: Memory, Databases, and Files

Resource Databases

Structure of a Resource Database Header

A resource database header consists of some general database
information followed by a list of resources in the database. The first
portion of the header is identical in structure to a normal database
header (see “Structure of a Non-Schema Database Header” on
page 55). Resource database headers are distinguished from normal
database headers by the dmHdrAttrResDB bit in the attributes
field.

IMPORTANT: Expect the resource database header structure to
change in the future. Use the API to work with resource database
structures.

• The name field holds the name of the resource database.

• The attributes field has flags for the database and always
has the dmHdrAttrResDB bit set.

• The modificationNumber is incremented every time a
resource in the database is deleted, added, or modified. Thus,
applications can quickly determine if a shared resource
database has been modified by another process.

• The appInfoID and sortInfoID fields are not normally
needed for a resource database but are included to match the
structure of a regular database. An application may
optionally use these fields for its own purposes.

• The type and creator fields hold 4-byte signatures of the
database type and creator as defined by the application
that created the database.

Category Membership DmGetRecordCategory()
DmSetRecordCategory()

Attributes DmGetRecordAttr()
DmSetRecordAttr()

Table 2.9 Functions used to access record information

Non-Schema Database

Palm OS Databases
Working with Non-Schema Databases

Exploring Palm OS: Memory, Databases, and Files 61

• The numResources field holds the number of resource info
entries that are stored in the header itself. In most cases, this
is the total number of resources. If all the resource info
entries cannot fit in the header, however, then
nextResourceList has the chunkID of a resourceList
that contains the next set of resource info entries.

Each 10-byte resource info entry in the header has the resource type,
the resource ID, and the ID of the Memory Manager chunk that
contains the resource data.

Working with Resource Databases

You can create, delete, open, and close resource databases with the
functions used to create normal record-based databases (see
“Working with Non-Schema Databases” on page 54). This includes
all database-level (not record-level) functions in the Data Manager
such as DmCreateDatabase(), DmDeleteDatabase(),
DmDatabaseInfo(), and so on.

When you create a new database using DmCreateDatabase(), the
type of database created (record or resource) depends on the value
of the resDB parameter. If set, a resource database is created and the
dmHdrAttrResDB bit is set in the attributes field of the
database header. Given a database header ID, an application can
determine which type of database it is by calling
DmDatabaseInfo() and examining the dmHdrAttrResDB bit in
the returned attributes field.

Once a resource database has been opened, an application can read
and manipulate its resources by using the resource-based access
functions of the Resource Manager. Generally, applications use the
DmGetResource() and DmReleaseResource() functions.

DmGetResource() searches a specified resource database and
returns a handle to a resource, given the resource type and ID.

Palm OS Databases
Working with Non-Schema Databases

62 Exploring Palm OS: Memory, Databases, and Files

NOTE: Previous versions of Palm OS had the notion of a
resource “search chain”, the set of all open resource databases
that were searched when looking for a specified resource. This
concept isn’t really supported in Palm OS 6, except for
compatibility purposes: applications that run under PACE will
work as originally designed. To support this level of compatibility,
the Data Manager contains a number of deprecated functions that
provide the old functionality. These functions are:
DmOpenDatabaseV50(), DmOpenDBNoOverlayV50(),
DmOpenDatabaseByTypeCreatorV50(),
DmGetResourceV50(), and DmGet1ResourceV50(). Because
these functions are deprecated, applications written for Palm OS
6 should not rely upon them.

DmReleaseResource() should be called as soon as an application
finishes reading or writing the resource data. To resize a resource,
call DmResizeResource(), which accepts a handle to a resource
and reallocates the resource. It returns the handle of the resource,
which might have been changed.

The remaining Resource Manager functions are usually not required
for most applications. These include functions to get and set
resource attributes, move resources from one database to another,
get resources by index, and create new resources. Most of these
functions reference resources by index to optimize performance.
When referencing a resource by index, the DmOpenRef of the open
resource database that the resource belongs to must also be
specified. Call DmSearchResourceOpenDatabases() to find a
resource by type and ID or by pointer by searching in all open
resource databases opened by the process. Note that this function
does not search resource databases opened in other processes.

To get the DmOpenRef of the topmost open resource database, call
DmNextOpenResDatabase() and pass NULL as the current
DmOpenRef. To find out the DmOpenRef of each successive
database, call DmNextOpenResDatabase() repeatedly with each
successive DmOpenRef.

Given the access pointer of a specific open resource database,
DmFindResource() can be used to return the index of a resource,
given its type and ID. DmFindResourceType() can be used to get

Palm OS Databases
Working with Non-Schema Databases

Exploring Palm OS: Memory, Databases, and Files 63

the index of every resource of a given type. To get a resource handle
by index, call DmGetResourceByIndex().

To determine how many resources are in a given database, call
DmNumResources(). To get and set attributes of a resource
including its type and ID, call DmResourceInfo() and
DmSetResourceInfo(). To attach an existing data chunk to a
resource database as a new resource, call DmAttachResource().
To detach a resource from a database, call DmDetachResource().

To create a new resource, call DmNewResource() and pass the
desired size, type, and ID of the new resource. To delete a resource,
call DmRemoveResource(). Removing a resource disposes of its
data chunk and removes its entry from the database header.

Overlays

Resource databases (and only resource databases) can have overlay
databases associated with them; these localization overlays provide
a method of localizing a software module without requiring a
recompile or modification of the software. Each overlay database is
a separate resource database that provides an appropriately-
localized set of resources for a single software module (the base
database) and a single target locale (language and country).

When a resource database is opened, the Data Manager looks for an
overlay matching the base database and the current locale. When
searching for an overlay database, the Data Manager first looks in
RAM. If an appropriate overlay database isn’t found there for the
specified base database and target locale, it then tries to locate one in
ROM.

Most of the locale APIs are declared in the Locale Manager, which is
documented in Exploring Palm OS: Text and Localization. The Data
Manager does provide a few functions, however, that let you get
and set the locale that is used when opening an overlay, that
determines an overlay database’s locale, and that identifies the
proper overlay database given the name of a base database and a
locale.

Palm OS Databases
Working with Non-Schema Databases

64 Exploring Palm OS: Memory, Databases, and Files

NOTE: There is no system support for letting the user pick the
language of a given application. A separate application—the
“language picker”—lets the user change the Data Manager’s
overlay locale. This application sets the overlay locale indirectly,
by changing the system locale and thus forcing a soft reset.

The Data Manager’s overlay locale is a global setting that applies to
all processes and threads. The overlay locale is initialized to be the
same as the system locale following a soft reset. After the overlay
locale is changed by calling DmSetOverlayLocale(), whenever
the Data Manager needs to automatically open an overlay it uses the
specified locale. If no valid overlay exists for that overlay locale, the
Data Manager uses the fallback overlay locale instead.

You set the Data Manager’s overlay locale with
DmSetOverlayLocale(), and you get it with
DmGetOverlayLocale(). Similarly, set the fallback overlay locale
by calling DmSetFallbackOverlayLocale() and get it by
calling DmGetFallbackOverlayLocale().

For a given overlay database, you can determine its locale by
passing the overlay database name and a pointer to an
LmLocaleType structure to DmGetOverlayDatabaseLocale().
Upon return, the LmLocaleType structure contains the overlay
database’s locale.

To locate the overlay database for a given base database, pass the
name of the base database and an LmLocaleType structure
indicating the desired locale to DmGetOverlayDatabaseName().
It will return the name of the overlay database for the specified base
database and locale. You can pass NULL instead of a pointer to an
LmLocaleType structure to obtain the overlay database name for
the base database and the current locale.

Overlay Signature Verification

If the base database is signed, then the overlay database must also
be signed, and its signature must be validated using a certificate ID
that comes from the base database’s 'sign' resource. More
specifically,

• The base database’s 'sign' resource must contain one or
more overlay certificate ID values.

Palm OS Databases
Data Manager Tips

Exploring Palm OS: Memory, Databases, and Files 65

• The overlay database must contain a 'sign' resource.

• One of the signatures in the overlay database’s 'sign'
resource must use a certificate ID that comes from the base
database’s 'sign' resource list of overlay certificate ID
values, and this signature must validate the overlay
database.

Data Manager Tips
Working properly with databases makes your application run faster
and synchronize without problems. Follow these suggestions:

• Database names can be up to 31 characters in length, and on
the handheld can be composed of any valid 7-bit ASCII
characters (only). Some conduits—such as PalmSource’s
backup conduit—use a name-mangling scheme to preserve
case-sensitive database names when generating backup
filenames on Microsoft Windows. Other conduits may not do
this, however, so you may want to avoid filenames that
depend on case for distinction.

IMPORTANT: Previous versions of Palm OS didn’t enforce the
requirement that database names be composed only of 7-bit
ASCII characters. Palm OS Cobalt requires that this be so.

By convention, filename extensions are not used on the
handheld. Instead, database types are used to identify
databases as members of a certain type or class. Note that
when the PalmSource backup conduit transfers a file to the
desktop, it automatically appends one of the following
extensions to the database filename:

– PRC for resource databases (classic or extended)

– PDB for non-schema record databases (classic or
extended)

– SDB for non-secure schema databases

– SSD for secure schema databases

Palm OS Databases
File Streaming Layer

66 Exploring Palm OS: Memory, Databases, and Files

– VLT for vault databases used to hold security information
(HEKs, rules, tokens, and the like)

The extension is removed when the file is transferred back to
the handheld.

• When the user deletes a record from a database, call
DmDeleteRecord() (or DbDeleteRow()) to remove all
data from the record, not DmRemoveRecord() (or
DbRemoveRow()) to remove the record itself. That way, the
desktop application can retrieve the information that the
record is deleted the next time there is a HotSync operation.

Note: If your application doesn’t have an associated conduit,
call DmRemoveRecord() to completely remove the record.

• Keep data in database records compact. To avoid
performance problems, Palm OS databases are not
compressed, but all data are tightly packed. This pays off for
storage and during HotSync operations.

• All records in a non-schema database should be of the same
type and format. This is not a requirement, but is highly
recommended to avoid processing overhead.

• Be sure your application modifies the flags in the database
header appropriately when the user deletes or otherwise
modifies information. This flag modification is only required
if you’re synchronizing with the PalmSource PIM
applications, but should likely be done with any database
that is to be sync’d by a conduit.

• Don’t display deleted records.

• Call DmSetDatabaseInfo() when creating a non-schema
database to assign a version number to your application.
Databases default to version 0 if the version isn’t explicitly
set.

• Call DmDatabaseInfo() to check the non-schema database
version at application start-up.

File Streaming Layer
The file streaming functions add a layer on top of the classic
database functions and let you work with a Palm OS database using
a more familiar set of operations. File streams allow you to read,

Palm OS Databases
File Streaming Layer

Exploring Palm OS: Memory, Databases, and Files 67

write, seek to a specified offset, truncate, and do everything else
you'd expect to do with a desktop-style file.

Other than backup and restore, Palm OS does not provide direct
HotSync support for file streams.

The use of double-buffering imposes a performance penalty on file
streams that may make them unsuitable for certain applications.
Record-intensive applications tend to obtain better performance
from the Data Manager.

Using the File Streaming API
The File Streaming API is derived from the C programming
language’s <stdio.h> interface. Any C book that explains the
<stdio.h> interface should serve as a suitable introduction to the
concepts underlying the Palm OS File Streaming API. This section
provides only a brief overview of the most commonly used file
streaming functions.

The FileOpen() function opens or creates a file (an extended
database; use FileOpenV50() to open or create a classic database),
and the FileRead() function reads it. The semantics of
FileRead() and FileWrite() are just like their <stdio.h>
equivalents, the fread() and fwrite() functions. The other
<stdio.h> functions have obvious analogs in the File Streaming
API as well.

For example,

theStream = FileOpen("KillerAppDataFile", 'KILR',
 'KILD', fileModeReadOnly, &err);

As on a desktop, the filename is the unique item. The creator ID and
file type are for informational purposes and your code may require
that an opened file have the correct type and creator.

IMPORTANT: Previous versions of Palm OS didn’t enforce the
requirement that database names passed to FileOpen() be
composed only of 7-bit ASCII characters. Palm OS Cobalt
requires that this be so.

Palm OS Databases
File Streaming Layer

68 Exploring Palm OS: Memory, Databases, and Files

Normally, the FileOpen() function returns an error when it
attempts to open or replace an existing stream having a type and
creator that do not match those specified. To suppress this error,
pass the fileModeAnyTypeCreator selector as a flag in the
openMode parameter to the FileOpen() function.

To read data, use the FileRead() function as in the following
example:

FileRead(theStream, &buf, objSize, numObjs, &err);

To free the memory used to store stream data as the data is read, you
can use the FileControl() function to switch the stream to
destructive read mode. This mode is useful for manipulating
temporary data; for example, destructive read mode would be ideal
for adding the objects in a large data stream to a database when
sufficient memory for duplicating the entire file stream is not
available. You can switch a stream to destructive read mode by
passing the fileOpDestructiveReadMode selector as the value
of the op parameter to the FileControl() function.

The FileDmRead() function can read data directly into a Data
Manager chunk for immediate addition to a Palm OS database.

Exploring Palm OS: Memory, Databases, and Files 69

3
Virtual File Systems

VFS Manager
The VFS (Virtual File System) Manager provides a unified API that
gives applications access to many different file systems on many
different media types. It abstracts the underlying file systems so that
applications can be written without regard to the actual file system
in use. The VFS Manager includes APIs for manipulating files,
directories, and volumes.

NOTE: Although the great majority of the functions in the VFS
Manager can be used by any application, some are intended only
for use by drivers and file systems. Others are not intended for
use by third-party applications but are designed primarily for
system use.

The VFS Manager, the Data Manager, and File
Streaming APIs
With the addition of the VFS Manager to Palm OS®, there are now
three distinct ways applications can store and retrieve Palm OS user
data:

• The Data Manager manages user data in the storage heap.
Use them to store and retrieve Palm OS user data when
storage on the handheld is all that is needed, or when
efficient access to data is paramount.

• The File Streaming API is a layer on top of the Data Manager
that provides file functionality with all data being read from
or written to a database in the storage heap. Most
applications have no need for the File Streaming APIs; they
are primarily used by applications that need to work with
large blocks of data.

Virtual Fi le Systems
VFS Manager

70 Exploring Palm OS: Memory, Databases, and Files

• The VFS and Expansion Managers were designed specifically
to support many types of expansion memory as secondary
storage. The VFS Manager APIs present a consistent interface
to many different types of file systems on many types of
external media. Applications that use the VFS APIs can
support the widest variety of file systems. Use the VFS
Manager when your application needs to read and write data
stored on external media.

Palm OS applications should use the appropriate APIs for each
given situation. The Data Manager, being an efficient manager of
storage in the storage heap, should be used whenever access to
external media is not absolutely needed. Use the VFS API when
interoperability and file system access is needed.

For more information on the Data and Resource Managers, as well
as on the File Streaming APIs, see Chapter 2, “Palm OS Databases.”
For details of the APIs presented by the VFS Manager, see Chapter
8, “VFS Manager.”

Checking for the Presence of the VFS Manager
Because not every system has (or needs) Virtual File System (VFS)
Manager services, applications wishing to use these services should
check to make sure they are present before calling them. This is
accomplished by checking for the VFS Manager’s system feature
with a call to FtrGet(), supplying sysFileCVFSMgr for the
feature creator and vfsFtrIDVersion for the feature number.

The following code shows how to check for the presence and proper
version of the VFS Manager. Note that
expectedVFSMgrVersionNum should be replaced by the actual
version number you expect.

uint32_t vfsMgrVersion;
Err err;
err = FtrGet(sysFileCVFSMgr, vfsFtrIDVersion,
 &vfsMgrVersion);
if(err){
 // VFS Manager not installed
} else {
 // check version number of VFS Manager, if necessary
 if(vfsMgrVersion == expectedVFSMgrVersionNum)
 // everything is OK
}

Virtual Fi le Systems
Standard Directories

Exploring Palm OS: Memory, Databases, and Files 71

Standard Directories
The user experience presented by Palm OS is simpler and more
intuitive than that of a typical desktop computer. Part of this
simplicity arises from the fact that Palm OS doesn’t present a file
system to the user. Users don’t have to understand the complexities
of a typical file system; applications are readily available with one or
two taps of a button or icon, and data associated with those
applications is accessible only through each application.
Maintaining this simplicity of user operation while supporting a file
system on an expansion card is made possible through a standard
set of directories on the expansion card.

The following table lists the standard directory layout for all
“standards compliant” Palm OS secondary storage. All Palm OS
relevant data should be in the /PALM directory (or in a subdirectory
of the /PALM directory), effectively partitioning off a private name
space.

The Palm OS Launcher is expansion card aware. When an
expansion card containing a file system is inserted, all applications
listed in the card’s /PALM/Launcher directory are automatically
added to a new Launcher category. This new category takes the
name of the expansion card volume. Note that the name displayed

Directory Description

/ Root of the secondary storage.

/PALM Most data written by Palm™ applications
lives in a subdirectory of this directory.
start.prc lives directly in /PALM. This
optional file is automatically run when the
secondary storage volume is mounted.
Other applications may also reside in this
directory.

/PALM/Backup Reserved by Palm OS for backup
purposes.

/PALM/Programs Catch-all for other applications and data.

/PALM/Launcher Home of Launcher-visible applications.

Virtual Fi le Systems
Applications on Cards

72 Exploring Palm OS: Memory, Databases, and Files

in the Launcher for a given application is the name in the
application’s tAIN (application icon name) resource or, if this
resource is empty, the database name, which may or may not match
the name of the file.

NOTE: Whenever possible give the same name to the .prc file
and to the database. If the .prc filename differs from the
database name, and users copy your application from the card to
the handheld and then to another card, the filename may change.
This is because the database name is used when an application
is copied from the handheld to the card.

When a writable volume is mounted, the Launcher automatically
creates the /PALM and /PALM/Launcher directories if they don’t
already exist. If they do, and if there are applications present in the /
PALM/Launcher directory, the Launcher automatically switches to
the card’s list of applications unless it runs start.prc.

In addition to these standard directories, the VFS Manager supports
the concept of a default directory; a directory in which data of a
particular type is typically stored. See “Determining the Default
Directory for a Particular File Type” on page 89 for more
information.

Applications on Cards
Palm OS applications located in the /PALM/Launcher directory of
an expansion card volume appear in a separate Launcher category
when the card is inserted into the handheld’s expansion slot. If you
tap the icon for one of these applications, it is copied to main
memory and then launched.

Applications launched from a card (“card-launched” applications)
are first sent a sysAppLaunchCmdCardLaunch launch code, along
with a parameter block that includes the reference number of the
volume on which the application resides and the complete path to
the application. When processing this launch code, the application
shouldn’t interact with the user or access globals. Unless the
application sets the sysAppLaunchStartFlagNoUISwitch bit in
the start flags (which are part of the parameter block), the

Virtual Fi le Systems
Applications on Cards

Exploring Palm OS: Memory, Databases, and Files 73

application is then sent a sysAppLaunchCmdNormalLaunch
launch code. This is when the application should, if it needs to,
interact with user. Applications may want to save some state when
sysAppLaunchCmdCardLaunch is received, then act upon that
state information when sysAppLaunchCmdNormalLaunch is
received.

When the user switches to a new application, the card-launched
application is removed from main memory. Note, however, that any
databases created by the card-launched application remain.

There are certain implications to this “copy and run” process:

• There must be sufficient memory for the application. If the
handheld doesn’t have enough memory to receive the
application, it isn’t copied from the expansion card and it
isn’t launched.

• The copying process takes time. For large applications, this
can cause a noticeable delay before the application is actually
launched.

• If some version of the application on the card is already
present in main memory, the Launcher puts up a dialog that
requires the user to choose whether or not to overwrite the
in-memory version.

• Card-launched applications have a limited lifetime:
applications reside in main memory only while they are
running. When the user switches to a different application,
the card-launched application that was just running is
removed from main memory. If the card-launched
application is then re-launched, it is once again copied into
the handheld’s memory.

• “Legacy” applications—those that are unaware that they are
being launched from a card—only work with databases in
main memory. Associated databases aren’t copied to main
memory along with the application unless the database is
bundled with the application. Databases created by card-
launched applications are not removed along with the
application, however, so this data is available to the
application when it is subsequently run. Applications that
are written to take advantage of the VFS Manager can read

Virtual Fi le Systems
Volume Operations

74 Exploring Palm OS: Memory, Databases, and Files

and write data on the expansion card, so this limitation
generally only applies to legacy applications.

Bundled databases, although copied to main memory along
with their associated application, are meant for static data
that doesn’t change, such as a game level database. Bundled
databases are not copied back to the card; they are simply
deleted from memory when the user chooses another
application. To bundle a database with an application, give it
the same creator ID as the owning application, set the
dmHdrAttrBundle bit, and place it in the /PALM/
Launcher directory along with the application.

• Unless a card-launched application is running, it doesn’t
receive notifications or launch codes since it isn’t present on
the handheld. In particular, these applications don’t receive
notifications and aren’t informed when an alarm is triggered.

Volume Operations
If an expansion card supports a file system, the VFS Manager allows
you to perform a number of standard volume operations. To
determine which volumes are currently mounted and available, use
VFSVolumeEnumerate(). This function, the use of which is
illustrated in “Checking for Mounted Volumes” on page 67 of
Exploring Palm OS: System Management returns a volume reference
number that you then supply to the remainder of the volume
operations.

When the user inserts a card containing a mountable volume into a
slot (note that the current implementation only supports one
volume per slot), the VFS Manager attempts to mount the volume
automatically. You should rarely, if ever, have to mount volumes
directly. You can attempt to mount a volume using a different file
system, however, perhaps after installing a new file system driver
on the handheld. To explicitly mount or unmount a volume, use
VFSVolumeMount() and VFSVolumeUnmount. When mounting a
volume, you can either specify an explicit file system with which to
mount the volume, or you can request that the VFS Manager try to
determine the appropriate file system. If the VFS Manager cannot
mount the volume using any of the available file systems, it
attempts to format the volume using a file system deemed

Virtual Fi le Systems
Volume Operations

Exploring Palm OS: Memory, Databases, and Files 75

appropriate for the slot, and then mount it. See the description of
VFSVolumeMount() in Chapter 8, “VFS Manager,” for the precise
arguments you must supply when explicitly mounting a volume.

Use VFSVolumeFormat() to format a volume. This function can
be used to change the file system on the expansion card; you can
explicitly indicate a file system to use when formatting it. Once the
card has been formatted, the VFS Manager automatically mounts it;
a new volume reference number is returned from
VFSVolumeFormat().

The VFSVolumeGetLabel() and VFSVolumeSetLabel()
functions get and set the volume label, respectively. Since the file
system is responsible for verifying the validity of strings, you can
try to set the volume label to any desired value. If the file system
doesn’t natively support the name given, the VFS Manager creates
the /VOLUME.NAM file used to support long volume names (see
“Naming Volumes” on page 77 for more information) or you get an
error back if the file system doesn’t support the supplied string.

Additional information about the volume can be obtained through
the use of VFSVolumeSize() and VFSVolumeInfo(). As the
name implies, VFSVolumeSize() returns size information about
the volume. In particular, it returns both the total amount of space
on the volume, in bytes, and the amount of that volume’s space that
is currently in use, again in bytes. VFSVolumeInfo() returns
various pieces of information about the volume, including:

• whether the volume is hidden

• whether the volume is read-only

• whether the volume is supported by a block device driver, or
is being simulated by Palm OS Emulator

• the type and creator of the underlying file system

• the slot with which the volume is associated, and the
reference number of the driver controlling the slot

• the type of media on which this volume is located, such as
SD, CompactFlash, or Memory Stick

All of the above information is returned encapsulated within a
VolumeInfoType structure. Whether the volume is hidden or
read-only is further encoded into a single field within this structure;

Virtual Fi le Systems
Volume Operations

76 Exploring Palm OS: Memory, Databases, and Files

see Volume Attributes in Chapter 8, “VFS Manager,” for the bits
that make up this field.

Hidden Volumes
Included among the volume attributes is a “hidden” bit,
vfsVolumeAttrHidden, that indicates whether the volume on the
card is to be visible or hidden. Hidden volumes are typically not
meant to be directly available to the user; the Launcher and the
CardInfo application both ignore all hidden volumes.

To make a volume hidden, simply create an empty file named
HIDDEN.VOL in the /PALM directory. The VFSVolumeInfo()
function looks for this file and, if found, returns the
vfsVolumeAttrHidden bit along with the volume’s other
attributes.

Matching Volumes to Slots
Many applications don’t need to know the specifics of an expansion
card as provided by the ExpCardInfo() function. Often, the
information provided by the VFSVolumeInfo() function is
enough. Some applications need to know more about a particular
volume, however. The name of the manufacturer or the type of card,
for instance, may be important.

The VolumeInfoType structure returned from
VFSVolumeInfo() contains a slotRefNum field that can be
passed to ExpCardInfo(). This allows you to obtain specific
information about the card on which a particular volume is located.

Although block device drivers currently only support one volume
per slot, obtaining volume information that corresponds to a given
slot reference number isn’t quite so simple, since there isn’t a
function that returns the volume reference number given a slot
reference number. You can, however, iterate through the mounted
volumes and check each volume’s slot reference number. This is the
technique that the CardInfo application uses.

Virtual Fi le Systems
Volume Operations

Exploring Palm OS: Memory, Databases, and Files 77

Naming Volumes
Different file system libraries support volume names of different
maximum lengths and have different restrictions on character sets.
The file system library is responsible for verifying whether or not a
given volume name is valid, and returns an error if it is not. From a
Palm OS developer’s standpoint, volume names can be up to 255
characters long, and can include any printable character.

The file system library is responsible for translating the volume
name into a format that is acceptable to the underlying file system.
For example, in a file system where the 8.3 naming convention is
used for filenames, to translate a long volume name the first eleven
valid, non-space characters are used. Valid characters in this
instance are A-Z, 0-9, $, %, ‘, -, _, @, ~, ‘, !, (,), ^, #, and &.

When the underlying file system doesn’t support a long volume
name, VFSVolumeSetLabel() creates the file /VOLUME.NAM in
an effort to preserve the long volume name. This file contains the
following, in order:

Field Description

Char cookie[4] 4-byte cookie that identifies
this file. The value of this
cookie is
vfsVolumeNameFileCook
ie.

UInt16 cacheLen Big-endian length, in bytes,
of the cached file-system-
level volume label.

Virtual Fi le Systems
File Operations

78 Exploring Palm OS: Memory, Databases, and Files

File Operations
Most of the familiar operations you’d use to operate on files in a
desktop application are supported by the VFS Manager; these are
listed in “Common Operations,” below. In addition, the VFS
Manager includes a set of functions that simplify the way you work
with files that represent Palm OS databases (.pdb) or Palm resource
databases (.prc). These are covered in “Working with Palm OS
Databases” on page 81.

Common Operations
The VFS Manager provides many standard file operations that
should be familiar from desktop and larger computer systems.
Because these functions work largely as you would expect, their use
isn’t detailed here. See the descriptions of each individual function

Char cacheLabel[cacheLen] Unicode UCS-2 format string
containing the volume label
as it is stored in the file
system layer. This is
compared with the file
system volume label to see if
the user has changed the
volume label on a device that
doesn’t support the /
VOLUME.NAM file. In this
event, the file system volume
label is used; the contents of
/VOLUME.NAM are ignored.

UInt16 length Big-endian length, in bytes,
of the long volume label.

Char label[length] Unicode UCS-2 format string
containing the long volume
label.

Field Description

Virtual Fi le Systems
File Operations

Exploring Palm OS: Memory, Databases, and Files 79

in Chapter 8, “VFS Manager,” for the arguments, return values, and
side effects of each.

Note that some of these functions can be applied to both files and
directories, while others work only with files.

Table 3.1 Common file operations

Function Description

VFSFileOpen() Open a file, given a volume reference number and a
file path.

VFSFileClose() Close an open file.

VFSFileRead() Read data from a file into the dynamic heap or any
writable memory.

VFSFileReadData() Read data from a file into a chunk of memory in the
storage heap.

VFSFileWrite() Write data to an open file.

VFSFileSeek() Set the position within an open file from which to
read or write.

VFSFileTell() Get the current position of the file pointer within an
open file.

VFSFileEOF() Get the end-of-file status for an open file.

VFSFileCreate() Create a file, given a volume reference number and a
file path.

VFSFileDelete() Delete a closed file.

VFSFileRename() Rename a closed file.

VFSFileSize() Obtain the size of an open file.

VFSFileResize() Change the size of an open file.

VFSFileGetAttributes() Obtain the attributes of an open file, including
hidden, read-only, system, and archive bits. See “File
and Directory Attributes” in Chapter 8, “VFS
Manager,” for the bits that make up the attributes
field.

Virtual Fi le Systems
File Operations

80 Exploring Palm OS: Memory, Databases, and Files

Once a file has been opened, it is identified by a unique reference
number: a FileRef. Functions that work with open files take a file
reference. Others, such as VFSFileOpen(), require a volume
reference and a path that identifies the file within the volume. Note
that all paths are volume relative, and absolute within that volume:
the VFS Manager has no concept of a “current working directory,”
so relative path names are not supported. The directory separator
character is the forward slash: ”/”. The root directory for the
specified volume is specified by a path of “/”.

Naming Files
Different file systems support filenames and paths of different
maximum lengths. The file system library is responsible for
verifying whether or not a given path is valid and returns an error if
it is not valid. From an application developer’s standpoint,
filenames can be up to 255 characters long and can include any
normal character including spaces and lower case characters in any
character set. They can also include the following special characters:

$ % ' - _ @ ~ ‘ ! () ^ # & + , ; = []

The file system library is responsible for translating each filename
and path into a format that is acceptable to the underlying file
system. For example, when the 8.3 naming convention is used to
translate a long filename, the following guidelines are used:

• The name is created from the first six valid, non-space
characters which appear before the last period. The only

VFSFileSetAttributes() Set the attributes of an open file, including hidden,
read-only, system, and archive bits.

VFSFileGetDate() Get the created, modified, and last accessed dates for
an open file.

VFSFileSetDate() Set the created, modified, and last accessed dates for
an open file.

Table 3.1 Common file operations (continued)

Function Description

Virtual Fi le Systems
File Operations

Exploring Palm OS: Memory, Databases, and Files 81

valid characters are A-Z, 0-9, $, %, ‘, -, _, @, ~, ‘, !, (,), ^, #, and
&.

• The extension is the first three valid characters after the last
period.

• The end of the six byte name has “~1” appended to it for the
first occurrence of the shortened filename. Each subsequent
occurrence uses the next unique number, so the second
occurrence would have “~2” appended, and so on.

The standard VFAT file system library provided with all Palm
Powered™ handhelds that support expansion uses the above rules
to create FAT-compliant names from long filenames.

Working with Palm OS Databases
Expansion cards are often used to hold Palm OS applications and
data. Due to the way that secondary storage media are connected to
the Palm Powered handheld, applications cannot be run directly
from the expansion card, nor can databases be manipulated using
the Data Manager without first transferring them to main memory.
Applications written to use the VFS Manager, however, can operate
directly on files located on an expansion card.

NOTE: Whenever possible give the same name to the .prc file
and to the database. If the .prc filename differs from the
database name, and the user copies your application from the
card to the handheld and then to another card, the filename may
change. This is because the database name is used when an
application is copied from the handheld to the card.

Stand-Alone Applications

To allow the user to run an application that is self-contained—that
isn’t accompanied by a separate database—you need only do one of
two things:

• If the application is to be run whenever the card is inserted
into the expansion slot, simply name the application
start.prc and place it in the /PALM directory. The

Virtual Fi le Systems
File Operations

82 Exploring Palm OS: Memory, Databases, and Files

operating system takes care of transferring the application to
main memory and starting it automatically.

• If the application is to be run on-demand, place it in the /
PALM/Launcher directory. All applications located in this
directory appear in the launcher when the user selects the
category bearing the name of the expansion card.

Both of these mechanisms allow applications that were written
without any knowledge of the VFS or Expansion Manager APIs to
be run from a card. Because they are transferred to main memory
prior to being run, such applications need not know that they are
being run from an expansion card. Databases created by these
applications are placed in the storage heap, as usual. When the card
containing the application is removed, the application disappears
from main memory unless it is running, in which case it remains
until such time as the application is no longer running. Any
databases it created remain. When the card is re-inserted and the
application re-run, it is once again copied into main memory and is
able to access those databases.

Applications with Static Data

Many applications are accompanied by one or more associated
Palm OS databases when installed. These applications, at least to a
limited degree, need to be cognizant of the fact that they reside on
an expansion card.

If there is no specific requirement for the application’s data to be
stored in Palm OS database format, you may want to use the VFS
Manager’s many file I/O operations to read and write the data on
the card. Because of the large data storage capabilities of the
expansion media relative to the handheld’s memory, this latter
solution is the one preferred by applications where large capacity
data storage is a key feature.

Bundled Databases

When an application is launched from a card using the launcher,
any bundled databases present in the /PALM/Launcher directory
are also imported. Bundled databases have the same creator as the
“owning” application and have the dmHdrAttrBundle bit set.
Note that bundled databases are intended only for read-only data,
such as a game-level database. Bundled databases are removed

Virtual Fi le Systems
File Operations

Exploring Palm OS: Memory, Databases, and Files 83

from main memory along with the application when the user
switches to another application and are not copied back to the
expansion card.

Transferring Palm OS Databases to and from Expansion Cards

The VFSExportDatabaseToFile() function converts a database
from its internal format on the handheld to its equivalent file format
and transfers it to an expansion card. The
VFSImportDatabaseFromFile() function does the reverse; it
transfers the file from the expansion card to main memory and
converts it to the internal format used by Palm OS. Use these
functions when moving Palm OS databases between main memory
and an expansion card.

VFSExportDatabaseToFile() and
VFSImportDatabaseFromFile(), depending on the size of the
database and the mechanism by which it is being transferred, can
take some time. Use VFSExportDatabaseToFileCustom() and
VFSImportDatabaseFromFileCustom() if you want to display
a progress dialog or allow the user to cancel the operation. These
functions make repeated calls to a callback function that you
specify; within this callback function you can update a progress
indicator. The return value from your callback determines whether
the database transfer should proceed; return errNone if it should
continue, or return any other value to abort the process. See the
documentation for VFSExportProcPtr() and
VFSImportProcPtr() in Chapter 8, “VFS Manager,” for the
format of each callback function.

The following code excerpt illustrates the use of
VFSImportDatabaseFromFileCustom() with a progress
tracker.

Listing 3.1 Using VFSImportDatabaseFromFileCustom()

typedef struct {
 ProgressType *progressP;
 const Char *nameP;
} CBDataType, *CBDataPtr;

static Boolean ProgressTextCB(PrgCallbackDataPtr cbP) {
 const Char *nameP = ((CBDataPtr) cbP->userDataP)->nameP;

Virtual Fi le Systems
File Operations

84 Exploring Palm OS: Memory, Databases, and Files

 // Set up the progress text to be displayed
 StrPrintF(cbP->textP, "Importing %s.", nameP);
 cbP->textChanged = true;

 return true; // So what we specify here is used to update the dialog
}

static Err CopyProgressCB(UInt32 size, UInt32 offset, void *userDataP) {
 CBDataPtr CBDataP = (CBDataPtr) userDataP;

 if (offset == 0) { // If we're just starting, we need to set up the dialog
 CBDataP->progressP = PrgStartDialog("Importing Database", ProgressTextCB,
 CBDataP);

 if (!CBDataP->progressP)
 return memErrNotEnoughSpace;
 } else {
 EventType event;
 Boolean handled;

 do {
 EvtGetEvent(&event, 0); // Check for events

 handled = PrgHandleEvent(CBDataP->progressP, &event);

 if (!handled) { // Did the user tap the "Cancel" button?
 if(PrgUserCancel(CBDataP->progressP))
 return exgErrUserCancel;
 }
 } while(event.eType != sysEventNilEvent);
 }

 return errNone;
}

static Err ImportFile(UInt16 volRefNum, Char *pathP, Char *nameP,
 UInt16 *cardNoP, LocalID *dbIDP)
{
 CBDataType userData;
 Char fullPathP[256];
 Err err;

 userData.progressP = NULL;
 userData.nameP = nameP;

 StrPrintF(fullPathP, "%s/%s", pathP, nameP); // rebuild full path to the
file

Virtual Fi le Systems
File Operations

Exploring Palm OS: Memory, Databases, and Files 85

 err = VFSImportDatabaseFromFileCustom(volRefNum, fullPathP, cardNoP, dbIDP,
 CopyProgressCB, &userData);

 if (userData.progressP) // If the progress dialog was displayed, remove it.
 PrgStopDialog(userData.progressP, (err == exgErrUserCancel));

 return err;
}

Exploring Palm OS Databases on Expansion Cards

The VFS Manager includes functions specifically designed for
exploring the contents of a Palm OS database located on an
expansion card. This access is read-only, however. You can extract
individual records and resources from a database, and you can
determine information such as the last modification date of a
database on an expansion card. But there aren’t parallel functions to
write records and resources to a database or to update database-
specific information for a database that is located on an expansion
card. To do this you need to import the database into main memory,
make the necessary changes, and then export it back to the
expansion card.

To obtain a single record from a database located on an expansion
card without first importing the database into main memory, use
VFSFileDBGetRecord(). This function is analogous to
DmGetRecord() but works with files on an external card rather
than with databases in main memory. It transfers the specified
record to the storage heap after allocating a handle of the
appropriate size. Note that you’ll need to free this memory, using
MemHandleFree(), when the record is no longer needed.

The VFSFileDBGetResource() function operates in a similar
fashion, but instead of loading a particular database record it loads a
specified resource from a resource database located on an expansion
card. This resource is put onto the storage heap. Again, free this
memory once the resource is no longer needed.

To obtain more general information about a database on an external
card, use VFSFileDBInfo(). In addition to the information you
could obtain about any file on an external card using the

Virtual Fi le Systems
Directory Operations

86 Exploring Palm OS: Memory, Databases, and Files

VFSFileGetAttributes() and VFSFileGetDate() functions,
VFSFileDBInfo() returns:

• the database name

• the version of the database

• the number of times the database was modified

• the application info block handle

• the sort info block handle

• the database’s type

• the database’s creator

• the number of records in the database

NOTE: The functions described in this section incur a lot of
overhead in order to parse the database file format. Frequent use
of these functions is not recommended. Also, if you request either
the application info block handle or the sort info block handle, you
must free the handle when it is no longer needed.

Directory Operations
Many of the familiar operations you’d use to operate on directories
are supported by the VFS Manager; these are listed in “Common
Operations”, below. One common operation—determining the files
that are contained within a given directory—is covered in some
detail in “Enumerating the Files in a Directory” on page 88. To
improve data interchange with devices that aren’t running Palm OS,
expansion card manufacturers have specified default directories for
certain file types. “Determining the Default Directory for a
Particular File Type” on page 89 discusses how you can both
determine and set the default directory for a given file type.

Directory Paths
All paths are volume relative and absolute within that volume: the
VFS Manager has no concept of a “current working directory,” so
relative path names are not supported. The directory separator

Virtual Fi le Systems
Directory Operations

Exploring Palm OS: Memory, Databases, and Files 87

character is the forward slash: ”/”. The root directory for the
specified volume is specified by a path of “/”.

Common Operations
The VFS Manager provides many of the standard directory
operations that should be familiar from desktop and larger
computer systems. Because these functions work largely as you
would expect, their use isn’t detailed here. See the descriptions of
each individual function in Chapter 8, “VFS Manager,” for the
arguments, return values, and side effects of each.

Note that most of these functions can be applied to files as well as
directories.
Table 3.2 Common directory operations

Function Description

VFSDirCreate() Create a new directory.

VFSFileDelete() Delete a directory, given a path.

VFSFileRename() Rename a directory.

VFSFileOpen() Open the file or directory.

VFSFileClose() Close the file or directory.

VFSFileGetAttributes() Obtain the attributes of an open directory, including
hidden, read-only, system, and archive bits. See “File
and Directory Attributes” in Chapter 8, “VFS
Manager,” for the bits that make up the attributes
field.

VFSFileSetAttributes() Set the attributes of an open directory, including
hidden, read-only, system, and archive bits.

VFSFileGetDate() Get the created, modified, and last accessed dates for
an open file.

VFSFileSetDate() Set the created, modified, and last accessed dates for
an open file.

Virtual Fi le Systems
Directory Operations

88 Exploring Palm OS: Memory, Databases, and Files

Enumerating the Files in a Directory
Enumerating the files within a directory is made simple due to the
presence of the VFSDirEntryEnumerate() function. The use of
this function is illustrated below. Note that volRefNum and
dirPathStr must be declared and initialized prior to the following
code.

Listing 3.2 Enumerating a directory’s contents

// Open the directory and iterate through the files in it.
// volRefNum must have already been defined.
err = VFSFileOpen(volRefNum, "/", vfsModeRead, &dirRef);
if(err == errNone) {
 // Iterate through all the files in the open directory
 UInt32 fileIterator;
 FileInfoType fileInfo;
 FileRef dirRef;
 Char *fileName = MemPtrNew(256); // should check for err

 fileInfo.nameP = fileName; // point to local buffer
 fileInfo.nameBufLen = 256;
 fileIterator = expIteratorStart;
 while (fileIterator != expIteratorStop) {
 // Get the next file
 err = VFSDirEntryEnumerate(dirRef, &fileIterator,
 &fileInfo);
 if(err == errNone) {
 // Process the file here.
 }
 } else {
 // handle directory open error here
 }
 MemPtrFree(fileName);
}

Each time through the while loop, VFSDirEntryEnumerate()
sets the FileInfoType structure as appropriate for the file
currently being enumerated. Note that if you want the filename, it
isn’t enough to simply allocate space for the FileInfoType
structure; you must also allocate a buffer for the filename, set the
appropriate pointer to it in the FileInfoType structure, and
specify your buffer’s length. Since the only other information

Virtual Fi le Systems
Directory Operations

Exploring Palm OS: Memory, Databases, and Files 89

encapsulated within FileInfoType is the file’s attributes, most
applications will want to also know the file’s name.

Note that enumeration in the VFS Manager assumes that you are
not changing the file set being enumerated. That is, you cannot
delete or add files without restarting the enumeration.

Determining the Default Directory for a
Particular File Type
As explained in “Standard Directories” on page 71, the expansion
capabilities of Palm OS include a mechanism to map MIME types or
file extensions to specific directory names. This mechanism is
specific to the block device driver: where an image might be stored
in the “/Images” directory on a Memory Stick, on an MMC card it
may be stored in the “/DCIM” directory. The VFS Manager includes
a function that enables you to get the default directory on a
particular volume for a given file extension or MIME type, along
with functions that allow you to register and un-register your own
default directories.

The VFSGetDefaultDirectory() function takes a volume
reference and a string containing the file extension or MIME type
and returns a string containing the full path to the corresponding
default directory. When specifying the file type, either supply a
MIME media type/subtype pair, such as “image/jpeg”, “text/
plain”, or “audio/basic”; or a file extension, such as “.jpeg”. As
with most other Palm OS functions, you’ll need to pre-allocate a
buffer to contain the returned path. Supply a pointer to this buffer
along with the buffer’s length. The length is updated upon return to
indicate the actual length of the path, which won’t exceed the
originally-specified buffer length.

The default directory registered for a given file type is intended to
be the “root” default directory. If a given default directory has one
or more subdirectories, applications should also search those
subdirectories for files of the appropriate type.

VFSGetDefaultDirectory() allows you to determine the
directory associated with a particular file suffix. However, there’s no
way to get the entire list of file suffixes that are mapped to default
directories. For this reason, CardInfo keeps its own list of possible

Virtual Fi le Systems
Directory Operations

90 Exploring Palm OS: Memory, Databases, and Files

file suffixes. It iterates through this list, calling
VFSGetDefaultDirectory() for each file suffix to get the full
path to the corresponding default directory. It then looks into each
default directory for files that match the expected suffix or suffixes
for that directory.

Registering New Default Directories

In addition to the default directories that the underlying driver is
already aware of, you can create your own mappings between files
of a given type and a specific directory on a particular kind of
external storage card. Most applications don’t need this
functionality; it is generally used by a block device driver to register
those files and media types that are supported by that driver.
However, VFSRegisterDefaultDirectory() and its opposite,
VFSUnregisterDefaultDirectory(), are available to those
applications that need them. Such applications should generally
register the desired file types for expMediaType_Any. This is a
wildcard which works for all media types; it can be overridden by a
registration that specifies a real media type.

NOTE: Registering a directory as the default location for files of
a given type on a particular type of media doesn’t automatically
register that file type with HotSync Exchange. See “HotSync
Exchange” on page 138 of Exploring Palm OS: High-Level
Communications for information on registering file types with
HotSync Exchange.

If a default directory has already been registered for a given file/
media type combination, applications should use the pre-existing
registration instead of establishing a new one. Existing registrations
should generally not be removed.

Default Directories Registered at Initialization
The VFS Manager registers the following under the
expMediaType_Any media type, which
VFSGetDefaultDirectory() reverts to when there is no default
registered by the block device driver for a given media type.

Virtual Fi le Systems
Directory Operations

Exploring Palm OS: Memory, Databases, and Files 91

These registrations are intended to aid applications developers, but
you aren’t required to follow them. Although you can choose to
ignore these registrations, by following them you’ll improve
interoperability between applications and other devices. For

Table 3.3 Default registrations

File Type Path

.prc /PALM/Launcher/

.pdb /PALM/Launcher/

.pqa /PALM/Launcher/

application/vnd.palm /PALM/Launcher/

.jpg /DCIM/

.jpeg /DCIM/

image/jpeg /DCIM/

.gif /DCIM/

image/gif /DCIM/

.qt /DCIM/

.mov /DCIM/

video/quicktime /DCIM/

.avi /DCIM/

video/x-msvideo /DCIM/

.mpg /DCIM/

.mpeg /DCIM/

video/mpeg /DCIM/

.mp3 /AUDIO/

.wav /AUDIO/

audio/x-wav /AUDIO/

Virtual Fi le Systems
Custom Calls

92 Exploring Palm OS: Memory, Databases, and Files

example, a digital camera which conforms to the media
specifications will put its pictures into the registered directory (or a
subdirectory of it) appropriate for the image format and media type.
By looking up the registered directory for that format, an image
viewer application on the handheld can easily find the images
without having to search the entire card. These registrations also
help prevent different developers from hard-coding different paths
for specific file types. Thus, if a user has two different image viewer
applications, both will look in the same location and find the same
set of images.

Registering these file types at initialization allows you to use the
HotSync® process to transfer files of these types to an expansion
card. During the HotSync process, files of the registered types are
placed directly in the specified directories on the card.

Custom Calls
Recognizing that some file systems may implement functionality
not covered by the APIs included in the VFS and Expansion
Managers, the VFS Manager includes a single function that exists
solely to give developers access to the underlying file system. This
function, VFSCustomControl(), takes a registered creator code
and a selector that together identify the operation that is to be
performed. VFSCustomControl() can either request that a
specific file system perform the specified operation, or it can iterate
through all of the currently-registered file systems in an effort to
locate one that responds to the desired operation.

Parameters are passed to the file system’s custom function through
a single VFSCustomControl() parameter. This parameter,
valueP, is declared as a void * so you can pass a pointer to a
structure of any type. A second parameter, valueLenP, allows you
to specify the length of valueP. Note that these values are simply
passed to the file system and are in reality dependent upon the
underlying file system. See the description of
VFSCustomControl() in Chapter 8, “VFS Manager,” for more
information.

Because VFSCustomControl() is designed to allow access to non-
standard functionality provided by a particular file system, see the

Virtual Fi le Systems
Custom Calls

Exploring Palm OS: Memory, Databases, and Files 93

documentation provided with that file system for a list of any
custom functions that it provides.

Custom I/O
While the Expansion and VFS Managers provide higher-level OS
support for secondary storage applications, they don’t attempt to
present anything more than a raw interface to custom I/O
applications. Since it isn’t really possible to envision all uses of an
expansion mechanism, the Expansion and VFS Managers simply try
to get out of the way of custom hardware.

The Expansion Manager provides insertion and removal
notification and can load and unload drivers. Everything else is the
responsibility of the application developer. PalmSource has defined
a block device driver API which is extensible by licensees. This API
is designed to support all of the needs of the Expansion Manager,
the VFS Manager, and the file system libraries. Applications that
need to communicate with an I/O device, however, may need to go
beyond the provided APIs. Such applications should wherever
possible use the custom() call, which provides direct access to the
block device driver. See the documentation provided to licensees for
more information on block device drivers and the custom() call.
For documentation on functions made available by a particular I/O
device, along with how you access those functions, contact the I/O
device manufacturer.

Virtual Fi le Systems
Summary of VFS Manager

94 Exploring Palm OS: Memory, Databases, and Files

Summary of VFS Manager
VFS Manager Functions

Working with Files

VFSFileClose()
VFSFileCreate()
VFSFileDelete()
VFSFileEOF()
VFSFileGetAttributes()
VFSFileGetDate()
VFSFileOpen()
VFSFileOpenFromURL()
VFSFileRead()

VFSFileReadData()
VFSFileRename()
VFSFileResize()
VFSFileSeek()
VFSFileSetAttributes()
VFSFileSetDate()
VFSFileSize()
VFSFileTell()
VFSFileWrite()

Working with Directories

VFSDirCreate()
VFSDirEntryEnumerate()
VFSFileClose()
VFSFileDelete()
VFSFileGetAttributes()
VFSFileGetDate()
VFSFileOpen()

VFSFileRename()
VFSFileSetAttributes()
VFSFileSetDate()
VFSGetDefaultDirectory()
VFSRegisterDefaultDirectory()
VFSUnregisterDefaultDirectory()

Working with Volumes

VFSVolumeEnumerate()
VFSVolumeFormat()
VFSVolumeGetLabel()
VFSVolumeInfo()

VFSVolumeMount()
VFSVolumeSetLabel()
VFSVolumeSize()
VFSVolumeUnmount()

Miscellaneous Functions

VFSCustomControl()
VFSExportDatabaseToFile()
VFSExportDatabaseToFileCustom()
VFSFileDBInfo()
VFSFileDBGetRecord()

VFSFileDBGetResource()
VFSImportDatabaseFromFile()
VFSImportDatabaseFromFileCustom()

Virtual Fi le Systems
Summary of VFS Manager

Exploring Palm OS: Memory, Databases, and Files 95

Compatibility Functions

VFSExportDatabaseToFileCustom
V40()
VFSExportDatabaseToFileV40()

VFSImportDatabaseFromFileCustom
V40()
VFSImportDatabaseFromFileV40()

VFS Manager Functions

Virtual Fi le Systems
Summary of VFS Manager

96 Exploring Palm OS: Memory, Databases, and Files

Part II
Reference

This part contains reference documentation for the following:

Data Manager 99

File Stream . 239

Memory Manager 263

Schema Databases 291

VFS Manager 403

Exploring Palm OS: Memory, Databases, and Files 99

4
Data Manager
This chapter describes the Data Manager APIs. These APIs are those
structures, constants, and functions that operate on extended and
classic databases (collectively, the “non-schema” databases). This
chapter is organized as follows:

Data Manager Structures and Types 100

Data Manager Constants 108

Data Manager Functions and Macros 119

Application-Defined Functions 237

The header file DataMgr.h declares the API that this chapter
describes.

For more information on Palm OS® databases, see Chapter 2, “Palm
OS Databases,” on page 11.

Data Manager
Data Manager Structures and Types

100 Exploring Palm OS: Memory, Databases, and Files

Data Manager Structures and Types

CategoryID Typedef
Purpose Container for a category’s unique identifier.

Declared In DataMgr.h

Prototype typedef int32_t CategoryID

DatabaseID Typedef
Purpose Container for a database’s unique identifier.

Declared In DataMgr.h

Prototype typedef uint32_t DatabaseID

DmBackupRestoreStateType Struct
Purpose Opaque container for the backup state, used to maintain state across

multiple calls to DmBackupUpdate() or DmRestoreUpdate().

Declared In DataMgr.h

Prototype typedef struct DmBackupRestoreStateTag {
 uint32_t info[12];
} DmBackupRestoreStateType
typedef DmBackupRestoreStateType
*DmBackupRestoreStatePtr

Fields info
The backup state.

Comments Your application allocates a structure of this type and passes it to
DmBackupInitialize() (or DmRestoreInitialize()) for
initialization prior to serializing a database (or restoring a database
that has been serialized). After passing it to DmBackupUpdate()
(DmRestoreUpdate()), calling that function as many times as
necessary, your application must pass it to DmBackupFinalize()
(DmRestoreFinalize()) before releasing the storage occupied by
the structure.

Data Manager
DmDatabaseInfoType

Exploring Palm OS: Memory, Databases, and Files 101

NOTE: The contents of this structure are opaque; your
application should not attempt to directly manipulate the contents
of this structure in any way.

DmDatabaseInfoType Struct
Purpose Data structure used to return information about a database through

a call to DmDatabaseInfo().

Declared In DataMgr.h

Prototype typedef struct DmDatabaseInfoTag {
 uint32_t size;
 char *pName;
 char *pDispName;
 uint16_t *pAttributes;
 uint16_t *pVersion;
 uint32_t *pType;
 uint32_t *pCreator;
 uint32_t *pCrDate;
 uint32_t *pModDate;
 uint32_t *pBckpDate;
 uint32_t *pModNum;
 MemHandle *pAppInfoHandle;
 MemHandle *pSortInfoHandle;
 uint16_t *pEncoding;
} DmDatabaseInfoType
typedef DmDatabaseInfoType *DmDatabaseInfoPtr

Fields size
Size of this structure.

pName
The database’s name. This should be a pointer to 32-byte
character array for this parameter, or NULL if you don’t care
about the name.

pDispName
(Schema databases only) The database’s display name.

Data Manager
DmDatabaseInfoType

102 Exploring Palm OS: Memory, Databases, and Files

pAttributes
The database’s attribute flags. The section “Database
Attributes” lists constants you can use to query the values
returned in this parameter.

pVersion
The application-specific version number. The default version
number is 0.

pType
The database’s type, specified when it is created.

pCreator
The database’s creator, specified when it is created.

pCrDate
The date the database was created, expressed as the number
of seconds since the start of the Unix epoch.

pModDate
The date the database was last modified, expressed as the
number of seconds since the start of the Unix epoch.

pBckpDate
The date the database was backed up, expressed as the
number of seconds since the start of the Unix epoch.

pModNum
The modification number, which is incremented every time a
record in the database is added, modified, or deleted.

pAppInfoHandle
(Non-schema databases only) Handle of the application info
block, or NULL. The application info block is an optional field
that the database may use to store application-specific
information about the database.

pSortInfoHandle
(Non-schema databases only) Handle of the database’s sort
table. This is an optional field in the database header.

pEncoding
(Schema databases only) The database’s encoding.

Comments Prior to calling DmDatabaseInfo(), initialize the fields of this
structure to point to variables where DmDatabaseInfo() will
write the information. If you don’t want to retrieve data
corresponding to a given field, set that field to NULL. See the

Data Manager
DmOpenModeType

Exploring Palm OS: Memory, Databases, and Files 103

comments section for DmGetNextDatabaseByTypeCreator()
for an example of how this structure is initialized and used.

The fields representing dates (pCrDate, pModDate, pBckpDate)
contain the number of non-leap seconds since the start of the Unix
epoch: 00:00:00 UTC on Jan 1, 1970. Note that this is different from
the way dates are returned by PACE, and is different from the way
they are returned by DmDatabaseInfoV50(); PACE and
DmDatabaseInfoV50() return dates based upon the “Palm OS
epoch”: the number of seconds since the beginning of Jan 1, 1904,
local time.

DmFindType Typedef
Purpose Flags that indicate the type of database to be searched for when

using DmFindDatabase(),
DmFindDatabaseByTypeCreator(), or
DmOpenIteratorByTypeCreator(). These flags can be OR’d
together to search for a combination of database types.

Declared In DataMgr.h

Prototype typedef uint32_t DmFindType

Constants #define dmFindClassicDB ((DmFindType)0x00000004)
Classic databases.

#define dmFindExtendedDB ((DmFindType)0x00000002)
Extended databases.

#define dmFindSchemaDB ((DmFindType)0x00000001)
Schema databases.

#define dmFindAllDB (dmFindSchemaDB |
dmFindExtendedDB | dmFindClassicDB)

A convenience value that can be used when searching for
databases of any type.

See Also Chapter 2, “Palm OS Databases,” on page 11

DmOpenModeType Typedef
Purpose Type that holds the mode in which a database can be opened. You

pass one or more of the associated constants as a parameter to

Data Manager
DmOpenRef

104 Exploring Palm OS: Memory, Databases, and Files

DmOpenDatabase(), DmOpenDatabaseByTypeCreator(), or
DmOpenDBNoOverlay(). These constants are also used when
working with schema databases using either DbOpenDatabase()
or DbOpenDatabaseByName().

Declared In DataMgr.h

Prototype typedef uint16_t DmOpenModeType;

Constants #define dmModeExclusive ((DmOpenModeType)0x0008)
While the database is open don’t let anyone else open it. This
value cannot be passed to DbOpenDatabase() and
DbOpenDatabaseByName().

#define dmModeReadOnly ((DmOpenModeType)0x0001)
Open the database with read-only access. This value can be
passed to DbOpenDatabase() and
DbOpenDatabaseByName().

#define dmModeReadWrite ((DmOpenModeType)0x0003)
Open the database with read-write access. This value can be
passed to DbOpenDatabase() and
DbOpenDatabaseByName(). Use dmModeWrite when
calling any of the DmOpen... functions.

#define dmModeShowSecret ((DmOpenModeType)0x0010)
Show records marked private. This value can be passed to
DbOpenDatabase() and DbOpenDatabaseByName().

#define dmModeWrite ((DmOpenModeType)0x0002)
Open the database with write-only access. This value cannot
be passed to DbOpenDatabase() and
DbOpenDatabaseByName(); use dmModeReadWrite
when calling one of these functions.

DmOpenRef Struct
Purpose Defines a pointer to an open database.

Declared In DataMgr.h

Prototype typedef struct _opaque *DmOpenRef

Fields None.

Data Manager
DmSearchStateType

Exploring Palm OS: Memory, Databases, and Files 105

Comments The database pointer is created and returned by
DmOpenDatabase(). It is used in any function that requires access
to an open database.

DmResourceID Typedef
Purpose Defines a resource identifier. You assign each resource an ID at

creation time.

Declared In DataMgr.h

Prototype typedef uint16_t DmResourceID

Comments Resource IDs greater than or equal to 10000 are reserved for system
use.

DmResourceType Typedef
Purpose Defines the type of a resource.

Declared In DataMgr.h

Prototype typedef uint32_t DmResourceType

Comments The resource type is a four-character code such as 'Tbmp' for
bitmap resources.

DmSearchStateType Struct
Purpose Opaque container for the search state, used to maintain state when

iterating through databases that match a specified type and creator.

Declared In DataMgr.h

Prototype typedef struct {
 uint32_t info[8];
} DmSearchStateType
typedef DmSearchStateType *DmSearchStatePtr

Fields info
The search state.

Comments Your application should allocate a DmSearchStateType structure
and pass it as the stateInfoP parameter when iterating through

Data Manager
DmSortRecordInfoType

106 Exploring Palm OS: Memory, Databases, and Files

databases with DmOpenIteratorByTypeCreator(),
DmGetNextDatabaseByTypeCreator(), and
DmCloseIteratorByTypeCreator(); or when calling
DmGetNextDatabaseByTypeCreatorV50(). These functions
store private information in this structure and use that information
if the search is continued.

NOTE: The contents of this structure are opaque; your
application should not attempt to directly manipulate the contents
of this structure in any way.

DmSortRecordInfoType Struct
Purpose Specifies information that can be used to sort a record.

Declared In DataMgr.h

Prototype typedef struct {
 uint8_t attributes;
 uint8_t uniqueID[3];
} DmSortRecordInfoType
typedef DmSortRecordInfoType *DmSortRecordInfoPtr

Fields attributes
The record’s attributes. See “Non-Schema Database Record
Attributes.”

uniqueID
The unique identifier for the record.

Comments The database sorting functions (DmInsertionSort() and
DmQuickSort()) pass this structure to your comparison callback
function (of type DmCompareFunctionType()), where you can
use the information therein to help when comparing two records. To
create this structure, you can call DmRecordInfoV50(), which
returns these values for a given record.

Data Manager
DmStorageInfoType

Exploring Palm OS: Memory, Databases, and Files 107

DmStorageInfoType Struct
Purpose Returns storage heap memory usage information through a call to

DmGetStorageInfo().

Declared In DataMgr.h

Prototype typedef struct DmStorageInfoTag {
 uint32_t size;
 uint32_t bytesTotal;
 uint32_t bytesNonSecureUsed;
 uint32_t bytesNonSecureFree;
 uint32_t bytesSecureUsed;
 uint32_t bytesSecureFree;
 uint32_t bytesFreePool;
} DmStorageInfoType
typedef DmStorageInfoType *DmStorageInfoPtr

Fields size
Size of this structure.

bytesTotal
Total amount of memory available for persistent storage.

bytesNonSecureUsed
Amount of memory used in non-secure storage.

bytesNonSecureFree
Amount of free memory in non-secure storage.

bytesSecureUsed
Amount of memory used in secure storage.

bytesSecureFree
Amount of free memory in secure storage.

bytesFreePool
Amount of memory in the free pool, available for both secure
and non-secure storage.

Data Manager
Data Manager Constants

108 Exploring Palm OS: Memory, Databases, and Files

Data Manager Constants

Non-Schema Database Record Attributes
Purpose These constants define the set of attributes that a non-schema

database record can have. Use DmGetRecordAttr() to obtain a
database record’s attributes.

Declared In DataMgr.h

Constants #define dmAllRecAttrs (dmRecAttrDelete |
dmRecAttrDirty | dmRecAttrBusy | dmRecAttrSecret
)

The complete set of record attributes.

#define dmRecAttrBusy 0x20
The application has locked access to the record. A call to
DmGetRecord() fails on a record that has this bit set.

#define dmRecAttrDelete 0x80
The record has been deleted.

#define dmRecAttrDirty 0x40
The record has been modified since the last sync.

#define dmRecAttrSecret 0x10
The record is private.

#define dmSysOnlyRecAttrs (dmRecAttrBusy)
Mask that identifies those attributes that only the system can
change.

#define dmRecAttrCategoryMask ((uint8_t) 0x0F)
Mask that isolates the record’s category.

Data Manager
Database Attributes

Exploring Palm OS: Memory, Databases, and Files 109

Database Attributes
Purpose Define the set of attributes that a database can have. These attributes

apply to schema, extended, and classic databases.

Declared In DataMgr.h

Constants #define dmAllHdrAttrs (dmHdrAttrResDB |
dmHdrAttrReadOnly | dmHdrAttrAppInfoDirty |
dmHdrAttrBackup | dmHdrAttrOKToInstallNewer |
dmHdrAttrResetAfterInstall |
dmHdrAttrCopyPrevention | dmHdrAttrStream |
dmHdrAttrHidden | dmHdrAttrLaunchableData |
dmHdrAttrRecyclable | dmHdrAttrBundle |
dmHdrAttrSchema | dmHdrAttrSecure |
dmHdrAttrOpen)

A mask used to specify all header attributes.

#define dmHdrAttrAppInfoDirty 0x0004
The application info block is dirty (it has been modified since
the last sync). This bit only applies to non-schema databases;
schema databases don’t have application info blocks.

#define dmHdrAttrBackup 0x0008
The database should be backed up to the desktop computer if
no application-specific conduit is available.

#define dmHdrAttrBundle 0x0800
The database is bundled with its application during a beam,
send, or copy operation. That is, if the user chooses to beam
the application from the Launcher, the Launcher beams this
database along with the application’s resource database and
overlay database. (Note that overlay databases are
automatically beamed with the application database. You do
not need to set this bit in overlay databases.)

#define dmHdrAttrCopyPrevention 0x0040
Prevents the database from being copied by methods such as
IR beaming.

#define dmHdrAttrHidden 0x0100
This database should be hidden from view. For example, this
attribute is set to hide some applications in the Launcher’s
main view. You can set it on record databases to have the
Launcher disregard the database’s records when showing a
count of records.

Data Manager
Database Attributes

110 Exploring Palm OS: Memory, Databases, and Files

#define dmHdrAttrLaunchableData 0x0200
This database contains data but it can be “launched” from the
Launcher.

#define dmHdrAttrExtendedDB dmHdrAttrSecure
If dmHdrAttrSchema is not set, the database is an extended
database. Note that this bit serves a dual-purpose, depending
upon the dmHdrAttrSchema bit; if the database is a schema
database (dmHdrAttrSchema is set), this bit indicates
whether or not the schema database is a secure database. See
Chapter 2, “Palm OS Databases,” for an explanation of the
differences between the various database types.

#define dmHdrAttrOKToInstallNewer 0x0010
The backup conduit can install a newer version of this
database with a different name if the current database is
open. This mechanism is used to update the Graffiti 2
Shortcuts databases, for example.

#define dmHdrAttrOpen 0x8000
The database is open.

#define dmHdrAttrReadOnly 0x0002
The database is a read-only database.

#define dmHdrAttrRecyclable 0x0400
The database is recyclable. Recyclable databases are deleted
when they are closed or upon a system reset.

#define dmHdrAttrResDB 0x0001
The database is a resource database.

#define dmHdrAttrResetAfterInstall 0x0020
The device must be reset after this database is installed. That
is, the HotSync® application forces a reset after installing this
database.

#define dmHdrAttrSchema 0x1000
The database is a schema database. See Chapter 2, “Palm OS
Databases,” for an explanation of the differences between the
various database types.

#define dmHdrAttrSecure 0x2000
The database is a secure database.

#define dmHdrAttrStream 0x0080
The database is a file stream.

Data Manager
Miscellaneous Data Manager Constants

Exploring Palm OS: Memory, Databases, and Files 111

#define dmSysOnlyHdrAttrs (dmHdrAttrResDB |
dmHdrAttrSchema | dmHdrAttrSecure |
dmHdrAttrOpen)

A mask specifying the attributes that only the system can
change (open and resource database).

Miscellaneous Data Manager Constants
Purpose Miscellaneous constants defined by the Data Manager.

Declared In DataMgr.h

Constants #define appInfoStringsRsc 'tAIS'
Application Info strings resource type.

#define dmMaxRecordIndex ((uint16_t) 0xFFFE)
The highest record index that can be used with a classic
database.

#define dmAllCategories ((uint8_t) 0xFF)
Category value that can be supplied to
DmNumRecordsInCategory() and
DmQueryNextInCategory() to indicate all categories.

#define dmCategoryLength 16
The maximum length of a classic or extended database
category name, in bytes, including the NULL terminator.

#define dmDBNameLength 32
The maximum length of a database name, in bytes, including
the NULL terminator.

#define dmDefaultRecordsID 0
Records in a default database are copied with their unique ID
seeds set to this value.

#define dmInvalidRecIndex ((uint16_t) -1)
Resource index value returned by DmFindResource()
when that function fails to find the specified resource.

#define dmRecNumCategories 16
The maximum number of categories that can be used with a
classic or extended database.

Data Manager
Data Manager Error Codes

112 Exploring Palm OS: Memory, Databases, and Files

#define dmRecordIDReservedRange 1
Upper limit of the range of unique ID seed values reserved
for use by the operating system in conjunction with classic
and extended databases.

#define dmSearchWildcardID ((uint32_t)0)
A “wild card” that matches databases of any type and/or
creator when iterating through databases with
DmOpenIteratorByTypeCreator() or searching for
databases with either
DmGetNextDatabaseByTypeCreator() or
DmGetNextDatabaseByTypeCreatorV50().

#define dmSeekBackward -1
Direction value supplied to
DmFindRecordByOffsetInCategory() to indicate that
the search should be performed from the specified position
towards the beginning of the database.

#define dmSeekForward 1
Direction value supplied to
DmFindRecordByOffsetInCategory() to indicate that
the search should be performed from the specified position
towards the end of the database.

#define dmUnfiledCategory 0
Category identifier for the Unfiled category.

#define dmUnusedRecordID 0
A record ID value representing an illegal or unused record. A
“real” record cannot use this value as its record identifier.

Data Manager Error Codes
Purpose Error codes returned by the various Data Manager functions. These

codes are returned by schema database functions as well as classic
database functions.

Declared In DataMgr.h

Constants #define dmErrAccessDenied (dmErrorClass | 37)
The database is a secure database and you don’t have
permission to edit it.

Data Manager
Data Manager Error Codes

Exploring Palm OS: Memory, Databases, and Files 113

#define dmErrAlreadyExists (dmErrorClass | 25)
Another database with the same name already exists.

#define dmErrAlreadyOpenForWrites (dmErrorClass |
22)

The database is already open with write access.

#define dmErrBadOverlayDBName (dmErrorClass | 32)
The length of the locale description or overlay database name
is incorrect, or the locale description begins with an
underscore (‘_’) character.

#define dmErrBaseRequiresOverlay (dmErrorClass |
33)

The base probably requires an overlay, but the corresponding
overlay cannot be located.

#define dmErrBufferNotLargeEnough (dmErrorClass |
42)

While copying a table column value from a schema database,
it was determined that the supplied buffer wasn’t large
enough to contain the column value.

#define dmErrBuiltInProperty (dmErrorClass | 58)
The schema database column property you are trying to alter
is a built-in property; it cannot be changed or removed.

#define dmErrCantFind (dmErrorClass | 7)
The specified database can’t be found.

#define dmErrCantOpen (dmErrorClass | 6)
The database cannot be opened.

#define dmErrCategoryLimitReached (dmErrorClass |
74)

The schema database row cannot be made a member of the
specified category because it is already a member of the
maximum number of allowable categories.

#define dmErrColumnDefinitionsLocked (dmErrorClass
| 76)

The schema database table’s column definitions are locked.

#define dmErrColumnIDAlreadyExists (dmErrorClass |
46)

The specified schema database table already contains a
column with the specified ID.

Data Manager
Data Manager Error Codes

114 Exploring Palm OS: Memory, Databases, and Files

#define dmErrColumnIndexOutOfRange (dmErrorClass |
43)

The supplied column index exceeds the number of columns
in the schema database table.

#define dmErrColumnNameAlreadyExists (dmErrorClass
| 70)

The specified schema database table already contains a
column with the specified name.

#define dmErrColumnPropertiesLocked (dmErrorClass
| 75)

The specified column property is locked.

#define dmErrCorruptDatabase (dmErrorClass | 9)
The database is corrupted.

#define dmErrDatabaseNotProtected (dmErrorClass |
28)

DmDatabaseProtectV50() failed to protect the specified
database.

#define dmErrDatabaseOpen (dmErrorClass | 5)
The function cannot be performed on an open database, and
the database is open.

#define dmErrDatabaseProtected (dmErrorClass | 27)
The database is marked as protected.

#define dmErrDeviceLocked (dmErrorClass | 59)

#define dmErrEncryptionFailure (dmErrorClass | 54)

#define dmErrIndexOutOfRange (dmErrorClass | 2)
The specified index is out of range.

#define dmErrInvalidCategory (dmErrorClass | 18)
At least one of the supplied category IDs is not a valid
schema database category.

#define dmErrInvalidColSpec (dmErrorClass | 40)
At least one of the specified schema database table column
attributes is not a valid column attribute.

Data Manager
Data Manager Error Codes

Exploring Palm OS: Memory, Databases, and Files 115

#define dmErrInvalidColType (dmErrorClass | 41)
The specified schema database table column type is not a
valid column type.

#define dmErrInvalidColumnID (dmErrorClass | 44)
One or more of the specified column IDs doesn’t correspond
to a column in the specified schema database table.

#define dmErrInvalidColumnName (dmErrorClass | 79)
The supplied column name doesn’t correspond to a column
within the schema database table.

#define dmErrInvalidDatabaseName (dmErrorClass |
26)

The name you’ve specified for the database is invalid.

#define dmErrInvalidID (dmErrorClass | 30)
The schema database row ID is invalid.

#define dmErrInvalidIndex (dmErrorClass | 29)
The row or sort index value exceeds the number of rows or
sort indices defined for the schema database table.

#define dmErrInvalidTableName (dmErrorClass | 78)
The supplied table name doesn’t correspond to a table in the
schema database.

#define dmErrInvalidOperation (dmErrorClass | 60)
The requested schema database operation is not valid.

#define dmErrInvalidParam (dmErrorClass | 3)
The function received an invalid parameter.

#define dmErrInvalidPrimaryKey (dmErrorClass | 66)
Not currently used.

#define dmErrInvalidPropID (dmErrorClass | 56)
The specified schema database table column doesn’t have a
property with the specified property ID.

#define dmErrInvalidSchemaDefn (dmErrorClass | 38)
You are creating a schema database or adding a table to an
existing schema database and the supplied
DbTableDefinitionType structure defining the new table
is invalid.

Data Manager
Data Manager Error Codes

116 Exploring Palm OS: Memory, Databases, and Files

#define dmErrInvalidSizeSpec (dmErrorClass | 51)
You are creating a schema database or adding a table to an
existing schema database and one of the table’s vector
column sizes is zero.

#define dmErrInvalidSortDefn (dmErrorClass | 71)
You are adding a sort index to a schema database that is
incorrectly specified or you are attempting to remove a sort
index that isn’t defined for the database.

#define dmErrInvalidSortIndex (dmErrorClass | 65)
You are opening a schema database cursor and one of the
specified sort IDs isn’t defined for the specified database
table.

#define dmErrInvalidVectorType (dmErrorClass | 50)
You adding a vector column to an existing schema
database—either explicitly or during the creation of a new
schema database—but the specified column type isn’t
appropriate for a vector column.

#define dmErrMemError (dmErrorClass | 1)
A memory error occurred.

#define dmErrNoColumnData (dmErrorClass | 48)
Your request for the value of one or more schema database
table columns cannot be fulfilled because the column
contains no data.

#define dmErrNoCustomProperties (dmErrorClass |
57)

The schema database contains no custom properties.

#define dmErrNoData (dmErrorClass | 53)
The specified schema database table has no columns defined.

#define dmErrNoMoreData (dmErrorClass | 72)
The backup operation is complete. See DmBackupUpdate()
for a detailed explanation and example of how this error
code is used.

#define dmErrNoOpenDatabase (dmErrorClass | 17)
The function is to search all open databases, but there are
none.

#define dmErrNotRecordDB (dmErrorClass | 12)
You’ve attempted to perform a record function on a resource
database.

Data Manager
Data Manager Error Codes

Exploring Palm OS: Memory, Databases, and Files 117

#define dmErrNotResourceDB (dmErrorClass | 13)
You’ve attempted to perform a Resource Manager operation
on a record database.

#define dmErrNotSchemaDatabase (dmErrorClass | 35)
The specified database is not a schema database.

#define dmErrNotSecureDatabase (dmErrorClass | 36)
The specified database is not a secure schema database.

#define dmErrNotValidRecord (dmErrorClass | 19)
The record handle is invalid.

#define dmErrNoUserPassword (dmErrorClass | 68)
The Authorization Manager doesn’t have a user password on
file.

#define dmErrOneOrMoreFailed (dmErrorClass | 62)
At least one of the schema database table’s column
definitions could not be retrieved.

#define dmErrOpenedByAnotherTask (dmErrorClass |
23)

You’ve attempted to open a database that another task
already has open.

#define dmErrOperationAborted (dmErrorClass | 73)
The variables bound to a schema database cursor couldn’t be
written to the database, or a database backup or restore
operation was aborted.

#define dmErrReadOnly (dmErrorClass | 4)
You’ve attempted to write to or modify a database that is
open in read-only mode.

#define dmErrReadOutOfBounds (dmErrorClass | 49)
A schema database table vector column is being read in
which the specified offset exceeds the bounds of the column.

#define dmErrRecordArchived (dmErrorClass | 11)
The function requires that the record not be archived, but it
is.

#define dmErrRecordBusy (dmErrorClass | 15)
The function requires that the record not be busy, but it is.

#define dmErrRecordDeleted (dmErrorClass | 10)
The record has been deleted.

Data Manager
Data Manager Error Codes

118 Exploring Palm OS: Memory, Databases, and Files

#define dmErrRecordInWrongCard (dmErrorClass | 8)
You’ve attempted to attach a record to a database when the
record and database reside on different memory cards.

#define dmErrTableNotEmpty (dmErrorClass | 61)
An attempt to remove a schema database table failed because
the table isn’t empty.

#define dmErrResourceNotFound (dmErrorClass | 16)
The resource can’t be found.

#define dmErrROMBased (dmErrorClass | 14)
You’ve attempted to delete or modify a ROM-based
database.

#define dmErrSchemaBase (dmErrorClass | 34)
Not an actual error code: this value serves to mark the
beginning of the set of error codes created specifically for
schema databases.

#define dmErrSchemaIndexOutOfRange (dmErrorClass |
47)

The supplied table index exceeds the number of tables in the
schema database.

#define dmErrTableNameAlreadyExists (dmErrorClass
| 69)

The schema database to which you are attempting to add a
new table already contains a table with the supplied name,
or, during the creation of a new schema database, you
specified the same table name more than once.

#define dmErrSchemaNotFound (dmErrorClass | 55)
Not currently used.

#define dmErrSeekFailed (dmErrorClass | 21)
The operation of seeking the next record in the category
failed.

#define dmErrSortDisabled (dmErrorClass | 67)
Not currently used.

#define dmErrSQLParseError (dmErrorClass | 78)
The SQL used to specify the schema database sort index is
incorrectly formatted.

#define dmErrUniqueIDNotFound (dmErrorClass | 24)
A record with the specified unique ID can’t be found.

Data Manager
DmArchiveRecord

Exploring Palm OS: Memory, Databases, and Files 119

#define dmErrUnknownLocale (dmErrorClass | 31)
The specified locale is unknown to the operating system.

#define dmErrCursorBOF (dmErrorClass | 63)
The schema database cursor position—either the current
position or the one specified—is located before the first row
in the cursor.

#define dmErrCursorEOF (dmErrorClass | 64)
The schema database cursor position—either the current
position or the one specified—is located after the last row in
the cursor.

#define dmErrWriteOutOfBounds (dmErrorClass | 20)
A write operation exceeded the bounds of the record.

Data Manager Functions and Macros

DmArchiveRecord Function
Purpose Mark a record as archived by leaving the record’s chunk intact and

setting the delete bit for the next HotSync operation.

Declared In DataMgr.h

Prototype status_t DmArchiveRecord (DmOpenRef dbRef,
uint16_t index)

Parameters → dbRef
DmOpenRef to an open database.

→ index
Which record to archive.

Returns Returns errNone if no error, or one of the following if an error
occurs:

dmErrReadOnly
You’ve attempted to write to or modify a database that is
open in read-only mode.

dmErrIndexOutOfRange
The specified index is out of range.

Data Manager
DmAttachRecord

120 Exploring Palm OS: Memory, Databases, and Files

dmErrRecordArchived
The function requires that the record not be archived, but it
is.

dmErrRecordDeleted
The record has been deleted.

memErrInvalidParam
A memory error occurred.

Some releases may display a fatal error message instead of
returning the error code.

Comments When a record is archived, the deleted bit is set but the chunk is not
freed and the record ID is preserved. This way, the next time the
user synchronizes with the desktop system, the conduit can save the
record data on the desktop before it permanently removes the
record entry and data from the Palm Powered™ device.

Based on the assumption that a call to DmArchiveRecord()
indicates that you are finished with the record and aren’t going to
refer to it again, this function sets the chunk’s lock count to zero.

See Also DmRemoveRecord(), DmDetachRecord(), DmNewRecord(),
DmDeleteRecord()

DmAttachRecord Function
Purpose Attach an existing chunk ID handle to a database as a record.

Declared In DataMgr.h

Prototype status_t DmAttachRecord (DmOpenRef dbRef,
uint16_t *pIndex, MemHandle hNewRecord,
MemHandle *hReplacedRecord)

Parameters → dbRef
DmOpenRef to an open database.

↔ pIndex
Pointer to the index where the new record should be placed.
Specify the value dmMaxRecordIndex to add the record to
the end of the database.

→ hNewRecord
Handle of the new record.

Data Manager
DmAttachRecord

Exploring Palm OS: Memory, Databases, and Files 121

↔ hReplacedRecord
If non-NULL upon entry, indicates that the record at *pIndex
should be replaced. Upon return, contains the handle to the
replaced record.

Returns Returns errNone if no error, or one of the following if an error
occurs:

dmErrMemError
A memory error occurred.

memErrChunkLocked
The associated memory chunk is locked.

memErrInvalidParam
A memory error occurred.

memErrNotEnoughSpace
A memory error occurred.

dmErrReadOnly
You’ve attempted to write to or modify a database that is
open in read-only mode.

dmErrNotRecordDB
You’ve attempted to perform a record function on a resource
database.

dmErrRecordInWrongCard
You’ve attempted to attach a record to a database when the
record and database reside on different memory cards.

dmErrIndexOutOfRange
The specified index is out of range.

Some releases may display a fatal error message instead of
returning some of these error codes.

Comments Given the handle of an existing chunk, this function makes that
chunk a new record in a database and sets the dirty bit. The
parameter pIndex points to an index variable. If
hReplacedRecord is NULL, the new record is inserted at index
*pIndex and all record indices that follow are shifted down. If
*pIndex is greater than the number of records currently in the
database, the new record hNewRecord is appended to the end and
its index is returned in *pIndex. If hReplacedRecord is not NULL,
the new record replaces an existing record at index *pIndex and the

Data Manager
DmAttachResource

122 Exploring Palm OS: Memory, Databases, and Files

handle of the old record is returned in *hReplacedRecord so that
the application can free it or attach it to another database.

This function is useful for cutting and pasting between databases.

See Also DmRemoveRecord(), DmDetachRecord(), DmNewRecord(),
DmDeleteRecord()

DmAttachResource Function
Purpose Attach an existing chunk ID to a resource database as a new

resource.

Declared In DataMgr.h

Prototype status_t DmAttachResource (DmOpenRef dbRef,
MemHandle hNewRes, DmResourceType resType,
DmResourceID resID)

Parameters → dbRef
DmOpenRef to an open database.

→ hNewRes
Handle of new resource’s data.

→ resType
Type of the new resource.

→ resID
ID of the new resource.

Returns Returns errNone if no error, or one of the following if an error
occurs:

dmErrMemError
A memory error occurred.

memErrChunkLocked
The associated memory chunk is locked.

memErrInvalidParam
A memory error occurred.

memErrNotEnoughSpace
A memory error occurred.

Data Manager
DmBackupFinalize

Exploring Palm OS: Memory, Databases, and Files 123

dmErrReadOnly
You’ve attempted to write to or modify a database that is
open in read-only mode.

dmErrRecordInWrongCard
You’ve attempted to attach a record to a database when the
record and database reside on different memory cards.

Some releases may display a fatal error message instead of
returning some of these error codes. All releases may display a fatal
error message if the database is not a resource database.

Comments Given the handle of an existing chunk with resource data in it, this
function makes that chunk a new resource in a resource database.
The new resource will have the given type and ID.

See Also DmDetachResource(), DmRemoveResource(), DmNewHandle(),
DmNewResource()

DmBackupFinalize Function
Purpose Complete or abort an on-going database backup operation.

Declared In DataMgr.h

Prototype status_t DmBackupFinalize
(DmBackupRestoreStatePtr pState,
Boolean fAbort)

Parameters → pState
Pointer to a DmBackupRestoreStateType structure
allocated by the caller and initialized with
DmBackupInitialize().

→ fAbort
Set to true to abort an on-going backup operation, or false
to clean up after a successful backup.

Returns Returns errNone if the database image was successfully created,
dmErrOperationAborted if the backup operation was cancelled,
or one of the following errors otherwise:

dmErrInvalidParam
One of the parameters is invalid or corrupt.

Data Manager
DmBackupInitialize

124 Exploring Palm OS: Memory, Databases, and Files

dmErrMemError
A memory error occurred which prevented the backup
operation from completing.

Comments This function allows the Data Manager to perform a final clean up
of the internal structures it allocated for the operation. Applications
should always call this function after having started a backup
operation, whether or not the backup completed successfully. See
DmBackupUpdate() for sample code illustrating this function’s
use.

The backup operation can be used with schema, extended, or classic
databases.

See Also DmBackupInitialize(), DmRestoreFinalize()

DmBackupInitialize Function
Purpose Initialize the Data Manager prior to starting a backup operation on

the specified database.

Declared In DataMgr.h

Prototype status_t DmBackupInitialize
(DmBackupRestoreStatePtr pState,
DatabaseID dbID)

Parameters ↔ pState
Pointer to a DmBackupRestoreStateType structure
allocated by the caller.

→ dbID
Database ID of the database to be backed up.

Returns Returns errNone if the structure was successfully initialized, or
one of the following if an error occurred:

dmErrCantFind
The specified database doesn't exist.

dmErrDatabaseOpen
The function cannot be performed on an open database, and
the database is open.

Data Manager
DmBackupUpdate

Exploring Palm OS: Memory, Databases, and Files 125

dmErrAccessDenied
The caller was not authorized to perform a backup operation
for the specified database. This can be returned if the
specified database is a secure schema database.

dmErrInvalidParam
One of the parameters is invalid.

dmErrMemError
A memory error occurred.

Comments Use DmBackupInitialize() to start a database backup
operation. See DmBackupUpdate() for sample code illustrating
this function’s use.

The backup operation can be used with schema, extended, or classic
databases.

IMPORTANT: When called from the main application thread,
this function may block. While blocked, the application will not
receive events and won’t redraw its windows. As well, deferred
sublaunches and notifications won’t execute while the main
application thread is blocked.

See Also DmBackupFinalize(), DmRestoreInitialize()

DmBackupUpdate Function
Purpose Stream a database into its corresponding image within the specified

buffer.

Declared In DataMgr.h

Prototype status_t DmBackupUpdate
(DmBackupRestoreStatePtr pState,
MemPtr pBuffer, uint32_t *pSize)

Parameters → pState
Pointer to a DmBackupRestoreStateType structure
allocated by the caller and initialized with
DmBackupInitialize().

→ pBuffer
Pointer to a buffer to hold the backed-up database image.

Data Manager
DmBackupUpdate

126 Exploring Palm OS: Memory, Databases, and Files

↔ pSize
Before calling, set this variable to the size of the pBuffer
data buffer. Upon return, it contains the actual number of
bytes written to pBuffer.

Returns Returns errNone if the operation was successful,
dmErrNoMoreData if the backup operation is complete, or one of
the following if an error occurred:

dmErrInvalidParam
One of the parameters is invalid or corrupt.

dmErrMemError
A memory error occurred which prevented the backup
operation from completing.

Comments Use DmBackupUpdate(), along with DmBackupInitialize()
and DmBackupFinalize(), to get the serial image of a database.

You may need to call DmBackupUpdate() several times in order to
get the complete image of the specified database. Call
DmBackupUpdate() as many times as required and as long as it
returns errNone, until it finally returns dmErrNoMoreData.

When DmBackupUpdate() returns an error code other than
errNone or dmErrNoMoreData, the operation has been aborted
due to a fatal error. You must still call DmBackupFinalize() in
order to let the Data Manager perform its final clean up of the
internal structures it allocated for the operation.

The backup operation can be used with schema, extended, or classic
databases.

Example The following code shows how to use the DmBackup...()
functions to send an image of a database to a fictitious serial
channel.

status_t error;
DmBackupRestoreStateType backupState;
char buffer[BUFFER_SIZE];
uint32_t size;
Boolean fAbort;
Boolean fDone;

error = DmBackupInitialize(&backupState, dbID);

if (error == errNone){

Data Manager
DmBackupUpdate

Exploring Palm OS: Memory, Databases, and Files 127

 do {
 // Reset the size value with the buffer size for each
 // loop as this variable gets updated with the actual
 // number of bytes written to the buffer after each
 // call to DmBackupDatabase.
 size = sizeof(buffer);

 error = DmBackupUpdate(&backupState, &buffer, &size);

 fDone = (error == dmErrNoMoreData);

 if ((error == errNone) || fDone){
 // Stream the database image data chunk we got back
 // out to some I/O channel...
 error = SendDatabaseImageData(&buffer, size);
 }

 // Abort the operation if we got back an error or if
 // the user decided to cancel the operation...
 fAbort = (error != errNone) || DidUserCancel();

 } while(!fDone && !fAbort);

 // Always call DmBackupFinalize to complete the backup
 // operation, whether or not it completed successfully
 error = DmBackupFinalize(&backupState, fAbort);
}

if (error == errNone){
 // The backup operation completed successfully...
} else {
 if (error == dmErrOperationAborted){
 // The user aborted the operation
 } else {
 // Some other fatal error occurred...
 }
}

See Also DmRestoreUpdate()

Data Manager
DmCloseDatabase

128 Exploring Palm OS: Memory, Databases, and Files

DmCloseDatabase Function
Purpose Close a database.

Declared In DataMgr.h

Prototype status_t DmCloseDatabase (DmOpenRef dbRef)

Parameters → dbRef
DmOpenRef to an open database.

Returns Returns errNone if no error, or dmErrInvalidParam if an error
occurs. Some releases may display a fatal error message instead of
returning the error code.

Comments This function doesn’t unlock any records that were left locked.
Records and resources should not be left locked. If a record or
resource is left locked, you should not use its reference because the
record can disappear during a HotSync operation or if the database
is deleted by the user. To prevent the database from being deleted,
you can use DmSetDatabaseProtection() before closing.

If there is an overlay associated with the database passed in,
DmCloseDatabase() closes the overlay as well.

If the database has the recyclable bit set (dmHdrAttrRecyclable),
DmCloseDatabase() calls DmDeleteDatabase() to delete it.

DmCloseDatabase() updates the database’s modification date.

See Also DmOpenDatabase(), DmDeleteDatabase(),
DmOpenDatabaseByTypeCreator()

DmCloseIteratorByTypeCreator Function
Purpose Indicate that a particular iteration loop is complete.

Declared In DataMgr.h

Prototype status_t DmCloseIteratorByTypeCreator
(DmSearchStatePtr stateInfoP)

Parameters → stateInfoP
Pointer to the DmSearchStateType structure supplied to
DmOpenIteratorByTypeCreator() and
DmGetNextDatabaseByTypeCreator().

Returns Returns errNone.

Data Manager
DmCreateDatabase

Exploring Palm OS: Memory, Databases, and Files 129

Comments See the comments under
DmGetNextDatabaseByTypeCreator() for an example of how
this function is used.

See Also DmGetNextDatabaseByTypeCreator(),
DmOpenIteratorByTypeCreator()

DmCreateDatabase Function
Purpose Create a new extended database with the given name, creator, and

type.

Declared In DataMgr.h

Prototype status_t DmCreateDatabase (const char *nameP,
uint32_t creator, uint32_t type,
Boolean resDB)

Parameters → nameP
Name of new database, up to 32 ASCII bytes long, including
the null terminator (as specified by dmDBNameLength).
Database names must use only 7-bit ASCII characters (0x20
through 0x7E).

→ creator
Creator of the database.

→ type
Type of the database.

→ resDB
If true, create a resource database. If false, create a record
database.

Returns Returns errNone if no error, or one of the following if an error
occurs:

dmErrInvalidDatabaseName
The name you’ve specified for the database is invalid.

dmErrAlreadyExists
Another database with the same name already exists.

memErrCardNotPresent
The specified card can’t be found.

Data Manager
DmCreateDatabase

130 Exploring Palm OS: Memory, Databases, and Files

dmErrMemError
A memory error occurred.

memErrChunkLocked
The associated memory chunk is locked.

memErrInvalidParam
A memory error occurred.

memErrInvalidStoreHeader
The specified card has no storage RAM.

memErrNotEnoughSpace
A memory error occurred.

memErrRAMOnlyCard
The specified card has no storage RAM.

May display a fatal error message if the master database list cannot
be found.

Comments If another database with the same name and creator already exists
in RAM store, this function returns a dmErrAlreadyExists error.

Once created, the database ID can be retrieved by calling
DmFindDatabase(). The database can be opened using the
database ID.

After you create a database, you should call
DmSetDatabaseInfo() to set the version number. Databases
default to version 0 if the version isn’t explicitly set.

IMPORTANT: This function creates extended databases only.
To create a classic database, use DmCreateDatabaseV50().
To create a schema database, use DbCreateDatabase().

See Also DmCreateDatabaseFromImage(), DmOpenDatabase(),
DmDeleteDatabase()

Data Manager
DmCreateDatabaseFromImage

Exploring Palm OS: Memory, Databases, and Files 131

DmCreateDatabaseFromImage Function
Purpose Create an entire database from a single resource that contains an

image of the database.

Declared In DataMgr.h

Prototype status_t DmCreateDatabaseFromImage
(MemPtr pImage, DatabaseID *pDbID)

Parameters → pImage
Pointer to locked resource containing database image.

← pDbID
Pointer to a variable that will hold the ID of the newly-
created database, or NULL if the ID isn’t needed.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

dmErrInvalidParam
pImage is NULL.

dmErrMemError
A memory error occurred. Most likely there wasn’t enough
memory available to create the database.

dmErrCorruptDatabase
The format of the database image is unrecognized.

dmErrAlreadyExists
The database being created already exists on the device.

Comments An image is the same as a desktop file representation of a PRC or
PDB file. This function creates either an extended or a classic
database, or a non-secure schema database, depending upon the
image stored in the resource. To perform a similar operation for a
secure schema database, see
DbCreateSecureDatabaseFromImage().

This function is intended for applications in the ROM to install
default databases after a hard reset. RAM-based applications that
want to install a default database should install a PDB file
separately to save storage heap space.

See Also DmCreateDatabase(), DmOpenDatabase()

Data Manager
DmCreateDatabaseFromImageV50

132 Exploring Palm OS: Memory, Databases, and Files

DmCreateDatabaseFromImageV50 Function
Purpose Create an entire classic database from a single resource that contains

an image of the database.

Declared In DataMgr.h

Prototype status_t DmCreateDatabaseFromImageV50
(MemPtr pImage)

Parameters → pImage
Pointer to locked resource containing database image.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

dmErrInvalidParam
pImage is NULL.

dmErrMemError
A memory error occurred. Most likely there wasn’t enough
memory available to create the database.

dmErrCorruptDatabase
The format of the database image is unrecognized.

dmErrAlreadyExists
The database being created already exists on the device.

Comments An image is the same as a desktop file representation of a PRC or
PDB file.

This function is intended for applications in the ROM to install
default databases after a hard reset. RAM-based applications that
want to install a default database should install a PDB file
separately to save storage heap space.

Compatibility This function is provided for compatibility purposes. Note that it
works only with classic databases—the only type of database
supported in PACE and by previous versions of Palm OS. Native
Palm OS Cobalt applications will likely want to use
DmCreateDatabaseFromImage() instead.

See Also DmCreateDatabaseFromImage()

Data Manager
DmCreateDatabaseV50

Exploring Palm OS: Memory, Databases, and Files 133

DmCreateDatabaseV50 Function
Purpose Create a new classic database on the specified card with the given

name, creator, and type.

Declared In DataMgr.h

Prototype status_t DmCreateDatabaseV50 (uint16_t cardNo,
const char *nameP, uint32_t creator,
uint32_t type, Boolean resDB)

Parameters → cardNo
The number of the card on which to create the database. This
value should always be zero.

→ nameP
Name of new database, up to 32 ASCII bytes long, including
the null terminator (as specified by dmDBNameLength).
Database names must use only 7-bit ASCII characters (0x20
through 0x7E).

→ creator
Creator of the database.

→ type
Type of the database.

→ resDB
If true, create a resource database.

Returns Returns errNone if no error, or one of the following if an error
occurs:

dmErrInvalidDatabaseName
The name you’ve specified for the database is invalid.

dmErrAlreadyExists
Another database with the same name already exists.

memErrCardNotPresent
The specified card can’t be found.

dmErrMemError
A memory error occurred.

memErrChunkLocked
The associated memory chunk is locked.

memErrInvalidParam
A memory error occurred.

Data Manager
DmDatabaseInfo

134 Exploring Palm OS: Memory, Databases, and Files

memErrInvalidStoreHeader
The specified card has no storage RAM.

memErrNotEnoughSpace
A memory error occurred.

memErrRAMOnlyCard
The specified card has no storage RAM.

May display a fatal error message if the master database list cannot
be found.

Comments Call this function to create a new database on a specific card. If
another classic database with the same name already exists in RAM
store, this function returns a dmErrAlreadyExists error code.
Once created, the database ID can be retrieved by calling
DmFindDatabase(). The database can be opened using the
database ID. To create a resource database instead of a record-based
database, set the resDB parameter to true.

After you create a database, it’s recommended that you call
DmSetDatabaseInfo() to set the version number. Databases
default to version 0 if the version isn’t explicitly set.

Compatibility This function is provided for compatibility purposes. Note that it
only works with classic databases—the only type of database
supported in PACE and by previous versions of Palm OS. Native
Palm OS Cobalt applications may want to use
DmCreateDatabase() instead.

See Also DmCreateDatabaseFromImage(), DmOpenDatabase(),
DmDeleteDatabase()

DmDatabaseInfo Function
Purpose Retrieve information about a non-schema database.

Declared In DataMgr.h

Prototype status_t DmDatabaseInfo (DatabaseID dbID,
DmDatabaseInfoPtr pDatabaseInfo)

Parameters → dbID
Database ID of the database.

Data Manager
DmDatabaseInfoV50

Exploring Palm OS: Memory, Databases, and Files 135

→ pDatabaseInfo
Pointer to a DmDatabaseInfoType structure that indicates
where, or if, the database information is to be written.

Returns Returns errNone if the database information was successfully
retrieved, or dmErrInvalidParam if an error occurred.

Comments Initialize the fields of the pDatabaseInfo structure to point to
variables where this function will write the information. If you don’t
want to retrieve data corresponding to a given field, set that field to
NULL.

See Also DmDatabaseInfoV50(), DmSetDatabaseInfo(),
DmDatabaseSize(), DmOpenDatabaseInfoV50(),
DmFindDatabase(), DmGetNextDatabaseByTypeCreator(),
TimSecondsToDateTime()

DmDatabaseInfoV50 Function
Purpose Retrieve information about a database.

Declared In DataMgr.h

Prototype status_t DmDatabaseInfoV50 (uint16_t cardNo,
LocalID dbID, char *nameP,
uint16_t *attributesP, uint16_t *versionP,
uint32_t *crDateP, uint32_t *modDateP,
uint32_t *bckUpDateP, uint32_t *modNumP,
LocalID *appInfoIDP, LocalID *sortInfoIDP,
uint32_t *typeP, uint32_t *creatorP)

Parameters → cardNo
Number of the card the database resides on.

→ dbID
Database ID of the database.

← nameP
The database’s name. Pass a pointer to 32-byte character
array for this parameter, or NULL if you don’t care about the
name.

← attributesP
The database’s attribute flags. The section “Database
Attributes” lists constants you can use to query the values

Data Manager
DmDatabaseInfoV50

136 Exploring Palm OS: Memory, Databases, and Files

returned in this parameter. Pass NULL for this parameter if
you don’t want to retrieve it.

← versionP
The application-specific version number. The default version
number is 0. Pass NULL for this parameter if you don’t want
to retrieve it.

← crDateP
The date the database was created, expressed as the number
of seconds since the first instant of Jan. 1, 1904. Pass NULL for
this parameter if you don’t want to retrieve it.

← modDateP
The date the database was last modified, expressed as the
number of seconds since the first instant of Jan. 1, 1904. Pass
NULL for this parameter if you don’t want to retrieve it.

← bckUpDateP
The date the database was backed up, expressed as the
number of seconds since the first instant of Jan. 1, 1904. Pass
NULL for this parameter if you don’t want to retrieve it.

← modNumP
The modification number, which is incremented every time a
record in the database is added, modified, or deleted. Pass
NULL for this parameter if you don’t want to retrieve it.

← appInfoIDP
The local ID of the application info block, or NULL. The
application info block is an optional field that the database
may use to store application-specific information about the
database. Pass NULL for this parameter if you don’t want to
retrieve it.

← sortInfoIDP
The local ID of the database’s sort table. This is an optional
field in the database header. Pass NULL for this parameter if
you don’t want to retrieve it.

← typeP
The database’s type, specified when it is created. Pass NULL
for this parameter if you don’t want to retrieve it.

← creatorP
The database’s creator, specified when it is created. Pass
NULL for this parameter if you don’t want to retrieve it.

Data Manager
DmDatabaseProtectV50

Exploring Palm OS: Memory, Databases, and Files 137

Returns Returns errNone if no error, or dmErrInvalidParam if an error
occurs.

Comments The modification date is updated only if a change has been made to
the database opened with write access. (The update still occurs
upon closing the database.) Changes that trigger an update include
adding, deleting, archiving, rearranging, or resizing records, setting
a record’s dirty bit in DmReleaseRecord(), rearranging or
deleting categories, or updating the database header fields using
DmSetDatabaseInfo().

Compatibility This function is provided for compatibility purposes only; Palm OS
Cobalt applications will likely want to use DmDatabaseInfo()
instead.

See Also DmDatabaseInfo(), DmSetDatabaseInfo(),
DmDatabaseSize(), DmOpenDatabaseInfoV50(),
DmFindDatabase(), DmGetNextDatabaseByTypeCreator(),
TimSecondsToDateTime()

DmDatabaseProtectV50 Function
Purpose Increment or decrement a non-schema database’s protection count.

Declared In DataMgr.h

Prototype status_t DmDatabaseProtectV50 (uint16_t cardNo,
LocalID dbID, Boolean protect)

Parameters → cardNo
Card number of database to protect/unprotect.

→ dbID
Local ID of database to protect/unprotect.

→ protect
If true, the database’s protection count is incremented. If
false, it is decremented.

Returns Returns errNone if no error, or one of the following if an error
occurs:

memErrCardNotPresent
The specified card can’t be found.

Data Manager
DmDatabaseSize

138 Exploring Palm OS: Memory, Databases, and Files

dmErrROMBased
You’ve attempted to delete or modify a ROM-based
database.

dmErrCantFind
The specified database can’t be found.

memErrNotEnoughSpace
A memory error occurred.

dmErrDatabaseNotProtected

Comments This function can be used to prevent a database from being deleted
(by passing true for the protect parameter). It increments the
protect count if protect is true and decrements it if protect is
false. All true calls should be balanced by false calls before the
application terminates.

Use this function if you want to keep a particular record or resource
in a database locked down but don’t want to keep the database
open. This information is kept in the dynamic heap, so all databases
are “unprotected” at system reset.

If the database is a resource database that has an overlay associated
with it for the current locale, the overlay is also protected or
unprotected by this call.

Compatibility This function is provided for compatibility purposes only. Palm OS
Cobalt functions should use DmSetDatabaseProtection()
instead.

DmDatabaseSize Function
Purpose Retrieve size information for a database.

Declared In DataMgr.h

Prototype status_t DmDatabaseSize (DatabaseID dbID,
uint32_t *numRecordsP, uint32_t *totalBytesP,
uint32_t *dataBytesP)

Parameters → dbID
Database ID of the database.

Data Manager
DmDatabaseSizeV50

Exploring Palm OS: Memory, Databases, and Files 139

← numRecordsP
The total number of records in the database. Pass NULL for
this parameter if you don’t want to retrieve it.

← totalBytesP
The total number of bytes used by the database including the
overhead. Pass NULL for this parameter if you don’t want to
retrieve it.

← dataBytesP
The total number of bytes used to store just each record’s
data, not including overhead. Pass NULL for this parameter if
you don’t want to retrieve it.

Returns Returns errNone if no error, or dmErrMemError if an error occurs.

Comments This function operates on extended, classic, or schema databases.

See Also DmDatabaseInfo(), DmOpenDatabaseInfoV50(),
DmFindDatabase(), DmGetNextDatabaseByTypeCreator()

DmDatabaseSizeV50 Function
Purpose Retrieve size information for a database.

Declared In DataMgr.h

Prototype status_t DmDatabaseSizeV50 (uint16_t cardNo,
LocalID dbID, uint32_t *numRecordsP,
uint32_t *totalBytesP, uint32_t *dataBytesP)

Parameters → cardNo
Card number the database resides on.

→ dbID
Database ID of the database.

← numRecordsP
The total number of records in the database. Pass NULL for
this parameter if you don’t want to retrieve it.

← totalBytesP
The total number of bytes used by the database including the
overhead. Pass NULL for this parameter if you don’t want to
retrieve it.

Data Manager
DmDeleteCategory

140 Exploring Palm OS: Memory, Databases, and Files

← dataBytesP
The total number of bytes used to store just each record’s
data, not including overhead. Pass NULL for this parameter if
you don’t want to retrieve it.

Returns Returns errNone if no error, or dmErrMemError if an error occurs.

Compatibility This function is provided for compatibility purposes only. Palm OS
Cobalt applications should use DmDatabaseSize() instead.

See Also DmDatabaseInfo(), DmOpenDatabaseInfoV50(),
DmFindDatabase(), DmGetNextDatabaseByTypeCreator()

DmDeleteCategory Function
Purpose Delete all records in a category. The category name is not changed.

Declared In DataMgr.h

Prototype status_t DmDeleteCategory (DmOpenRef dbRef,
uint16_t categoryNum)

Parameters → dbRef
DmOpenRef to an open database.

→ categoryNum
Category of records to delete. Category masks such as
dmAllCategories are invalid.

Returns Returns errNone if no error, or one of the following if an error
occurs:

dmErrReadOnly
You’ve attempted to write to or modify a database that is
open in read-only mode.

memErrInvalidParam
A memory error occurred.

Some releases may display a fatal error message instead of
returning the error code.

Comments This function deletes all records in a category, but does not delete
the category itself (note that it deletes the record data and header
info, and doesn’t just set the deleted bit). For each record in the
category, DmDeleteCategory() marks the delete bit in the
database header for the record and disposes of the record’s data

Data Manager
DmDeleteDatabase

Exploring Palm OS: Memory, Databases, and Files 141

chunk. The record entry in the database header remains, but its
localChunkID is set to NULL.

If the category contains no records, this function does nothing and
returns errNone to indicate success. The categoryNum parameter
is assumed to represent a single category. If you pass a category
mask to specify more than one category, this function interprets that
value as a single category, finds no records to delete in that category,
and returns errNone.

Example You can use the DmGetRecordCategory() call to obtain a
category index from a given record, as shown in the following code
excerpt:

DmOpenRef myDB; //assume that this is set
uint16_t myRecIndex; //assume that this is set
uint8_t category;
status_t err;

err = DmGetRecordCategory(myDB, myRecIndex, &category);
err = DmDeleteCategory(myDB, category);

DmDeleteDatabase Function
Purpose Delete a database and all of its records.

Declared In DataMgr.h

Prototype status_t DmDeleteDatabase (DatabaseID dbID)

Parameters → dbID
Database ID of the database being deleted.

Returns Returns errNone if no error, or one of the following if an error
occurred:

dmErrCantFind
The specified database can’t be found.

dmErrCantOpen
The database cannot be opened.

memErrChunkLocked
The associated memory chunk is locked.

Data Manager
DmDeleteDatabase

142 Exploring Palm OS: Memory, Databases, and Files

dmErrDatabaseOpen
The function cannot be performed on an open database, and
the database is open.

dmErrROMBased
You’ve attempted to delete or modify a ROM-based
database.

memErrInvalidParam
A memory error occurred.

memErrNotEnoughSpace
A memory error occurred.

Comments Call this function to delete a database. This function deletes the
database, the application info block, the sort info block, and any
other overhead information that is associated with this database.
After deleting the database, this function enqueues a deferred
sysNotifyDBDeletedEvent notification, which will be broadcast
at the top of the event loop.

If the database has an overlay associated with it, this function does
not delete the overlay. You can delete the overlay with a separate call
to DmDeleteDatabase().

This function accepts a database ID as a parameter. To determine the
database ID, call DmFindDatabase().

IMPORTANT: When called from the main application thread,
this function may block. While blocked, the application will not
receive events and won’t redraw its windows. As well, deferred
sublaunches and notifications won’t execute while the main
application thread is blocked.

See Also DmDeleteRecord(), DmRemoveRecord(), DmRemoveResource(),
DmCreateDatabase(), DmGetNextDatabaseByTypeCreator(),
DmFindDatabase()

Data Manager
DmDeleteDatabaseV50

Exploring Palm OS: Memory, Databases, and Files 143

DmDeleteDatabaseV50 Function
Purpose Delete a database and all its records.

Declared In DataMgr.h

Prototype status_t DmDeleteDatabaseV50 (uint16_t cardNo,
LocalID dbID)

Parameters → cardNo
Card number the database resides on.

→ dbID
Database ID.

Returns Returns errNone if no error, or one of the following if an error
occurs:

dmErrCantFind
The specified database can’t be found.

dmErrCantOpen
The database cannot be opened.

memErrChunkLocked
The associated memory chunk is locked.

dmErrDatabaseOpen
The function cannot be performed on an open database, and
the database is open.

dmErrDatabaseProtected
The database is marked as protected.

dmErrROMBased
You’ve attempted to delete or modify a ROM-based
database.

memErrInvalidParam
A memory error occurred.

memErrNotEnoughSpace
A memory error occurred.

Comments Call this function to delete a database. This function deletes the
database, the application info block, the sort info block, and any
other overhead information that is associated with this database.
After deleting the database, this function enqueues a deferred
sysNotifyDBDeletedEvent notification, which will be broadcast
at the top of the event loop.

Data Manager
DmDeleteRecord

144 Exploring Palm OS: Memory, Databases, and Files

If the database has an overlay associated with it, this function does
not delete the overlay. You can delete the overlay with a separate call
to DmDeleteDatabase().

This function accepts a database ID as a parameter. To determine the
database ID, call either DmFindDatabase() or
DmGetDatabaseV50() with a database index.

IMPORTANT: When called from the main application thread,
this function may block. While blocked, the application will not
receive events and won’t redraw its windows. As well, deferred
sublaunches and notifications won’t execute while the main
application thread is blocked.

Compatibility This function is provided for compatibility purposes. Palm OS
Cobalt applications will likely want to use DmDeleteDatabase()
instead.

See Also DmDeleteRecord(), DmRemoveRecord(), DmRemoveResource(),
DmCreateDatabase(), DmGetNextDatabaseByTypeCreator(),
DmFindDatabase()

DmDeleteRecord Function
Purpose Delete a record’s chunk from a database but leave the record entry

in the header and set the delete bit for the next HotSync operation.

Declared In DataMgr.h

Prototype status_t DmDeleteRecord (DmOpenRef dbRef,
uint16_t index)

Parameters → dbRef
DmOpenRef to an open database.

→ index
Which record to delete.

Returns Returns errNone if no error, or one of the following if an error
occurs:

dmErrReadOnly
You’ve attempted to write to or modify a database that is
open in read-only mode.

Data Manager
DmDetachRecord

Exploring Palm OS: Memory, Databases, and Files 145

dmErrIndexOutOfRange
The specified index is out of range.

dmErrRecordArchived
The function requires that the record not be archived, but it
is.

dmErrRecordDeleted
The record has been deleted.

memErrInvalidParam
A memory error occurred.

Some releases may display a fatal error message instead of
returning the error code.

Comments Marks the delete bit in the database header for the record and
disposes of the record’s data chunk. Does not remove the record
entry from the database header, but simply sets the localChunkID
of the record entry to NULL.

See Also DmDetachRecord(), DmRemoveRecord(), DmArchiveRecord(),
DmNewRecord()

DmDetachRecord Function
Purpose Detach and orphan a record from a database but don’t delete the

record’s chunk.

Declared In DataMgr.h

Prototype status_t DmDetachRecord (DmOpenRef dbRef,
uint16_t index, MemHandle *hDetached)

Parameters → dbRef
DmOpenRef to an open database.

→ index
Index of the record to detach.

↔ hDetached
Pointer to return handle of the detached record.

Returns Returns errNone if no error, or one of the following if an error
occurs:

Data Manager
DmDetachResource

146 Exploring Palm OS: Memory, Databases, and Files

dmErrReadOnly
You’ve attempted to write to or modify a database that is
open in read-only mode.

dmErrIndexOutOfRange
The specified index is out of range.

dmErrNotRecordDB
You’ve attempted to perform a record function on a resource
database.

memErrChunkLocked
The associated memory chunk is locked.

memErrInvalidParam
A memory error occurred.

Some releases may display a fatal error message instead of
returning the error code.

Comments This function detaches a record from a database by removing its
entry from the database header and returns the handle of the
record’s data chunk in *hDetached. Unlike DmDeleteRecord(),
this function removes its entry in the database header but it does not
delete the actual record.

See Also DmAttachRecord(), DmRemoveRecord(), DmArchiveRecord(),
DmDeleteRecord()

DmDetachResource Function
Purpose Detach a resource from a database and return the handle of the

resource’s data.

Declared In DataMgr.h

Prototype status_t DmDetachResource (DmOpenRef dbRef,
uint16_t index, MemHandle *hDetached)

Parameters → dbRef
DmOpenRef to an open database.

→ index
Index of resource to detach.

↔ hDetached
Pointer to return handle of the detached record.

Data Manager
DmFindDatabase

Exploring Palm OS: Memory, Databases, and Files 147

Returns Returns errNone if no error, or one of the following if an error
occurs:

dmErrReadOnly
You’ve attempted to write to or modify a database that is
open in read-only mode.

dmErrIndexOutOfRange
The specified index is out of range.

dmErrCorruptDatabase
The database is corrupted.

memErrChunkLocked
The associated memory chunk is locked.

memErrInvalidParam
A memory error occurred.

Some releases may display a fatal error message instead of
returning the error code. All releases may display a fatal error
message if the database is not a resource database.

Comments This function detaches a resource from a database by removing its
entry from the database header and returns the handle of the
resource’s data chunk in *hDetached.

See Also DmAttachResource(), DmRemoveResource()

DmFindDatabase Function
Purpose Return the database ID of a database given its name and creator ID.

Declared In DataMgr.h

Prototype DatabaseID DmFindDatabase (const char *nameP,
uint32_t creator, DmFindType find,
DmDatabaseInfoPtr databaseInfoP)

Parameters → nameP
Name of the database to look for.

→ creator
Creator ID of the database to look for.

Data Manager
DmFindDatabaseByTypeCreator

148 Exploring Palm OS: Memory, Databases, and Files

→ find
Flags indicating the type of database to be searched for:
schema, extended, classic, or a combination of the three. See
DmFindType for more information.

← databaseInfoP
Pointer to a DmDatabaseInfoType structure which is filled
out appropriately for the found database, or NULL if this
information isn’t needed.

Returns Returns the database ID. If the database can’t be found, this function
returns 0, and DmGetLastErr() returns an error code indicating
the reason for failure.

Comments This function first searches in RAM; if a database matching the
specified criteria is not found, it then searches the device’s ROM.

See Also DmDatabaseInfo(), DmFindDatabaseByTypeCreator(),
DmFindDatabaseV50(), DmGetNextDatabaseByTypeCreator()

DmFindDatabaseByTypeCreator Function
Purpose Return the database ID of a database given its type and creator ID.

Declared In DataMgr.h

Prototype DatabaseID DmFindDatabaseByTypeCreator
(uint32_t type, uint32_t creator,
DmFindType find,
DmDatabaseInfoPtr databaseInfoP)

Parameters → type
Database type of the database to look for.

→ creator
Creator ID of the database to look for.

→ find
Flags indicating the type of database to be searched for:
schema, extended, classic, or a combination of the three. See
DmFindType for more information.

← databaseInfoP
Pointer to a DmDatabaseInfoType structure which is filled
out appropriately for the found database, or NULL if this
information isn’t needed.

Data Manager
DmFindDatabaseV50

Exploring Palm OS: Memory, Databases, and Files 149

Returns Returns the database ID. If the database can’t be found, this function
returns 0, and DmGetLastErr() returns an error code indicating
the reason for failure.

Comments This function first searches in RAM; if a database matching the
specified criteria is not found, it then searches the device’s ROM.

This function can be used to find extended, classic, or even schema
databases.

See Also DmDatabaseInfo(), DmFindDatabase(),
DmGetNextDatabaseByTypeCreator()

DmFindDatabaseV50 Function
Purpose Return the database ID of a classic database given its card number

and name.

Declared In DataMgr.h

Prototype LocalID DmFindDatabaseV50 (uint16_t cardNo,
const char *nameP)

Parameters → cardNo
Number of card to search.

→ nameP
Name of the database to look for.

Returns Returns the database ID. If the database can’t be found, this function
returns 0, and DmGetLastErr() returns an error code indicating
the reason for failure.

Comments This function searches only within the classic namespace. This
eliminates the possibility of finding multiple databases with the
same name.

Palm OS Cobalt applications should usually use
DmFindDatabase() instead of this function. In order to ensure
compatibility, this function only searches for classic database. Note
that this function isn’t as flexible as DmFindDatabase() since it
finds databases without regard to their creator ID. This is consistent
with earlier versions of Palm OS, in which databases had to be
uniquely identified by name.

Data Manager
DmFindRecordByID

150 Exploring Palm OS: Memory, Databases, and Files

Compatibility This function is provided for compatibility purposes only. Palm OS
Cobalt applications should use DmFindDatabase() instead.

See Also DmFindDatabase(), DmGetNextDatabaseByTypeCreator(),
DmDatabaseInfo(), DmOpenDatabase()

DmFindRecordByID Function
Purpose Return the index of the record with the given unique ID.

Declared In DataMgr.h

Prototype status_t DmFindRecordByID (DmOpenRef dbRef,
uint32_t uniqueID, uint16_t *pIndex)

Parameters → dbRef
DmOpenRef to an open database.

→ uniqueID
Unique ID to search for.

← pIndex
Return index.

Returns Returns 0 if found, otherwise dmErrUniqueIDNotFound. May
display a fatal error message if the unique ID is invalid.

See Also DmQueryRecord(), DmGetRecord(), DmRecordInfoV50()

DmFindRecordByOffsetInCategory Function
Purpose Return the index of the record nearest the offset from the passed

record index whose category matches the passed category. (The
offset parameter indicates the number of records to move
forward or backward.)

Declared In DataMgr.h

Prototype status_t DmFindRecordByOffsetInCategory
(DmOpenRef dbRef, uint16_t *pIndex,
uint16_t offset, int16_t direction,
uint16_t category)

Parameters → dbRef
DmOpenRef to an open database.

Data Manager
DmFindRecordByOffsetInCategory

Exploring Palm OS: Memory, Databases, and Files 151

↔ pIndex
The index to start the search at. Upon return, contains the
index of the record at offset from the index that you passed
in.

→ offset
Offset of the passed record index. This must be a positive
number; use dmSeekBackward for the direction
parameter to search backwards.

→ direction
Must be either dmSeekForward or dmSeekBackward.

→ category
Category index.

Returns Returns errNone if no error; returns dmErrIndexOutOfRange or
dmErrSeekFailed if an error occurred.

Comments DmFindRecordByOffsetInCategory() searches for a record in
the specified category. The search begins with the record at pIndex.
When it finds a record in the specified category, it decrements the
offset parameter and continues searching until a match is found
and offset is 0.

Because of this, if you use
DmFindRecordByOffsetInCategory() to find the nearest
matching record in a particular category, you must pass different
offset parameters if the starting record is in the category than if it
isn’t. If the record at pIndex is in the category, then you must pass
an offset of 1 to find the next record in the category because the
comparison is performed before the pIndex value changes. If the
record at pIndex isn’t in the category, you must pass an offset of
0 to find the next record in the category. In this case, an offset of 1
skips the first matching record.

Records that have the deleted bit set are ignored, and if the user
has specified that private records should be hidden or masked,
private records are ignored as well.

See Also DmNumRecordsInCategory(), DmQueryNextInCategory(),
DmMoveCategory()

Data Manager
DmFindResource

152 Exploring Palm OS: Memory, Databases, and Files

DmFindResource Function
Purpose Search the given database for a resource by type and ID, or by

pointer if it is non-NULL.

Declared In DataMgr.h

Prototype uint16_t DmFindResource (DmOpenRef dbRef,
DmResourceType resType, DmResourceID resID,
MemHandle hResource)

Parameters → dbRef
DmOpenRef to an open database.

→ resType
Type of resource to search for.

→ resID
ID of resource to search for.

→ hResource
Pointer to locked resource, or NULL.

Returns Returns index of resource in resource database, or
dmInvalidRecIndex if not found.

May display a fatal error message if the database is not a resource
database.

Comments Use this function to find a resource in a particular resource database
by type and ID or by pointer. It is particularly useful when you want
to search only one database for a resource and that database is not
the topmost one.

IMPORTANT: This function searches for the resource only in
the database you specify. If you pass a pointer to a base resource
database, its overlay is not searched. To search both a base
database and its overlay for a localized resource, use
DmGet1ResourceV50() instead of this function.

If hResource is NULL, the resource is searched for by type and ID.

If hResource is not NULL, resType and resID are ignored and
the index of the given locked resource is returned.

Data Manager
DmFindResourceType

Exploring Palm OS: Memory, Databases, and Files 153

Once the index of a resource is determined, it can be locked down
and accessed by calling DmGetResourceByIndex().

See Also DmGetResource(), DmSearchResourceOpenDatabases(),
DmResourceInfo(), DmGetResourceByIndex(),
DmFindResourceType()

DmFindResourceType Function
Purpose Search the given database for a resource by type and type index.

Declared In DataMgr.h

Prototype uint16_t DmFindResourceType (DmOpenRef dbRef,
DmResourceType resType, uint16_t typeIndex)

Parameters → dbRef
DmOpenRef to an open database.

→ resType
Type of resource to search for.

→ typeIndex
Index of given resource type.

Returns Index of resource in resource database, or 0xFFFF if not found.

May display a fatal error message if the database is not a resource
database.

Comments Use this function to retrieve all the resources of a given type in a
resource database. By starting at typeIndex 0 and incrementing
until an error is returned, the total number of resources of a given
type and the index of each of these resources can be determined.
Once the index of a resource is determined, it can be locked down
and accessed by calling DmGetResourceByIndex().

Data Manager
DmGet1ResourceV50

154 Exploring Palm OS: Memory, Databases, and Files

IMPORTANT: This function searches for resources only in the
database you specify. If you pass a pointer to a base resource
database, its overlay is not searched. To search both a base
database and its overlay for a localized resource, use
DmGet1ResourceV50() instead of this function.

See Also DmGetResource(), DmSearchResourceOpenDatabases(),
DmResourceInfo(), DmGetResourceByIndex(), DmFindResource()

DmGet1ResourceV50 Function
Purpose Search the most recently opened resource database and return a

handle to a resource given the resource type and ID.

Declared In DataMgr.h

Prototype MemHandle DmGet1ResourceV50
(DmResourceType resType, DmResourceID resID)

Parameters → resType
The resource type.

→ resID
The resource ID.

Returns Handle to resource data. If unsuccessful, this function returns NULL
and DmGetLastErr() returns an error code indicating the reason
for failure.

Comments Searches the most recently opened resource database for a resource
of the given type and ID. If the database has an overlay associated
with it, the overlay is searched first, and then the base database is
searched if the overlay does not contain the resource. If found, the
resource handle is returned. The application should call
DmReleaseResource() as soon as it finishes accessing the
resource data. The resource handle is not locked by this function.

Compatibility This function is provided for compatibility purposes only. Palm OS
Cobalt applications should use DmGetResource() or
DmGetResourceByIndex() instead.

See Also DmGetResource(), DmReleaseResource(), ResLoadConstant()

Data Manager
DmGetAppInfoIDV50

Exploring Palm OS: Memory, Databases, and Files 155

DmGetAppInfo Function
Purpose Return the handle of the specified database’s application info block.

Declared In DataMgr.h

Prototype status_t DmGetAppInfo (DmOpenRef dbRef,
MemHandle *pAppInfoHandle)

Parameters → dbRef
DmOpenRef to an open database.

← pAppInfoHandle
Memory handle of the application info block.

Returns Returns errNone if the handle was returned successfully, or one of
the following if an error occurred:

dmErrMemError
A memory error occurred.

memErrInvalidParam
A memory error occurred.

Compatibility This function can be used with extended or classic databases. Note
that schema databases don’t have an explicit application info block.

DmGetAppInfoIDV50 Function
Purpose Return the local ID of the specified database’s application info

block.

Declared In DataMgr.h

Prototype LocalID DmGetAppInfoIDV50 (DmOpenRef dbRef)

Parameters → dbRef
DmOpenRef to an open database.

Returns Returns local ID of the application info block. The application info
block is an optional field that the database may use to store
application-specific information about the database; if the database
doesn’t have an application info block, DmGetAppInfoIDV50()
returns zero.

Data Manager
DmGetDatabaseLockState

156 Exploring Palm OS: Memory, Databases, and Files

Compatibility This function is provided for compatibility purposes only. Palm OS
Cobalt applications will likely want to use DmGetAppInfo()
instead.

See Also DmDatabaseInfo(), DmOpenDatabase()

DmGetDatabaseLockState Function
Purpose Return information about the number of locked and busy records in

a RAM-based non-schema database.

Declared In DataMgr.h

Prototype status_t DmGetDatabaseLockState (DmOpenRef dbRef,
uint8_t *pHighest, uint32_t *pCount,
uint32_t *pBusy)

Parameters → dbRef
DmOpenRef to an open database.

← pHighest
The highest lock count found for all of the records in the
database. If a database has two records, one has a lock count
of 2 and one has a lock count of 1, the highest lock count is 2.
Pass NULL for this parameter if you don’t want to retrieve it.

← pCount
The number of records that have the lock count that is
returned in the pHighest parameter. Pass NULL for this
parameter if you don’t want to retrieve it.

← pBusy
The number of records that have the busy bit set. Pass NULL
for this parameter if you don’t want to retrieve it.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

dmErrInvalidParam
dbRef doesn’t reference an open database, or dbRef
references a schema database.

memErrInvalidParam
A memory error occurred.

Data Manager
DmGetDatabaseV50

Exploring Palm OS: Memory, Databases, and Files 157

Comments This function is intended to be used for debugging purposes. You
can use it to obtain information about how many records are busy
and how much locking occurs.

Because databases stored in ROM cannot be locked, if this function
is used with a ROM-based database it returns errNone but
*pHighest, *pCount, and *pBusy (if supplied) are all set to zero.

DmGetDatabaseV50 Function
Purpose Get the database header ID of a database, given its index and card

number.

Declared In DataMgr.h

Prototype LocalID DmGetDatabaseV50 (uint16_t cardNo,
uint16_t index)

Parameters → cardNo
Card number of database.

→ index
Index of database.

Returns Returns the database ID, or 0 if an invalid parameter is passed.

Comments Call this function to retrieve the database ID of a database by index.
The index should range from 0 to DmNumDatabases()-1.

This function is useful for getting a directory of all databases on a
card. The databases returned may reside in either the ROM or the
RAM. The order in which databases are returned is not fixed;
therefore, you should not rely on receiving a list of databases in a
particular order.

Compatibility This function is provided for compatibility purposes. Palm OS
Cobalt applications that want to iterate through all of a handheld’s
databases should use DmGetNextDatabaseByTypeCreator()
instead.

See Also DmOpenDatabase(), DmNumDatabases(), DmDatabaseInfo(),
DmDatabaseSize()

Data Manager
DmGetFallbackOverlayLocale

158 Exploring Palm OS: Memory, Databases, and Files

DmGetFallbackOverlayLocale Function
Purpose Get the fallback overlay locale: the locale used when the Data

Manager attempts to open an overlay locale for which no valid
overlay exists.

Declared In DataMgr.h

Prototype status_t DmGetFallbackOverlayLocale
(LmLocaleType *fallbackLocale)

Parameters ← fallbackLocale
Pointer to a structure into which the fallback overlay locale is
written.

Returns Returns errNone if the fallback locale was obtained successfully, or
dmErrInvalidParam if the fallbackLocale parameter is
invalid.

Comments The fallback overlay locale is used by the Data Manager when it
attempts to automatically open an overlay using the overlay locale,
but no valid overlay exists, and the base probably has been stripped.

See Also DmGetOverlayDatabaseLocale(), DmGetOverlayLocale(),
DmSetFallbackOverlayLocale()

DmGetLastErr Function
Purpose Return error code from last Data Manager call.

Declared In DataMgr.h

Prototype status_t DmGetLastErr (void)

Parameters None.

Returns Error code from last unsuccessful Data Manager call.

Comments Use this function to determine why a Data Manager call failed. In
particular, calls like DmGetRecord() return 0 if unsuccessful, so
calling DmGetLastErr() is the only way to determine why they
failed.

Note that DmGetLastErr() does not always reflect the error status
of the last Data Manager call. Rather, it reflects the error status of
Data Manager calls that don’t return an error code. For some of

Data Manager
DmGetLastErr

Exploring Palm OS: Memory, Databases, and Files 159

those calls, the saved error code value is not set to 0 when the call is
successful.

For example, if a call to DmOpenDatabaseByTypeCreator()
returns NULL for database reference (that is, it fails),
DmGetLastErr() returns something meaningful; otherwise, it
returns the error value of some previous Data Manager call.

Only the Data Manager functions listed in Table 4.1 currently affect
the value returned by DmGetLastErr().

Table 4.1 Functions that affect the value returned by
DmGetLastErr()

DbCursorGetRowCount() DbCursorIsBOF()

DbCursorIsDeleted() DbCursorIsEOF()

DbHasTable() DbOpenDatabase()

DbOpenDatabaseByName() DmFindDatabase()

DmFindDatabaseByTypeCreator() DmFindDatabaseV50()

DmFindRecordByOffsetInCategory() DmFindResource()

DmFindResourceType() DmGetAppInfoIDV50()

DmGetDatabaseV50() DmGetPositionInCategory()

DmGetRecord() DmGetResource()

DmGetResourceByIndex() DmGetResourceV50()

DmGet1ResourceV50() DmNewHandle()

DmNewRecord() DmNewResource()

DmNextOpenDatabase() DmNextOpenDatabaseV50()

DmNextOpenResDatabase() DmNextOpenResDatabaseV50()

DmNumDatabases() DmNumDatabasesV50()

DmNumRecords() DmNumRecordsInCategory()

DmNumResources() DmOpenDatabase()

DmOpenDatabaseByTypeCreator() DmOpenDBNoOverlay()

Data Manager
DmGetNextDatabaseByTypeCreator

160 Exploring Palm OS: Memory, Databases, and Files

DmGetNextDatabaseByTypeCreator Function
Purpose Iterate to the next database that meets the criteria set forth in a

previous call to DmOpenIteratorByTypeCreator().

Declared In DataMgr.h

Prototype status_t DmGetNextDatabaseByTypeCreator
(DmSearchStatePtr stateInfoP,
DatabaseID *dbIDP,
DmDatabaseInfoPtr databaseInfoP)

Parameters → stateInfoP
Pointer to the DmSearchStateType structure originally
supplied to DmOpenIteratorByTypeCreator().

← dbIDP
Pointer to a location into which the ID of the found database
is written (a value of zero is written if a database meeting the
specified criteria isn’t found). Pass NULL if the ID of the
database isn’t needed.

← databaseInfoP
Pointer to a DmDatabaseInfoType structure which is filled
out appropriately for the found database. Pass NULL if this
information isn’t needed.

Returns Returns errNone if a database meeting the specified criteria is
found, dmErrCantFind if there are no additional databases
meeting the specified criteria, or one of the following if an error
occurred:

dmErrInvalidParam
The find parameter passed to
DmOpenIteratorByTypeCreator() did not contain at
least one of the defined database type flags.

DmQueryNextInCategory() DmQueryRecord()

DmResizeRecord() DmResizeResource()

DmSearchRecordOpenDatabases() DmSearchResourceOpenDatabases()

Table 4.1 Functions that affect the value returned by
DmGetLastErr() (continued)

Data Manager
DmGetNextDatabaseByTypeCreator

Exploring Palm OS: Memory, Databases, and Files 161

Comments Both dbIDP and databaseInfoP are optional; pass NULL for both
if you only need to know if there exists a database that meets your
particular criteria. Otherwise, pass pointers as appropriate for one
or both.

This function searches all heaps for a match.

To start the search, allocate a DmSearchStateType structure and
pass it as the stateInfoP parameter in a call to
DmOpenIteratorByTypeCreator(). Then, call
DmGetNextDatabaseByTypeCreator(). Note that you need to
call this function repeatedly to discover all databases having a
specified type/creator pair. Finally, be sure to call
DmCloseIteratorByTypeCreator() to finalize the iteration.

You can pass dmSearchWildcardID for the type or creator
parameter to conduct searches of wider scope. If the type
parameter is dmSearchWildcardID, this function can be called
successively to return all databases of the given creator. If the
creator parameter is dmSearchWildcardID, this function can be
called successively to return all databases of the given type. You can
also pass dmSearchWildcardID as the value for both of these
parameters to return all available databases without regard to type
or creator.

Because databases are scattered freely throughout memory space,
they are not returned in any particular order—any database
matching the specified type/creator criteria can be returned. Thus,
if the value of the onlyLatestVers parameter is false, this
function may return a database which is not the most recent version
matching the specified type/creator pair. To obtain only the latest
version of a database matching the search criteria, set the value of
the onlyLatestVers parameter to true.

When determining which is the latest version of the database, RAM
databases are considered newer than ROM databases that have the
same version number. Because of this, you can replace any ROM-
based application with your own version of it.

If onlyLatestVers is true, you only receive one matching
database for each type/creator pair. Note that the behavior is
different only when you have specified a value for both type and
creator and onlyLatestVers is true.

Data Manager
DmGetNextDatabaseByTypeCreator

162 Exploring Palm OS: Memory, Databases, and Files

Example The following code excerpt illustrates how to iterate through the
latest versions of all schema databases on the device that have a
given type and creator.

status_t err;
DmSearchStateType state;
DatabaseID dbID = NULL;
uint32_t creator;
char name[dmDBNameLength];
DmDatabaseInfoType databaseInfo;

// Initialize the DmDatabaseInfoType structure
memset(&databaseInfo, 0x0, sizeof(DmDatabaseInfoType));
databaseInfo.name = name;
databaseInfo.creator = &creator;

err = DmOpenIteratorByTypeCreator(&state, myType, myCreator,
 true, dmHdrAttrSchema);
while (err == errNone) {
 err = DmGetNextDatabaseByTypeCreator(&state, &dbID,
 &databaseInfo);
 if (err == errNone) {
 // a database was found; the ID is in dbID, and info
 // about the database is in databaseInfo. Do something
 // with this information here.
 }
}
DmCloseIteratorByTypeCreator(&state);

See Also DmFindDatabase(), DmFindDatabaseByTypeCreator(),
DmOpenIteratorByTypeCreator(),
DmCloseIteratorByTypeCreator()

Data Manager
DmGetNextDatabaseByTypeCreatorV50

Exploring Palm OS: Memory, Databases, and Files 163

DmGetNextDatabaseByTypeCreatorV50
Function

Purpose Return the header ID and card number for a classic database or an
extended resource database given the type, the creator, or both. This
function searches all heaps for a match.

Declared In DataMgr.h

Prototype status_t DmGetNextDatabaseByTypeCreatorV50
(Boolean newSearch,
DmSearchStatePtr stateInfoP, uint32_t type,
uint32_t creator, Boolean onlyLatestVers,
uint16_t *cardNoP, LocalID *dbIDP)

Parameters → newSearch
true if starting a new search.

↔ stateInfoP
If newSearch is false, this must point to the same data
used for the previous invocation.

→ type
Type of database to search for. Pass dmSearchWildcardID
to find databases with any type.

→ creator
Creator of database to search for. Pass
dmSearchWildcardID to find databases with any creator.

→ onlyLatestVers
If true, only the latest version of a database with a given
type and creator is returned.

← cardNoP
On exit, the card number of the found database. Pass NULL if
you don’t need the card number (note that as in Palm OS
Cobalt the card number is always zero).

← dbIDP
Local ID of the found database. Pass NULL if you don’t need
the database’s local ID.

Returns Returns errNone if no error, or dmErrCantFind if no matches
were found.

Comments You may need to call this function successively to discover all
databases having a specified type/creator pair.

Data Manager
DmGetNextDatabaseByTypeCreatorV50

164 Exploring Palm OS: Memory, Databases, and Files

To start the search, pass true for newSearch. Allocate a
DmSearchStateType structure and pass it as the stateInfoP
parameter. DmGetNextDatabaseByTypeCreator() stores
private information in stateInfoP and uses it if the search is
continued.

To continue a search where the previous one left off, pass false for
newSearch and pass the same stateInfoP that you used during
the previous call to this function.

You can pass dmSearchWildcardID for the type or creator
parameter to conduct searches of wider scope. If the type
parameter is dmSearchWildcardID, this function can be called
successively to return all databases of the given creator. If the
creator parameter is dmSearchWildcardID, this function can be
called successively to return all databases of the given type. You can
also pass dmSearchWildcardID as the value for both of these
parameters to return all available databases without regard to type
or creator.

Because databases are scattered freely throughout memory space,
they are not returned in any particular order—any database
matching the specified type/creator criteria can be returned.Thus, if
the value of the onlyLatestVers parameter is false, this
function may return a database which is not the most recent version
matching the specified type/creator pair. To obtain only the latest
version of a database matching the search criteria, set the value of
the onlyLatestVers parameter to true.

When determining which is the latest version of the database, RAM
databases are considered newer than ROM databases that have the
same version number. Because of this, you can replace any ROM-
based application with your own version of it. Also, a RAM
database on card 1 is considered newer than a RAM database on
card 0 if the version numbers are identical.

WARNING! Don’t create or delete a database while using
DmGetNextDatabaseByTypeCreatorV50() to iterate through
the existing databases. This could cause databases to be
skipped, or it could result in a given database being returned
more than once.

Data Manager
DmGetOpenInfo

Exploring Palm OS: Memory, Databases, and Files 165

If onlyLatestVers is true, you only receive one matching
database for each type/creator pair. Note that the behavior is
different only when you have specified a value for both type and
creator and onlyLatestVers is true.

If you expect multiple databases to match your search criteria, make
sure you call DmGetNextDatabaseByTypeCreator() in one of
the following ways to ensure that your code operates the same on
all Palm OS versions:

• Set onlyLatestVers to false if you specify both a type
and creator.

• Specify 0 for either the type or creator parameter (or
both).

Compatibility This function is provided for compatibility purposes only. Most
Palm OS Cobalt applications will want to use
DmGetNextDatabaseByTypeCreator() instead; that function
(in conjunction with DmOpenIteratorByTypeCreator() and
DmCloseIteratorByTypeCreator()) can be used to locate
classic, extended, or schema databases.

See Also DmFindDatabase(), DmDatabaseInfo(),
DmOpenDatabaseByTypeCreator(), DmDatabaseSize()

DmGetOpenInfo Function
Purpose Retrieve information about an open database.

Declared In DataMgr.h

Prototype status_t DmGetOpenInfo (DmOpenRef dbRef,
DatabaseID *pDbID, uint16_t *pOpenCount,
DmOpenModeType *pOpenMode, Boolean *pResDB)

Parameters → dbRef
DmOpenRef to an open database.

← pDbID
ID of the database. Pass NULL for this parameter if you don’t
want to retrieve this information.

Data Manager
DmGetOverlayDatabaseLocale

166 Exploring Palm OS: Memory, Databases, and Files

← pOpenCount
Number of applications that have this database open. Pass
NULL for this parameter if you don’t want to retrieve this
information.

← pOpenMode
Mode used to open the database (see DmOpenModeType).
Pass NULL for this parameter if you don’t want to retrieve
this information.

← pResDB
If true upon return, the database is a resource database.
Otherwise, the database is a record database. Pass NULL for
this parameter if you don’t want to retrieve this information.

Returns Returns errNone if no error.

See Also DmDatabaseInfo()

DmGetOverlayDatabaseLocale Function
Purpose Return an overlay database’s locale given its name.

Declared In DataMgr.h

Prototype status_t DmGetOverlayDatabaseLocale
(const char *overlayDBName,
LmLocaleType *overlayLocale)

Parameters → overlayDBName
The name of the overlay database.

← overlayLocale
Points to an LmLocaleType structure into which the
overlay’s locale is written. Your application must allocate and
pass a pointer to this structure.

Returns Returns errNone upon success, or one of the following if an error
occurred:

dmErrInvalidParam
The function received an invalid parameter.

dmErrBadOverlayDBName
The overlayDBName parameter doesn’t point to the name
of an overlay database.

Data Manager
DmGetOverlayLocale

Exploring Palm OS: Memory, Databases, and Files 167

DmGetOverlayDatabaseName Function
Purpose Return the overlay database’s name given the base database name

and the locale.

Declared In DataMgr.h

Prototype status_t DmGetOverlayDatabaseName
(const char *baseDBName,
const LmLocaleType *targetLocale,
char *overlayDBName)

Parameters → baseDBName
The name of the base database with which the overlay is
associated.

→ targetLocale
The locale to which this overlay applies. See LmLocaleType.
Pass NULL to use the current locale.

← overlayDBName
Pointer to a buffer into which the overlay database name is
written. This buffer must be at least dmDBNameLength bytes.

Returns Returns errNone upon success, or dmErrInvalidParam if one of
the parameters is invalid.

DmGetOverlayLocale Function
Purpose Get the Data Manager’s overlay locale: the locale used by the Data

Manager when it attempts to automatically open overlays.

Declared In DataMgr.h

Prototype status_t DmGetOverlayLocale
(LmLocaleType *overlayLocale)

Parameters ← overlayLocale
Pointer to an LmLocaleType structure into which the
overlay’s locale is written. Your application must allocate and
pass a pointer to this structure.

Returns Returns errNone upon success, or dmErrInvalidParam if one of
the parameters is invalid.

See Also DmGetOverlayDatabaseLocale(), DmSetOverlayLocale()

Data Manager
DmGetPositionInCategory

168 Exploring Palm OS: Memory, Databases, and Files

DmGetPositionInCategory Function
Purpose Return a position of a record within the specified category.

Declared In DataMgr.h

Prototype uint16_t DmGetPositionInCategory
(DmOpenRef dbRef, uint16_t index,
uint16_t category)

Parameters → dbRef
DmOpenRef to an open database.

→ index
Index of the record.

→ category
Index of category to search.

Returns Returns the position (zero-based). If the specified index is out of
range, this function returns 0 and DmGetLastErr() returns an
error code indicating the reason for failure. Note that this means a 0
return value might indicate either success or failure. If this function
returns 0 and DmGetLastErr() returns errNone, the return value
indicates that this is the first record in the category.

Comments Because this function must examine all records up to the current
record, it can be slow to return, especially when called on a large
database.

Records that have the deleted bit set are ignored, and if the user
has specified that private records should be hidden or masked,
private records are ignored as well.

If the record is ROM-based (pointer accessed) this function makes a
fake handle to it and stores this handle in the DmAccessType
structure.

To learn which category a record is in, use
DmGetRecordCategory().

See Also DmQueryNextInCategory(), DmFindRecordByOffsetInCategory(),
DmMoveCategory()

Data Manager
DmGetRecordAttr

Exploring Palm OS: Memory, Databases, and Files 169

DmGetRecord Function
Purpose Return a handle to a record by index and mark the record busy.

Declared In DataMgr.h

Prototype MemHandle DmGetRecord (DmOpenRef dbRef,
uint16_t index)

Parameters → dbRef
DmOpenRef to an open database.

→ index
Which record to retrieve.

Returns Returns a handle to record data. If another call to DmGetRecord()
for the same record is attempted before the record is released, NULL
is returned and DmGetLastErr() returns an error code indicating
the reason for failure.

Comments Returns a handle to given record and sets the busy bit for the
record.

If the record is ROM-based (pointer accessed), this function makes a
fake handle to it and stores this handle in the DmAccessType
structure.

DmReleaseRecord() should be called as soon as the caller
finishes viewing or editing the record.

See Also DmSearchRecordOpenDatabases(), DmFindRecordByID(),
DmRecordInfoV50(), DmReleaseRecord(), DmQueryRecord()

DmGetRecordAttr Function
Purpose Get the attributes of a database record.

Declared In DataMgr.h

Prototype status_t DmGetRecordAttr (DmOpenRef dbRef,
uint16_t index, uint8_t *pAttr)

Parameters → dbRef
DmOpenRef to an open database.

→ index
Index of the record for which attributes are being retrieved.

Data Manager
DmGetRecordCategory

170 Exploring Palm OS: Memory, Databases, and Files

← pAttr
Pointer to a variable into which the record’s attributes are
written. See “Non-Schema Database Record Attributes” on
page 108 for a description of the attributes.

Returns Returns errNone if the attributes were successfully obtained, or
one of the following if an error occurred:

dmErrNotRecordDB
You’ve attempted to perform a record function on a resource
database.

dmErrIndexOutOfRange
The specified index is out of range.

See Also DmRecordInfoV50(), DmSetRecordAttr()

DmGetRecordCategory Function
Purpose Get the category information for a record.

Declared In DataMgr.h

Prototype status_t DmGetRecordCategory (DmOpenRef dbRef,
uint16_t index, uint8_t *pCategory)

Parameters → dbRef
DmOpenRef to an open database.

→ index
Index of the record for which the category information is
being obtained.

← pCategory
Pointer to a variable into which the record’s category
information is written.

Returns Returns errNone if the category information was successfully
obtained, or one of the following if an error occurred:

dmErrNotRecordDB
You’ve attempted to perform a record function on a resource
database.

dmErrIndexOutOfRange
The specified index is out of range.

See Also DmRecordInfoV50(), DmSetRecordCategory()

Data Manager
DmGetRecordID

Exploring Palm OS: Memory, Databases, and Files 171

DmGetRecordID Function
Purpose Get the record ID for the record at the given index position.

Declared In DataMgr.h

Prototype status_t DmGetRecordID (DmOpenRef dbRef,
uint16_t index, uint32_t *pUID)

Parameters → dbRef
DmOpenRef to an open database.

→ index
Index of the record for which to retrieve the ID.

← pUID
Pointer to a variable into which the record ID is written.

Returns Returns errNone if the category information was successfully
obtained, or one of the following if an error occurred:

dmErrNotRecordDB
You’ve attempted to perform a record function on a resource
database.

dmErrIndexOutOfRange
The specified index is out of range.

dmErrInvalidParam
The function received an invalid parameter.

See Also DmRecordInfoV50(), DmSetRecordID()

Data Manager
DmGetRecordSortPosition

172 Exploring Palm OS: Memory, Databases, and Files

DmGetRecordSortPosition Function
Purpose Returns where in a sorted list of records a given record would be

located. Useful to find where to insert a record with
DmAttachRecord(). Uses a binary search.

Declared In DataMgr.h

Prototype uint16_t DmGetRecordSortPosition
(DmOpenRef dbRef, void *pNewRecord,
DmSortRecordInfoType *pNewRecordInfo,
DmCompareFunctionType *pFuncCompar,
int16_t other)

Parameters → dbRef
DmOpenRef to an open database.

→ pNewRecord
Pointer to the new record.

→ pNewRecordInfo
Sort information about the new record. See
DmSortRecordInfoType.

→ pFuncCompar
Pointer to comparison function. See
DmCompareFunctionType().

→ other
Any value the application wants to pass to the comparison
function. This parameter is often used to indicate a sort
direction (ascending or descending).

Returns The position where the record should be inserted.

The position should be viewed as between the record returned and
the record before it. Note that the return value may be one greater
than the number of records.

Comments If pNewRecord has the same key as another record in the database,
DmGetRecordSortPosition() assumes that pNewRecord
should be inserted after that record. If there are several records with
the same key, pNewRecord is inserted after all of them. For this
reason, if you use DmGetRecordSortPosition() to search for
the location of a record that you know is already in the database,
you must subtract 1 from the result. (Be sure to check that the value
is not 0.)

Data Manager
DmGetResource

Exploring Palm OS: Memory, Databases, and Files 173

If there are deleted records in the database,
DmGetRecordSortPosition() only works if those records are at
the end of the database. DmGetRecordSortPosition() always
assumes that a deleted record is greater than or equal to any other
record.

DmGetResource Function
Purpose Search a specified open database and return a handle to a resource,

given the resource type and ID.

Declared In DataMgr.h

Prototype MemHandle DmGetResource (DmOpenRef dbRef,
DmResourceType resType, DmResourceID resID)

Parameters → dbRef
Reference to an open database to be searched.

→ resType
The resource type.

→ resID
The resource ID.

Returns Handle to resource data. If the specified resource cannot be found,
this function returns NULL and DmGetLastErr() returns an error
code indicating the reason for failure.

Comments Searches the specified database for a resource of the given type and
ID. If found, the resource handle is returned. The application should
call DmReleaseResource() as soon as it finishes accessing the
resource data. The resource handle is not locked by this function.

This function always returns the resource located in the overlay if
the overlay has a resource matching that type and ID. If there is no
overlay version of the resource, this function returns the resource
from the base database.

See Also DmGet1ResourceV50(), DmReleaseResource(), ResLoadConstant()

Data Manager
DmGetResourceByIndex

174 Exploring Palm OS: Memory, Databases, and Files

DmGetResourceByIndex Function
Purpose Return a handle to a resource, given the index of that resource.

Declared In DataMgr.h

Prototype MemHandle DmGetResourceByIndex (DmOpenRef dbRef,
uint16_t index)

Parameters → dbRef
DmOpenRef to an open database.

→ index
Index of the resource whose handle you want.

Returns Handle to resource data. If the specified index is out of range, this
function returns NULL and DmGetLastErr() returns an error code
indicating the reason for failure.

May display a fatal error message if the database is not a resource
database.

IMPORTANT: This function accesses the resource only in the
database you specify. If you pass a pointer to a base resource
database, its overlay is not accessed. Therefore, you should use
care when using this function to access a potentially localized
resource. You can use DmSearchResourceOpenDatabases()
to obtain a pointer to the overlay database if the resource is
localized; however, it’s more convenient to use
DmGetResource() or DmGet1ResourceV50().

See Also DmFindResource(), DmFindResourceType(),
DmSearchResourceOpenDatabases()

Data Manager
DmGetResourceV50

Exploring Palm OS: Memory, Databases, and Files 175

DmGetResourceV50 Function
Purpose Search all open resource databases and return a handle to a

resource, given the resource type and ID.

Declared In DataMgr.h

Prototype MemHandle DmGetResourceV50
(DmResourceType resType, DmResourceID resID)

Parameters → resType
The resource type.

→ resID
The resource ID.

Returns Handle to resource data. If the specified resource cannot be found,
this function returns NULL and DmGetLastErr() returns an error
code indicating the reason for failure.

Comments Searches all open resource databases starting with the most recently
opened one for a resource of the given type and ID. If found, the
resource handle is returned. The application should call
DmReleaseResource() as soon as it finishes accessing the
resource data. The resource handle is not locked by this function.

This function always returns the resource located in the overlay if
any open overlay has a resource matching that type and ID. If there
is no overlay version of the resource, this function returns the
resource from the base database.

Compatibility This function is provided for compatibility purposes. Because most
Palm OS Cobalt applications know which resource file should
contain the resource being searched for, for efficiency purposes such
applications should use DmGetResource() or
DmGetResourceByIndex() instead.

See Also DmGet1ResourceV50(), DmReleaseResource(), ResLoadConstant()

Data Manager
DmGetStorageInfo

176 Exploring Palm OS: Memory, Databases, and Files

DmGetStorageInfo Function
Purpose Determine how much memory is used, and how much is free, in

both secure and non-secure storage.

Declared In DataMgr.h

Prototype status_t DmGetStorageInfo
(DmStorageInfoPtr pStorageInfo)

Parameters → pStorageInfo
Pointer to a DmStorageInfoType structure, which upon
return contains the memory usage information.

Returns Returns errNone if the memory information is obtained
successfully, or one of the following otherwise:

dmErrInvalidParam
The function received an invalid parameter.

dmErrMemError
A memory error occurred.

Comments Your application must allocate the DmStorageInfoType structure
prior to calling this function.

DmHandleFree Function
Purpose Dispose of a movable chunk on the storage heap.

Declared In DataMgr.h

Prototype status_t DmHandleFree (MemHandle handle)

Parameters → handle
Chunk handle.

Returns Returns 0 if no error, or dmErrInvalidParam if an error occurred.

Comments Call this function to dispose of a movable chunk.

See Also MemHandleNew()

Data Manager
DmHandleResize

Exploring Palm OS: Memory, Databases, and Files 177

DmHandleLock Function
Purpose Lock a storage heap chunk and obtain a pointer to the chunk’s data.

Declared In DataMgr.h

Prototype MemPtr DmHandleLock (MemHandle handle)

Parameters → handle
Chunk handle.

Returns Returns a pointer to the chunk.

Comments Call this function to lock a chunk and obtain a pointer to it. Call
MemHandleLock() to lock a chunk allocated on the dynamic heap.

DmHandleLock() and DmHandleUnlock() should be used in
pairs.

See Also MemHandleNew()

DmHandleResize Function
Purpose Resize a storage heap chunk.

Declared In DataMgr.h

Prototype status_t DmHandleResize (MemHandle handle,
uint32_t newSize)

Parameters → handle
Chunk handle.

→ newSize
The new desired size.

Returns Returns errNone if the chunk was successfully resized, or one of
the following if an error occurred:

dmErrInvalidParam
Invalid parameter passed.

memErrNotEnoughSpace
A memory error occurred.

memErrChunkLocked
The associated memory chunk is locked.

Comments Call this function to resize a chunk. This function is always
successful when shrinking the size of a chunk, even if the chunk is

Data Manager
DmHandleSize

178 Exploring Palm OS: Memory, Databases, and Files

locked. When growing a chunk, it first attempts to grab free space
immediately following the chunk so that the chunk does not have to
move. If the chunk has to move to another free area of the heap to
grow, it must be movable and have a lock count of 0.

See Also MemHandleNew(), DmHandleSize()

DmHandleSize Function
Purpose Return the requested size of a storage heap chunk.

Declared In DataMgr.h

Prototype uint32_t DmHandleSize (MemHandle handle)

Parameters → handle
Chunk handle.

Returns Returns the requested size of the chunk.

Comments Call this function to get the size originally requested for a chunk.

See Also DmHandleResize()

DmHandleUnlock Function
Purpose Unlock a storage heap chunk given a chunk handle.

Declared In DataMgr.h

Prototype status_t DmHandleUnlock (MemHandle handle)

Parameters → handle
The chunk handle.

Returns Returns errNone if the handle was successfully unlocked, or
dmErrInvalidParam if the passed handle was invalid.

Comments Call this function to decrement the lock count for a chunk.

DmHandleLock() and DmHandleUnlock() should be used in
pairs.

Data Manager
DmInitiateAutoBackupOfOpenDatabase

Exploring Palm OS: Memory, Databases, and Files 179

DmInitiateAutoBackupOfOpenDatabase
Function

Purpose Update the automatic backup file for a given open database.

Declared In DataMgr.h

Prototype status_t DmInitiateAutoBackupOfOpenDatabase
(DmOpenRef dbRef)

Parameters → dbRef
Database access pointer.

Returns Returns errNone if no error, or one of the following if an error
occurs:

dmErrInvalidParam
dbRef doesn’t reference a valid open database.

dmErrReadOnly
dbRef references a non-schema database that is open in
read-only mode. Non-schema databases must be open for
writing

dmErrOperationAborted
The Palm OS device doesn’t support the automatic database
backup feature.

Comments The database is left open.

Use this function to cause an open database to be backed up.

Many devices running Palm OS Cobalt version 6.1 will back up the
contents of the RAM storage heaps to some sort of non-volatile
NAND flash. In the event that the RAM storage heaps are
corrupted or are lost for some reason, the storage heaps can then be
restored to their saved state. Backup is automatically triggered on a
limited set of events: database close, database create, a call to
DmSetDatabaseInfo(), or upon device sleep (open databases
only). Developers can explicitly cause a database to be backed up by
calling DmInitiateAutoBackupOfOpenDatabase().

For additional information on this feature, see “Automatic Database
Backup and Restore” on page 15.

Data Manager
DmInsertionSort

180 Exploring Palm OS: Memory, Databases, and Files

DmInsertionSort Function
Purpose Sort records in a database.

Declared In DataMgr.h

Prototype status_t DmInsertionSort (const DmOpenRef dbR,
DmCompareFunctionType *compar, int16_t other)

Parameters → dbR
Database access pointer.

→ compar
Comparison function. See DmCompareFunctionType().

→ other
Any value the application wants to pass to the comparison
function. This parameter is often used to indicate a sort
direction (ascending or descending).

Returns Returns errNone if no error, or one of the following if an error
occurs:

dmErrReadOnly
You’ve attempted to write to or modify a database that is
open in read-only mode.

dmErrNotRecordDB
You’ve attempted to perform a record function on a resource
database.

Some releases may display a fatal error message instead of
returning the error code.

Comments Deleted records are placed last in any order. All others are sorted
according to the passed comparison function. Only records which
are out of order move. Moved records are moved to the end of the
range of equal records. If a large number of records are being sorted,
try to use the quick sort.

The following insertion-sort algorithm is used: Starting with the
second record, each record is compared to the preceding record.
Each record not greater than the last is inserted into sorted position
within those already sorted. A binary insertion is performed. A
moved record is inserted after any other equal records.

See Also DmQuickSort()

Data Manager
DmMoveCategory

Exploring Palm OS: Memory, Databases, and Files 181

DmMoveCategory Function
Purpose Move all records in a category to another category.

Declared In DataMgr.h

Prototype status_t DmMoveCategory (DmOpenRef dbRef,
uint16_t toCategory, uint16_t fromCategory,
Boolean fDirty)

Parameters → dbRef
DmOpenRef to an open database.

→ toCategory
Category to which the records should be added.

→ fromCategory
Category from which to remove records.

→ fDirty
If true, set the dirty bit.

Returns Returns errNone if successful, or dmErrReadOnly if the database
is in read-only mode. Some releases may display a fatal error
message instead of returning the error code.

Comments If fDirty is true, the moved records are marked as dirty.

The toCategory and fromCategory parameters hold category
index values. You can learn which category a record is in with the
DmGetRecordCategory() call and use that value in this function.
For example, the following code, ensures that the records rec1 and
rec2 are in the same category:

DmOpenRef myDB; //assume that this is set
uint16_t rec1Index, rec2Index; //assume that these are set
status_t err;
uint8_t category1, category2;

err = DmGetRecordCategory(myDb, rec1Index, &category1);
err = DmGetRecordCategory(myDb, rec2Index, &category2);
if (category1 != category2)
 DmMoveCategory(myDB, category1, category2, true);

Data Manager
DmMoveRecord

182 Exploring Palm OS: Memory, Databases, and Files

DmMoveRecord Function
Purpose Move a record from one index to another.

Declared In DataMgr.h

Prototype status_t DmMoveRecord (DmOpenRef dbRef,
uint16_t from, uint16_t to)

Parameters → dbRef
DmOpenRef to an open database.

→ from
Index of record to move.

→ to
Where to move the record.

Returns Returns errNone if no error, or one of the following if an error
occurs:

dmErrReadOnly
You’ve attempted to write to or modify a database that is
open in read-only mode.

dmErrIndexOutOfRange
The specified index is out of range.

dmErrNotRecordDB
You’ve attempted to perform a record function on a resource
database.

dmErrMemError
A memory error occurred.

memErrInvalidParam
A memory error occurred.

memErrChunkLocked
The associated memory chunk is locked.

Some releases may display a fatal error message instead of
returning the error code.

Comments Insert the record at the to index and move other records down. The
to position should be viewed as an insertion position. This value
may be one greater than the index of the last record in the database.
In cases where to is greater than from, the new index of the record
becomes to – 1 after the move is complete.

Data Manager
DmNewRecord

Exploring Palm OS: Memory, Databases, and Files 183

DmNewHandle Function
Purpose Attempt to allocate a new chunk in the storage heap.

Declared In DataMgr.h

Prototype MemHandle DmNewHandle (DmOpenRef dbRef,
uint32_t size)

Parameters → dbRef
DmOpenRef to an open database.

→ size
Size of new handle.

Returns Returns a handle to the new chunk. If an error occurs, returns 0, and
DmGetLastErr() returns an error code indicating the reason for
failure.

Comments Allocates a new handle of the given size. You can attach the handle
to the database as a record to obtain and save its record ID in the
appInfoID or sortInfoID fields of the header.

The handle should be attached to a database as soon as possible. If it
is not attached to a database and the application crashes, the
memory used by the new handle is unavailable until the next soft
reset.

DmNewRecord Function
Purpose Return a handle to a new record in the database and mark the

record busy.

Declared In DataMgr.h

Prototype MemHandle DmNewRecord (DmOpenRef dbRef,
uint16_t *atP, uint32_t size)

Parameters → dbRef
DmOpenRef to an open database.

↔ atP
Pointer to index where new record should be placed. Specify
the value dmMaxRecordIndex to add the record to the end
of the database.

Data Manager
DmNewResource

184 Exploring Palm OS: Memory, Databases, and Files

→ size
Size of new record.

Returns Handle to record data. If an error occurs, this function returns 0 and
DmGetLastErr() returns an error code indicating the reason for
failure.

Some releases may display a fatal error message if the database is
opened in read-only mode or it is a resource database.

Comments Allocates a new record of the given size, and returns a handle to the
record data. The parameter atP points to an index variable. The
new record is inserted at index *atP and all record indices that
follow are shifted down. If *atP is greater than the number of
records currently in the database, the new record is appended to the
end and its index is returned in *atP.

Both the busy and dirty bits are set for the new record and a
unique ID is automatically created.

DmReleaseRecord() should be called as soon as the caller
finishes viewing or editing the record.

See Also DmAttachRecord(), DmRemoveRecord(), DmDeleteRecord()

DmNewResource Function
Purpose Allocate and add a new resource to a resource database.

Declared In DataMgr.h

Prototype MemHandle DmNewResource (DmOpenRef dbRef,
DmResourceType resType, DmResourceID resID,
uint32_t size)

Parameters → dbRef
DmOpenRef to an open database.

→ resType
Type of the new resource.

→ resID
ID of the new resource.

→ size
Desired size of the new resource.

Data Manager
DmNextOpenDatabase

Exploring Palm OS: Memory, Databases, and Files 185

Returns Returns a handle to the new resource. If an error occurs, this
function returns NULL and DmGetLastErr() returns an error code
indicating the reason for failure.

May display a fatal error message if the database is not a resource
database.

Comments Allocates a memory chunk for a new resource and adds it to the
given resource database. The new resource has the given type and
ID. If successful, the application should call
DmReleaseResource() as soon as it finishes initializing the
resource.

See Also DmAttachResource(), DmRemoveResource()

DmNextOpenDatabase Function
Purpose Return a DmOpenRef to the next open database for the current task.

Declared In DataMgr.h

Prototype DmOpenRef DmNextOpenDatabase (DmOpenRef dbRef)

Parameters → dbRef
Current database access pointer or NULL to start the search
from the top.

Returns DmOpenRef to the next open database, or NULL if there are no more.

Comments Call this function successively to get the DmOpenRefs of all open
databases. Pass NULL for dbRef to get the first one. Applications
don’t usually call this function, but is useful for system information.

Note that unlike DmNextOpenDatabaseV50(), this function
doesn’t find databases that have been added to the resource search
chain using functions such as DmOpenDatabaseV50().

IMPORTANT: When called from the main application thread,
this function may block. While blocked, the application will not
receive events and won’t redraw its windows. As well, deferred
sublaunches and notifications won’t execute while the main
application thread is blocked.

See Also DmDatabaseInfo(), DmOpenDatabaseInfoV50()

Data Manager
DmNextOpenDatabaseV50

186 Exploring Palm OS: Memory, Databases, and Files

DmNextOpenDatabaseV50 Function
Purpose Return DmOpenRef to the next open database in the current task’s

search chain.

Declared In DataMgr.h

Prototype DmOpenRef DmNextOpenDatabaseV50 (DmOpenRef dbRef)

Parameters → dbRef
Current database access pointer or NULL to start the search
from the top.

Returns DmOpenRef to next open database, or NULL if there are no more.

Comments Call this function successively to get the DmOpenRefs of all open
databases. Pass NULL for dbRef to get the first one. Applications
don’t usually call this function, but is useful for system information.

This function is provided for backwards compatibility with 68K-
based applications. Unlike DmNextOpenDatabase(), this function
does find databases that have been added to the resource search
chain using functions such as DmOpenDatabaseV50().

IMPORTANT: When called from the main application thread,
this function may block. While blocked, the application will not
receive events and won’t redraw its windows. As well, deferred
sublaunches and notifications won’t execute while the main
application thread is blocked.

Compatibility This function—and the concept of a resource search chain—are
provided to ease the porting of applications from an earlier version
of Palm OS. Palm OS Cobalt applications should use
DmNextOpenDatabase() instead.

See Also DmDatabaseInfo(), DmOpenDatabaseInfoV50()

Data Manager
DmNextOpenResDatabase

Exploring Palm OS: Memory, Databases, and Files 187

DmNextOpenResDatabase Function
Purpose Return an access pointer to next open resource database in the

current task.

Declared In DataMgr.h

Prototype DmOpenRef DmNextOpenResDatabase (DmOpenRef dbRef)

Parameters → dbRef
Database reference, or NULL to start the search from the top.

Returns Pointer to next open resource database.

Comments Returns a pointer to next open resource database. To get a pointer to
the first one in the list, pass NULL for dbRef.

If you use this function to access a resource database that might
have an overlay associated with it, be careful how you use the
result. The DmOpenRef returned by this function is a pointer to the
overlay database, not the base database. If you subsequently pass
this pointer to DmFindResource(), you’ll receive a handle to the
overlay resource. If you’re searching for a resource that is found
only in the base, you won’t find it. Instead, always use
DmGetResource() or DmGet1ResourceV50() to obtain a
resource. Both of those functions search both the overlay databases
and their associated base databases.

IMPORTANT: When called from the main application thread,
this function may block. While blocked, the application will not
receive events and won’t redraw its windows. As well, deferred
sublaunches and notifications won’t execute while the main
application thread is blocked.

Data Manager
DmNextOpenResDatabaseV50

188 Exploring Palm OS: Memory, Databases, and Files

DmNextOpenResDatabaseV50 Function
Purpose Return access pointer to next open resource database in the current

task’s search chain.

Declared In DataMgr.h

Prototype DmOpenRef DmNextOpenResDatabaseV50
(DmOpenRef dbRef)

Parameters → dbRef
Database reference, or 0 to start search from the top.

Returns Pointer to next open resource database.

Comments Returns pointer to next open resource database. To get a pointer to
the first one in the search chain, pass NULL for dbRef. This is the
database that is searched when DmGet1ResourceV50() is called.

If you use this function to access a resource database that might
have an overlay associated with it, be careful how you use the
result. The DmOpenRef returned by this function is a pointer to the
overlay database, not the base database. If you subsequently pass
this pointer to DmFindResource(), you’ll receive a handle to the
overlaid resource. If you’re searching for a resource that is found
only in the base, you won’t find it. Instead, always use
DmGetResource() or DmGet1ResourceV50() to obtain a
resource. Both of those functions search both the overlay databases
and their associated base databases.

IMPORTANT: When called from the main application thread,
this function may block. While blocked, the application will not
receive events and won’t redraw its windows. As well, deferred
sublaunches and notifications won’t execute while the main
application thread is blocked.

Compatibility This function—and the concept of a resource search chain—are
provided to ease the porting of applications from an earlier version
of Palm OS. Palm OS Cobalt applications should use
DmNextOpenResDatabase() instead.

Data Manager
DmNumDatabasesV50

Exploring Palm OS: Memory, Databases, and Files 189

DmNumDatabases Function
Purpose Determine how many databases reside in memory.

Declared In DataMgr.h

Prototype uint16_t DmNumDatabases (void)

Parameters None.

Returns The number of databases found.

Comments The returned value doesn’t include databases on expansion media
(such as an SD card).

See Also DmGetNextDatabaseByTypeCreator()

DmNumDatabasesV50 Function
Purpose Determine how many classic databases or extended resource

database reside in either RAM or ROM.

Declared In DataMgr.h

Prototype uint16_t DmNumDatabasesV50 (uint16_t cardNo)

Parameters → cardNo
Number of the card to check.

Returns The number of databases found.

Comments This function is helpful for getting a directory of all databases on a
card. DmGetDatabaseV50() accepts an index from 0 to
DmNumDatabases() -1 and returns a database ID by index.

Compatibility This function only returns the number of classic databases residing
in RAM. Palm OS Cobalt applications should use
DmNumDatabases() instead.

See Also DmGetDatabaseV50()

Data Manager
DmNumRecords

190 Exploring Palm OS: Memory, Databases, and Files

DmNumRecords Function
Purpose Return the number of records in a database.

Declared In DataMgr.h

Prototype uint16_t DmNumRecords (DmOpenRef dbRef)

Parameters → dbRef
DmOpenRef to an open database.

Returns The number of records in a database.

Comments Records that have that have the deleted bit set (that is, records that
will be deleted during the next HotSync operation because the user
has marked them deleted) are included in the count. If you want to
exclude these records from your count, use
DmNumRecordsInCategory() and pass dmAllCategories as
the category.

See Also DmNumRecordsInCategory(), DmRecordInfoV50(),
DmSetRecordInfoV50()

DmNumRecordsInCategory Function
Purpose Return the number of records of a specified category in a database.

Declared In DataMgr.h

Prototype uint16_t DmNumRecordsInCategory (DmOpenRef dbRef,
uint16_t category)

Parameters → dbRef
DmOpenRef to an open database.

→ category
Category index.

Returns The number of records in the category.

Comments Because this function must examine all records in the database, it
can be slow to return, especially when called on a large database.

Records that have the deleted bit set are not counted, and if the
user has specified to hide or mask private records, private records
are not counted either.

Data Manager
DmNumResources

Exploring Palm OS: Memory, Databases, and Files 191

You can use the DmGetRecordCategory() call to obtain a
category index from a given record. For example:

DmOpenRef myDB; //assume that this is set
uint16_t recIndex; //assume that this is set
status_t err;
uint8_t category;
uint16_t total;

err = DmGetRecordCategory(myDb, recIndex, &category);
total = DmNumRecordsInCategory(myDB, category);

See Also DmNumRecords(), DmQueryNextInCategory(),
DmGetPositionInCategory(), DmFindRecordByOffsetInCategory(),
DmMoveCategory()

DmNumResources Function
Purpose Return the total number of resources in a given resource database.

Declared In DataMgr.h

Prototype uint16_t DmNumResources (DmOpenRef dbRef)

Parameters → dbRef
DmOpenRef to an open database.

Returns The total number of resources in the given database.

May display a fatal error message if the database is not a resource
database.

Comments DmNumResources() counts only the resources in the database
indicated by the DmOpenRef parameter. If the database is a resource
database that has an overlay associated with it, this function returns
only the number of resources in the base database, not in the
overlay.

Data Manager
DmOpenDatabase

192 Exploring Palm OS: Memory, Databases, and Files

DmOpenDatabase Function
Purpose Open a non-schema database and return a reference to it. If the

database is a resource database, also open its overlay for the current
locale.

Declared In DataMgr.h

Prototype DmOpenRef DmOpenDatabase (DatabaseID dbID,
DmOpenModeType mode)

Parameters → dbID
Database ID of the database.

→ mode
Which mode to open the database in (see
DmOpenModeType).

Returns Returns a DmOpenRef to the open database. On error, unlike
DmOpenDatabaseV50(), no fatal error is displayed; this function
simply returns 0 and DmGetLastErr() returns an error code
indicating the reason for failure.

Comments Call this function to open a database for reading or writing.

This function returns a DmOpenRef which must be used to access
particular records in a database. If unsuccessful, 0 is returned and
the cause of the error can be determined by calling
DmGetLastErr().

When you use this function to open a resource database in read-
only mode, it also opens the overlay associated with this database
for the current locale, if it exists. (The function
DmGetOverlayLocale() returns the current locale.) Overlays are
resource databases typically used to localize applications, shared
libraries, and panels. They have the same creator as the base
database, a type of 'ovly' (symbolically named
omOverlayDBType), and contain resources with the same IDs and
types as the resources in the base database. When you request a
resource from the database using DmGetResource() or
DmGet1ResourceV50(), the overlay is searched first. If the
overlay contains a resource for the given ID, it is returned. If not, the
resource from the base database is returned.

The DmOpenRef returned by this function is the pointer to the base
database, not to the overlay database, so care should be taken when

Data Manager
DmOpenDatabase

Exploring Palm OS: Memory, Databases, and Files 193

passing this pointer to functions such as DmFindResource()
because this circumvents the overlay.

It’s possible to create a “stripped” base resource database, one that
does not contain any user interface resources. DmOpenDatabase()
only opens a stripped database if its corresponding overlay exists. If
the overlay does not exist or if the overlay doesn’t match the
resource database, DmOpenDatabase() returns NULL and
DmGetLastErr() returns the error code
omErrBaseRequiresOverlay.

If you open a resource database in a writable mode, the associated
overlay is not opened. If you make changes to the resource
database, the overlay database is invalidated if those changes affect
any resources that are also in the overlay. This means that on future
occasions where you open the resource database in read-only mode,
the overlay will not be opened because Palm OS considers it to be
invalid.

IMPORTANT: When called from the main application thread,
this function may block. While blocked, the application will not
receive events and won’t redraw its windows. As well, deferred
sublaunches and notifications won’t execute while the main
application thread is blocked.

See Also DbOpenDatabase(), DmCloseDatabase(),
DmCreateDatabase(), DmFindDatabase(),
DmOpenDatabaseByTypeCreator(), DmDeleteDatabase(),
DmOpenDBNoOverlay()

Data Manager
DmOpenDatabaseByTypeCreator

194 Exploring Palm OS: Memory, Databases, and Files

DmOpenDatabaseByTypeCreator Function
Purpose Open the most recent revision of a database with the given type and

creator. If the database is a resource database, also open its overlay
for the current locale.

Declared In DataMgr.h

Prototype DmOpenRef DmOpenDatabaseByTypeCreator
(uint32_t type, uint32_t creator,
DmOpenModeType mode)

Parameters → type
Type of database.

→ creator
Creator of database.

→ mode
Which mode to open database in (see DmOpenModeType).

Returns DmOpenRef to open database. Unlike
DmOpenDatabaseByTypeCreatorV50(), no fatal error message
is displayed; if the database couldn’t be found this function simply
returns 0 and DmGetLastErr() returns an error code indicating
the reason for failure.

Comments If you use this function to open a resource database in read-only
mode, it also opens the overlay associated with this database for the
current locale. See DmOpenDatabase() for more information on
overlays and resource databases.

IMPORTANT: When called from the main application thread,
this function may block. While blocked, the application will not
receive events and won’t redraw its windows. As well, deferred
sublaunches and notifications won’t execute while the main
application thread is blocked.

See Also DmFindDatabaseByTypeCreator(),
DmOpenDatabase()DmOpenDBNoOverlay()DmOpenIterator
ByTypeCreator()

Data Manager
DmOpenDatabaseByTypeCreatorV50

Exploring Palm OS: Memory, Databases, and Files 195

DmOpenDatabaseByTypeCreatorV50 Function
Purpose Opens the most recent revision of a classic database or extended

resource database with the given type and creator. If the database is
a resource database, either classic or extended, this function also
opens its overlay for the current locale.

Declared In DataMgr.h

Prototype DmOpenRef DmOpenDatabaseByTypeCreatorV50
(uint32_t type, uint32_t creator,
DmOpenModeType mode)

Parameters → type
Type of database.

→ creator
Creator of database.

→ mode
Which mode to open database in (see DmOpenModeType).

Returns DmOpenRef to open database. If the database couldn’t be found this
function returns 0 and DmGetLastErr() returns an error code
indicating the reason for failure.

Comments If you use this function to open a resource database in read-only
mode, it also opens the overlay associated with this database for the
current locale. See DmOpenDatabase() for more information on
overlays and resource databases.

IMPORTANT: When called from the main application thread,
this function may block. While blocked, the application will not
receive events and won’t redraw its windows. As well, deferred
sublaunches and notifications won’t execute while the main
application thread is blocked.

Compatibility This function operates only on classic databases, and exists for
compatibility purposes only. Palm OS Cobalt applications should
use DmOpenDatabaseByTypeCreator() instead.

See Also DmOpenDatabaseByTypeCreator(), DmCreateDatabase(),
DmOpenDatabase(), DmOpenDatabaseInfoV50(),
DmCloseDatabase(), DmOpenDBNoOverlay()

Data Manager
DmOpenDatabaseInfoV50

196 Exploring Palm OS: Memory, Databases, and Files

DmOpenDatabaseInfoV50 Function
Purpose Retrieve information about an open database.

Declared In DataMgr.h

Prototype status_t DmOpenDatabaseInfoV50 (DmOpenRef dbRef,
LocalID *pDbID, uint16_t *pOpenCount,
DmOpenModeType *pMode, uint16_t *pCardNo,
Boolean *pResDB)

Parameters → dbRef
DmOpenRef to an open database.

← pDbID
The ID of the database. Pass NULL for this parameter if you
don’t want to retrieve this information.

← pOpenCount
The number of applications that have this database open.
Pass NULL for this parameter if you don’t want to retrieve
this information.

← pMode
The mode used to open the database (see
DmOpenModeType). Pass NULL for this parameter if you
don’t want to retrieve this information.

← pCardNo
The number of the card on which this database resides. Pass
NULL for this parameter if you don’t want to retrieve this
information.

← pResDB
If true upon return, the database is a resource database,
false otherwise. Pass NULL for this parameter if you don’t
want to retrieve this information.

Returns Returns errNone if no error.

Compatibility This function is provided only to ease the porting of applications
from previous versions of Palm OS. Palm OS Cobalt applications
will want to use DmGetOpenInfo() instead.

See Also DmDatabaseInfo()

Data Manager
DmOpenDatabaseV50

Exploring Palm OS: Memory, Databases, and Files 197

DmOpenDatabaseV50 Function
Purpose Open a non-schema database and return a reference to it. If the

database is a resource database, also open its overlay for the current
locale.

Declared In DataMgr.h

Prototype DmOpenRef DmOpenDatabaseV50 (uint16_t cardNo,
LocalID dbID, DmOpenModeType mode)

Parameters → cardNo
Card number database resides on.

→ dbID
The database ID of the database.

→ mode
Which mode to open database in (see DmOpenModeType).

Returns Returns DmOpenRef to open database. May display a fatal error
message if the database parameter is NULL. On all other errors, this
function returns 0 and DmGetLastErr() returns an error code
indicating the reason for failure.

Comments Call this function to open a database for reading or writing.

This function returns a DmOpenRef which must be used to access
particular records in a database. If unsuccessful, 0 is returned and
the cause of the error can be determined by calling
DmGetLastErr().

When you use this function to open a resource database in read-
only mode, it also opens the overlay associated with this database
for the current locale, if it exists. (The function
DmGetOverlayLocale() returns the current locale.) Overlays are
resource databases typically used to localize applications, shared
libraries, and panels. They have the same creator as the base
database, a type of 'ovly' (symbolically named
omOverlayDBType), and contain resources with the same IDs and
types as the resources in the base database. When you request a
resource from the database using DmGetResource() or
DmGet1ResourceV50(), the overlay is searched first. If the
overlay contains a resource for the given ID, it is returned. If not, the
resource from the base database is returned.

Data Manager
DmOpenDatabaseV50

198 Exploring Palm OS: Memory, Databases, and Files

The DmOpenRef returned by this function is the pointer to the base
database, not to the overlay database, so care should be taken when
passing this pointer to functions such as DmFindResource()
because this circumvents the overlay.

It’s possible to create a “stripped” base resource database, one that
does not contain any user interface resources.
DmOpenDatabaseV50() only opens a stripped database if its
corresponding overlay exists. If the overlay does not exist or if the
overlay doesn’t match the resource database,
DmOpenDatabaseV50() returns NULL and DmGetLastErr()
returns the error code omErrBaseRequiresOverlay.

If you open a resource database in a writable mode, the associated
overlay is not opened. If you make changes to the resource
database, the overlay database is invalidated if those changes affect
any resources that are also in the overlay. This means that on future
occasions where you open the resource database in read-only mode,
the overlay will not be opened because Palm OS considers it to be
invalid.

TIP: If you want to prevent your resource database from being
overlaid, include an 'xprf' resource (symbolically named
sysResTExtPrefs) in the database with the ID 0
(sysResIDExtPrefs) and set its disableOverlays flag. This
resource is defined in UIResources.r.

When DmOpenDatabaseV50() attempts to open a stripped
resource database and cannot find an overlay for it, it searches for
an overlay matching the default locale if the system locale is
different from the default locale.

IMPORTANT: When called from the main application thread,
this function may block. While blocked, the application will not
receive events and won’t redraw its windows. As well, deferred
sublaunches and notifications won’t execute while the main
application thread is blocked.

Data Manager
DmOpenDBNoOverlay

Exploring Palm OS: Memory, Databases, and Files 199

Compatibility This function is provided only to ease the porting of applications
from previous versions of Palm OS. Palm OS Cobalt applications
will want to use DmOpenDatabase() instead.

See Also DmOpenDatabase(), DmCloseDatabase(),
DmCreateDatabase(), DmFindDatabase(),
DmOpenDatabaseByTypeCreator(), DmDeleteDatabase(),
DmOpenDBNoOverlay()

DmOpenDBNoOverlay Function
Purpose Open a non-schema database and return a reference to it.

Declared In DataMgr.h

Prototype DmOpenRef DmOpenDBNoOverlay (DatabaseID dbID,
DmOpenModeType mode)

Parameters → dbID
Database ID of the database.

→ mode
Which mode to open database in (see DmOpenModeType).

Returns Returns a DmOpenRef to the open database. Unlike
DmOpenDBNoOverlayV50(), no fatal error message is displayed;
on error, this function simply returns 0 and DmGetLastErr()
returns an error code indicating the reason for failure.

Comments Call this function to open a database for reading or writing, while
ignoring any overlay databases that might be associated with it.

This function returns a DmOpenRef which must be used to access
particular records in a database. If unsuccessful, 0 is returned and
the cause of the error can be determined by calling
DmGetLastErr().

Data Manager
DmOpenDBNoOverlayV50

200 Exploring Palm OS: Memory, Databases, and Files

IMPORTANT: When called from the main application thread,
this function may block. While blocked, the application will not
receive events and won’t redraw its windows. As well, deferred
sublaunches and notifications won’t execute while the main
application thread is blocked.

See Also DmCloseDatabase(), DmCreateDatabase(),
DmFindDatabase(), DmOpenDatabaseByTypeCreator(),
DmDeleteDatabase(), DmOpenDatabase()

DmOpenDBNoOverlayV50 Function
Purpose Open a non-schema database and return a reference to it.

Declared In DataMgr.h

Prototype DmOpenRef DmOpenDBNoOverlayV50 (uint16_t cardNo,
LocalID dbID, DmOpenModeType mode)

Parameters → cardNo
Card number database resides on.

→ dbID
The database ID of the database.

→ mode
Which mode to open database in (see DmOpenModeType).

Returns DmOpenRef to open database. May display a fatal error message if
the database parameter is NULL. On all other errors, this function
returns 0 and DmGetLastErr() returns an error code indicating
the reason for failure.

Comments Call this function to open a database for reading or writing, while
ignoring any overlay databases that might be associated with it.

This function returns a DmOpenRef which must be used to access
particular records in a database. If unsuccessful, 0 is returned and
the cause of the error can be determined by calling
DmGetLastErr().

Data Manager
DmOpenIteratorByTypeCreator

Exploring Palm OS: Memory, Databases, and Files 201

IMPORTANT: When called from the main application thread,
this function may block. While blocked, the application will not
receive events and won’t redraw its windows. As well, deferred
sublaunches and notifications won’t execute while the main
application thread is blocked.

Compatibility This function is provided only to ease the porting of applications
from previous versions of Palm OS. Palm OS Cobalt applications
will want to use DmOpenDBNoOverlay() instead.

See Also DmOpenDBNoOverlay(), DmCloseDatabase(),
DmCreateDatabase(), DmFindDatabase(),
DmOpenDatabaseByTypeCreator(), DmDeleteDatabase(),
DmOpenDatabase()

DmOpenIteratorByTypeCreator Function
Purpose Mark the start of an iteration through those databases that match a

specified set of criteria.

Declared In DataMgr.h

Prototype status_t DmOpenIteratorByTypeCreator
(DmSearchStatePtr stateInfoP, uint32_t type,
uint32_t creator, Boolean onlyLatestVers,
DmFindType find)

Parameters → stateInfoP
Pointer to a DmSearchStateType structure that you have
allocated. The iteration process uses this opaque structure to
maintain its state.

→ type
Type of database to search for, pass dmSearchWildcardID
to iterate through databases of all types.

→ creator
Creator of database to search for, pass
dmSearchWildcardID to iterate through databases with all
creator IDs.

Data Manager
DmPtrResize

202 Exploring Palm OS: Memory, Databases, and Files

→ onlyLatestVers
If true, only the latest version of a database with a given
type and creator is returned.

→ find
Flags indicating the type of database to be searched for:
schema, extended, classic, or a combination of the three. See
DmFindType for more information.

Returns Returns errNone.

Comments See the comments under
DmGetNextDatabaseByTypeCreator() for an example of how
this function is used.

See Also DmGetNextDatabaseByTypeCreator(),
DmCloseIteratorByTypeCreator()

DmPtrResize Function
Purpose Resize a storage heap chunk given a pointer to its data.

Declared In DataMgr.h

Prototype status_t DmPtrResize (MemPtr p, uint32_t newSize)

Parameters → p
Pointer to the chunk.

→ newSize
The new desired size.

Returns Returns errNone if the chunk was successfully resized, or one of
the following if an error occurred:

dmErrInvalidParam
The function received an invalid parameter.

memErrNotEnoughSpace
A memory error occurred.

memErrChunkLocked
The associated memory chunk is locked.

Comments Call this function to resize a locked chunk. This function is always
successful when shrinking the size of a chunk. When growing a

Data Manager
DmPtrUnlock

Exploring Palm OS: Memory, Databases, and Files 203

chunk, it attempts to use free space immediately following the
chunk.

See Also DmPtrSize(), DmHandleResize()

DmPtrSize Function
Purpose Return the size of a storage heap chunk given a pointer to its data.

Declared In DataMgr.h

Prototype uint32_t DmPtrSize (MemPtr p)

Parameters → p
Pointer to the chunk.

Returns The requested size of the chunk.

Comments Call this function to get the original requested size of a chunk.

DmPtrUnlock Function
Purpose Unlock a storage heap chunk, given a pointer to its data.

Declared In DataMgr.h

Prototype status_t DmPtrUnlock (MemPtr p)

Parameters → p
Pointer to a chunk.

Returns Returns errNone if the chunk was successfully unlocked, or
dmErrInvalidParam if there was a problem with the chunk
pointer.

Comments A chunk must not be unlocked more times than it was locked.

See Also DmHandleLock()

Data Manager
DmQueryNextInCategory

204 Exploring Palm OS: Memory, Databases, and Files

DmQueryNextInCategory Function
Purpose Return a handle to the next record in the specified category for

reading only (does not set the busy bit).

Declared In DataMgr.h

Prototype MemHandle DmQueryNextInCategory (DmOpenRef dbRef,
uint16_t *pIndex, uint16_t category)

Parameters → dbRef
DmOpenRef to an open database.

↔ pIndex
Index of a known record (often retrieved with
DmGetPositionInCategory()). If a “next” record is
found, this index is updated to indicate that record.

→ category
Index of category to query, or dmAllCategories to find the
next record in any category.

Returns Returns a handle to the record, along with the index of that record.
If a record couldn’t be found, this function returns NULL, and
DmGetLastErr() returns an error code indicating the reason for
failure.

Comments This function begins searching the database from the record at
*pIndex for a record that is in the specified category. If the record
at *pIndex belongs to that category, then a handle to it is returned.
If not, the function continues searching until it finds a record in the
category.

Records that have the deleted bit set are skipped, and if the user
has specified that private records should be hidden or masked,
private records are skipped as well.

Because this function begins searching the database at the record
with the supplied index, if you want to find the next record in the
category after the one you have an index for, increment the index
value before calling this function. For example:

DmOpenRef myDB; //assume that this is set
uint16_t recIndex; //assume that this is set
uint8_t category;
status_t err;
uint16_t pos;
MemHandle newRecH;

Data Manager
DmQueryRecord

Exploring Palm OS: Memory, Databases, and Files 205

err = DmGetRecordCategory(myDb, recIndex, &category);
pos = DmGetPositionInCategory(myDB, recIndex, category);
pos++; //advance to next record
newRecH = DmQueryNextInCategory(myDB, &pos, category);

See Also DmNumRecordsInCategory(),
DmGetPositionInCategory(),
DmFindRecordByOffsetInCategory()

DmQueryRecord Function
Purpose Return a handle to a record for reading only (does not set the busy

bit).

Declared In DataMgr.h

Prototype MemHandle DmQueryRecord (DmOpenRef dbRef,
uint16_t index)

Parameters → dbRef
DmOpenRef to an open database.

→ index
Which record to retrieve.

Returns Returns a record handle. If an error occurs, this function returns
NULL, and DmGetLastErr() returns an error code indicating the
reason for failure.

Some releases may display a fatal error message if the specified
index is out of range.

Comments Returns a handle to the given record. Use this function only when
viewing the record. This function successfully returns a handle to
the record even if the record is busy.

If the record is ROM-based (pointer accessed) this function returns
the fake handle to it.

Data Manager
DmQuickSort

206 Exploring Palm OS: Memory, Databases, and Files

DmQuickSort Function
Purpose Sort records in a database.

Declared In DataMgr.h

Prototype status_t DmQuickSort (const DmOpenRef dbR,
DmCompareFunctionType *compar, int16_t other)

Parameters → dbR
Database access pointer.

→ compar
Comparison function. See DmCompareFunctionType().

→ other
Any value the application wants to pass to the comparison
function. This parameter is often used to indicate a sort
direction (ascending or descending).

Returns Returns errNone if no error, or one of the following if an error
occurs:

dmErrReadOnly
You’ve attempted to write to or modify a database that is
open in read-only mode.

dmErrNotRecordDB
You’ve attempted to perform a record function on a resource
database.

Some releases may display a fatal error message instead of
returning the error code.

Comments Deleted records are placed last in any order. All others are sorted
according to the passed comparison function.

After DmQuickSort() returns, equal database records do not have
a consistent order. That is, if DmQuickSort() is passed two equal
records, their resulting order is unpredictable. To prevent records
that contain the same data from being rearranged in an
unpredictable order, pass the record’s unique ID to the comparison
function (using the DmSortRecordInfoType structure).

DmQuickSort() contains its own stack to limit uncontrolled
recursion. When the stack is full DmQuickSort() instead performs
an insertion sort. An insertion sort is also performed when the
number of records is low, avoiding the noticeable overhead of a

Data Manager
DmRecordInfoV50

Exploring Palm OS: Memory, Databases, and Files 207

quick sort with a small number of records. Finally, if the records
seem mostly sorted an insertion sort is performed to move only
those records that need moving.

See Also DmInsertionSort()

DmRecordInfoV50 Function
Purpose Retrieve the record information stored in the database header.

Declared In DataMgr.h

Prototype status_t DmRecordInfoV50 (DmOpenRef dbRef,
uint16_t index, uint16_t *pAttr,
uint32_t *pUID, LocalID *pChunkID)

Parameters → dbRef
DmOpenRef to an open database.

→ index
Index of the record.

← pAttr
The record’s attributes. See “Non-Schema Database Record
Attributes.” Pass NULL for this parameter if you don’t want
to retrieve this value.

← pUID
The record’s unique ID. Pass NULL for this parameter if you
don’t want to retrieve this value.

← pChunkID
The record’s local ID. Pass NULL for this parameter if you
don’t want to retrieve this value.

Returns Returns errNone if no error or dmErrIndexOutOfRange if the
specified record can’t be found. Some releases may display a fatal
error message instead of returning the error code.

Compatibility This function is provided for compatibility purposes only. Palm OS
Cobalt applications should use one or more of the functions listed in
the See Also section, below, instead.

See Also DmGetRecordAttr(), DmGetRecordCategory(),
DmGetRecordID(), DmQueryNextInCategory()

Data Manager
DmRecoverHandle

208 Exploring Palm OS: Memory, Databases, and Files

DmRecoverHandle Function
Purpose Recover the handle of a storage heap chunk, given a pointer to its

data.

Declared In DataMgr.h

Prototype MemHandle DmRecoverHandle (MemPtr pChunk)

Parameters → pChunk
Pointer to the chunk.

Returns Returns the handle of the chunk, or 0 if unsuccessful.

Comments Don’t call this function for pointers in ROM.

DmReleaseRecord Function
Purpose Clear the busy bit for the given record and set the dirty bit if

fDirty is true.

Declared In DataMgr.h

Prototype status_t DmReleaseRecord (DmOpenRef dbRef,
uint16_t index, Boolean fDirty)

Parameters → dbRef
DmOpenRef to an open database.

→ index
The record to unlock.

→ fDirty
If true, set the dirty bit.

Returns Returns errNone if no error, or dmErrIndexOutOfRange if the
specified index is out of range. Some releases may display a fatal
error message instead of returning the error code.

Comments Call this function when you finish modifying or reading a record
that you’ve called DmGetRecord() on or created using
DmNewRecord().

See Also DmGetRecord()

Data Manager
DmRemoveRecord

Exploring Palm OS: Memory, Databases, and Files 209

DmReleaseResource Function
Purpose Release a resource acquired with DmGetResource().

Declared In DataMgr.h

Prototype status_t DmReleaseResource (MemHandle hResource)

Parameters → hResource
Handle to resource.

Returns Returns errNone if no error.

Comments Marks a resource as being no longer needed by the application.

See Also DmGet1ResourceV50(), DmGetResource()

DmRemoveRecord Function
Purpose Remove a record from a database and dispose of its data chunk.

Declared In DataMgr.h

Prototype status_t DmRemoveRecord (DmOpenRef dbRef,
uint16_t index)

Parameters → dbRef
DmOpenRef to an open database.

→ index
Index of the record to remove.

Returns Returns errNone if no error, or one of the following if an error
occurs:

dmErrReadOnly
You’ve attempted to write to or modify a database that is
open in read-only mode.

dmErrIndexOutOfRange
The specified index is out of range.

dmErrNotRecordDB
You’ve attempted to perform a record function on a resource
database.

memErrChunkLocked
The associated memory chunk is locked.

Data Manager
DmRemoveResource

210 Exploring Palm OS: Memory, Databases, and Files

memErrInvalidParam
A memory error occurred.

Some releases may display a fatal error message instead of
returning the error code.

Comments Disposes of the record’s data chunk and removes the record’s entry
from the database header. DmRemoveRecord() should only be
used for newly-created records that have just been deleted or
records that have never been synchronized.

See Also DmDetachRecord(), DmDeleteRecord(), DmArchiveRecord(),
DmNewRecord()

DmRemoveResource Function
Purpose Delete a resource from a resource database.

Declared In DataMgr.h

Prototype status_t DmRemoveResource (DmOpenRef dbRef,
uint16_t index)

Parameters → dbRef
DmOpenRef to an open database.

→ index
Index of resource to delete.

Returns Returns errNone if no error, or one of the following if an error
occurs:

dmErrCorruptDatabase
The database is corrupted.

dmErrIndexOutOfRange
The specified index is out of range.

dmErrReadOnly
You’ve attempted to write to or modify a database that is
open in read-only mode.

memErrChunkLocked
The associated memory chunk is locked.

memErrInvalidParam
A memory error occurred.

Data Manager
DmRemoveSecretRecords

Exploring Palm OS: Memory, Databases, and Files 211

memErrNotEnoughSpace
A memory error occurred.

May display a fatal error message if the database is not a resource
database.

Comments This function disposes of the Memory Manager chunk that holds
the given resource and removes its entry from the database header.

See Also DmDetachResource(), DmRemoveResource(), DmAttachResource()

DmRemoveSecretRecords Function
Purpose Remove all secret records.

Declared In DataMgr.h

Prototype status_t DmRemoveSecretRecords (DmOpenRef dbRef)

Parameters → dbRef
DmOpenRef to an open database.

Returns Returns errNone if no error, or one of the following if an error
occurs:

dmErrReadOnly
You’ve attempted to write to or modify a database that is
open in read-only mode.

dmErrNotRecordDB
You’ve attempted to perform a record function on a resource
database.

Some releases may display a fatal error message instead of
returning the error code.

See Also DmRemoveRecord(), DmRecordInfoV50(), DmSetRecordInfoV50()

Data Manager
DmResetRecordStates

212 Exploring Palm OS: Memory, Databases, and Files

DmResetRecordStates Function
Purpose For each record in a non-schema database, unlocks the record and

clears the busy bit.

Declared In DataMgr.h

Prototype status_t DmResetRecordStates (DmOpenRef dbRef)

Parameters → dbRef
DmOpenRef to an open non-schema database.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

dmErrInvalidParam
dbRef doesn’t reference an open database, or dbRef
references a schema database.

dmErrReadOnly
The specified database isn’t open for writing.

dmErrROMBased
The specified database is located in ROM.

memErrInvalidParam
A memory error occurred.

See Also DmSetRecordAttr()

DmResizeRecord Function
Purpose Resize a record by index.

Declared In DataMgr.h

Prototype MemHandle DmResizeRecord (DmOpenRef dbRef,
uint16_t index, uint32_t newSize)

Parameters → dbRef
DmOpenRef to an open database.

→ index
Which record to retrieve.

→ newSize
New size of record.

Data Manager
DmResizeResource

Exploring Palm OS: Memory, Databases, and Files 213

Returns Handle to resized record. Returns NULL if there is not enough space
to resize the record, and DmGetLastErr() returns an error code
indicating the reason for failure. Some releases may display a fatal
error message instead of returning the error code.

Comments As this function reallocates the record, the handle may change, so be
sure to use the returned handle to access the resized record.

DmResizeResource Function
Purpose Resize a resource and return the new handle.

Declared In DataMgr.h

Prototype MemHandle DmResizeResource (MemHandle hResource,
uint32_t size)

Parameters → hResource
Handle to resource.

→ size
Desired new size of resource.

Returns Returns a handle to newly sized resource. Returns NULL if there is
not enough space to resize the resource, and DmGetLastErr()
returns an error code indicating the reason for failure. Some releases
may display a fatal error message instead of returning the error
code.

Comments Resizes the resource and returns a new handle.

The handle may change if the resource had to be reallocated in a
different data heap because there was not enough space in its
present data heap.

Data Manager
DmResourceInfo

214 Exploring Palm OS: Memory, Databases, and Files

DmResourceInfo Function
Purpose Retrieve information on a given resource.

Declared In DataMgr.h

Prototype status_t DmResourceInfo (DmOpenRef dbRef,
uint16_t index, DmResourceType *pResType,
DmResourceID *pResID, MemHandle *pChunkHandle)

Parameters → dbRef
DmOpenRef to an open database.

→ index
Index of resource to get info on.

← pResType
The resource type. Pass NULL if you don’t want to retrieve
this information.

← pResID
The resource ID. Pass NULL if you don’t want to retrieve this
information.

← pChunkHandle
Handle for the resource data. Pass NULL if you don’t want to
retrieve this information.

Returns Returns errNone if no error or dmErrIndexOutOfRange if an
error occurred. Unlike DmResourceInfoV50(), no fatal error
message is displayed if the database is not a resource database.

Comments If dbRef is a pointer to a base resource database, the information
returned is about the resource from that database alone; this
function ignores any associated overlay.

See Also DmGetResource(), DmGet1ResourceV50(), DmSetResourceInfo(),
DmFindResource(), DmFindResourceType()

Data Manager
DmResourceInfoV50

Exploring Palm OS: Memory, Databases, and Files 215

DmResourceInfoV50 Function
Purpose Retrieve information on a given resource.

Declared In DataMgr.h

Prototype status_t DmResourceInfoV50 (DmOpenRef dbRef,
uint16_t index, DmResourceType *pResType,
DmResourceID *pResID, LocalID *pChunkLocalID)

Parameters → dbRef
DmOpenRef to an open database.

→ index
Index of resource to get info on.

← pResType
The resource type. Pass NULL if you don’t want to retrieve
this information.

← pResID
The resource ID. Pass NULL if you don’t want to retrieve this
information.

← pChunkLocalID
The Memory Manager local ID of the resource data. Pass
NULL if you don’t want to retrieve this information.

Returns Returns errNone if no error or dmErrIndexOutOfRange if an
error occurred. May display a fatal error message if the database is
not a resource database.

Comments If dbRef is a pointer to a base resource database, the information
returned is about the resource from that database alone; this
function ignores any associated overlay.

Compatibility This function is provided for compatibility purposes only. Palm OS
Cobalt applications should use DmResourceInfo() instead.

See Also DmResourceInfo(), DmGetResource(), DmGet1ResourceV50(),
DmSetResourceInfo(), DmFindResource(), DmFindResourceType()

Data Manager
DmRestoreFinalize

216 Exploring Palm OS: Memory, Databases, and Files

DmRestoreFinalize Function
Purpose Complete or abort an on-going database restore operation.

Declared In DataMgr.h

Prototype status_t DmRestoreFinalize
(DmBackupRestoreStatePtr pState,
Boolean fAbort, Boolean fOverwrite,
DatabaseID *pDbID)

Parameters → pState
Pointer to a DmBackupRestoreStateType structure
allocated by the caller and initialized with
DmBackupInitialize().

→ fAbort
Set to true to abort an on-going backup operation, or false
to clean up after a successful backup.

→ fOverwrite
Set to true to overwrite an existing matching database (if
there is one), or false to leave the existing matching
database intact.

← pDbID
Pointer to a variable that receives the identifier for the
restored database, or NULL if the database identifier isn’t
needed.

Returns Returns errNone if the database image was successfully restored,
dmErrOperationAborted if the restore operation was cancelled,
or one of the following errors otherwise:

dmErrInvalidParam
One of the parameters is invalid or corrupt.

dmErrMemError
A memory error occurred.

dmErrAlreadyExists
The database being restored already exists, and the
fOverwrite parameter was set to false.

Comments This function allows the Data Manager to perform a final clean up
of the internal structures it allocated for the operation. Applications
should always call this function after having started a restore
operation, whether or not the restore completed successfully. See

Data Manager
DmRestoreInitialize

Exploring Palm OS: Memory, Databases, and Files 217

DmRestoreUpdate() for sample code illustrating this function’s
use.

The restore operation can be used with schema, extended, or classic
databases.

See Also DmBackupFinalize(), DmRestoreInitialize()

DmRestoreInitialize Function
Purpose Initialize the Data Manager prior to starting a restore operation on

the specified database.

Declared In DataMgr.h

Prototype status_t DmRestoreInitialize
(DmBackupRestoreStatePtr pState,
DmDatabaseInfoPtr pDbInfo)

Parameters → pState
Pointer to a DmBackupRestoreStateType structure
allocated by the caller.

→ pDbInfo
Pointer to a DmDatabaseInfoType structure that will
receive information about the database being restored. This
structure will receive its information after you call
DmRestoreUpdate(). Set to NULL if you don’t want to
receive this information.

Returns Returns errNone if the initialization was successful, or one of the
following if an error occurred:

dmErrAccessDenied
The caller was not authorized to perform a restore operation
for the specified database.

dmErrInvalidParam
One of the parameters is invalid or corrupt.

dmErrMemError
A memory error occurred.

Comments Use DmRestoreInitialize() to start a database backup
operation. See DmRestoreUpdate() for sample code illustrating
this function’s use.

Data Manager
DmRestoreUpdate

218 Exploring Palm OS: Memory, Databases, and Files

The restore operation can be used with schema, extended, or classic
databases.

IMPORTANT: When called from the main application thread,
this function may block. While blocked, the application will not
receive events and won’t redraw its windows. As well, deferred
sublaunches and notifications won’t execute while the main
application thread is blocked.

See Also DmBackupInitialize(), DmRestoreFinalize()

DmRestoreUpdate Function
Purpose Reassemble a database within the storage heap from a database

image stream held within the specified buffer.

Declared In DataMgr.h

Prototype status_t DmRestoreUpdate
(DmBackupRestoreStatePtr pState,
MemPtr pBuffer, uint32_t size,
Boolean endOfData, Boolean *pfDbInfoAvailable)

Parameters → pState
Pointer to a DmBackupRestoreStateType structure
allocated by the caller and initialized with
DmRestoreInitialize().

→ pBuffer
Pointer to a buffer to hold the backed-up database image that
is being restored.

→ size
Size, in bytes, of the database image data held within
pBuffer.

→ endOfData
Set this parameter to true to indicate that there is no
additional data (beyond what is in pBuffer). Set it to false
if you will be making additional calls to
DmRestoreUpdate().

Data Manager
DmRestoreUpdate

Exploring Palm OS: Memory, Databases, and Files 219

← pfDbInfoAvailable
Pointer to a Boolean variable that is to indicate whether the
information about the database being restored is available, or
NULL if you don’t need the database information. If true, the
information was written to the DmDatabaseInfoType
structure you specified when calling
DmRestoreInitialize().

Returns Returns errNone if the operation was successful, or one of the
following if an error occurred:

dmErrInvalidParam
One of the parameters is invalid or corrupt.

dmErrMemError
A memory error occurred which prevented the restore
operation from continuing.

Comments Use this function, along with DmRestoreInitialize() and
DmRestoreFinalize(), to restore a schema, extended, or classic
database from its serial image.

If the serial image doesn’t reside in a single buffer, you’ll need to call
this function several times before you’ve completely restored the
complete database. Call DmRestoreUpdate() as many times as
required until all of the database image data has been successfully
processed by this function. For all but the last call to this function,
endOfData must be set to false. The last time you call it, set
endOfData to true (note that the last call needn’t contain any data
in pBuffer; see the example, below, for code that does this). Finally,
call DmRestoreFinalize() to complete the operation and have
the database once again accessible from the Data Manager’s
database directory list.

If pfDbInfoAvailable is not NULL, DmRestoreUpdate() sets
the pointed-to Boolean variable to true when it has received
enough of the database image to be able to return information about
it. The actual database information is returned through the
DmDatabaseInfoType structure that you specified when calling
DmRestoreInitialize().

If DmRestoreUpdate() returns an error code other than errNone,
the operation has been aborted due to a fatal error. You must still
perform a call to DmRestoreFinalize() to let the Data Manager

Data Manager
DmRestoreUpdate

220 Exploring Palm OS: Memory, Databases, and Files

perform a final cleanup of the internal structures it allocated for the
operation.

Example This sample code shows how to use DmRestoreInitialize(),
DmRestoreUpdate(), and DmRestoreFinalize() to restore
database from a serial image. This code employs a fictitious
DoesUserWantToOverwrite() function to let the user decide
whether to overwrite a matching database (if any).

status_t error;
DatabaseID dbID;
DmBackupRestoreStateType restoreState;
char buffer[BUFFER_SIZE];
uint32_t size;
Boolean fAbort;
Boolean fGotDbInfo;
Boolean fDone = false;
Boolean fOverwrite = false;
Boolean fAlreadyAsked = false;
DmDatabaseInfoType databaseInfo;
char dbName[dmDBNameLength];
uint32_t type;
uint32_t creator;
uint16_t attributes;

// Set up the DmDatabaseInfoType structure so that we will
// get the information we want about the database being
// restored...
MemSet(&databaseInfo, sizeof(databaseInfo), 0);
databaseInfo.pName = dbName;
databaseInfo.pType = &type;
databaseInfo.pCreator = &creator;
databaseInfo.pAttributes = &attributes;

error = DmRestoreInitialize(&restoreState, &databaseInfo);
if (error == errNone) {
 do {
 size = sizeof(buffer);

 // Get a chunk from the database image data out of some
 // I/O channel. We assume this function returns false
 // when there is no more data to receive for the
 // database image.
 if (GetDatabaseImageData(buffer, &size)) {
 error = DmRestoreUpdate(&restoreState, buffer,
 size, false, &fGotDbInfo);

Data Manager
DmRestoreUpdate

Exploring Palm OS: Memory, Databases, and Files 221

 // Set the abort flag if we got back an error or if
 // the user decided to cancel the operation...
 fAbort = (error != errNone) | DidUserCancel();

 if (!fAbort && fGotDbInfo && !fAlreadyAsked) {
 // We just got the database info we asked so now
 // we ask the user whether they want to
 // overwrite the existing database with this
 // one...
 fOverwrite = DoesUserWantToOverwrite(&pDbInfo,
 &fFoundDb);

 // If the user doesn't want to overwrite and we
 // found an existing database in the storage
 // heap, then set the abort flag to break out of
 // the loop.
 fAbort = !fOverwrite && fFoundDb;

 // Use this flag to make sure we don't ask the
 // user twice (or more) the same question in case
 // where we didn't find a matching database or
 // they wanted to overwrite anyway...
 fAlreadyAsked = true;
 }
 } else
 fDone = true;

 } while(!fDone && !fAbort);

 // call DmRestoreUpdate one last time with no data and
 // with the endOfData flag set to mark the end of data
 error = DmRestoreUpdate(&restoreState, buffer,
 size, true, &fGotDbInfo);

 // Always call DmRestoreFinalize to complete the restore
 // operation ...
 error = DmRestoreFinalize(&restoreState, fAbort,
 fOverwrite, &dbID);
}

if (error == errNone) {
 // Restore operation completed successfully...

 // Now we can use the dbID we got back to operate on the
 // newly-restored database. Note also that we can also use
 // the database information we got back during the restore
 // operation.
} else {

Data Manager
DmSearchRecordOpenDatabases

222 Exploring Palm OS: Memory, Databases, and Files

 // A fatal error occurred...

 if (error == dmErrOperationAborted) {
 // The user aborted. Handle it.
 } else
 if (error == dmErrAlreadyExists) {
 // The database already exists! Handle this.
 } else {
 // Some other error occurred.
 }
}

See Also DmBackupUpdate(), DmCreateDatabaseFromImage()

DmSearchRecordOpenDatabases Function
Purpose Search all open record databases for a record with the handle

passed.

Declared In DataMgr.h

Prototype uint16_t DmSearchRecordOpenDatabases
(MemHandle hRecord, DmOpenRef *pDbRef)

Parameters → hRecord
Record handle.

← pDbRef
The database that contains the record hRecord.

Returns Returns the index of the record and database access pointer; if not
found, returns -1 and *pDbRef is 0.

See Also DmGetRecord(), DmFindRecordByID(), DmRecordInfoV50()

Data Manager
DmSet

Exploring Palm OS: Memory, Databases, and Files 223

DmSearchResourceOpenDatabases Function
Purpose Search all open resource databases for a resource by type and ID, or

by pointer if it is non-NULL.

Declared In DataMgr.h

Prototype uint16_t DmSearchResourceOpenDatabases
(DmResourceType resType, DmResourceID resID,
MemHandle hResource, DmOpenRef *pDbRef)

Parameters → resType
Type of resource to search for.

→ resID
ID of resource to search for.

→ hResource
Handle of locked resource, or NULL.

← pDbRef
The resource database that contains the specified resource.

Returns Returns the index of the resource, stores DmOpenRef in *pDbRef.

Comments This function can be used to find a resource in all open resource
databases by type and ID or by pointer. If hResource is NULL, the
resource is searched for by type and ID. If hResource is not NULL,
resType and resID is ignored and the index of the resource
handle is returned. On return, *pDbRef contains the access pointer
of the resource database that the resource was eventually found in.
Once the index of a resource is determined, it can be locked down
and accessed by calling DmGetResourceByIndex().

If any of the open databases are overlaid, this function finds and
returns the localized version of the resource when searching by type
and creator. In this case, the pDbRef return value is a pointer to the
overlay database, not the base resource database.

See Also DmGetResource(), DmFindResourceType(), DmResourceInfo(),
DmFindResource()

DmSet Function
Purpose Write a specified value into a section of a record. This function also

checks the validity of the pointer for the record and makes sure the

Data Manager
DmSetDatabaseInfo

224 Exploring Palm OS: Memory, Databases, and Files

writing of the record information doesn’t exceed the bounds of the
record.

Declared In DataMgr.h

Prototype status_t DmSet (void *pRecord, uint32_t offset,
uint32_t bytes, uint8_t value)

Parameters → pRecord
Pointer to locked data record (chunk pointer).

→ offset
Offset within record to start writing.

→ bytes
Number of bytes to write.

→ value
Byte value to write.

Returns Returns errNone if no error. May display a fatal error message if
the record pointer is invalid or the function overwrites the record.

Comments Must be used to write to Data Manager records because the data
storage area is write-protected.

See Also DmWrite()

DmSetDatabaseInfo Function
Purpose Set information about a database.

Declared In DataMgr.h

Prototype status_t DmSetDatabaseInfo (DatabaseID dbID,
DmDatabaseInfoPtr pDatabaseInfo)

Parameters → dbID
Database ID of the database.

→ pDatabaseInfo
Pointer to a structure that contains references to the new
database information. See DmDatabaseInfoType for a
description of the data structure.

Returns Returns errNone if no error or one of the following if an error
occurred:

Data Manager
DmSetDatabaseInfo

Exploring Palm OS: Memory, Databases, and Files 225

dmErrInvalidDatabaseName
The name you’ve specified for the database is invalid.

dmErrAlreadyExists
Another database with the same name already exists.

dmErrInvalidParam
The function received an invalid parameter.

Comments When this call changes appInfoID or sortInfoID, the old chunk
ID (if any) is marked as an orphaned chunk1 and the new chunk ID
is un-orphaned. Consequently, you shouldn’t replace an existing
appInfoID or sortInfoID if that chunk has already been
attached to another database.

Call this function to set any or all information about a database
except for the database ID. This function sets the new value for any
non-NULL field in the pDatabaseInfo structure.

See Also DmDatabaseInfo(), DmOpenDatabaseInfoV50(),
DmFindDatabase(), DmGetNextDatabaseByTypeCreator(),
TimDateTimeToSeconds()

1. An “orphaned chunk” is one that is allocated in the storage heap, but to which
nothing refers. If the orphaned chunk is not put into a database as a record, an
Application Info block, or the like, and if the application doesn’t keep track of
it—in a global variable, perhaps—it could get lost. If the application doesn’t get
around to freeing the chunk before it quits or crashes, or before the device is re-
set, that storage will be forever unusable: the user can’t delete it since the user
only deletes databases.

During a soft reset, the OS walks through the storage heap and frees any or-
phaned chunks that it finds. Since most users reset only rarely, however, you
shouldn’t rely on this happening.

Data Manager
DmSetDatabaseInfoV50

226 Exploring Palm OS: Memory, Databases, and Files

DmSetDatabaseInfoV50 Function
Purpose Set information about a database.

Declared In DataMgr.h

Prototype status_t DmSetDatabaseInfoV50 (uint16_t cardNo,
LocalID dbID, const char *nameP,
uint16_t *attributesP, uint16_t *versionP,
uint32_t *crDateP, uint32_t *modDateP,
uint32_t *bckUpDateP, uint32_t *modNumP,
LocalID *appInfoIDP, LocalID *sortInfoIDP,
uint32_t *typeP, uint32_t *creatorP)

Parameters → cardNo
Card number the database resides on.

→ dbID
Database ID of the database.

→ nameP
Pointer to the new name of the database, or NULL. A database
name can be up to 32 ASCII bytes long, including the null
terminator (as specified by dmDBNameLength). Database
names must use only 7-bit ASCII characters (0x20 through
0x7E).

→ attributesP
Pointer to new attributes variable, or NULL. See “Database
Attributes” for a list of possible values.

→ versionP
Pointer to new version, or NULL.

→ crDateP
Pointer to new creation date variable, or NULL. Specify the
value as a number of seconds since Jan. 1, 1904.

→ modDateP
Pointer to new modification date variable, or NULL. Specify
the value as a number of seconds since Jan. 1, 1904.

→ bckUpDateP
Pointer to new backup date variable, or NULL. Specify the
value as a number of seconds since Jan. 1, 1904.

→ modNumP
Pointer to new modification number variable, or NULL.

Data Manager
DmSetDatabaseInfoV50

Exploring Palm OS: Memory, Databases, and Files 227

→ appInfoIDP
Pointer to new appInfoID, or NULL.

→ sortInfoIDP
Pointer to new sortInfoID, or NULL.

→ typeP
Pointer to new type, or NULL.

→ creatorP
Pointer to new creator, or NULL.

Returns Returns errNone if no error or one of the following if an error
occurred:

dmErrInvalidDatabaseName
The name you’ve specified for the database is invalid.

dmErrAlreadyExists
Another database with the same name already exists.

dmErrInvalidParam
The function received an invalid parameter.

Comments When this call changes appInfoID or sortInfoID, the old chunk
ID (if any) is marked as an orphaned chunk2 and the new chunk ID
is un-orphaned. Consequently, you shouldn’t replace an existing
appInfoID or sortInfoID if that chunk has already been
attached to another database.

Call this function to set any or all information about a database
except for the card number and database ID. This function sets the
new value for any non-NULL parameter.

2. An “orphaned chunk” is one that is allocated in the storage heap, but to which
nothing refers. If the orphaned chunk is not put into a database as a record, an
Application Info block, or the like, and if the application doesn’t keep track of
it—in a global variable, perhaps—it could get lost. If the application doesn’t get
around to freeing the chunk before it quits or crashes, or before the device is re-
set, that storage will be forever unusable: the user can’t delete it since the user
only deletes databases.

During a soft reset, the OS walks through the storage heap and frees any or-
phaned chunks that it finds. Since most users reset only rarely, however, you
shouldn’t rely on this happening.

Data Manager
DmSetDatabaseProtection

228 Exploring Palm OS: Memory, Databases, and Files

When setting database attributes, note that the following are system
attributes that cannot be set—they are read-only:

dmHdrAttrResDB

dmHdrAttrSchema

dmHdrAttrSecure

dmHdrAttrOpen

Compatibility This function is provided for compatibility purposes only. Although
it could be used to set information in an extended database, it
operates as on previous versions of Palm OS in that the given
database name must be unique. Palm OS Cobalt applications—
particularly those that are operating on extended databases—will
most likely want to use DmSetDatabaseInfo() instead.

See Also DmSetDatabaseInfo(), DmDatabaseInfo(), DmOpenDatabaseV50(),
DmFindDatabase(), DmGetNextDatabaseByTypeCreator(),
TimDateTimeToSeconds()

DmSetDatabaseProtection Function
Purpose Increment or decrement the database's protection count.

Declared In DataMgr.h

Prototype status_t DmSetDatabaseProtection
(DatabaseID dbID, Boolean protect)

Parameters → dbID
Database ID of the database.

→ protect
If true, the protection count is incremented. If false, the
protection count is decremented.

Returns Returns errNone if the protection count was updated, or one of the
following if an error occurred:

memErrCardNotPresent
The specified card can’t be found.

dmErrROMBased
You’ve attempted to delete or modify a ROM-based
database.

Data Manager
DmSetFallbackOverlayLocale

Exploring Palm OS: Memory, Databases, and Files 229

dmErrCantFind
The specified database can’t be found.

memErrNotEnoughSpace
A memory error occurred.

dmErrDatabaseNotProtected

Comments This function can be used to prevent a database from being deleted
(pass true for the protect parameter). All “true” calls should be
balanced by “false” calls before the application terminates.

Use this function to keep a particular record or resource in a
database locked down without having to keep the database open.
Note that because protection counts are kept in the dynamic heap,
all databases are “unprotected” at system reset.

If the database is a resource database that has an overlay associated
with it for the current locale, the overlay is also protected or
unprotected by this function.

DmSetFallbackOverlayLocale Function
Purpose Set the fallback overlay locale: the locale used when the Data

Manager attempts to open an overlay locale for which no valid
overlay exists.

Declared In DataMgr.h

Prototype status_t DmSetFallbackOverlayLocale
(const LmLocaleType *fallbackLocale)

Parameters → fallbackLocale
Pointer to a structure identifying the fallback overlay locale.

Returns Returns errNone if the fallback overlay locale was successfully set,
or one of the following if an error occurred:

dmErrInvalidParam
The function received an invalid parameter.

dmErrUnknownLocale
The specified locale is unknown to the operating system.

Data Manager
DmSetOverlayLocale

230 Exploring Palm OS: Memory, Databases, and Files

Comments The fallback overlay locale is used by the Data Manager when it
attempts to automatically open an overlay using the overlay locale,
but no valid overlay exists, and the base probably has been stripped.

See Also DmGetFallbackOverlayLocale(), DmSetOverlayLocale()

DmSetOverlayLocale Function
Purpose Set the Data Manager’s overlay locale: the locale used by the Data

Manager when it attempts to automatically open overlays.

Declared In DataMgr.h

Prototype status_t DmSetOverlayLocale
(const LmLocaleType *overlayLocale)

Parameters → overlayLocale
Pointer to an LmLocaleType structure containing the
overlay locale.

Returns Returns errNone if the overlay locale was successfully set, or one
of the following if an error occurred:

dmErrInvalidParam
The function received an invalid parameter.

dmErrUnknownLocale
The specified locale is unknown to the operating system.

See Also DmGetOverlayLocale(), DmSetFallbackOverlayLocale()

DmSetRecordAttr Function
Purpose Set the attributes of a record.

Declared In DataMgr.h

Prototype status_t DmSetRecordAttr (DmOpenRef dbRef,
uint16_t index, uint8_t *pAttr)

Parameters → dbRef
DmOpenRef to an open database.

→ index
Index of the record for which attributes are being set.

Data Manager
DmSetRecordCategory

Exploring Palm OS: Memory, Databases, and Files 231

→ pAttr
Pointer to the new attributes for the record. See “Non-
Schema Database Record Attributes” on page 108 for a
description of the attributes. Note that you can only set those
attributes not included in the definition of
dmSysOnlyRecAttrs.

Returns Returns errNone if the attributes were successfully set, or one of
the following if an error occurred:

dmErrReadOnly
You’ve attempted to write to or modify a database that is
open in read-only mode.

dmErrNotRecordDB
You’ve attempted to perform a record function on a resource
database.

dmErrIndexOutOfRange
The specified index is out of range.

See Also DmGetRecordAttr()

DmSetRecordCategory Function
Purpose Set the category information for a record.

Declared In DataMgr.h

Prototype status_t DmSetRecordCategory (DmOpenRef dbRef,
uint16_t index, uint8_t *pCategory)

Parameters → dbRef
DmOpenRef to an open database.

→ index
Index of the record for which the category information is
being set.

→ pCategory
Pointer to the new category information for the record.

Returns Returns errNone if the category information was successfully set,
or one of the following if an error occurred:

Data Manager
DmSetRecordID

232 Exploring Palm OS: Memory, Databases, and Files

dmErrReadOnly
You’ve attempted to write to or modify a database that is
open in read-only mode.

dmErrNotRecordDB
You’ve attempted to perform a record function on a resource
database.

dmErrIndexOutOfRange
The specified index is out of range.

See Also DmGetRecordCategory()

DmSetRecordID Function
Purpose Set the unique ID of a record.

Declared In DataMgr.h

Prototype status_t DmSetRecordID (DmOpenRef dbRef,
uint16_t index, uint32_t *pUID)

Parameters → dbRef
DmOpenRef to an open database.

→ index
Record index for which to set the unique ID.

→ pUID
Pointer to the new unique ID.

Returns Returns errNone if the record ID was set successfully, or one of the
following if an error occurred:

dmErrInvalidParam
The function received an invalid parameter.

dmErrNotRecordDB
You’ve attempted to perform a record function on a resource
database.

dmErrIndexOutOfRange
The specified index is out of range.

dmErrInvalidID
The supplied record ID is already in use.

Data Manager
DmSetRecordInfoV50

Exploring Palm OS: Memory, Databases, and Files 233

Comments The Data Manager guarantees that a record ID’s uniqueness is
maintained after such a call. If the supplied record ID is already in
use by another record, this function returns dmErrInvalidID.

See Also DmGetRecordID(), DmSetRecordInfoV50()

DmSetRecordInfoV50 Function
Purpose Set record information stored in the database header.

Declared In DataMgr.h

Prototype status_t DmSetRecordInfoV50 (DmOpenRef dbRef,
uint16_t index, uint16_t *pAttr,
uint32_t *pUID)

Parameters → dbRef
DmOpenRef to an open database.

→ index
Index of record.

→ pAttr
Pointer to new attribute variable, or NULL if you don’t want
to change any of the record’s attributes. See “Non-Schema
Database Record Attributes” for a list of possible values.

→ pUID
Pointer to new unique ID, or NULL if you don’t want to
change the record’s unique ID.

Returns Returns errNone if no error, or one of the following if an error
occurred:

dmErrReadOnly
You’ve attempted to write to or modify a database that is
open in read-only mode.

dmErrNotRecordDB
You’ve attempted to perform a record function on a resource
database.

dmErrIndexOutOfRange
The specified index is out of range.

Some releases may display a fatal error message instead of
returning the error code.

Data Manager
DmSetResourceInfo

234 Exploring Palm OS: Memory, Databases, and Files

Comments Sets information about a record. This function cannot be used to set
the dmRecAttrBusy bit; instead, use DmGetRecord() to set the
bit and DmReleaseRecord() to clear it.

Normally, the unique ID for a record is automatically created by the
Data Manager when a record is created using DmNewRecord(), so
an application would not typically change the unique ID.

Compatibility Provided for compatibility purposes only. Palm OS Cobalt
applications should use DmSetRecordAttr() and/or
DmSetRecordID() instead.

See Also DmSetRecordAttr(), DmSetRecordID(), DmGetRecordAttr(),
DmGetRecordID(), DmRecordInfoV50()

DmSetResourceInfo Function
Purpose Set information on a given resource.

Declared In DataMgr.h

Prototype status_t DmSetResourceInfo (DmOpenRef dbRef,
uint16_t index, DmResourceType *pResType,
DmResourceID *pResID)

Parameters → dbRef
DmOpenRef to an open database.

→ index
Index of resource to set info for.

→ pResType
Pointer to new resType (resource type), or NULL.

→ pResID
Pointer to new resource ID, or NULL.

Returns Returns errNone if no error, or one of the following if an error
occurred:

dmErrIndexOutOfRange
The specified index is out of range.

dmErrReadOnly
You’ve attempted to write to or modify a database that is
open in read-only mode.

Data Manager
DmStrCopy

Exploring Palm OS: Memory, Databases, and Files 235

May display a fatal error message if the database is not a resource
database.

Comments Use this function to set all or a portion of the information on a
particular resource. Any or all of the new info pointers can be NULL.
If not NULL, the type and ID of the resource are changed to
*pResType and *pResID.

DmStrCopy Function
Purpose Copies a string to a record within a database that is open for

writing.

Declared In DataMgr.h

Prototype status_t DmStrCopy (void *pRecord,
uint32_t offset, const void *pSrc)

Parameters ↔ pRecord
Pointer to data record (chunk pointer).

→ offset
Offset within record to start writing.

→ pSrc
Pointer to null-terminated string.

Returns Returns errNone if no error. May display a fatal error message if
the record pointer is invalid or the function overwrites the record.

Comments This is one of the functions that must be used to write to Data
Manager records; because the data storage area is write-protected,
you cannot write to it directly. This function checks the validity of
the chunk pointer for the record to ensure that writing the record
will not exceed the chunk bounds. DmStrCopy() is a convenience
method that determines the size of the supplied string and then
simply calls DmWrite().

See Also DmSet()

Data Manager
DmWrite

236 Exploring Palm OS: Memory, Databases, and Files

DmWrite Function
Purpose Copies a specified number of bytes to a record within a database

that is open for writing.

Declared In DataMgr.h

Prototype status_t DmWrite (void *pRecord, uint32_t offset,
const void *pSrc, uint32_t bytes)

Parameters ↔ pRecord
Pointer to locked data record (chunk pointer).

→ offset
Offset within record to start writing.

→ pSrc
Pointer to data to copy into record.

→ bytes
Number of bytes to write.

Returns Returns errNone if no error. May display a fatal error message if
the record pointer is invalid or the function overwrites the record.

Comments This is one of the functions that must be used to write to Data
Manager records; because the data storage area is write-protected,
you cannot write to it directly. This function checks the validity of
the chunk pointer for the record to ensure that writing the record
will not exceed the chunk bounds.

See Also DmStrCopy(), DmSet()

DmWriteCheckV50 Function
Purpose Check the parameters of a write operation to a classic database data

storage chunk before actually performing the write.

Declared In DataMgr.h

Prototype status_t DmWriteCheckV50 (void *pRecord,
uint32_t offset, uint32_t bytes)

Parameters → pRecord
Locked pointer to the record handle.

→ offset
Offset into record to start writing.

Data Manager
DmCompareFunctionType

Exploring Palm OS: Memory, Databases, and Files 237

→ bytes
Number of bytes to write.

Returns Returns errNone if no error; returns dmErrNotValidRecord or
dmErrWriteOutOfBounds if an error occurred.

Compatibility This function operates only with classic databases, and is provided
only for compatibility purposes. Palm OS Cobalt applications
should go ahead and write the data using a function such as
DmWrite(), checking the returned status code to determine if an
error occurred.

Application-Defined Functions

DmCompareFunctionType Function
Purpose Compares two records in a classic database.

Declared In DataMgr.h

Prototype int16_t DmCompareFunctionType (void *rec1P,
void *rec2P, int16_t other,
DmSortRecordInfoPtr rec1SortInfoP,
DmSortRecordInfoPtr rec2SortInfoP,
MemHandle appInfoH)

Parameters → rec1P
Pointer to the first record to compare.

→ rec2P
Pointer to the second record to compare.

→ other
Any other custom information you want passed to the
comparison function. This parameter is often used to indicate
a sort direction (ascending or descending).

→ rec1SortInfoP
Pointer to a DmSortRecordInfoType structure that
specifies unique sorting information for the first record.

→ rec2SortInfoP
Pointer to a DmSortRecordInfoType structure that
specifies unique sorting information for the second record.

Data Manager
DmCompareFunctionType

238 Exploring Palm OS: Memory, Databases, and Files

→ appInfoH
A handle to the database’s Application Info block.

Returns Your implementation of this function should return:

• 0 if rec1 = rec2.

• < 0 if rec1 < rec2.

• > 0 if rec1 > rec2.

Comments This function is used to sort the records in a database. It is
specifically called by DmGetRecordSortPosition(),
DmInsertionSort(), and DmQuickSort().

Exploring Palm OS: Memory, Databases, and Files 239

5
File Stream
This chapter provides reference material for the File Stream API. It is
organized as follows:

File Stream Structures and Types 239

File Stream Constants 240

File Stream Functions and Macros 246

The header file FileStream.h declares the API that this chapter
describes.

For more information on file streams in Palm OS®, see Chapter 2,
“Palm OS Databases,” on page 11.

File Stream Structures and Types

FileHand Typedef
Purpose Handle to an open file stream.

Declared In FileStream.h

Prototype typedef MemHandle FileHand

Comments Open a file stream and receive a handle to it with FileOpen().

File Stream
File Stream Constants

240 Exploring Palm OS: Memory, Databases, and Files

File Stream Constants

File Stream Error Codes
Purpose Error codes returned by the various File Stream functions.

Declared In FileStream.h

Constants #define fileErrCloseError (fileErrorClass | 12)
Error closing the stream.

#define fileErrCorruptFile (fileErrorClass | 3)
The stream is corrupted, invalid, or not a stream.

#define fileErrCreateError (fileErrorClass | 7)
Couldn't create new stream.

#define fileErrEOF (fileErrorClass | 16)
End-of-File error.

#define fileErrInUse (fileErrorClass | 9)
Stream couldn't be opened or deleted because it is in use.

#define fileErrInvalidDescriptor (fileErrorClass |
11)

Invalid file descriptor (FileHandle).

#define fileErrInvalidParam (fileErrorClass | 2)
Invalid parameter value passed.

#define fileErrIOError (fileErrorClass | 15)
Generic I/O error.

#define fileErrMemError (fileErrorClass | 1)
Out of memory error.

#define fileErrNotFound (fileErrorClass | 4)
Couldn't find the stream.

#define fileErrNotStream (fileErrorClass | 17)
Attempted to open an entity that is not a stream.

#define fileErrOpenError (fileErrorClass | 8)
Generic open error.

#define fileErrOutOfBounds (fileErrorClass | 13)
Attempted operation went out of bounds of the stream.

File Stream
Primary Open Modes

Exploring Palm OS: Memory, Databases, and Files 241

#define fileErrPermissionDenied (fileErrorClass |
14)

Couldn't write to a stream open for read-only access.

#define fileErrReadOnly (fileErrorClass | 10)
Couldn't open in write mode because existing stream is read-
only.

#define fileErrReplaceError (fileErrorClass | 6)
Couldn't replace existing stream.

#define fileErrTypeCreatorMismatch (fileErrorClass
| 5)

Type and/or creator not what was specified.

Primary Open Modes
Purpose Specify the mode in which a file stream is opened.

Declared In FileStream.h

Constants #define fileModeAllFlags (fileModeReadOnly |
fileModeReadWrite | fileModeUpdate |
fileModeAppend | fileModeLeaveOpen |
fileModeExclusive | fileModeAnyTypeCreator |
fileModeTemporary | fileModeDontOverwrite)

The complete set of file stream open modes.

#define fileModeAppend (0x10000000UL)
Open/create for read/write, always writing to the end of the
stream

#define fileModeReadOnly (0x80000000UL)
Open for read-only access

#define fileModeReadWrite (0x40000000UL)
Open/create for read/write access, discarding any previous
version of stream

#define fileModeUpdate (0x20000000UL)
Open/create for read/write, preserving previous version of
stream if it exists

Comments For each file stream, you must pass to the FileOpen() function
only one of the primary mode selectors listed. Note that you can

File Stream
Secondary Open Modes

242 Exploring Palm OS: Memory, Databases, and Files

combine the primary mode selector with one or more secondary
mode selectors for additional control.

Secondary Open Modes
Purpose Additional mode selectors that can be OR’d with a primary mode

selector to provide additional control.

Declared In FileStream.h

Constants #define fileModeAnyTypeCreator (0x02000000UL)
Accept any type/creator when opening or replacing an
existing stream. Normally, the FileOpen() function opens
only streams having the specified creator and type. Setting
this option enables the FileOpen() function to open
streams having a type or creator other than those specified.

#define fileModeDontOverwrite (0x00800000UL)
Prevents fileModeReadWrite from discarding an existing
stream having the same name; may only be specified
together with fileModeReadWrite.

#define fileModeExclusive (0x04000000UL)
No other application can open the stream until the
application that opened it in this mode closes it.

#define fileModeLeaveOpen (0x08000000UL)
Leave stream open when application quits. Palm OS Cobalt
applications should not use this option.

#define fileModeTemporary (0x01000000UL)
Delete the stream automatically when it is closed. For more
information, see Comment section of FileOpen() function
description.

Miscellaneous File Stream Constants
Purpose The File Stream APIs also include the following #defines.

Declared In FileStream.h

Constants #define fileNullHandle ((FileHand)0)
An invalid file handle.

File Stream
FileOpEnum

Exploring Palm OS: Memory, Databases, and Files 243

FileOpEnum Enum
Purpose Control operations that can be performed on a file stream with

FileControl().

Declared In FileStream.h

Constants fileOpNone = 0
No-op.

fileOpDestructiveReadMode
Enter destructive read mode, and rewind stream to its
beginning. Once in this mode, there is no turning back:
stream’s contents after closing (or crash) are undefined.

Destructive read mode deletes blocks as data are read, thus
freeing storage automatically. Once in destructive read mode,
you cannot re-use the file stream—the contents of the stream
are undefined after it is closed or after a crash.

Writing to files opened without write access or those that are
in destructive read state is not allowed; thus, you cannot call
the FileWrite(), FileSeek(), or FileTruncate()
functions on a stream that is in destructive read mode. One
exception to this rule applies to streams that were opened in
“write + append” mode and then switched into destructive
read state. In this case, the FileWrite() function can
append data to the stream, but it also preserves the current
stream position so that subsequent reads pick up where they
left off (you can think of this as a pseudo-pipe).

ARGUMENTS:
stream = open stream handle

valueP = NULL

valueLenP = NULL

RETURNS:
zero on success;

fileErr... on error

fileOpGetEOFStatus
Get end-of-file status (like C runtime’s feof) (err =
fileErrEOF). Indicates end of file condition. Use
FileClearerr() to clear this error status.

File Stream
FileOpEnum

244 Exploring Palm OS: Memory, Databases, and Files

ARGUMENTS:
stream = open stream handle

valueP = NULL

valueLenP = NULL

RETURNS:
zero if not end of file;

non-zero if end of file

fileOpGetLastError
Get error code from last operation on stream, and clear the
last error code value. Doesn’t change status of EOF or I/O
errors —use FileClearerr() to reset all error codes.

ARGUMENTS:
stream = open stream handle

valueP = NULL

valueLenP = NULL

RETURNS:
Error code from last file stream operation

fileOpClearError
Clear I/O and EOF error status and last error.

ARGUMENTS:
stream = open stream handle

valueP = NULL

valueLenP = NULL

RETURNS:
zero on success; fileErr... on error

fileOpGetIOErrorStatus
Get I/O error status (like C runtime's ferror). Use
FileClearerr() to clear this error status.

ARGUMENTS:
stream = open stream handle

valueP = NULL

valueLenP = NULL

File Stream
FileOpEnum

Exploring Palm OS: Memory, Databases, and Files 245

RETURNS:
zero if not I/O error;

non-zero if I/O error is pending.

fileOpGetCreatedStatus
Find out whether file was created by FileOpen() function

ARGUMENTS:
stream = open stream handle

valueP = Pointer to Boolean

valueLenP = Pointer to Int32 variable set to
sizeof(Boolean)

RETURNS:
zero on success; fileErr... on error. The Boolean
variable will be set to non-zero if the file was created.

fileOpGetOpenDbRef
Get the open database reference (handle) of the underlying
database that implements the stream (NULL if none); this is
needed for performing Palm OS-specific operations on the
underlying database, such as changing or getting creator and
type, version, backup/reset bits, and so on.

ARGUMENTS:
stream = open stream handle

valueP = Pointer to DmOpenRef variable

valueLenP = Pointer to Int32 variable set to
sizeof(DmOpenRef)

RETURNS:
zero on success; fileErr... on error. The DmOpenRef
variable will be set to the file's open db reference that
may be passed to Data Manager calls;

WARNING! Do not make any changes to the data of the
underlying database—doing so will corrupt the file stream.

fileOpFlush
Flush any cached data to storage.

File Stream
FileOriginEnum

246 Exploring Palm OS: Memory, Databases, and Files

ARGUMENTS:
stream = open stream handle

valueP = NULL

valueLenP = NULL

RETURNS:
zero on success; fileErr... on error;

fileOpLAST
Not an actual operator, this value simply identifies the end of
the list of file control operations.

FileOriginEnum Enum
Purpose File positions to which an offset is added (or subtracted, if the offset

is negative) to get a seek position within the file.

Declared In FileStream.h

Constants fileOriginBeginning = 1
From the beginning (first data byte of file).

fileOriginCurrent
From the current position.

fileOriginEnd
From the end of file (one position beyond last data byte).

Comments Supply one of these values to FileSeek().

File Stream Functions and Macros

FileClearerr Macro
Purpose Clear I/O error status, end of file error status, and last error.

Declared In FileStream.h

Prototype #define FileClearerr (__stream__)

Parameters → __stream__
Handle to an open stream.

File Stream
FileControl

Exploring Palm OS: Memory, Databases, and Files 247

Returns Returns errNone if no error, or a fileErr code if an error occurs.
See the section “File Stream Error Codes” for more information.

See Also FileGetLastError(), FileRewind()

FileClose Function
Purpose Close the file stream and destroy its handle. If the stream was

opened with fileModeTemporary, it is deleted upon closing.

Declared In FileStream.h

Prototype status_t FileClose (FileHand stream)

Parameters → stream
Handle to an open stream.

Returns Returns errNone if no error, or a fileErr code if an error occurs.
See the section “File Stream Error Codes” for more information.

FileControl Function
Purpose Perform a specified operation on a file stream.

Declared In FileStream.h

Prototype status_t FileControl (FileOpEnum op,
FileHand stream, void *valueP,
int32_t *valueLenP)

Parameters → op
The operation to perform, and its associated formal
parameters. See “FileOpEnum” on page 243 for a list of
possible values.

→ stream
Open stream handle if required for file stream operation.

↔ valueP
Pointer to value or buffer, as required. This parameter is
defined by the selector passed as the value of the op
parameter. For details, see “FileOpEnum” on page 243.

File Stream
FileDelete

248 Exploring Palm OS: Memory, Databases, and Files

↔ valueLenP
Pointer to value or buffer, as required. This parameter is
defined by the selector passed as the value of the op
parameter. For details, see “FileOpEnum” on page 243.

Returns Returns either a value defined by the selector passed as the
argument to the op parameter, or an error code resulting from the
requested operation.

Comments Normally, you do not call the FileControl() function yourself; it
is called for you by most of the other file streaming functions and
macros to perform common file streaming operations. You can call
FileControl() yourself to enable specialized read modes.

See Also FileClearerr(), FileEOF(), FileError(), FileFlush(),
FileGetLastError(), FileRewind()

FileDelete Function
Purpose Deletes the specified file stream from the specified card. Only a

closed stream may be passed to this function.

Declared In FileStream.h

Prototype status_t FileDelete (const char *nameP,
uint32_t creator)

Parameters → nameP
Name of the stream to delete.

→ creator
Creator of the file stream to delete.

Returns Returns errNone if no error, or a fileErr code if an error occurs.
See the section “File Stream Error Codes” for more information.

See Also FileOpen()

File Stream
FileDmRead

Exploring Palm OS: Memory, Databases, and Files 249

FileDeleteV50 Function
Purpose Deletes the specified file stream from the specified card. Only a

closed stream may be passed to this function.

Declared In FileStream.h

Prototype status_t FileDeleteV50 (uint16_t cardNo,
const char *nameP)

Parameters → cardNo
Card on which the file stream to delete resides.

→ nameP
Name of the stream to delete.

Returns Returns errNone if no error, or a fileErr code if an error occurs.
See the section “File Stream Error Codes” for more information.

Compatibility This function is only provided for compatibility with previous
versions of Palm OS; the cardNo parameter is ignored.

See Also FileOpen()

FileDmRead Macro
Purpose Reads data from a file stream into a chunk, record, or resource

residing in a database.

Declared In FileStream.h

Prototype #define FileDmRead (stream, startOfDmChunkP,
destOffset, objSize, numObj, errP)

Parameters → stream
Handle to an open stream.

→ startOfDmChunkP
Pointer to beginning of chunk, record or resource residing in
a database.

→ destOffset
Offset from startOfDmChunkP (base pointer) to the
destination area (must be >= 0).

→ objSize
Size of each stream object to read.

File Stream
FileEOF

250 Exploring Palm OS: Memory, Databases, and Files

→ numObj
Number of stream objects to read.

← errP
Pointer to a variable that is to hold the error code returned by
this function. Pass NULL to ignore. See the section “File
Stream Error Codes” for more information.

Returns The number of whole objects that were read. Note that the number
of objects actually read may be less than the number requested.

Comments When the number of objects actually read is less than the number
requested, you may be able to determine the cause of this result by
examining the return value of the errP parameter or by calling the
FileGetLastError() function. If the cause is insufficient data in
the stream to satisfy the full request, the current stream position is at
end-of-file and the “end of file” indicator is set. If a non-NULL
pointer was passed as the value of the errP parameter when
FileDmRead was used and an error was encountered, *errP holds
a non-zero error code when the function returns. In addition, the
FileError() and FileEOF() functions may be used to check for
I/O errors.

See Also FileRead(), FileError(), FileEOF()

FileEOF Macro
Purpose Get end-of-file status (err = fileErrEOF indicates end of file

condition).

Declared In FileStream.h

Prototype #define FileEOF (__stream__)

Parameters → __stream__
Handle to an open stream.

Returns Returns 0 if not at the end of file, fileErrEOF if at the end of file, or
an error code otherwise. See the section “File Stream Error Codes”
for more information.

Comments This macro’s behavior is similar to that of the feof function
provided by the C programming language runtime library.

File Stream
FileFlush

Exploring Palm OS: Memory, Databases, and Files 251

Use FileClearerr() to clear the I/O error status.

See Also FileClearerr(), FileGetLastError(), FileRewind()

FileError Macro
Purpose Get I/O error status.

Declared In FileStream.h

Prototype #define FileError (__stream__)

Parameters → __stream__
Handle to an open stream.

Returns Returns errNone if no error, and non-zero if an I/O error indicator
has been set for this stream. See the section “File Stream Error
Codes” for more information.

Comments This macro’s behavior is similar to that of the C programming
language’s ferror runtime function.

Use FileClearerr() to clear the I/O error status.

See Also FileClearerr(), FileGetLastError(), FileRewind()

FileFlush Macro
Purpose Flush cached data to storage.

Declared In FileStream.h

Prototype #define FileFlush (__stream__)

Parameters → __stream__
Handle to an open stream.

Returns Returns errNone if no error, or a fileErr code if an error occurs.
See the section “File Stream Error Codes” for more information.

Comments It is not always necessary to call this macro explicitly—certain
operations flush the contents of a stream automatically; for example,
streams are flushed when they are closed. Because this macro’s
behavior is similar to that of the fflush() function provided by
the C programming language runtime library, you only need to call

File Stream
FileGetLastError

252 Exploring Palm OS: Memory, Databases, and Files

it explicitly under circumstances similar to those in which you
would call fflush explicitly.

FileGetLastError Macro
Purpose Get error code from last operation on file stream, and clear the last

error code value (will not change end of file or I/O error status --
use FileClearerr() to reset all error codes)

Declared In FileStream.h

Prototype #define FileGetLastError (__stream__)

Parameters → __stream__
Handle to an open stream.

Returns Returns the error code returned by the last file stream operation. See
the section “File Stream Error Codes” for more information.

See Also FileClearerr(), FileEOF(), FileError()

FileOpen Function
Purpose Open existing file stream or create an open file stream (an extended

database) for I/O in the specified mode.

Declared In FileStream.h

Prototype FileHand FileOpen (const char *nameP,
uint32_t type, uint32_t creator,
uint32_t openMode, status_t *errP)

Parameters → nameP
Pointer to the name of the extended database to open or
create as a file stream. This value must be a valid name—no
wildcards allowed, and composed only of 7-bit ASCII
characters—and must not be NULL.

→ type
File type of stream to open or create. Pass 0 for wildcard, in
which case sysFileTFileStream is used if the stream
needs to be created and fileModeTemporary is not
specified. If type is 0 and fileModeTemporary is
specified, then sysFileTTemp is used for the file type of the
stream this function creates.

File Stream
FileOpen

Exploring Palm OS: Memory, Databases, and Files 253

→ creator
Creator of stream to open or create. Pass 0 for wildcard, in
which case the current application's creator ID is used for the
creator of the stream this function creates.

→ openMode
Mode in which to open the file stream. You must specify only
one primary mode selector. Additionally, you can use the
bitwise inclusive OR operator to append one or more
secondary mode selectors to the primary mode selector. See
“Primary Open Modes” and “Secondary Open Modes” for
the list of possible values.

← errP
Pointer to a variable that is to hold the error code returned by
this function. Pass NULL to ignore. See the section “File
Stream Error Codes” for a list of error codes.

Returns If successful, returns a handle to an open file stream; otherwise,
returns 0.

In some cases, FileOpen() returns a non-zero value when it has
failed to open a file; thus, it is always a good idea to check the errP
parameter value to determine if an error has occurred.

Comments IMPORTANT: Previous versions of Palm OS didn’t enforce the
requirement that database names passed to FileOpen() be
composed only of 7-bit ASCII characters. Palm OS Cobalt
requires that this be so.

The fileModeReadOnly, fileModeReadWrite,
fileModeUpdate, and fileModeAppend modes are mutually
exclusive—pass only one of them to the FileOpen() function!

When the fileModeTemporary open mode is used and the file
type passed to FileOpen() is 0, the FileOpen() function uses
sysFileTTemp (defined in SystemMgr.rh) for the file type, as
recommended. In future versions of Palm OS, this configuration
will enable the automatic cleanup of undeleted temporary files after
a system crash. Automatic post-crash cleanup is not implemented in
current versions of Palm OS.

To open a file stream even if it has a different type and creator than
specified, pass the fileModeAnyTypeCreator selector as a flag in
the openMode parameter to the FileOpen() function.

File Stream
FileOpenV50

254 Exploring Palm OS: Memory, Databases, and Files

The fileModeLeaveOpen mode is an esoteric option that most
applications should not use. It may be useful for a library that needs
to open a stream from the current application’s context and keep it
open even after the current application quits. By default, Palm OS
automatically closes all databases that were opened in a particular
application’s context when that application quits. The
fileModeLeaveOpen option overrides this default behavior.

FileOpenV50 Function
Purpose Open existing file stream or create an open file stream (a classic

database) for I/O in the mode specified by the openMode
parameter.

Declared In FileStream.h

Prototype FileHand FileOpenV50 (uint16_t cardNo,
const char *nameP, uint32_t type,
uint32_t creator, uint32_t openMode,
status_t *errP)

Parameters → cardNo
Card on which the file stream to open resides.

→ nameP
Pointer to the name of the classic database to open or create
as a file stream. This value must be a valid name—no
wildcards allowed, and composed only of 7-bit ASCII
characters—and must not be NULL.

→ type
File type of stream to open or create. Pass 0 for wildcard, in
which case sysFileTFileStream is used if the stream
needs to be created and fileModeTemporary is not
specified. If type is 0 and fileModeTemporary is
specified, then sysFileTTemp is used for the file type of the
stream this function creates.

→ creator
Creator of stream to open or create. Pass 0 for wildcard, in
which case the current application's creator ID is used for the
creator of the stream this function creates.

File Stream
FileOpenV50

Exploring Palm OS: Memory, Databases, and Files 255

→ openMode
Mode in which to open the file stream. You must specify only
one primary mode selector. Additionally, you can use the
bitwise inclusive OR operator to append one or more
secondary mode selectors to the primary mode selector. See
“Primary Open Modes” and “Secondary Open Modes” for
the list of possible values.

← errP
Pointer to a variable that is to hold the error code returned by
this function. Pass NULL to ignore. See the section “File
Stream Error Codes” for a list of error codes.

Returns If successful, returns a handle to an open file stream; otherwise,
returns 0.

In some cases, on some platforms, FileOpen() returns a non-zero
value when it has failed to open a file; thus, it is always a good idea
to check the errP parameter value to determine if an error has
occurred.

Comments IMPORTANT: Previous versions of Palm OS didn’t enforce the
requirement that database names passed to FileOpen() be
composed only of 7-bit ASCII characters. Palm OS Cobalt
requires that this be so.

The fileModeReadOnly, fileModeReadWrite,
fileModeUpdate, and fileModeAppend modes are mutually
exclusive—pass only one of them to the FileOpen() function!

When the fileModeTemporary open mode is used and the file
type passed to FileOpen() is 0, the FileOpen() function uses
sysFileTTemp (defined in SystemMgr.rh) for the file type, as
recommended. In future versions of Palm OS, this configuration
will enable the automatic cleanup of undeleted temporary files after
a system crash. Automatic post-crash cleanup is not implemented in
current versions of Palm OS.

To open a file stream even if it has a different type and creator than
specified, pass the fileModeAnyTypeCreator selector as a flag in
the openMode parameter to the FileOpen() function.

The fileModeLeaveOpen mode is an esoteric option that most
applications should not use. It may be useful for a library that needs
to open a stream from the current application’s context and keep it

File Stream
FileRead

256 Exploring Palm OS: Memory, Databases, and Files

open even after the current application quits. By default, Palm OS
automatically closes all databases that were opened in a particular
application’s context when that application quits. The
fileModeLeaveOpen option overrides this default behavior.

Compatibility This function is only provided for compatibility with previous
versions of Palm OS; the cardNo parameter is ignored.

FileRead Macro
Purpose Reads data from a stream into a buffer.

Declared In FileStream.h

Prototype #define FileRead (stream, bufP, objSize, numObj,
errP)

Parameters → stream
Handle to an open stream.

→ bufP
Pointer to a buffer into which data is read

→ objSize
Size of each stream object to read.

→ numObj
Number of stream objects to read.

← errP
Pointer to a variable that is to hold the error code returned by
this macro. Pass NULL to ignore. See the section “File Stream
Error Codes” for a list of error codes.

Returns Returns the number of whole objects that were read. Note that the
number of objects actually read may be less than the number
requested.

Comments Do not use this macro to read data into a chunk, record or resource
residing in a database—you must use the FileDmRead() macro for
such operations.

When the number of objects actually read is fewer than the number
requested, you may be able to determine the cause of this result by
examining the return value of the errP parameter or by calling the
FileGetLastError() function. If the cause is insufficient data in

File Stream
FileReadLow

Exploring Palm OS: Memory, Databases, and Files 257

the stream to satisfy the full request, the current stream position is at
end-of-file and the “end of file” indicator is set. If a non-NULL
pointer was passed as the value of the errP parameter when the
FileRead() function was called and an error was encountered,
*errP holds a non-zero error code when the function returns. In
addition, the FileError() and FileEOF() functions may be
used to check for I/O errors.

See Also FileDmRead()

FileReadLow Function
Purpose Reads data from a file into a buffer or a data storage heap-based

chunk (record or resource). Use the FileRead() and
FileDmRead() macros instead of calling this function directly.

Declared In FileStream.h

Prototype int32_t FileReadLow (FileHand stream,
void *baseP, int32_t offset,
Boolean dataStoreBased, int32_t objSize,
int32_t numObj, status_t *errP)

Parameters → stream
Handle to an open stream.

→ baseP
Pointer to a buffer into which data is read

→ offset
Offset into the baseP buffer marking the place at which the
read data is stored.

→ dataStoreBased
true if the buffer is data-store based (that is, if it is a chunk,
record or resource residing in a database) or false if it is
located in the dynamic heap.

→ objSize
Size of each stream object to read.

→ numObj
Number of stream objects to read.

File Stream
FileRewind

258 Exploring Palm OS: Memory, Databases, and Files

← errP
Pointer to a variable that is to hold the error code returned by
this function. Pass NULL to ignore. See the section “File
Stream Error Codes” for a list of error codes.

Returns Returns the number of whole objects that were read. Note that the
number of objects actually read may be less than the number
requested.

Comments Use the FileRead() and FileDmRead() macros instead of calling
this function directly.

FileRewind Macro
Purpose Reset position marker to beginning of stream and clear all error

codes.

Declared In FileStream.h

Prototype #define FileRewind (__stream__)

Parameters → __stream__
Handle to an open stream.

Returns Returns errNone if no error, or a fileErr code if an error occurs.
See the section “File Stream Error Codes” for more information.

See Also FileSeek(), FileTell(), FileClearerr(), FileEOF(),
FileError(), FileGetLastError()

FileSeek Function
Purpose Set current position within a file stream, extending the stream as

necessary if it was opened with write access.

Declared In FileStream.h

Prototype status_t FileSeek (FileHand stream,
int32_t offset, FileOriginEnum origin)

Parameters → stream
Handle to an open stream.

→ offset
Position to set, expressed as the number of bytes from
origin. This value may be positive, negative, or 0.

File Stream
FileTell

Exploring Palm OS: Memory, Databases, and Files 259

→ origin
Origin of the position change. Supply one of the values
documented under “FileOriginEnum” on page 246.

Returns Returns errNone if no error, or a fileErr code if an error occurs.
See the section “File Stream Error Codes” for more information.

Comments Attempting to seek beyond end-of-file in a read-only stream results
in an I/O error.

This function’s behavior is similar to that of the fseek function
provided by the C programming language runtime library.

See Also FileRewind(), FileTell()

FileTell Function
Purpose Retrieves the current position and, optionally, the file size of a

stream.

Declared In FileStream.h

Prototype int32_t FileTell (FileHand stream,
int32_t *fileSizeP, status_t *errP)

Parameters → stream
Handle to an open stream.

← fileSizeP
Pointer to variable that receives the size of the stream in
bytes. Pass NULL to ignore.

← errP
Pointer to a variable that is to hold the error code returned by
this function. Pass NULL to ignore. See the section “File
Stream Error Codes” for a list of error codes.

Returns If successful, returns the current position, expressed as an offset in
bytes from the beginning of the stream. If an error was encountered,
returns -1.

Comments The FileTell() function can return the size of the input stream;
as such, it provides some of the functionality of the standard C

File Stream
FileTruncate

260 Exploring Palm OS: Memory, Databases, and Files

library stat function. Note, however, that unlike the stat
function, FileTell() requires that the file be open.

See Also FileRewind(), FileSeek()

FileTruncate Function
Purpose Truncate the file stream to a specified size.

Declared In FileStream.h

Prototype status_t FileTruncate (FileHand stream,
int32_t newSize)

Parameters → stream
Handle to an open stream.

→ newSize
New size; must not exceed current stream size.

Returns Returns errNone if no error, or a fileErr code if an error occurs.
See the section “File Stream Error Codes” for more information.

Comments This function cannot be used on streams that are open in destructive
read mode or read-only mode.

See Also FileTell()

FileWrite Function
Purpose Write data to a stream.

Declared In FileStream.h

Prototype int32_t FileWrite (FileHand stream,
const void *dataP, int32_t objSize,
int32_t numObj, status_t *errP)

Parameters → stream
Handle to an open stream.

→ dataP
Pointer to a buffer holding the data to be written.

File Stream
FileWrite

Exploring Palm OS: Memory, Databases, and Files 261

→ objSize
Size of each stream object to write. Must be greater than or
equal to 0.

→ numObj
Number of stream objects to write.

← errP
Pointer to a variable that is to hold the error code returned by
this function. Pass NULL to ignore. See the section “File
Stream Error Codes” for a list of error codes.

Returns Returns the number of whole objects that were written. Note that
the number of objects actually written may be less than the number
requested. Should available storage be insufficient to satisfy the
entire request, as much of the requested data as possible is written
to the stream, which may result in the last object in the stream being
incomplete.

Comments Writing to files opened without write access or those that are in
destructive read state is not allowed; thus, you cannot call the
FileWrite(), FileSeek(), or FileTruncate() functions on a
stream that is in destructive read mode. One exception to this rule
applies to streams that were opened in “write + append” mode and
then switched into destructive read state. In this case, the
FileWrite function can append data to the stream, but it also
preserves the current stream position so that subsequent reads pick
up where they left off (you can think of this as a pseudo-pipe).

File Stream
FileWrite

262 Exploring Palm OS: Memory, Databases, and Files

Exploring Palm OS: Memory, Databases, and Files 263

6
Memory Manager
This chapter describes the Memory Manager APIs. You use these
APIs to manipulate memory chunks and memory heaps within
Palm OS®.

Note that many of the APIs provided by the Memory Manager exist
to simplify the process of porting an application from an earlier
version of Palm OS. Palm OS Cobalt applications can make use of
the standard C memory management functions—functions such as
malloc(), realloc(), and free()—instead.

This chapter is organized as follows:

Memory Manager Structures and Types 264

Memory Manager Constants 266

Memory Manager Functions and Macros 270

The header file MemoryMgr.h declares the API that this chapter
describes.

For more information on the Memory Manager, see Chapter 1,
“Memory,” on page 3.

Memory Manager
Memory Manager Structures and Types

264 Exploring Palm OS: Memory, Databases, and Files

Memory Manager Structures and Types

LocalID Typedef
Purpose Chunk identifier.

Declared In MemoryMgr.h

Prototype typedef uint32_t LocalID

MemHeapInfoType Struct
Purpose Contains information about a dynamic heap.

Declared In MemoryMgr.h

Prototype typedef struct MemHeapInfoType {
 uint32_t maxBlockSize;
 uint32_t defaultAlignment;
 void *basePtr;
 uint32_t maxSize;
 uint32_t physMem;
 uint32_t physMemUsed;
 uint32_t physMemUnused;
 uint32_t chunksNum;
 uint32_t memAllocated;
 uint32_t chunksFree;
 uint32_t freeSpace;
 uint32_t freeBytes;
 uint32_t largestBlock;
 uint32_t largestCommitted;
 uint32_t statMaxAllocated;
} MemHeapInfoType
typedef MemHeapInfoType *MemHeapInfoPtr

Fields maxBlockSize
The size of the largest chunk that could be potentially
allocated.

defaultAlignment
The default alignment of memory chunks.

basePtr
The base address of the dynamic heap.

Memory Manager
MemHeapInfoType

Exploring Palm OS: Memory, Databases, and Files 265

maxSize
The amount of virtual address space reserved for the heap.

physMem
The amount of physical memory that could be used to extend
the pool of memory chunks.

physMemUsed
The amount of physical memory being used by the dynamic
heap.

physMemUnused
The amount of physical memory that could be returned to
the operating system.

chunksNum
The number of chunks allocated from the heap.

memAllocated
The amount of memory used by chunks that are not free.

chunksFree
The number of chunks in the dynamic heap that are free.

freeSpace
The amount of uncommitted virtual address space reserved
for chunks.

freeBytes
The total number of bytes that could potentially be used to
allocate chunks.

largestBlock
The size of the largest memory block that could be allocated
from the dynamic heap.

largestCommitted
the size of the largest memory block that could be allocated
from the dynamic heap without using additional kernel
memory.

statMaxAllocated

Comments Use MemDynHeapGetInfo() to obtain this information.

Memory Manager
Memory Manager Constants

266 Exploring Palm OS: Memory, Databases, and Files

Memory Manager Constants

Debug Mode Flags
Purpose These flags indicate or specify the current debug mode for the

instance of the Heap Manager local to the calling process.

Declared In MemoryMgr.h

Constants #define memDebugModeAllHeaps 0x0020
Obsolete flag. Provided for compatibility purposes only.

#define memDebugModeCheckOnAll 0x0002

#define memDebugModeCheckOnChange 0x0001

#define memDebugModeFillFree 0x0010
When a memory chunk is freed (with either MemPtrFree()
or MemHandleFree()), unused memory will be filled with a
default value (currently, 0x55). Note that only memory that
is accessible will be filled: the first 32 bits of free chunk data
are reserved for internal use and will never be filled.

#define memDebugModeNoDMCall 0x0200
Force the heap library to report all calls that it delegates to
the Data Manager. This flag helps you to track down Memory
Manager calls that operate on the storage heap—calls that
should be changed to reference the corresponding Data
Manager functions.

#define memDebugModeRecordMaxDynHeapUsed
memDebugModeRecordMinDynHeapFree

Records the maximum amount of memory used by the
dynamic heap during its lifetime.

#define memDebugModeRecordMinDynHeapFree 0x0040
Records the maximum amount of memory used by the
dynamic heap during its lifetime.

#define memDebugModeScrambleOnAll 0x0008
Obsolete flag. Provided for compatibility purposes only.

#define memDebugModeScrambleOnChange 0x0004
Obsolete flag. Provided for compatibility purposes only.

Memory Manager
Dynamic Heap Options

Exploring Palm OS: Memory, Databases, and Files 267

#define memDebugModeValidateParams 0x0100
Force the heap library to thoroughly validate all parameters
passed to the Memory Manager and Heap Manager
functions. This validation includes pointers and memory
chunk handles, so, for example, an attempt to resize a bad
pointer can be detected.

Comments Use MemDebugMode() to obtain the current debug mode for the
instance of the Heap Manager local to the calling process. Use
MemSetDebugMode() to change the current debug mode.

Dynamic Heap Options
Purpose Pass these constants to MemDynHeapOption() to get or set various

dynamic heap parameters at run time.

Declared In MemoryMgr.h

Constants #define memOptGetAbsMaxMemUsage 2
Retrieve the maximum amount of physical memory the
dynamic heap is allowed to use.

#define memOptGetAbsMinMemUsage 4
This option is not supported in Palm OS Cobalt.

#define memOptGetForceMemReleaseThreshold 8
Retrieve the memory usage watermark above which all
unused memory will be immediately released back to the
operating system.

#define memOptGetMaxUnusedMem 6
This option is not supported in Palm OS Cobalt.

#define memOptSetAbsMaxMemUsage 1
Specify the maximum amount of physical memory the
dynamic heap is allowed to use.

#define memOptSetAbsMinMemUsage 3
This option is not supported in Palm OS Cobalt.

#define memOptSetForceMemReleaseThreshold 7
Specify the memory usage watermark above which all
unused memory will be immediately released back to the
operating system. The default value is the size of the heap, so
this feature is off by default.

Memory Manager
Heap Flags

268 Exploring Palm OS: Memory, Databases, and Files

#define memOptSetMaxUnusedMem 5
This option is not supported in Palm OS Cobalt.

Heap Flags
Purpose The set of flags that can be obtained for a heap using

MemHeapFlags().

Declared In MemoryMgr.h

Constants #define memHeapFlagReadOnly memHeapFlagROMBased
The heap is read-only; it cannot be written to.

#define memHeapFlagROMBased 0x0001
The heap is located in ROM.

#define memHeapFlagWritable 0x0002
The heap can be written to.

Memory Manager Error Codes
Purpose Error codes returned by the various Memory Manager functions.

Declared In MemoryMgr.h

Constants #define memErrAlreadyInitialized (memErrorClass |
13)

#define memErrCardNotPresent (memErrorClass | 5)

#define memErrChunkLocked (memErrorClass | 1)

#define memErrChunkNotLocked (memErrorClass | 4)

#define memErrEndOfHeapReached (memErrorClass |
15)

#define memErrFirst memErrChunkLocked

Memory Manager
LocalIDKind

Exploring Palm OS: Memory, Databases, and Files 269

#define memErrHeapInvalid (memErrorClass | 14)

#define memErrInvalidParam (memErrorClass | 3)

#define memErrInvalidStoreHeader (memErrorClass |
7)

#define memErrLast memErrEndOfHeapReached

#define memErrNoCardHeader (memErrorClass | 6)

#define memErrNoRAMOnDevice (memErrorClass | 10)

#define memErrNoStore (memErrorClass | 11)

#define memErrNotEnoughSpace (memErrorClass | 2)

#define memErrRAMOnlyDevice (memErrorClass | 8)

#define memErrROMOnlyDevice (memErrorClass | 12)

#define memErrWriteProtect (memErrorClass | 9)

LocalIDKind Enum
Purpose

Declared In MemoryMgr.h

Constants memIDPtr

memIDHandle

Memory Manager
Memory Manager Functions and Macros

270 Exploring Palm OS: Memory, Databases, and Files

Memory Manager Functions and Macros

MemCmp Function
Purpose Compare two blocks of memory.

Declared In MemoryMgr.h

Prototype int16_t MemCmp (const void *s1, const void *s2,
int32_t numBytes)

Parameters → s1
Pointer to the first block of memory to be compared.

→ s2
Pointer to the second block of memory to be compared.

→ numBytes
Number of bytes to compare.

Returns Returns zero if the two blocks of memory match, a positive value if
s1 > s2, and a negative value if s1 < s2.

Comments The two memory blocks are compared as a set of unsigned bytes.

MemDebugMode Function
Purpose Obtain the current debug mode for the instance of the Heap

Manager local to the calling process.

Declared In MemoryMgr.h

Prototype uint16_t MemDebugMode (void)

Parameters None.

Returns Returns a set of debug flags. See “Debug Mode Flags” on page 266
for the set of flags that this function can return.

See Also MemSetDebugMode()

Memory Manager
MemDynHeapGetInfo

Exploring Palm OS: Memory, Databases, and Files 271

MemDynHeapGetInfo Function
Purpose Retrieve information about a dynamic heap.

Declared In MemoryMgr.h

Prototype status_t MemDynHeapGetInfo
(MemHeapInfoType *oInfo)

Parameters ← oInfo
Pointer to a structure that gets filled with information about
the dynamic heap. See “MemHeapInfoType” on page 264.

Returns Always returns errNone.

Comments Your application must supply a MemHeapInfoType structure to
this function. Upon return, the structure contains the following
information:

• The size of the largest chunk that could be potentially
allocated.

• The default alignment of memory chunks.

• The base address of the dynamic heap.

• The amount of virtual address space reserved for the heap

• The amount of physical memory that could be used to extend
the pool of memory chunks.

• The amount of physical memory being used by the dynamic
heap, and the amount that could be returned to the operating
system.

• The number of chunks allocated from the heap, and the
number of chunks in the heap that are free.

• The amount of memory used by chunks that are not free.

• The amount of uncommitted virtual address space reserved
for chunks.

• The total number of bytes that could potentially be used to
allocate chunks.

• The size of the largest memory block that could be allocated
from the dynamic heap, and the size of the largest memory

Memory Manager
MemDynHeapOption

272 Exploring Palm OS: Memory, Databases, and Files

block that could be allocated from the dynamic heap without
using additional kernel memory.

See Also MemDynHeapOption(), MemDynHeapReleaseUnused(),
MemHeapDynamic()

MemDynHeapOption Function
Purpose Allow the fine-tuning of various dynamic heap parameters at run

time.

Declared In MemoryMgr.h

Prototype uint32_t MemDynHeapOption (uint32_t cmd,
uint32_t value)

Parameters → cmd
One of the commands listed under “Dynamic Heap Options”
on page 267.

→ value
The value associated with the command, when using one of
the option-setting commands. Ignored otherwise.

Returns Returns the current effective value of the specified dynamic heap
option.

See Also MemDynHeapGetInfo(), MemHeapDynamic()

MemDynHeapReleaseUnused Function
Purpose Force the dynamic heap to release as much memory as it can back to

the operating system.

Declared In MemoryMgr.h

Prototype void MemDynHeapReleaseUnused (void)

Parameters None.

Returns Nothing.

Comments The Heap Manager releases unused memory in page quantities.
Any page in the address range controlled by the heap that does not
contain allocated memory chunks or internal heap control
structures could potentially be released back to the operating

Memory Manager
MemHandleFree

Exploring Palm OS: Memory, Databases, and Files 273

system. Applications should not assume that all pages occupied by
the heap are always accessible; never attempt to access, for example,
the area occupied by a chunk that was freed.

See Also MemHeapDynamic()

MemHandleDataStorage Function
Purpose Determine whether or not a chunk is located in a storage heap.

Declared In MemoryMgr.h

Prototype Boolean MemHandleDataStorage (MemHandle h)

Parameters → h
Chunk handle.

Returns Returns true if the specified chunk belongs to the storage area.

See Also MemPtrDataStorage()

MemHandleFree Function
Purpose Dispose of a memory chunk given its handle.

Declared In MemoryMgr.h

Prototype status_t MemHandleFree (MemHandle h)

Parameters → h
Chunk handle.

Returns Returns errNone if no error occurred. Returns
memErrInvalidParam if the chunk could not, or should not, be
freed.

Comments If the memDebugModeFillFree flag is set, the unused memory
will be filled with a default value (currently, 0x55).

If the supplied pointer indicates a chunk in a storage heap, the
request is forwarded to the Data Manager.

Memory Manager
MemHandleHeapID

274 Exploring Palm OS: Memory, Databases, and Files

NOTE: The Palm OS Cobalt Memory Manager uses virtual
pages to hold handle tables, and they may not be returned to the
kernel even if the chunks referenced by those handles are freed.
In addition, the threshold of free memory that a heap can keep
without returning the memory to the kernel impacts the amount of
free memory reported after certain allocation and de-allocation
operations. Because of this, if you allocate handles and pointers
and then free them, the amount of memory reported as available
after the series of operations may not be the same as that
reported before.

See Also MemDebugMode(), MemPtrFree(), MemHandleNew(),
DmHandleFree()

MemHandleHeapID Function
Purpose Get the ID of the heap that contains a given memory chunk

referenced by its handle.

Declared In MemoryMgr.h

Prototype uint16_t MemHandleHeapID (MemHandle h)

Parameters → h
Chunk handle.

Returns Returns the ID of the heap containing the specified memory chunk,
or 0xFFFF if the specified pointer does not match any heap.

See Also MemHeapID(), MemPtrHeapID()

MemHandleLock Function
Purpose Lock a chunk and obtain a pointer to the chunk’s data.

Declared In MemoryMgr.h

Prototype MemPtr MemHandleLock (MemHandle h)

Parameters → h
Chunk handle.

Returns Returns a pointer to the chunk’s data, or NULL if an error.

Memory Manager
MemHandleResize

Exploring Palm OS: Memory, Databases, and Files 275

Comments A NULL handle can safely be passed to this function; NULL will be
returned.

If the supplied handle indicates a chunk in a storage heap, the
request is forwarded to the Data Manager.

See Also MemHandleUnlock(), DmHandleLock()

MemHandleNew Function
Purpose Allocate a new movable chunk in the dynamic heap.

Declared In MemoryMgr.h

Prototype MemHandle MemHandleNew (uint32_t size)

Parameters → size
Size, in bytes, of the memory chunk to allocate.

Returns Returns the handle of the chunk, or NULL if the chunk couldn’t be
allocated.

Comments The handle returned by this function should not be interpreted by
the application in any way. Memory handles should be used only in
conjunction with the appropriate APIs.

See Also MemHandleFree(), MemPtrNew()

MemHandleResize Function
Purpose Resize a chunk referenced by a handle.

Declared In MemoryMgr.h

Prototype status_t MemHandleResize (MemHandle h,
uint32_t newSize)

Parameters → h
Chunk handle.

→ newSize
New size of the memory chunk. This value should be non-
zero.

Returns Returns errNone if the chunk was successfully resized, or one of
the following otherwise:

Memory Manager
MemHandleSetOwner

276 Exploring Palm OS: Memory, Databases, and Files

memErrNotEnoughSpace
There is not enough free memory to fulfill the request.

memErrChunkLocked
The given chunk cannot be resized.

memErrInvalidParam
One of the supplied arguments is invalid.

Comments This function may cause the unlocked chunk to be moved.

If the supplied handle indicates a chunk in a storage heap, the
request is forwarded to the Data Manager.

See Also MemHandleSize(), MemPtrResize(), DmHandleResize()

MemHandleSetOwner Function
Purpose Set the owner ID of a chunk, given the chunk’s handle.

Declared In MemoryMgr.h

Prototype status_t MemHandleSetOwner (MemHandle h,
uint16_t owner)

Parameters → h
Chunk handle.

→ owner
New owner ID of the chunk. Specify 0 to set the owner to the
operating system. Only the lowest four bits are used.

Returns Returns errNone if the owner ID was set successfully, or
memErrInvalidParam if an error occurred.

Comments The Heap Manager reserves owner ID 15 for internal usage. You
cannot set a chunk’s owner ID to 15 with this function.

See Also MemPtrSetOwner()

Memory Manager
MemHeapCheck

Exploring Palm OS: Memory, Databases, and Files 277

MemHandleSize Function
Purpose Get the size of a memory chunk referenced by a handle.

Declared In MemoryMgr.h

Prototype uint32_t MemHandleSize (MemHandle h)

Parameters → h
Chunk handle.

Returns Returns the size, in bytes, of the memory chunk referenced by the
handle. Returns 0 if the size of the chunk is 0 or if an error occurred.

Comments If the supplied handle indicates a chunk in a storage heap, the
request is forwarded to the Data Manager.

See Also MemHandleResize(), MemPtrRealloc(), DmHandleSize()

MemHandleUnlock Function
Purpose Unlock a movable memory chunk.

Declared In MemoryMgr.h

Prototype status_t MemHandleUnlock (MemHandle h)

Parameters → h
Chunk handle.

Returns Returns errNone if the chunk was unlocked, or
memErrInvalidParam if an error occurred.

Comments If the supplied handle indicates a chunk in a storage heap, the
request is forwarded to the Data Manager.

See Also MemHandleLock(), MemPtrUnlock(), DmHandleUnlock()

MemHeapCheck Function
Purpose Validate the internal structure of a given heap.

Declared In MemoryMgr.h

Prototype status_t MemHeapCheck (uint16_t heapID)

Parameters → heapID
ID of the heap to check.

Memory Manager
MemHeapCompact

278 Exploring Palm OS: Memory, Databases, and Files

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

memErrInvalidParam
heapID is invalid.

memErrInvalidHeap
Heap corruption was detected.

Comments This function can be used with any writable heap. If the calling
process does not have write access to the heap, errNone is
returned. This call is never forwarded to the Data Manager.

This function is called internally at appropriate times if the
MemDebugModeCheckOnChange or memDebugModeCheckOnAll
debug mode flags are set.

See Also MemDebugMode(), MemHeapCompact()

MemHeapCompact Function
Purpose Compact a heap.

Declared In MemoryMgr.h

Prototype status_t MemHeapCompact (uint16_t heapID)

Parameters → heapID
ID of the heap to be compacted.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

memErrInvalidParam
heapID is invalid, or the heap specified by heapID is not
writable.

memErrNotEnoughSpace
There was not enough memory to complete the compaction.

Comments The calling process must have write permission to be able to
compact the heap. If the calling process does not have write access
to the heap, errNone is returned.

This call is never forwarded to the Data Manager.

See Also MemHeapScramble()

Memory Manager
MemHeapFreeBytes

Exploring Palm OS: Memory, Databases, and Files 279

MemHeapDynamic Function
Purpose Determine whether or not the specified heap is the dynamic heap.

Declared In MemoryMgr.h

Prototype Boolean MemHeapDynamic (uint16_t heapID)

Parameters → heapID
ID of the heap.

Returns Returns true if the specified heap is the dynamic heap, false
otherwise.

See Also MemDynHeapGetInfo(), MemDynHeapOption(),
MemDynHeapReleaseUnused(), MemHeapFlags()

MemHeapFlags Function
Purpose Get the heap flags for a specified heap. These flags indicate whether

or not the heap can be written to and whether or not the heap is
located in ROM.

Declared In MemoryMgr.h

Prototype uint16_t MemHeapFlags (uint16_t heapID)

Parameters → heapID
ID of the heap.

Returns Returns the heap flags, or 0 if heapID is invalid. See “Heap Flags”
on page 268 for the set of flags that can make up the returned value.

See Also MemHeapDynamic()

MemHeapFreeBytes Function
Purpose Get the total number of free bytes in a specified heap and the size of

the largest free chunk in that heap.

Declared In MemoryMgr.h

Prototype status_t MemHeapFreeBytes (uint16_t heapID,
uint32_t *freeP, uint32_t *maxP)

Parameters → heapID
ID of the heap.

Memory Manager
MemHeapID

280 Exploring Palm OS: Memory, Databases, and Files

← freeP
The total number of bytes that are free in the heap.

← maxP
The size, in bytes, of the largest free chunk in the heap.

Returns Returns errNone if the operation completed successfully, or
memErrInvalidParam if heapID is invalid.

Comments The size of the largest chunk returned by this call, in most cases, will
be the size of the heap “wilderness” area: the area that is not backed
up with physical memory. There is no guarantee that the returned
amount actually can be allocated due to limits on physical memory
imposed by resource bank and overall availability of free memory in
the system.

See Also MemHeapSize()

MemHeapID Function
Purpose Get the ID for a heap, given its index.

Declared In MemoryMgr.h

Prototype uint16_t MemHeapID (uint16_t heapIndex)

Parameters → heapIndex
Heap index.

Returns Returns the heap ID.

Comments Index 0 refers to the dynamic heap. Index 1 refers to the storage
area. Index 2 refers to ROM.

See Also MemHandleHeapID(), MemPtrHeapID()

Memory Manager
MemHeapSize

Exploring Palm OS: Memory, Databases, and Files 281

MemHeapScramble Function
Purpose Scramble a heap, moving each of the heap’s movable chunks. This

function can be useful when debugging.

Declared In MemoryMgr.h

Prototype status_t MemHeapScramble (uint16_t heapID)

Parameters → heapID
ID of the heap to be scrambled.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

memErrInvalidParam
heapID is invalid, or the heap specified by heapID is not
writable.

memErrNotEnoughSpace
There was not enough memory to scramble the heap.

Comments The calling process must have write permission to be able to
scramble the heap. If the calling process does not have write access
to the heap, errNone is returned.

This call is never forwarded to the Data Manager.

See Also MemHeapCompact()

MemHeapSize Function
Purpose Get the maximum number of bytes that the heap can manage or

request from the kernel.

Declared In MemoryMgr.h

Prototype uint32_t MemHeapSize (uint16_t heapID)

Parameters → heapID
ID of the heap.

Returns Returns the maximum size, in bytes, of the specified heap, or 0 if
heapID is invalid.

Comments The value returned by this call represents the maximum amount
possible. Not all of this memory is necessarily available.

See Also MemHeapFreeBytes()

Memory Manager
MemMove

282 Exploring Palm OS: Memory, Databases, and Files

MemMove Function
Purpose Move memory.

Declared In MemoryMgr.h

Prototype status_t MemMove (void *dstP, const void *sP,
int32_t numBytes)

Parameters ← dstP
Pointer to the destination.

→ sP
Pointer to the source.

→ numBytes
Number of bytes to move.

Returns Always returns errNone.

Comments This function properly handles overlapping ranges.

MemNumHeaps Function
Purpose Get the number of available heaps in both ROM and RAM.

Declared In MemoryMgr.h

Prototype uint16_t MemNumHeaps (void)

Parameters None.

Returns The number of heaps. This value is always 3, since the system has
three heaps: the dynamic heap, the storage area, and ROM.

See Also MemHandleHeapID(), MemPtrHeapID(), MemNumRAMHeaps()

MemNumRAMHeaps Function
Purpose Get the number of available RAM heaps.

Declared In MemoryMgr.h

Prototype uint16_t MemNumRAMHeaps (void)

Parameters None.

Memory Manager
MemPtrFree

Exploring Palm OS: Memory, Databases, and Files 283

Returns The number of heaps. This value is always 2, since the system has
two RAM heaps: the dynamic heap, and the non-secure RAM
storage heap.

See Also MemHandleHeapID(), MemPtrHeapID(), MemNumHeaps()

MemPtrDataStorage Function
Purpose Determine whether or not a chunk is located in the storage heap.

Declared In MemoryMgr.h

Prototype Boolean MemPtrDataStorage (MemPtr p)

Parameters → p
Pointer to the chunk.

Returns Returns true if the specified chunk belongs to the storage area.

Comments This function checks whether or not the given pointer falls within
the address range occupied by the heap located in the storage area.

See Also MemHandleDataStorage()

MemPtrFree Macro
Purpose Dispose of a memory chunk referenced by the given pointer.

Declared In MemoryMgr.h

Prototype #define MemPtrFree (p)

Parameters → p
Pointer to the memory chunk to be freed.

Returns Returns errNone if no error occurred. Returns
memErrInvalidParam if the chunk could not, or should not, be
freed.

Comments If the memDebugModeFillFree flag is set, the unused memory
will be filled with a default value (currently, 0x55).

If the supplied pointer indicates a chunk in a storage heap, the
request is forwarded to the Data Manager.

Memory Manager
MemPtrHeapID

284 Exploring Palm OS: Memory, Databases, and Files

NOTE: The Palm OS Cobalt Memory Manager uses virtual
pages to hold handle tables, and they may not be returned to the
kernel even if the chunks referenced by those handles are freed.
In addition, the threshold of free memory that a heap can keep
without returning the memory to the kernel impacts the amount of
free memory reported after certain allocation and de-allocation
operations. Because of this, if you allocate handles and pointers
and then free them, the amount of memory reported as available
after the series of operations may not be the same as that
reported before.

See Also MemDebugMode(), MemHandleFree(), MemPtrNew(),
DmHandleFree()

MemPtrHeapID Function
Purpose Get the ID of the heap that contains a given memory chunk

referenced by a pointer.

Declared In MemoryMgr.h

Prototype uint16_t MemPtrHeapID (MemPtr p)

Parameters → p
Pointer to the chunk.

Returns Returns the ID of the heap containing the specified memory chunk,
or 0xFFFF if the specified pointer does not match any heap.

See Also MemHandleHeapID(), MemHeapID()

MemPtrNew Function
Purpose Allocate a new memory chunk from the dynamic heap.

Declared In MemoryMgr.h

Prototype MemPtr MemPtrNew (uint32_t size)

Parameters → size
The desired size of the chunk.

Memory Manager
MemPtrRealloc

Exploring Palm OS: Memory, Databases, and Files 285

Returns Returns a pointer to a newly allocated chunk if successful, or NULL
if the Memory Manager was unable to allocate a memory chunk of
the requested size.

Comments This function allocates a non-movable chunk in the dynamic heap
and returns a pointer to that chunk. Applications can use this call to
allocate dynamic memory. User processes should use this call as a
primary dynamic memory allocator.

See Also MemHandleNew(), MemPtrFree()

MemPtrRealloc Function
Purpose Change the size of a non-movable chunk referenced by a pointer.

Declared In MemoryMgr.h

Prototype MemPtr MemPtrRealloc (MemPtr ptr,
uint32_t newSize)

Parameters → ptr
Pointer to the memory chunk to be reallocated.

→ newSize
New size, in bytes, of the chunk.

Returns Returns a pointer to the reallocated chunk, or NULL if the chunk
couldn’t be resized as requested.

Comments The semantic of this call resembles the standard C library function
realloc. The contents of the chunk will be unchanged up to the
lesser of the new and old size. If ptr is NULL, this function behaves
like MemPtrNew(). If newSize is 0 and ptr is not NULL, the
memory chunk is freed and NULL is returned. MemPtrRealloc
significantly simplifies the management of variable-length memory
chunks, so this call is recommended over MemPtrResize().

Only non-movable chunks can be reallocated using this call.

See Also MemHandleResize(), DmPtrResize()

Memory Manager
MemPtrRecoverHandle

286 Exploring Palm OS: Memory, Databases, and Files

MemPtrRecoverHandle Function
Purpose Recover the handle of a memory chunk referenced by the given

pointer to its data.

Declared In MemoryMgr.h

Prototype MemHandle MemPtrRecoverHandle (MemPtr p)

Parameters → p
Pointer to a memory chunk.

Returns Returns the handle of the memory chunk, or NULL if an error
occurred.

Comments For memory chunks in the dynamic heap, the given pointer will be
converted to a handle and returned as a result. For memory chunks
in a storage heap, the call is forwarded to the Data Manager.

See Also DmRecoverHandle()

MemPtrResize Function
Purpose Resize a memory chunk referenced by a pointer.

Declared In MemoryMgr.h

Prototype status_t MemPtrResize (MemPtr p,
uint32_t newSize)

Parameters → p
Pointer to the memory chunk to be resized.

→ newSize
New desired size of the memory chunk, in bytes.

Returns Returns errNone if the chunk was successfully resized, or one of
the following otherwise:

memErrNotEnoughSpace
There is not enough memory to fulfill the request.

memErrChunkLocked
The given chunk cannot be resized in place.

memErrInvalidParam
One of the arguments is invalid, the chunk does not exist, or
the chunk should not be resized.

Memory Manager
MemPtrSize

Exploring Palm OS: Memory, Databases, and Files 287

Comments Call this function to resize a locked chunk. This function is always
successful when shrinking the size of a chunk. When growing a
chunk, it attempts to use free space immediately following the
chunk, and returns memErrChunkLocked if the resize fails.

For non-movable chunks in the dynamic heap, consider using
MemPtrRealloc(). In most cases, that function is more
convenient.

If the supplied pointer indicates a chunk in a storage heap, the
request is forwarded to the Data Manager.

See Also MemHandleResize(), MemPtrNew(), DmPtrResize()

MemPtrSetOwner Function
Purpose Set the owner ID of a chunk referenced by a pointer.

Declared In MemoryMgr.h

Prototype status_t MemPtrSetOwner (MemPtr p,
uint16_t owner)

Parameters → p
Chunk pointer.

→ owner
New owner ID of the chunk. Specify 0 to set the owner to the
operating system. Only the lowest four bits are used.

Returns Returns errNone if the owner ID was set successfully, or
memErrInvalidParam if an error occurred.

Comments The Heap Manager reserves owner ID 15 for internal usage. You
cannot set a chunk’s owner ID to 15 with this function.

See Also MemHandleSetOwner()

MemPtrSize Function
Purpose Get the size of a memory chunk referenced by a pointer.

Memory Manager
MemPtrUnlock

288 Exploring Palm OS: Memory, Databases, and Files

Declared In MemoryMgr.h

Prototype uint32_t MemPtrSize (MemPtr p)

Parameters → p
Pointer to a memory chunk.

Returns The size of the chunk, in bytes, or 0 if an error occurred.

Comments The value returned represents the size of the “Data” portion of the
memory chunk that is equal to the value that was specified when it
was allocated or resized.

If the supplied pointer indicates a chunk in a storage heap, the
request is forwarded to the Data Manager.

See Also MemPtrNew(), MemPtrResize(), DmPtrSize()

MemPtrUnlock Function
Purpose Unlock a chunk, given a pointer to the chunk.

Declared In MemoryMgr.h

Prototype status_t MemPtrUnlock (MemPtr p)

Parameters → p
Pointer to the chunk to be unlocked.

Returns Returns errNone if the chunk was unlocked, or
memErrInvalidParam if an error occurred.

Comments If the supplied pointer indicates a chunk in a storage heap, the
request is forwarded to the Data Manager.

See Also MemHandleUnlock(), DmPtrUnlock()

MemSet Function
Purpose Set a memory range to a specified value.

Declared In MemoryMgr.h

Prototype status_t MemSet (void *dstP, int32_t numBytes,
uint8_t value)

Parameters ← dstP
Pointer to the beginning of the memory range to be set.

Memory Manager
MemSetDebugMode

Exploring Palm OS: Memory, Databases, and Files 289

→ numBytes
Number of bytes to be set.

→ value
Value to which each of the bytes in the specified range are set.

Returns Always returns errNone.

MemSetDebugMode Function
Purpose Set the debugging mode for the instance of the Heap Manager local

to the calling process.

Declared In MemoryMgr.h

Prototype status_t MemSetDebugMode (uint16_t flags)

Parameters → flags
Use the logical OR operator (|) to provide any combination
of the flags listed in “Debug Mode Flags” on page 266.

Returns Returns errNone if the debug mode flags were set successfully, or
memErrHeapInvalid if an invalid heap was detected.

Comments When using the memDebugModeFillFree debug flag, note that
only memory that is accessible will be filled. The first 32 bits of free
chunk data are reserved for internal use and will never be filled.

When working with the storage heap you should try to always use
functions provided by the Data Manager. The
MemDebugModeNoDmCalls debug flag helps you to track down
“leftover” Memory Manager calls that operate on the storage heap.
These calls can then be converted into Data Manager calls.

See Also MemDebugMode()

Memory Manager
MemSetDebugMode

290 Exploring Palm OS: Memory, Databases, and Files

Exploring Palm OS: Memory, Databases, and Files 291

7
Schema Databases
This chapter describes the schema database APIs: those structures,
constants, and functions that operate on schema databases. This
chapter is divided into the following sections:

Schema Databases Structures and Types 291

Schema Databases Constants 300

Schema Databases Functions and Macros 305

The header file SchemaDatabases.h declares the API that this
chapter describes.

For more information on Palm OS® databases, see Chapter 2, “Palm
OS Databases,” on page 11.

Schema Databases Structures and Types

DbColumnPropertySpecType Struct
Purpose Used in conjunction with DbGetColumnPropertyValues() to

specify column properties for selective value retrieval.

Declared In SchemaDatabases.h

Prototype typedef struct {
 uint32_t columnID;
 DbSchemaColumnProperty propertyID;
 uint8_t padding[3];
} DbColumnPropertySpecType,
*DbColumnPropertySpecPtr

Fields columnID
The ID of the column for which the property is being
retrieved.

Schema Databases
DbColumnPropertyValueType

292 Exploring Palm OS: Memory, Databases, and Files

propertyID
The ID of the property being retrieved. See
DbSchemaColumnProperty.

padding
Padding bytes used for structure alignment purposes.

DbColumnPropertyValueType Struct
Purpose Container that identifies a single column property and contains its

value.

Declared In SchemaDatabases.h

Prototype typedef struct {
 uint32_t columnID;
 uint32_t dataSize;
 void *data;
 status_t errCode;
 DbSchemaColumnProperty propertyID;
 uint8_t padding[3];
} DbColumnPropertyValueType,
*DbColumnPropertyValuePtr

Fields columnID
The ID of the column for which the property is being
retrieved or set.

dataSize
The size, in bytes, of the property value.

data
The property value.

errCode
Set by the Data Manager to errNone if the property value
was set or retrieved successfully, or one of the Data Manager
error codes otherwise.

propertyID
The ID of the property being retrieved or set.

padding
Padding bytes used for structure alignment purposes only.

Comments You work with an array of these structures when getting or setting
column property values with

Schema Databases
DbSchemaColumnData

Exploring Palm OS: Memory, Databases, and Files 293

DbGetAllColumnPropertyValues(),
DbGetColumnPropertyValues(), and
DbSetColumnPropertyValues().

DbMatchModeType Typedef
Purpose Define how a row’s category membership should match a supplied

set of categories.

Declared In SchemaDatabases.h

Prototype typedef uint32_t DbMatchModeType

Constants #define DbMatchAll ((DbMatchModeType)2)
(AND) Match rows for which membership includes all of the
specified categories, including rows with additional category
membership.

#define DbMatchAny ((DbMatchModeType)1)
(OR) Match rows for which membership includes any of the
specified categories.

#define DbMatchExact ((DbMatchModeType)3)
Match rows for which membership exactly matches the
specified categories.

DbSchemaColumnData Typedef
Purpose Generic type for any kind of column data.

Declared In SchemaDatabases.h

Prototype typedef void DbSchemaColumnData;

Fields None.

Comments The DbSchemaColumnValueType structure uses this data type for
the column’s data.

Schema Databases
DbSchemaColumnDefnType

294 Exploring Palm OS: Memory, Databases, and Files

DbSchemaColumnDefnType Struct
Purpose Defines a single table column.

Declared In SchemaDatabases.h

Prototype typedef struct {
 uint32_t id;
 uint32_t maxSize;
 char name[dbDBNameLength];
 DbSchemaColumnType type;
 uint8_t attrib;
 uint16_t reserved;
 status_t errCode;
} DbSchemaColumnDefnType, *DbSchemaColumnDefnPtr

Fields id
User-defined column identifier.

maxSize
Size specification for the column data. For variable-length
string vectors, it specifies the size upper-bound and for fixed-
length strings, the actual size. For vectors, it specifies the
upper-bound in terms of byte count. For all other types, the
actual size of the type.

name
User-defined column name.

type
The column type. See the definition of
DbSchemaColumnType for a list of supported column types.

attrib
Column attributes. See “Table Column Attributes” on
page 301 for a list of supported column attributes.

reserved
Reserved for future use.

errCode
Set by the Data Manager to an error code in the course of a
value retrieval operation. errNone represents a no-error
condition.

Comments You work with these structures both singly and in arrays when
adding columns and getting column definitions with
DbAddColumn(), DbGetAllColumnDefinitions(), and

Schema Databases
DbSchemaColumnProperty

Exploring Palm OS: Memory, Databases, and Files 295

DbGetColumnDefinitions(). A table definition contains an
array of these structures; see “DbTableDefinitionType” on page 299.

DbSchemaColumnProperty Typedef
Purpose Container for a column property’s type.

Declared In SchemaDatabases.h

Prototype typedef uint8_t DbSchemaColumnProperty

Constants #define dbColumnAttribProperty
((DbSchemaColumnProperty)0x04)

The column’s attributes.

#define dbColumnDatatypeProperty
((DbSchemaColumnProperty)0x02)

The column’s data type.

#define dbColumnNameProperty
((DbSchemaColumnProperty)0x01)

The column’s name.

#define dbColumnSizeProperty
((DbSchemaColumnProperty)0x03)

The column’s size.

Comments Pass these values directly when setting or getting a single table
column property value with DbSetColumnPropertyValue() or
DbGetColumnPropertyValue(), or when removing a column
property with DbRemoveColumnProperty(). When getting or
setting multiple property values, you use these values in
conjunction with one or more DbColumnPropertyValueType
structures.

Schema Databases
DbSchemaColumnType

296 Exploring Palm OS: Memory, Databases, and Files

DbSchemaColumnType Typedef
Purpose Contains a value identifying the type of a table column.

Declared In SchemaDatabases.h

Prototype typedef uint8_t DbSchemaColumnType

Constants #define dbBlob ((DbSchemaColumnType)0x11)
A blob. This data type supports offset-based reads and
writes.

#define dbBoolean ((DbSchemaColumnType)0x0B)
A Boolean.

#define dbChar ((DbSchemaColumnType)0x0F)
A char.

#define dbDate ((DbSchemaColumnType)0x0D)
A date.

#define dbDateTime ((DbSchemaColumnType)0x0C)
A date and time, not including seconds.

#define dbDateTimeSecs ((DbSchemaColumnType)0x12)
A date and time, including seconds.

#define dbDouble ((DbSchemaColumnType)0x0A)
A double.

#define dbFloat ((DbSchemaColumnType)0x09)
A float.

#define dbInt16 ((DbSchemaColumnType)0x06)
A signed 16-bit integer.

#define dbInt32 ((DbSchemaColumnType)0x07)
A signed 32-bit integer.

#define dbInt64 ((DbSchemaColumnType)0x08)
A signed 64-bit integer.

#define dbInt8 ((DbSchemaColumnType)0x05)
A signed 8-bit integer.

#define dbStringVector ((DbSchemaColumnType)0xC0)
A string vector.

#define dbTime ((DbSchemaColumnType)0x0E)
A time.

Schema Databases
DbSchemaColumnValueType

Exploring Palm OS: Memory, Databases, and Files 297

#define dbUInt16 ((DbSchemaColumnType)0x02)
An unsigned 16-bit integer.

#define dbUInt32 ((DbSchemaColumnType)0x03)
An unsigned 32-bit integer.

#define dbUInt64 ((DbSchemaColumnType)0x04)
An unsigned 64-bit integer.

#define dbUInt8 ((DbSchemaColumnType)0x01)
An unsigned 8-bit integer.

#define dbVarChar ((DbSchemaColumnType)0x10)
A VarChar. This data type supports offset-based reads and
writes.

#define dbVector ((DbSchemaColumnType)0x80)
A vector. This data type supports offset-based reads and
writes.

Comments These constants are used when adding columns to a table or getting
table column definitions.

DbSchemaColumnValueType Struct
Purpose Identifies a table column and acts as a container for the column’s

data. You use this structure primarily when reading and writing
multiple column values in a database row.

Declared In SchemaDatabases.h

Prototype typedef struct {
 DbSchemaColumnData *data;
 uint32_t dataSize;
 uint32_t columnID;
 uint32_t columnIndex;
 status_t errCode;
 uint32_t reserved;
} DbSchemaColumnValueType,
*DbSchemaColumnValuePtr

Fields data
The column data.

Schema Databases
DbShareModeType

298 Exploring Palm OS: Memory, Databases, and Files

dataSize
The size, in bytes, of the column data being read or written.
For variable-length string types, it specifies the actual size to
be read or written. For vectors, it specifies the actual byte
count to be read or written. When writing, *data must, at a
minimum, have storage corresponding to dataSize.

columnID
The column ID.

columnIndex
The column index. This field is only used when reading
column data.

errCode
Set by the Data Manager to an error code in the course of a
value retrieval operation. errNone represents a no-error
condition.

reserved
Reserved for future use.

Comments Use this structure when reading or writing multiple data columns in
a single operation with the following functions:

• DbCopyColumnValues()

• DbGetAllColumnValues()

• DbGetColumnValues()

• DbWriteColumnValues()

You also use this data structure with DbInsertRow().

DbShareModeType Typedef
Purpose Container for the share mode type, which controls how others can

access a database that your application has opened using either
DbOpenDatabase() or DbOpenDatabaseByName().

Declared In SchemaDatabases.h

Prototype typedef uint16_t DbShareModeType

Constants #define dbShareNone ((DbShareModeType)0x0000)
While the database is open, don’t let anyone else open it.

Schema Databases
DbTableDefinitionType

Exploring Palm OS: Memory, Databases, and Files 299

#define dbShareRead ((DbShareModeType)0x0001)
While the database is open, others can open it in read-only
mode.

#define dbShareReadWrite ((DbShareModeType)0x0002)
While the database is open, others can open it in read-only,
read-write, or write-only mode.

DbTableDefinitionType Struct
Purpose Defines a database table. This structure contains the table’s name,

and acts as a container for an array of DbSchemaColumnDefnType
structures, each element of which defines an individual column.

Declared In SchemaDatabases.h

Prototype typedef struct {
 char name[dbDBNameLength];
 uint32_t numColumns;
 DbSchemaColumnDefnType *columnListP;
} DbTableDefinitionType

Fields name
Table name.

numColumns
Number of columns in the table, which is also the number of
elements in the columnListP array.

columnListP
Pointer to the first of a set of data structures that each define a
single table column.

Comments You use this structure when creating a database with either
DbCreateDatabase() or DbCreateSecureDatabase(), when
adding a new table to a database (with DbAddTable()) and when
querying a database table for schema information
(DbGetTableSchema()).

Schema Databases
Schema Databases Constants

300 Exploring Palm OS: Memory, Databases, and Files

Schema Databases Constants

Schema Database Row Attributes
Purpose Define the set of attributes that a row can have. Use

DbGetRowAttr() to obtain a row’s attributes.

Declared In DataMgr.h

Constants #define dbRecAttrArchive 0x01
The row is marked for archiving: it is treated like a deleted
row, but the chunk is not freed and the row ID is preserved so
that upon the next HotSync operation the desktop computer
saves the row data before it permanently removes the row
entry and data from the Palm Powered™ handheld.

#define dbRecAttrDelete 0x80
The row has been deleted.

#define dbRecAttrReadOnly 0x02
The row is read-only, and cannot be written to. Note that the
Data Manager does not place any semantics on the read-only
attribute. It is up to the application to enforce the read-only
semantics.

#define dbRecAttrSecret 0x10
The row is private.

#define dbAllRecAttrs (dbRecAttrDelete |
dbRecAttrSecret | dbRecAttrArchive |
dbRecAttrReadOnly)

The complete set of schema database row attributes.

#define dbSysOnlyRecAttrs (dbRecAttrDelete |
dbRecAttrArchive)

System-only attributes. These attributes are maintained by
the operating system and cannot be set with
DbSetRowAttr().

Schema Databases
Schema Database Access Rule Action Types

Exploring Palm OS: Memory, Databases, and Files 301

Table Column Attributes
Purpose Identify the various attributes of a table column.

Declared In DataMgr.h

Constants #define dbSchemaColDynamic 0x01
The column was added after the table was created.

#define dbSchemaColNonSyncable 0x02
The column’s data won’t be synchronized. Modifications
made to a “non-syncable” column’s data don’t change the
modification state for the row, and thus by themselves don’t
cause the row to be synchronized during a HotSync
operation.

#define dbSchemaColWritable 0x04
The column’s data can be modified. Writable columns are
relevant for read-only rows and are required for sharing.

#define dbAllSchemaColAttrs (dbSchemaColDynamic |
dbSchemaColNonSyncable | dbSchemaColWritable)

The complete set of table column attributes.

Comments These constants are used when adding columns to a table or getting
table column definitions. See “DbSchemaColumnDefnType” on
page 294 for more information.

Schema Database Access Rule Action Types
Purpose Database actions that can have access rules set in a secure database.

Declared In DataMgr.h

Constants #define dbActionBackup ((AzmActionType)0x00000008)
Database backup is permitted.

#define dbActionDelete ((AzmActionType)0x00000004)
Database contents can be deleted.

#define dbActionEditSchema
((AzmActionType)0x00000020)

Database schemas can be altered.

#define dbActionRead ((AzmActionType)0x00000001)
The database can be read.

Schema Databases
Cursor Open Flags

302 Exploring Palm OS: Memory, Databases, and Files

#define dbActionRestore
((AzmActionType)0x00000010)

Database restore is permitted.

#define dbActionWrite ((AzmActionType)0x00000002)
The database can be written to.

Comments Use a combination of these values (or’d together) to create the
action parameter you supply to AzmAddRule().

Cursor Open Flags
Purpose Flags used to specify how a database cursor is created. Supply any

combination of these (OR’d together) to DbCursorOpen() or
DbCursorOpenWithCategory(); in most cases you supply none
of these flags (that is, you supply a flags value of zero).

Declared In SchemaDatabases.h

Constants #define dbCursorEnableCaching 0x00010000
Enable the caching of row data locally in the cursor.

#define dbCursorIncludeDeleted 0x00000001
The cursor should contain rows that are marked as deleted or
archived.

#define dbCursorOnlyDeleted 0x00000002
The cursor should contain only those rows that are marked as
deleted or archived.

#define dbCursorOnlySecret 0x00000004
The cursor should contain only those rows that are marked as
secret.

#define dbCursorSortByCategory 0x10000000
Sort rows by category. Rows with multiple categories appear
in the cursor multiple times.

Schema Databases
Miscellaneous Schema Database Constants

Exploring Palm OS: Memory, Databases, and Files 303

Miscellaneous Schema Database Constants
Purpose The header file SchemaDatabases.h also declares these constants.

Declared In SchemaDatabases.h

Constants #define dbColumnPropertyUpperBound
((DbSchemaColumnProperty)0x0A)

Identifies the upper bound of the range of built-in property
type IDs.

#define DbCursorBOFPos 0xFFFFFFFF
Cursor row position signifying BOF (Beginning Of File).

#define dbCursorEOFPos 0xFFFFFFFE
Cursor row position signifying EOF (End Of File).

#define dbDBNameLength 32
Maximum length, including the NUL terminator, of a schema
database name.

#define dbInvalidCursorID 0x0
Cursor ID returned from DbCursorOpen() or
DbCursorOpenWithCategory() if the open failed.

#define dbInvalidRowID dbInvalidCursorID
Row ID returned from DbCursorGetCurrentRowID(),
DbCursorGetPositionForRowID(), or DbInsertRow()
if the operation failed.

#define DbMaxRecordCategories 255
Maximum number of categories to which a row can be
assigned.

#define dbMaxRowIndex 0x00FFFFFEL
Highest possible row index.

Schema Databases
DbFetchType

304 Exploring Palm OS: Memory, Databases, and Files

DbFetchType Enum
Purpose Specifies how the cursor is to be repositioned when using

DbCursorMove().

Declared In SchemaDatabases.h

Constants dbFetchRelative
Moves the cursor forward by the specified number of rows if
the offset is positive, or backward by the specified number of
rows if the offset is negative.

dbFetchAbsolute
Moves the cursor onto the row with the specified index. The
macro DbCursorSetAbsolutePosition() calls
DbCursorMove() with a fetch type of dbFetchAbsolute.

dbFetchNext
Moves the cursor forward one row. The macro
DbCursorMoveNext() calls DbCursorMove() with a fetch
type of dbFetchNext. Note that the offset parameter to
DbCursorMove() is ignored when the fetch type is
dbFetchNext.

dbFetchPrior
Moves the cursor backward one row. The macro
DbCursorMovePrev() calls DbCursorMove() with a fetch
type of dbFetchPrior. Note that the offset parameter to
DbCursorMove() is ignored when the fetch type is
dbFetchPrior.

dbFetchFirst
Moves the cursor onto the first row. The macro
DbCursorMoveFirst() calls DbCursorMove() with a
fetch type of dbFetchFirst.

dbFetchLast
Moves the cursor onto the last row. The macro
DbCursorMoveLast() calls DbCursorMove() with a fetch
type of dbFetchLast.

dbFetchRowID
Moves the cursor onto the row with the specified row ID. The
macro DbCursorMoveToRowID() calls DbCursorMove()
with a fetch type of dbFetchRowID.

Comments Any attempt to move the current row position beyond the set of
rows in the cursor results in an error. DbCursorMove() returns

Schema Databases
DbAddCategory

Exploring Palm OS: Memory, Databases, and Files 305

dmErrCursorBOF if you attempt to move before the first row in the
cursor, and dmErrCursorEOF if you attempt to move beyond the
last row in the cursor. These conditions can also be detected with the
use of the DbCursorIsBOF() and DbCursorIsEOF() functions.

Schema Databases Functions and Macros

DbAddCategory Function
Purpose Make the specified row a member of one or more additional

categories.

Declared In DataMgr.h

Prototype status_t DbAddCategory (DmOpenRef dbRef,
uint32_t rowID, uint32_t numToAdd,
const CategoryID categoryIDs[])

Parameters → dbRef
DmOpenRef to an open database.

→ rowID
Row ID or cursor ID identifying the row to which categories
are to be added.

→ numToAdd
Number of categories in the categoryIDs array.

→ categoryIDs
Array of category IDs.

Returns Returns errNone if no error, or one of the following if an error
occurs:

dmErrInvalidParam
dbRef doesn’t reference an open database, the specified row
or cursor ID is not valid, or numToAdd is nonzero and
categoryIDs is NULL.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrReadOnly
The database is not open for write access.

Schema Databases
DbAddColumn

306 Exploring Palm OS: Memory, Databases, and Files

dmErrIndexOutOfRange
The specified row or cursor ID doesn’t reference a row within
the table.

dmErrRecordDeleted
The specified row is marked as deleted.

dmErrRecordBusy
The specified row is in use and cannot be updated.

dmErrMemError
A memory error occurred.

dmErrInvalidCategory
The allowed number of categories has been exceeded, or a
category ID doesn’t correspond to a defined category.

Comments The database must be opened with write access.

The category IDs passed through the categoryIDs parameter
must be valid category IDs. If any of the array values is not a valid
category ID, this function returns dmErrInvalidCategory.

If a given category ID value appears more than once in the
categoryIDs array, the category membership is only added once.
If the row already has membership in a category specified in the
categoryIDs array, the array value is ignored and the row
remains a member of that category.

See Also DbRemoveCategory(), DbSetCategory()

DbAddColumn Function
Purpose Adds a column to a database table.

Declared In SchemaDatabases.h

Prototype status_t DbAddColumn (DmOpenRef dbRef,
const char *table,
const DbSchemaColumnDefnType *addColumnP)

Parameters → dbRef
DmOpenRef to an open database.

→ table
Name of the table to which the column is to be added.

Schema Databases
DbAddColumn

Exploring Palm OS: Memory, Databases, and Files 307

→ addColumnP
Pointer to a DbSchemaColumnDefnType structure defining
the column to be added.

Returns Returns errNone if successful, or one of the following if an error
occurred:

dmErrInvalidParam
dbRef doesn’t reference an open database, table is NULL,
or addColumnP is NULL.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrReadOnly
The database is not open for write access.

dmErrInvalidColType
The specified column type is not a valid column type.

dmErrAccessDenied
The database is a secure database and you don’t have
permission to edit its schemas.

dmErrInvalidColSpec
At least one of the specified column attributes is not a valid
column attribute.

dmErrInvalidColumnName
The supplied column name is not a valid column name.

dmErrInvalidVectorType
The column is a vector column but the column type isn’t
appropriate for a vector column.

dmErrInvalidSizeSpec
The column is a vector column but the column size is zero.

dmErrInvalidTableName
The supplied table name doesn’t identify a table in the
specified database.

dmErrColumnDefinitionsLocked
The table’s column definitions are locked.

dmErrColumnIDAlreadyExists
A column with the specified ID already exists.

dmErrColumnNameAlreadyExists
The table already contains a column with the specified name.

Schema Databases
DbAddSortIndex

308 Exploring Palm OS: Memory, Databases, and Files

dmErrMemError
A memory error occurred.

Comments The database must be opened in write mode.

See Also DbGetAllColumnDefinitions(),
DbGetColumnDefinitions()

DbAddSortIndex Function
Purpose Adds a new sort index to a database.

Declared In SchemaDatabases.h

Prototype status_t DbAddSortIndex (DmOpenRef dbRef,
const char *orderBy)

Parameters → dbRef
DmOpenRef to an open database.

→ orderBy
The sort index, which identifies both the table containing the
rows to select from and the manner in which the cursor’s
rows should be sorted. See “The SELECT Statement” on
page 37 for the format of this parameter.

Returns Returns errNone if successful, or one of the following if an error
occurred:

dmErrInvalidParam
dbRef doesn’t reference an open database.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrReadOnly
The database is not open for write access.

dmErrAccessDenied
You do not have authorization to modify the database.

dmErrSQLParseError
The specified table name or the sort information specified in
the sort index is invalid.

dmErrInvalidTableName
The specified table doesn’t exist within the database.

Schema Databases
DbAddSortIndex

Exploring Palm OS: Memory, Databases, and Files 309

dmErrInvalidSortDefn
The sort index contains no column IDs, or all of the columns
in the sort index aren’t of the same type.

dmErrInvalidColumnID
One or more of the specified column IDs doesn’t correspond
to a column in the specified table.

dmErrAlreadyExists
The specified sort index already exists.

dmErrMemError
A memory error occurred.

Comments While sorting is enabled, the operating system keeps schema
databases sorted according to each of the database’s sort indices.
This function adds a new sort index to a schema database. When the
new sort index is added, the database is immediately sorted
according to the new sort index.

Before you can open a cursor with a given sort index, the sort index
must have already been added to the database.

The orderBy parameter is an SQL statement of the form described
under “The SELECT Statement” on page 37. The optional WHERE
clause allows you to filter the rows to be included in the cursor. The
column specified in the WHERE clause can only be one of the
following types:

• dbDateTimeSecs

• dbBoolean

• dbVarChar

With dbVarChar columns, the operator (op) can be “LIKE” (and the
argument must be a string); this uses TxtFindString() to
identify all rows where the supplied string is found in the row.

See Also DbCursorOpen(), DbCursorOpenWithCategory(),
DbHasSortIndex(), DbRemoveSortIndex()

Schema Databases
DbAddTable

310 Exploring Palm OS: Memory, Databases, and Files

DbAddTable Function
Purpose Adds a table to an existing database.

Declared In SchemaDatabases.h

Prototype status_t DbAddTable (DmOpenRef dbRef,
const DbTableDefinitionType *schemaP)

Parameters → dbRef
DmOpenRef to an open database.

→ schemaP
Pointer to a structure that represents the table to be added.

Returns Returns errNone if successful, or one of the following if an error
occurred:

dmErrInvalidParam
dbRef doesn’t reference an open database, or schemaP is
NULL.

dmErrNotSchemaDatabase
The database referenced by dbRef isn’t a schema database.

dmErrReadOnly
The database is read-only.

dmErrInvalidSchemaDefn
The supplied DbTableDefinitionType structure is
invalid.

dmErrTableNameAlreadyExists
The database already contains a table with the specified
name.

dmErrColumnIDAlreadyExists
The table definition contains multiple columns with the same
ID.

dmErrColumnNameAlreadyExists
The table definition contains multiple columns with the same
name.

dmErrInvalidColType
A column data type is invalid.

dmErrAccessDenied
You do not have authorization to modify the database.

Schema Databases
DbArchiveRow

Exploring Palm OS: Memory, Databases, and Files 311

Comments The database must be opened in write mode.

See Also DbHasTable(), DbRemoveTable()

DbArchiveRow Function
Purpose Mark a row as archived. This function leaves the row’s data intact.

Declared In SchemaDatabases.h

Prototype status_t DbArchiveRow (DmOpenRef dbRef,
uint32_t rowID)

Parameters → dbRef
DmOpenRef to an open database.

→ rowID
Row ID or cursor ID identifying the row to be archived.

Returns Returns errNone if successful, or one of the following if an error
occurred:

dmErrReadOnly
You’ve attempted to write to or modify a database that is
open in read-only mode.

dmErrIndexOutOfRange
The specified index is out of range.

dmErrRecordArchived
The function requires that the row not be archived, but it is.

dmErrRecordDeleted
The row has been deleted.

Comments When a row is archived, the archive bit is set but the data chunks are
not freed and the row ID is preserved. The next time the handheld is
synchronized with the desktop computer, a conduit can save the
row data on the desktop and then remove the row entry and data
from the handheld.

See Also DbCursorArchiveAllRows(), DbDeleteRow(),
DbRemoveRow()

Schema Databases
DbCloseDatabase

312 Exploring Palm OS: Memory, Databases, and Files

DbCloseDatabase Function
Purpose Close a schema database.

Declared In SchemaDatabases.h

Prototype status_t DbCloseDatabase (DmOpenRef dbRef)

Parameters → dbRef
DmOpenRef to an open database.

Returns Returns errNone if successful, or dmErrInvalidParam if the
dbRef parameter doesn’t indicate an open schema database.

Comments This function doesn’t unlock any rows that were left locked.
Applications should not leave rows locked when closing a schema
database.

See Also DbOpenDatabase(), DbOpenDatabaseByName()

DbCopyColumnValue Function
Purpose Obtains the value of a single schema database column for a

specified row.

Declared In SchemaDatabases.h

Prototype status_t DbCopyColumnValue (DmOpenRef dbRef,
uint32_t rowID, uint32_t columnID,
uint32_t offset, void *valueP,
uint32_t *valueSizeP)

Parameters → dbRef
DmOpenRef to an open database.

→ rowID
Row ID or cursor ID identifying the row for which column
values are being retrieved.

→ columnID
ID of the column being retrieved.

→ offset
Column value offset from which the data is retrieved. This
parameter is treated as a byte offset. See the Comments
section, below, for more information.

Schema Databases
DbCopyColumnValue

Exploring Palm OS: Memory, Databases, and Files 313

↔ valueP
Pointer to a pre-allocated buffer into which the row’s column
value is copied, or NULL to determine how large the buffer
should be.

↔ valueSizeP
Size of the valueP buffer.

Returns Returns errNone if successful, or one of the following if an error
occurred:

dmErrInvalidParam
rowID is not a row or cursor ID, or valueSizeP is NULL.

dmErrCursorBOF
The supplied cursor ID is BOF.

dmErrCursorEOF
The supplied cursor ID is EOF.

dmErrUniqueIDNotFound
The supplied cursor ID represents an invalid row.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrReadOnly
The database is not open for write access.

dmErrUniqueIDNotFound
The supplied row or cursor ID doesn’t correspond to a row
within the database.

dmErrRecordDeleted
The specified row is marked as deleted.

dmErrInvalidColSpec
There are no columns defined for the specified table.

dmErrInvalidColumnID
The supplied column ID is invalid.

dmErrNoColumnData
The specified row has no data for the column.

dmErrReadOutOfBounds
The specified offset exceeds the bounds of the column.

Schema Databases
DbCopyColumnValues

314 Exploring Palm OS: Memory, Databases, and Files

dmErrBufferNotLargeEnough
The supplied buffer isn’t large enough to contain the column
value.

dmErrMemError
A memory error occurred.

Comments This function returns a copy of the column data. Offset-based reads
are not supported for fixed-length column data types; the offset
parameter is ignored for those data types. The list of column data
types supporting offset-based reads are:

• VarChar

• Blob

• Vector

If valueP is NULL, this function returns the actual size needed to
hold the column data through valueSizeP.

See Also DbCopyColumnValues(), DbGetColumnValue(),
DbWriteColumnValue()

DbCopyColumnValues Function
Purpose Obtains the value of one or more schema database columns for a

specified row.

Declared In SchemaDatabases.h

Prototype status_t DbCopyColumnValues (DmOpenRef dbRef,
uint32_t rowID, uint32_t numColumns,
DbSchemaColumnValueType *columnValuesP)

Parameters → dbRef
DmOpenRef to an open database.

→ rowID
Row ID or cursor ID identifying the row for which column
values are being retrieved.

→ numColumns
Number of elements in the columnValuesP array.

↔ columnValuesP
Pointer to a pre-allocated array of
DbSchemaColumnValueType structures. Prior to calling

Schema Databases
DbCopyColumnValues

Exploring Palm OS: Memory, Databases, and Files 315

this function, the data field of each structure must be
initialized with a pointer to a buffer of appropriate size for
the column, or set to NULL, which results in the actual size of
the column data being returned in the actualDataSize
field of the structure.

Returns Returns errNone if successful, or one of the following if an error
occurred:

dmErrInvalidParam
rowID is not a row or cursor ID, dbRef doesn’t reference an
open database, numColumns is zero, or columnValuesP is
NULL.

dmErrCursorBOF
The supplied cursor ID is BOF.

dmErrCursorEOF
The supplied cursor ID is EOF.

dmErrUniqueIDNotFound
The supplied cursor ID represents an invalid row.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrReadOnly
The database is not open for write access.

dmErrUniqueIDNotFound
The supplied row or cursor ID doesn’t correspond to a row
within the database.

dmErrRecordDeleted
The specified row is marked as deleted.

dmErrInvalidColSpec
There are no columns defined for the specified table.

dmErrInvalidColumnID
The one or more of the specified column IDs is invalid.

dmErrNoColumnData
The specified row has no data.

dmErrBufferNotLargeEnough
At least one of the supplied buffers isn’t large enough to
contain the corresponding column value.

Schema Databases
DbCreateDatabase

316 Exploring Palm OS: Memory, Databases, and Files

dmErrMemError
A memory error occurred.

See Also DbCopyColumnValue(), DbGetColumnValues(),
DbWriteColumnValues()

DbCreateDatabase Function
Purpose Creates a new schema database.

Declared In SchemaDatabases.h

Prototype status_t DbCreateDatabase (const char *name,
uint32_t creator, uint32_t type,
uint32_t numTables,
const DbTableDefinitionType schemaListP[],
DatabaseID *dbIDP)

Parameters → name
Name of the new database. The name should be up to 32
ASCII bytes long, including the NULL terminator, as specified
by dmDBNameLength. The name should be constructed only
of 7-bit ASCII characters (0x20 through 0x7E).

→ creator
Database creator ID.

→ type
Database type.

→ numTables
Number of elements in schemaListP. This parameter can be
zero, which creates a new database with no tables defined.

→ schemaListP
Array of structures. Each element defines the schema for the
newly-created database table.

← dbIDP
ID of the newly-created database. Pass this ID to
DbOpenDatabase() when opening the database.

Returns Returns errNone if successful, or one of the following if an error
occurred:

Schema Databases
DbCreateDatabase

Exploring Palm OS: Memory, Databases, and Files 317

dmErrInvalidDatabaseName
The specified database name is nonexistent, exceeds
dmDBNameLength, or is otherwise invalid.

dmErrInvalidSchemaDefn
schemaListP is NULL, no table name was supplied, one or
more column names are missing.

dmErrTableNameAlreadyExists
One of the supplied table names occurs in more than one
schemaListP entry.

dmErrColumnIDAlreadyExists
One of the supplied column IDs is already defined for this
database.

dmErrColumnNameAlreadyExists
One of the supplied column names is already defined for this
database.

dmErrInvalidColType
One of the supplied column types is not a valid column type.

dmErrInvalidVectorType
A one of the supplied vector column types isn’t a valid vector
column type.

dmErrInvalidSizeSpec
At least one of the vector column sizes is zero.

dmErrInvalidColSpec
One of the supplied column attributes is not a valid column
attribute.

dmErrInvalidColumnName
One or more table or column names was invalid.

dmErrAccessDenied
You don’t have permission to create a database of this type.

dmErrAlreadyExists
Another database with this name already exists.

dmErrMemError
A memory error occurred. Sufficient memory must be
available to create a new database.

memErrNotEnoughSpace
A memory error occurred.

Schema Databases
DbCreateSecureDatabase

318 Exploring Palm OS: Memory, Databases, and Files

Comments Prior to calling this function, the database must not already exist.
Sufficient memory must be available to create a new database. If
numTables is nonzero, the supplied DbTableDefinitionType
structures must have been previously initialized.

See Also DbCreateSecureDatabase(),
DbCreateSecureDatabaseFromImage(), DbOpenDatabase()

DbCreateSecureDatabase Function
Purpose Create a new secure schema database.

Declared In SchemaDatabases.h

Prototype status_t DbCreateSecureDatabase
(const char *name, uint32_t creator,
uint32_t type, uint32_t numSchemas,
const DbTableDefinitionType schemaList[],
AzmRuleSetType *ruleset, DatabaseID *id)

Parameters → name
Name of the new database. The name should be up to 32
ASCII bytes long, including the NULL terminator, as specified
by dmDBNameLength. The name should be constructed only
of 7-bit ASCII characters (0x20 through 0x7E).

→ creator
Database creator ID.

→ type
Database type.

→ numSchemas
Number of elements in schemaList. This parameter can be
zero, which creates a secure database with no tables defined.

→ schemaList
Array of structures. Each element defines the schema for the
newly-created database table.

← ruleset
Handle to the database’s access rules.

← id
ID of the newly-created database. Pass this ID to
DbOpenDatabase() when opening the database.

Schema Databases
DbCreateSecureDatabase

Exploring Palm OS: Memory, Databases, and Files 319

Returns Returns errNone if the database was successfully created, or one of
the following if there was an error:

dmErrInvalidDatabaseName
The specified database name is nonexistent, exceeds
dmDBNameLength, or is otherwise invalid.

dmErrInvalidSchemaDefn
schemaListP is NULL, no table name was supplied, one or
more column names are missing.

dmErrTableNameAlreadyExists
One of the supplied table names occurs in more than one
schemaListP entry.

dmErrColumnIDAlreadyExists
One of the supplied column IDs is already defined for this
database.

dmErrColumnNameAlreadyExists
One of the supplied column names is already defined for this
database.

dmErrInvalidColType
One of the supplied column types is not a valid column type.

dmErrInvalidVectorType
A one of the supplied vector column types isn’t a valid vector
column type.

dmErrInvalidSizeSpec
At least one of the vector column sizes is zero.

dmErrInvalidColSpec
One of the supplied column attributes is not a valid column
attribute.

dmErrInvalidColumnName
One or more column names was invalid.

dmErrInvalidTableName
One or more table names was invalid.

dmErrAccessDenied
You don’t have permission to create a database of this type.

dmErrAlreadyExists
Another database with this name already exists.

Schema Databases
DbCreateSecureDatabaseFromImage

320 Exploring Palm OS: Memory, Databases, and Files

dmErrMemError
A memory error occurred. Sufficient memory must be
available to create a new database.

memErrNotEnoughSpace
A memory error occurred.

azmErrOutOfMemory
A memory error occurred.

Comments Prior to calling this function, the database must not already exist.
Sufficient memory must be available to create a new database. If
numSchemas is nonzero, the supplied DbTableDefinitionType
structures must have been previously initialized.

Once the database is created, it is initially protected with all actions
(Read, Write, Delete, Schema Edit, Backup, and Restore) denied.
Before using the database you must specify access rules for the
Read, Write, and Delete actions using Authorization Manager and
Authentication Manager functions (see Exploring Palm OS: Security
and Cryptography for documentation on these functions). Until
access rules are specified, all access to the database is denied.

See Also DbCreateDatabase(),
DbCreateSecureDatabaseFromImage(), DbOpenDatabase()

DbCreateSecureDatabaseFromImage Function
Purpose Create a secure schema database from a single resource that

contains an image of the database.

Declared In SchemaDatabases.h

Prototype status_t DbCreateSecureDatabaseFromImage
(const void *bufferP, DatabaseID *pDbID,
AzmRuleSetType *pRuleSet)

Parameters → bufferP
Pointer to a locked resource containing the database image.

← pDbID
Pointer to a variable that receives the ID of the newly-created
database, or NULL if the ID isn’t needed.

Schema Databases
DbCursorArchiveAllRows

Exploring Palm OS: Memory, Databases, and Files 321

← pRuleSet
Pointer to the Authorization Manager rule set for the newly-
created secure database.

Returns Returns errNone if the database was successfully created.
Otherwise, this function returns an error code such as (but not
limited to) the following:

dmErrInvalidParam
bufferP is NULL or pRuleSet is NULL.

dmErrCorruptDatabase
The format of the supplied database image isn’t recognizable
as a schema database.

dmErrMemError
A memory error occurred.

Comments This function is typically used by applications to install a default
database.

See Also DbCreateDatabase(), DbCreateSecureDatabase(),
DbOpenDatabase()

DbCursorArchiveAllRows Function
Purpose Mark all rows in the cursor for archiving.

Declared In SchemaDatabases.h

Prototype status_t DbCursorArchiveAllRows
(uint32_t cursorID)

Parameters → cursorID
ID of a valid cursor, as returned from DbCursorOpen() or
DbCursorOpenWithCategory().

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

dmErrInvalidParam
The specified cursor ID isn’t valid.

dmErrRecordBusy
One of the rows is in use and cannot be updated.

Schema Databases
DbCursorBindData

322 Exploring Palm OS: Memory, Databases, and Files

dmErrReadOnly
You’ve attempted to write to or modify a database that is
open in read-only mode.

Comments When a row is archived, the archive bit is set but the data chunks are
not freed and the row ID is preserved. The next time the handheld is
synchronized with the desktop computer, a conduit can save the
row data on the desktop and then remove the row entry and data
from the handheld.

See Also DbArchiveRow(), DbCursorDeleteAllRows(),
DbCursorRemoveAllRows()

DbCursorBindData Function
Purpose Bind a variable to a cursor column.

Declared In SchemaDatabases.h

Prototype status_t DbCursorBindData (uint32_t cursorID,
uint32_t columnID, void *dataBufferP,
uint32_t dataBufferLength,
uint32_t *dataSizeP, status_t *errCodeP)

Parameters → cursorID
ID of a valid cursor, as returned from DbCursorOpen() or
DbCursorOpenWithCategory().

→ columnID
ID of the column to be bound.

← dataBufferP
Pointer to a buffer that receives the bound field data.

→ dataBufferLength
Size, in bytes, of the data buffer specified in dataBufferP.

← dataSizeP
The size of the data written to the data buffer.

← errCodeP
An error code that is updated whenever the data buffer is
updated.

Returns Returns errNone if the data buffer is successfully bound to the
column, or one of the following otherwise:

Schema Databases
DbCursorBindDataWithOffset

Exploring Palm OS: Memory, Databases, and Files 323

dmErrInvalidParam
The function received an invalid parameter.

dmErrMemError
A memory error occurred.

Comments When a variable is bound to column, that variable is automatically
updated to hold the field value of the cursor’s current row. Using
the DbCursorMove... functions and macros to change the current
row in the cursor automatically updates any bound variables.

When the bound variable is updated, *dataSizeP is set to the size
of the data stored in the data buffer. This is useful for columns of
varying length types (VarChar and Blob), but is not needed for
fixed length types. The error code is also set each time the variable is
updated, indicating success (errNone), no data for that column
(dmErrNoColumnData), or some other failure error code.

See Also DbCursorBindDataWithOffset(), DbCursorMove(),
DbCursorOpen(), DbCursorOpenWithCategory(),
DbCursorUpdate()

DbCursorBindDataWithOffset Function
Purpose Bind a variable to a cursor column, offset by a specified amount.

Declared In SchemaDatabases.h

Prototype status_t DbCursorBindDataWithOffset
(uint32_t cursorID, uint32_t columnID,
void *dataBufferP, uint32_t dataBufferLength,
uint32_t *dataSizeP, uint32_t fieldDataOffset,
status_t *errCodeP)

Parameters → cursorID
ID of a valid cursor, as returned from DbCursorOpen() or
DbCursorOpenWithCategory().

→ columnID
ID of the column to be bound.

← dataBufferP
Pointer to a buffer that receives the bound field data.

→ dataBufferLength
Size, in bytes of the data buffer specified in dataBufferP.

Schema Databases
DbCursorClose

324 Exploring Palm OS: Memory, Databases, and Files

← dataSizeP
The size of the data written to the data buffer.

→ fieldDataOffset
Byte offset into the column.

← errCodeP
An error code that is updated whenever the data buffer is
updated.

Returns Returns errNone if the data buffer is successfully bound to the
column, or one of the following otherwise:

dmErrInvalidParam
The function received an invalid parameter.

dmErrMemError
A memory error occurred.

Comments This function is similar to DbCursorBindData(), but adds an
extra parameter to allow you to specify an offset into the database
field data. The data copied to the buffer is taken from the database
field at the specified offset. This allows you to bind a subset of the
field data to a variable.

See Also DbCursorMove(), DbCursorOpen(),
DbCursorOpenWithCategory(), DbCursorUpdate()

DbCursorClose Function
Purpose Free all resources associated with a cursor.

Declared In SchemaDatabases.h

Prototype status_t DbCursorClose (uint32_t cursorID)

Parameters → cursorID
ID of a valid cursor, as returned from DbCursorOpen() or
DbCursorOpenWithCategory().

Returns Returns errNone if the resources were successfully freed, or one of
the following otherwise:

dmErrInvalidParam
The supplied cursor ID is invalid.

dmErrMemError
A memory error occurred.

Schema Databases
DbCursorDeleteAllRows

Exploring Palm OS: Memory, Databases, and Files 325

Comments When a cursor is no longer needed, call DbCursorClose() to free
all of the resources associated with the cursor.

See Also DbCursorOpen(), DbCursorOpenWithCategory()

DbCursorDeleteAllRows Function
Purpose Mark all rows in the cursor as deleted.

Declared In SchemaDatabases.h

Prototype status_t DbCursorDeleteAllRows
(uint32_t cursorID)

Parameters → cursorID
ID of a valid cursor, as returned from DbCursorOpen() or
DbCursorOpenWithCategory().

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

dmErrInvalidParam
The specified cursor ID isn’t valid.

dmErrRecordBusy
One of the rows is in use and cannot be updated.

dmErrReadOnly
You’ve attempted to write to or modify a database that is
open in read-only mode.

Comments For each row in the cursor, this function deletes the row’s chunk
from the database but leaves the row entry in the header and marks
the row as deleted. During the next HotSync operation, a conduit
can save the row data on the desktop and then remove the row
entries in the header that are marked as deleted.

See Also DbCursorArchiveAllRows(), DbCursorRemoveAllRows(),
DbDeleteRow()

Schema Databases
DbCursorFlushCache

326 Exploring Palm OS: Memory, Databases, and Files

DbCursorFlushCache Function
Purpose Flush the contents of the cursor cache. This function should only be

called for cursors that were created with caching enabled.

Declared In SchemaDatabases.h

Prototype status_t DbCursorFlushCache (uint32_t cursorID)

Parameters → cursorID
ID of a valid cursor, as returned from DbCursorOpen() or
DbCursorOpenWithCategory().

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

dmErrInvalidParam
The specified cursor ID is not valid.

dmErrAccessDenied
The specified cursor wasn’t created with caching enabled.
That is, the dbCursorEnableCaching flag was not
specified when the cursor was created.

dmErrRecordBusy
The specified cursor is in use.

DbCursorGetCurrentPosition Function
Purpose Get the index of the cursor’s current row.

Declared In SchemaDatabases.h

Prototype status_t DbCursorGetCurrentPosition
(uint32_t cursorID, uint32_t *position)

Parameters → cursorID
ID of a valid cursor, as returned from DbCursorOpen() or
DbCursorOpenWithCategory().

← position
The row index of the current row within the cursor.

Returns Returns errNone if *position was set to a valid row index, or
one of the following otherwise:

dmErrInvalidParam
The specified cursor ID is not valid.

Schema Databases
DbCursorGetCurrentRowID

Exploring Palm OS: Memory, Databases, and Files 327

dmErrCursorBOF
The current position is before the first cursor row.

dmErrCursorEOF
The current position is after the last cursor row.

Comments The first row within a cursor has an index value of 1.

See Also DbCursorGetCurrentRowID(),
DbCursorGetPositionForRowID(),
DbCursorGetRowIDForPosition()

DbCursorGetCurrentRowID Function
Purpose Get the row ID of the cursor’s current row.

Declared In SchemaDatabases.h

Prototype status_t DbCursorGetCurrentRowID
(uint32_t cursorID, uint32_t *rowIDP)

Parameters → cursorID
ID of a valid cursor, as returned from DbCursorOpen() or
DbCursorOpenWithCategory().

← rowIDP
Pointer to a variable that receives the row ID. If the cursor
isn’t currently positioned at a valid row, *rowIDP is set to
dbInvalidRowID.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

dmErrInvalidParam
dbRef doesn’t reference an open database, or the specified
cursor ID is not valid.

dmErrCursorBOF
The current position is before the first cursor row.

dmErrCursorEOF
The current position is after the last cursor row.

Schema Databases
DbCursorGetPositionForRowID

328 Exploring Palm OS: Memory, Databases, and Files

dmErrUniqueIDNotFound
The current row’s ID is invalid.

See Also DbCursorGetCurrentPosition(),
DbCursorGetPositionForRowID(),
DbCursorGetRowIDForPosition(), DbGetTableForRow()

DbCursorGetPositionForRowID Function
Purpose Get the index of a specified row within the cursor.

Declared In SchemaDatabases.h

Prototype status_t DbCursorGetPositionForRowID
(uint32_t cursorID, uint32_t rowID,
uint32_t *positionP)

Parameters → cursorID
ID of a valid cursor, as returned from DbCursorOpen() or
DbCursorOpenWithCategory().

→ rowID
ID of a row within the cursor.

← positionP
The index of the specified row within the cursor, or 0 if an
error occurred.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

dmErrInvalidParam
The specified cursor ID is not valid, the specified row ID isn’t
a valid row ID, or positionP is NULL.

dmErrCantFind
The specified row ID doesn’t match any of the cursor’s rows.

Comments The first row within a cursor has an index value of 1.

See Also DbCursorGetCurrentPosition(),
DbCursorGetCurrentRowID(),
DbCursorGetRowIDForPosition()

Schema Databases
DbCursorGetRowIDForPosition

Exploring Palm OS: Memory, Databases, and Files 329

DbCursorGetRowCount Function
Purpose Get the total number of rows in the cursor.

Declared In SchemaDatabases.h

Prototype uint32_t DbCursorGetRowCount (uint32_t cursorID)

Parameters → cursorID
ID of a valid cursor, as returned from DbCursorOpen() or
DbCursorOpenWithCategory().

Returns Returns the number of rows in the cursor.

DbCursorGetRowIDForPosition Function
Purpose Get a row’s ID given its index.

Declared In SchemaDatabases.h

Prototype status_t DbCursorGetRowIDForPosition
(uint32_t cursorID, uint32_t position,
uint32_t *rowIDP)

Parameters → cursorID
ID of a valid cursor, as returned from DbCursorOpen() or
DbCursorOpenWithCategory().

→ position
Index of the row for which the ID is to be retrieved.

← rowIDP
The row’s ID. If row ID cannot be determined, *rowIDP is
set to dbInvalidRowID.

Returns Returns errNone if the ID was successfully retrieved, or one of the
following if an error occurred:

dmErrInvalidParam
The specified cursor ID is not valid, the specified position
doesn’t indicate a valid row within the cursor, or rowIDP is
NULL.

dmErrRecordDeleted
The row at the specified position is marked for deletion.

Schema Databases
DbCursorIsBOF

330 Exploring Palm OS: Memory, Databases, and Files

Comments The first row within a cursor has an index value of 1.

See Also DbCursorGetCurrentPosition(),
DbCursorGetCurrentRowID(),
DbCursorGetPositionForRowID()

DbCursorIsBOF Function
Purpose Determine if the cursor’s BOF (beginning of file) property is true.

Declared In SchemaDatabases.h

Prototype Boolean DbCursorIsBOF (uint32_t cursorID)

Parameters → cursorID
ID of a valid cursor, as returned from DbCursorOpen() or
DbCursorOpenWithCategory().

Returns Returns true if the cursor is at BOF, false otherwise.

Comments BOF is the position immediately before the first row in the cursor.
Attempting to move before the first row in the cursor sets BOF to
true and returns a dmErrCursorBOF. If BOF is true, moving to
the next row moves to the first row in the cursor.

See Also DbCursorIsEOF(), DbCursorMove(),
DbCursorMoveFirst(), DbCursorMoveNext()

DbCursorIsDeleted Function
Purpose Determine if the cursor’s current row is marked for deletion.

Declared In SchemaDatabases.h

Prototype Boolean DbCursorIsDeleted (uint32_t cursorID)

Parameters → cursorID
ID of a valid cursor, as returned from DbCursorOpen() or
DbCursorOpenWithCategory().

Returns Returns true if the current row is marked for deletion, false
otherwise. Note that this function returns false if the supplied
cursor ID isn’t valid, or if the cursor’s current position doesn’t
represent a valid row (for instance, if the current position is at BOF).

See Also DbArchiveRow(), DbDeleteRow()

Schema Databases
DbCursorMove

Exploring Palm OS: Memory, Databases, and Files 331

DbCursorIsEOF Function
Purpose Determine whether the cursor’s EOF (end of file) property is true.

Declared In SchemaDatabases.h

Prototype Boolean DbCursorIsEOF (uint32_t cursorID)

Parameters → cursorID
ID of a valid cursor, as returned from DbCursorOpen() or
DbCursorOpenWithCategory().

Returns Returns true if the cursor is at EOF, false otherwise.

Comments EOF is the position immediately after the last row in the cursor.
Attempting to move past the last row in the cursor sets EOF (end of
file) to true and returns a dmErrCursorEOF. If EOF is true,
moving to the previous row moves to the last row in the cursor.

See Also DbCursorIsBOF(), DbCursorMove(), DbCursorMoveLast(),
DbCursorMovePrev()

DbCursorMove Function
Purpose Move a cursor’s current row position.

Declared In SchemaDatabases.h

Prototype status_t DbCursorMove (uint32_t cursorID,
int32_t offset, DbFetchType fetchType)

Parameters → cursorID
ID of a valid cursor, as returned from DbCursorOpen() or
DbCursorOpenWithCategory().

→ offset
Number of rows to move the current row selector. Negative
numbers move backward.

→ fetchType
One of the values defined by the DbFetchType enum
specifying how the cursor is to move (forward one row,
backward a specified number of rows, to an absolute
position, etc.).

Returns Returns errNone if the current row position was moved to a valid
row within the cursor, or one of the following otherwise:

Schema Databases
DbCursorMoveFirst

332 Exploring Palm OS: Memory, Databases, and Files

dmErrInvalidParam
The specified cursor ID is invalid.

dmErrCursorBOF
An attempt was made to move to a position before the first
row in the cursor.

dmErrCursorEOF
An attempt was made to move to a position after the last row
in the cursor.

Comments When fetchType is dbFetchRelative, positive values move the
current row position forward, while negative values move the
current row position backward. Attempting to move before the first
row in the cursor, or attempting to move past the last row in the
cursor generates an error, and the cursor’s BOF or EOF property, as
appropriate, is set.

When moving through the cursor, note that rows that were
modified are not moved to their new sort position until
DbCursorRequery() is called. Similarly, any new rows are not
available to the cursor until DbCursorRequery() is called.

Upon successful completion of the move, any bound variables are
updated with corresponding field values for the new current row.

See Also DbCursorMoveFirst(), DbCursorMoveLast(),
DbCursorMoveNext(), DbCursorMovePrev(),
DbCursorMoveToRowID(),
DbCursorSetAbsolutePosition()

DbCursorMoveFirst Macro
Purpose Set the current row position of the cursor to the first row in the

cursor.

Declared In SchemaDatabases.h

Prototype #define DbCursorMoveFirst (i)

Parameters → i
ID of a valid cursor, as returned from DbCursorOpen() or
DbCursorOpenWithCategory().

Returns Returns errNone if the current row position was moved to a valid
row within the cursor, or one of the following otherwise:

Schema Databases
DbCursorMoveLast

Exploring Palm OS: Memory, Databases, and Files 333

dmErrInvalidParam
The specified cursor ID is invalid.

dmErrCursorEOF
The cursor contains no rows.

Comments Upon successful completion of the move, any bound variables are
updated with corresponding field values for the new current row.

See Also DbCursorMove()

DbCursorMoveLast Macro
Purpose Set the current row position of the cursor to the last row in the

cursor.

Declared In SchemaDatabases.h

Prototype #define DbCursorMoveLast (i)

Parameters → i
ID of a valid cursor, as returned from DbCursorOpen() or
DbCursorOpenWithCategory().

Returns Returns errNone if the current row position was moved to a valid
row within the cursor, or one of the following otherwise:

dmErrInvalidParam
The specified cursor ID is invalid.

dmErrCursorBOF
The cursor contains no rows.

Comments Upon successful completion of the move, any bound variables are
updated with corresponding field values for the new current row.

See Also DbCursorMove()

Schema Databases
DbCursorMoveNext

334 Exploring Palm OS: Memory, Databases, and Files

DbCursorMoveNext Macro
Purpose Move the cursor's current row position forward to the next row in

the cursor.

Declared In SchemaDatabases.h

Prototype #define DbCursorMoveNext (i)

Parameters → i
ID of a valid cursor, as returned from DbCursorOpen() or
DbCursorOpenWithCategory().

Returns Returns errNone if the current row position was moved to a valid
row within the cursor, or one of the following otherwise:

dmErrInvalidParam
The specified cursor ID is invalid.

dmErrCursorEOF
An attempt was made to move to a position after the last row
in the cursor.

Comments An attempt to move past the last row in the cursor generates a
dmErrCursorEOF error and sets the cursor’s EOF property.

When moving through the cursor, note that rows that were
modified are not moved to their new sort position until
DbCursorRequery() is called. Similarly, any new rows are not
available to the cursor until DbCursorRequery() is called.

Upon successful completion of the move, any bound variables are
updated with corresponding field values for the new current row.

See Also DbCursorMove()

DbCursorMovePrev Macro
Purpose Move the cursor's current row position backward to the previous

row in the cursor.

Declared In SchemaDatabases.h

Prototype #define DbCursorMovePrev (i)

Parameters → i
ID of a valid cursor, as returned from DbCursorOpen() or
DbCursorOpenWithCategory().

Schema Databases
DbCursorRelocateRow

Exploring Palm OS: Memory, Databases, and Files 335

Returns Returns errNone if the current row position was moved to a valid
row within the cursor, or one of the following otherwise:

dmErrInvalidParam
The specified cursor ID is invalid.

dmErrCursorBOF
An attempt was made to move to a position before the first
row in the cursor.

Comments An attempt to move before the first row in the cursor generates a
dmErrCursorBOF error and sets the cursor’s BOF property.

When moving through the cursor, note that rows that were
modified are not moved to their new sort position until
DbCursorRequery() is called. Similarly, any new rows are not
available to the cursor until DbCursorRequery() is called.

Upon successful completion of the move, any bound variables are
updated with corresponding field values for the new current row.

See Also DbCursorMove()

DbCursorRelocateRow Function
Purpose Relocate a row within a cursor that was opened using the default

sort index.

Declared In SchemaDatabases.h

Prototype status_t DbCursorRelocateRow (uint32_t cursorID,
uint32_t from, uint32_t to)

Parameters → cursorID
ID of a valid cursor, as returned from DbCursorOpen() or
DbCursorOpenWithCategory().

→ from
The index of the row to be moved.

→ to
The index of the position to which the row is to be moved.

Returns Returns errNone if the current row position was moved to a valid
row within the cursor, or one of the following otherwise:

Schema Databases
DbCursorMoveToRowID

336 Exploring Palm OS: Memory, Databases, and Files

dmErrInvalidParam
The specified cursor ID is invalid, or the cursor’s sort index is
not the default sort index.

dmErrIndexOutOfRange
Either from or to exceeds the number of rows in the cursor.

Comments This function can only be used with cursors opened using the
default sort index (that is, a cursor opened without an ORDER BY
clause). It allows you to “manually” rearrange the order of the rows
in the cursor.

If the row being moved is the current row, the cursor is updated so
that the current row position is set to the new location of the moved
row.

Cursor row positions are one-based. That is the first row in the
cursor has an index value of 1. The last row in the cursor has an
index value of DbCursorGetRowCount().

See Also DbCursorMove()

DbCursorMoveToRowID Macro
Purpose Position the cursor at the row with the specified row ID.

Declared In SchemaDatabases.h

Prototype #define DbCursorMoveToRowID (i, r)

Parameters → i
ID of a valid cursor, as returned from DbCursorOpen() or
DbCursorOpenWithCategory().

→ r
The ID of the row to which the cursor is to be positioned.

Returns Returns errNone if the current row position was changed to a valid
row within the cursor, or one of the following otherwise:

dmErrInvalidParam
The specified cursor ID is invalid.

Comments Upon successful completion, any bound variables are updated with
corresponding field values for the new current row.

See Also DbCursorMove(), DbCursorSetAbsolutePosition()

Schema Databases
DbCursorOpen

Exploring Palm OS: Memory, Databases, and Files 337

DbCursorOpen Function
Purpose Creates and opens a cursor containing all rows in the specified table

that conform to a specified set of flags, ordered as specified. No
filtering of rows based upon category membership is performed.

Declared In SchemaDatabases.h

Prototype status_t DbCursorOpen (DmOpenRef dbRef,
const char *sql, uint32_t flags,
uint32_t *cursorID)

Parameters → dbRef
DmOpenRef to an open database.

→ sql
A sort index identifying both the table containing the rows to
select from and the manner in which the cursor’s rows
should be sorted. The sort index must have already been added to
the table prior to its use here; see “The SELECT Statement” on
page 37 for the format of this parameter.

→ flags
Zero or more flags (OR’d together) that specify how the
cursor is to be opened. See “Cursor Open Flags” on page 302
for the set of flags defined for this operation.

← cursorID
The ID of the newly-opened cursor. If there was an error
opening the cursor, *cursorID is set to
dbInvalidCursorID.

Returns Returns errNone if the cursor was successfully opened, or one of
the following otherwise:

dmErrInvalidParam
dbRef doesn’t reference an open database, sql is NULL, or
cursorID is NULL.

dmErrInvalidSortIndex
One of the sort IDs specified in the supplied SQL isn’t valid
for the specified database table.

dmErrMemError
The operation couldn’t be completed due to insufficient
memory.

Schema Databases
DbCursorOpenWithCategory

338 Exploring Palm OS: Memory, Databases, and Files

dmErrNotSchemaDatabase
The database specified by dbRef isn’t a schema database.

dmErrSQLParseError
The SQL specified in the sql parameter is invalid.

dmErrCursorEOF
The cursor was successfully created but the table contains no
rows that match the specified criteria.

Comments If the ORDER BY clause is omitted (that is, if the SQL string consists
solely of the table name, and perhaps a WHERE clause) the cursor
rows are not sorted. Such a cursor is said to be opened using the
default sort index.

When a cursor is no longer needed, call DbCursorClose() to free
all resources associated with the cursor.

See Also DbCursorClose(), DbCursorOpenWithCategory()

DbCursorOpenWithCategory Function
Purpose Creates and opens a cursor containing all rows in the specified table

that conform to a specified set of flags, ordered as specified. Rows
are filtered based upon category membership.

Declared In SchemaDatabases.h

Prototype status_t DbCursorOpenWithCategory
(DmOpenRef dbRef, const char *sql,
uint32_t flags, uint32_t numCategories,
const CategoryID categoryIDs[],
DbMatchModeType matchMode, uint32_t *cursorID)

Parameters → dbRef
DmOpenRef to an open database.

→ sql
A sort index identifying both the table containing the rows to
select from and the manner in which the cursor’s rows
should be sorted. See “The SELECT Statement” on page 37
for the format of this parameter.

Schema Databases
DbCursorOpenWithCategory

Exploring Palm OS: Memory, Databases, and Files 339

→ flags
Zero or more flags (OR’d together) that specify how the
cursor is to be opened. See “Cursor Open Flags” on page 302
for the set of flags defined for this operation.

→ numCategories
Number of categories in the categoryIDs array.

→ categoryIDs
Array of category IDs used to filter the cursor. If no
categories are specified (that is, if numCategories is 0), no
filtering based upon categories is done.

→ matchMode
One of the following values, indicating how the categories in
the categoryIDs array are applied to the cursor:

DbMatchAny
(OR): Include rows with categories matching any of
the specified categories.

DbMatchAll
(AND): Include rows with categories matching all of
the specified categories, including rows with
additional category membership.

DbMatchExact
Include rows with categories matching exactly the
specified categories.

← cursorID
The ID of the newly-opened cursor. If there was an error
opening the cursor, *cursorID is set to
dbInvalidCursorID.

Returns Returns errNone if the cursor was successfully opened, or one of
the following otherwise:

dmErrInvalidParam
dbRef doesn’t reference an open database, sql is NULL, or
cursorID is NULL.

dmErrInvalidCategory
One or more of the specified category IDs is invalid.

dmErrInvalidSortIndex
One of the sort IDs specified in the supplied SQL isn’t valid
for the specified database table.

Schema Databases
DbCursorRemoveAllRows

340 Exploring Palm OS: Memory, Databases, and Files

dmErrMemError
The operation couldn’t be completed due to insufficient
memory.

dmErrNotSchemaDatabase
The database specified by dbRef isn’t a schema database.

dmErrSQLParseError
The SQL specified in the sql parameter is invalid.

dmErrCursorEOF
The cursor was successfully created but the table contains no
rows that match the specified criteria.

Comments The sql, flags, categoryIDs, and matchMode parameters allow
your application to specify a subset of the database rows that belong
to the cursor. Only the rows that match the specified SQL, flags, and
categories (the match mode determines how category matches are
applied) will exist in the cursor; those rows are sorted as specified
by the sort index.

See Also DbCursorClose(), DbCursorOpen()

DbCursorRemoveAllRows Function
Purpose Remove all of the cursor’s rows from the database.

Declared In SchemaDatabases.h

Prototype status_t DbCursorRemoveAllRows
(uint32_t cursorID)

Parameters → cursorID
ID of a valid cursor, as returned from DbCursorOpen() or
DbCursorOpenWithCategory().

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

dmErrInvalidParam
The specified cursor ID isn’t valid.

dmErrRecordBusy
One of the rows is in use and cannot be updated.

Schema Databases
DbCursorRequery

Exploring Palm OS: Memory, Databases, and Files 341

dmErrReadOnly
You’ve attempted to write to or modify a database that is
open in read-only mode.

Comments For each row in the cursor, this function deletes the row’s chunk
from the database and removes the row entry from the database
header.

See Also DbCursorArchiveAllRows(), DbCursorDeleteAllRows(),
DbRemoveRow()

DbCursorRequery Function
Purpose Refresh a cursor to reflect any changes made to the database since

the last query. If the cursor’s contents change, the cursor is
repositioned at the first row.

Declared In SchemaDatabases.h

Prototype status_t DbCursorRequery (uint32_t cursorID)

Parameters → cursorID
ID of a valid cursor, as returned from DbCursorOpen() or
DbCursorOpenWithCategory().

Returns Returns errNone if the cursor was successfully refreshed, or one of
the following otherwise:

dmErrInvalidParam
cursorID isn’t a valid cursor ID or doesn’t reference an
open cursor.

dmErrInvalidSortIndex
The sort index is no longer valid.

dmErrMemError
A memory error occurred.

dmErrCursorEOF
The cursor contains no rows.

dmErrIndexOutOfRange
One or more bindings are no longer valid.

Comments When the cursor is created a snapshot of the row IDs is taken that is
used when iterating the cursor’s rows. This snapshot of the IDs is
not affected by sorting updates due to row modifications or the

Schema Databases
DbCursorSetAbsolutePosition

342 Exploring Palm OS: Memory, Databases, and Files

addition of new rows. DbCursorRequery() refreshes the
snapshot to reflect any new row additions or sorting changes.

Note that when a refresh occurs the current row may move to a new
position (the first row, if the cursor contents change), and future
move operations will move from the new position instead of the old
position.

See Also DbCursorOpen(), DbCursorUpdate()

DbCursorSetAbsolutePosition Macro
Purpose Moves the cursor onto the row with the specified index.

Declared In SchemaDatabases.h

Prototype #define DbCursorSetAbsolutePosition (i, o)

Parameters → i
ID of a valid cursor, as returned from DbCursorOpen() or
DbCursorOpenWithCategory().

→ o
Index of the row to which the cursor should be positioned.

Returns Returns errNone if the current row position was moved to a valid
row within the cursor, or one of the following otherwise:

dmErrInvalidParam
The specified cursor ID is invalid.

dmErrCursorBOF
An attempt was made to move to a position before the first
row in the cursor.

dmErrCursorEOF
An attempt was made to move to a position after the last row
in the cursor.

Comments The first row within a cursor has an index value of 1.

Attempting to move before the first row in the cursor or attempting
to move past the last row in the cursor generates an error, and the
cursor’s BOF or EOF property, as appropriate, is set.

When moving through the cursor, rows that have been modified are
not moved to their new sort position until DbCursorRequery() is

Schema Databases
DbCursorUpdate

Exploring Palm OS: Memory, Databases, and Files 343

called. Similarly any new rows are not available to the cursor until
DbCursorRequery() is called.

Upon successful completion of the move, any bound variables are
updated with corresponding field values for the new current row.

See Also DbCursorMove(), DbCursorMoveToRowID()

DbCursorUpdate Function
Purpose Write the values in the bound variables to the row at the cursor's

current position.

Declared In SchemaDatabases.h

Prototype status_t DbCursorUpdate (uint32_t cursorID)

Parameters → cursorID
ID of a valid cursor, as returned from DbCursorOpen() or
DbCursorOpenWithCategory().

Returns Returns errNone if the current row position was successfully
moved to the specified row within the cursor, or one of the
following otherwise:

dmErrInvalidParam
cursorID isn’t a valid cursor ID or doesn’t reference an
open cursor.

dmErrCursorBOF
The cursor’s current position is at BOF, which is not a valid
row.

dmErrCursorEOF
The cursor’s current position is at EOF, which is not a valid
row.

dmErrRecordDeleted
The current row is marked as deleted.

dmErrRecordBusy
The current row is in use and cannot be updated.

dmErrMemError
A memory error occurred.

dmErrWriteOutOfBounds
The write operation exceeded the bounds of the row.

Schema Databases
DbDeleteRow

344 Exploring Palm OS: Memory, Databases, and Files

dmErrOperationAborted
The write could not be performed.

Comments Prior to calling DbCursorUpdate(), set the bound variables to the
desired values. All values are written to the database for the current
row. Note that for varying length types (VarChar and Blob), you
should also set the corresponding data size variable (specified when
the cursor column was bound to a variable) to indicate the size of
the data to be written back to that field.

See Also DbCursorBindData(), DbCursorBindDataWithOffset(),
DbCursorRequery()

DbDeleteRow Function
Purpose Delete a row’s chunk from a database but leave the row entry in the

header and mark the row as deleted for the next HotSync operation.

Declared In SchemaDatabases.h

Prototype status_t DbDeleteRow (DmOpenRef dbRef,
uint32_t rowID)

Parameters → dbRef
DmOpenRef to an open database.

→ rowID
Row ID or cursor ID identifying the row to be deleted.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

dmErrInvalidParam
dbRef doesn’t reference an open database, or rowID isn’t a
valid cursor or row ID.

dmErrNotSchemaDatabase
dbRef doesn’t reference a schema database.

dmErrReadOnly
The specified database is opened in read-only mode.

dmErrUniqueIDNotFound
rowID doesn’t identify a valid row within the database.

dmErrIndexOutOfRange
rowID doesn’t identify a valid row within the database.

Schema Databases
DbEnableSorting

Exploring Palm OS: Memory, Databases, and Files 345

dmErrRecordDeleted
The specified record is already marked as deleted.

dmErrRecordArchived
The specified record is marked as archived.

dmErrRecordBusy
The specified record is in use.

dmErrCorruptDatabase
The database is corrupt.

Comments This function deletes the row’s chunk from the database but leaves
the row entry in the header and marks the row as deleted. During
the next HotSync operation, a conduit can save the row data on the
desktop and then remove those row entries in the header that are
marked as deleted.

See Also DbArchiveRow(), DbCursorDeleteAllRows(),
DbInsertRow(), DbRemoveRow()

DbEnableSorting Function
Purpose Turn automatic sorting on or off for a given database.

Declared In SchemaDatabases.h

Prototype status_t DbEnableSorting (DmOpenRef dbRef,
Boolean enable)

Parameters → dbRef
DmOpenRef to an open database.

→ enable
If true, sorting is enabled. If false, sorting is disabled.

Returns Returns errNone if the operation completed successfully, or one of
the following if an error occurred:

dmErrInvalidParam
dbRef doesn’t reference an open database.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrReadOnly
The database is not open for write access.

Schema Databases
DbGetAllColumnDefinitions

346 Exploring Palm OS: Memory, Databases, and Files

dmErrInvalidOperation
The specified database has no sort indices defined.

Comments If enable is to true and automatic sorting was previously turned
off, the database is resorted, making all current row indices invalid.

If you don’t have authorization to modify the database, this
function does nothing.

This function sorts the database according to each defined sort
index.

See Also DbAddSortIndex(), DbIsSortingEnabled()

DbGetAllColumnDefinitions Function
Purpose Retrieve all of a table’s column definitions.

Declared In SchemaDatabases.h

Prototype status_t DbGetAllColumnDefinitions
(DmOpenRef dbRef, const char *table,
uint32_t *numColumnsP,
DbSchemaColumnDefnType **columnDefnsPP)

Parameters → dbRef
DmOpenRef to an open database.

→ table
Table name.

← numColumnsP
Number of elements in the *columnDefnsPP array.

← columnDefnsPP
Pointer to an array of DbSchemaColumnDefnType
structures, each representing a single column definition. The
Data Manager allocates the array and returns a pointer to it.

Returns Returns errNone if the operation completed successfully, or one of
the following if there was an error:

dmErrInvalidParam
dbRef doesn’t reference an open database, numColumnsP is
NULL, columnDefnsPP is NULL, or table is NULL.

dmErrNotSchemaDatabase
The specified database is not a schema database.

Schema Databases
DbGetAllColumnPropertyValues

Exploring Palm OS: Memory, Databases, and Files 347

dmErrMemError
The function was unable to allocate sufficient memory to
contain the column definitions.

dmErrInvalidTableName
The database doesn’t contain a table with the specified name.

dmErrNoData
The specified table has no columns defined.

dmErrOneOrMoreFailed
At least one of the column definitions could not be retrieved.

Comments Your application is responsible for releasing the array allocated by
this call. To do this, use DbReleaseStorage(). After
DbReleaseStorage() is called, the references returned by
DbGetAllColumnDefinitions() must be considered invalid
since the underlying storage may have been relocated.

See Also DbAddColumn(), DbGetColumnDefinitions()

DbGetAllColumnPropertyValues Function
Purpose Retrieve all of a table’s column property values.

Declared In SchemaDatabases.h

Prototype status_t DbGetAllColumnPropertyValues
(DmOpenRef dbRef, const char *table,
Boolean customPropsOnly, uint32_t *numPropsP,
DbColumnPropertyValueType **propValuesPP)

Parameters → dbRef
DmOpenRef to an open database.

→ table
Table name.

→ customPropsOnly
If true, only user-defined custom column property values
are retrieved. Otherwise, all default (built-in) and custom
column property values are retrieved.

← numPropsP
Number of elements in the *propValuesPP array.

Schema Databases
DbGetAllColumnPropertyValues

348 Exploring Palm OS: Memory, Databases, and Files

← propValuesPP
Pointer to an array of DbColumnPropertyValueType
structures, each representing a single column property value.
The Data Manager allocates the array and returns a pointer to
it.

Returns Returns errNone if the property value was successfully retrieved,
or one of the following if an error occurred:

dmErrInvalidParam
dbRef doesn’t reference an open database, numPropsP is
NULL, propValuesPP is NULL, or table is NULL.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrInvalidTableName
The database doesn’t contain a table with the specified name.

dmErrMemError
A memory error occurred.

dmErrInvalidColumnID
The specified table has no defined columns.

memErrNotEnoughSpace
A memory error occurred.

Comments The customPropsOnly argument controls whether all properties
or just custom properties are retrieved. Default properties include:
dbColumnNameProperty, dbColumnDatatypeProperty,
dbColumnSizeProperty and dbColumnAttribProperty.

Your application is responsible for releasing the array allocated by
this call. To do this, use DbReleaseStorage(). After
DbReleaseStorage() is called, the references returned by
DbGetAllColumnPropertyValues() must be considered
invalid since the underlying storage may have been relocated.

See Also DbGetColumnPropertyValue(),
DbGetColumnPropertyValues(),
DbSetColumnPropertyValues()

Schema Databases
DbGetAllColumnValues

Exploring Palm OS: Memory, Databases, and Files 349

DbGetAllColumnValues Function
Purpose Retrieve all column values for a specified row.

Declared In SchemaDatabases.h

Prototype status_t DbGetAllColumnValues (DmOpenRef dbRef,
uint32_t rowID, uint32_t *numColumnsP,
DbSchemaColumnValueType **columnValuesPP)

Parameters → dbRef
DmOpenRef to an open database.

→ rowID
Row ID or cursor ID identifying the row for which column
values are to be retrieved.

← numColumnsP
The number of retrieved column values.

← columnValuesPP
Pointer to an array of structures, each representing a single
column value. The Data Manager allocates the array and
returns a pointer to it.

Returns Returns errNone if successful, or one of the following if an error
occurred:

dmErrInvalidParam
rowID is not a row or cursor ID, dbRef doesn’t reference an
open database, or columnValuesPP is NULL.

dmErrCursorBOF
The supplied cursor ID is BOF.

dmErrCursorEOF
The supplied cursor ID is EOF.

dmErrUniqueIDNotFound
The supplied cursor ID represents an invalid row.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrUniqueIDNotFound
The supplied row or cursor ID doesn’t correspond to a row
within the database.

dmErrRecordDeleted
The specified row is marked as deleted.

Schema Databases
DbGetCategory

350 Exploring Palm OS: Memory, Databases, and Files

dmErrInvalidColSpec
There are no columns defined for the specified table.

dmErrNoColumnData
The specified row has no data.

dmErrMemError
A memory error occurred.

Comments Your application is responsible for releasing the array allocated by
this call. To do this, use DbReleaseStorage(). After
DbReleaseStorage() is called, the references returned by
DbGetAllColumnValues() must be considered invalid since the
underlying storage may have been relocated.

See Also DbCopyColumnValues(), DbGetColumnValue(),
DbGetColumnValues(), DbWriteColumnValues()

DbGetCategory Function
Purpose Retrieve the category membership for the specified row.

Declared In SchemaDatabases.h

Prototype status_t DbGetCategory (DmOpenRef dbRef,
uint32_t rowID, uint32_t *pNumCategories,
CategoryID *pCategoryIDs[])

Parameters → dbRef
DmOpenRef to an open database.

→ rowID
Row ID or cursor ID identifying the row for which to get
categories.

← pNumCategories
The number of elements in the pCategoryIDs array.

← pCategoryIDs
Array of category IDs. The specified row is a member of each
of the categories in this list. Pass NULL for this parameter if all
you want is the number of categories of which this row is a
member.

Returns Returns errNone if no error, or one of the following if an error
occurs:

Schema Databases
DbGetColumnDefinitions

Exploring Palm OS: Memory, Databases, and Files 351

dmErrInvalidParam
dbRef doesn’t reference an open database, or the specified
row or cursor ID is not valid.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrIndexOutOfRange
The specified row or cursor ID doesn’t reference a row within
the table.

dmErrRecordDeleted
The specified row is marked as deleted.

dmErrMemError
A memory error occurred.

Comments Your application is responsible for releasing the array allocated by
this call. To do this, use DbReleaseStorage(). After
DbReleaseStorage() is called, the references returned by
DbGetCategory() must be considered invalid since the
underlying storage may have been relocated.

If the specified row isn’t a member of any categories, this function
sets *pNumCategories to 0 and *pCategoryIDs to NULL.

See Also DbAddCategory(), DbIsRowInCategory(),
DbSetCategory()

DbGetColumnDefinitions Function
Purpose Retrieve one or more table column definitions.

Declared In SchemaDatabases.h

Prototype status_t DbGetColumnDefinitions (DmOpenRef dbRef,
const char *table, uint32_t numColumns,
const uint32_t columnIDs[],
DbSchemaColumnDefnType **columnDefnsPP)

Parameters → dbRef
DmOpenRef to an open database.

→ table
Table name.

Schema Databases
DbGetColumnDefinitions

352 Exploring Palm OS: Memory, Databases, and Files

→ numColumns
The number of columns in the columnIDs array.

→ columnIDs
Array of column IDs, indicating the columns for which
definitions are to be retrieved.

← columnDefnsPP
Pointer to an array of DbSchemaColumnDefnType
structures; each array element contains the definition for a
column.

Returns Returns errNone if the operation completed successfully, or one of
the following if there was an error:

dmErrInvalidParam
dbRef doesn’t reference an open database, columnIDs is
NULL, columnDefnsPP is NULL, or table is NULL.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrMemError
The function was unable to allocate sufficient memory to
contain the column definitions.

dmErrInvalidTableName
The database doesn’t contain a table with the specified name.

dmErrInvalidColumnID
The specified table has no columns defined.

dmErrOneOrMoreFailed
At least one of the column definitions could not be retrieved.

Comments Your application is responsible for releasing the array allocated by
this call. To do this, use DbReleaseStorage(). After
DbReleaseStorage() is called, the references returned by
DbGetColumnDefinitions() must be considered invalid since
the underlying storage may have been relocated.

See Also DbAddColumn(), DbGetAllColumnDefinitions()

Schema Databases
DbGetColumnID

Exploring Palm OS: Memory, Databases, and Files 353

DbGetColumnID Function
Purpose Retrieve the column ID for a column index.

Declared In SchemaDatabases.h

Prototype status_t DbGetColumnID (DmOpenRef dbRef,
const char *table, uint32_t columnIndex,
uint32_t *columnIDP)

Parameters → dbRef
DmOpenRef to an open database.

→ table
Table name.

→ columnIndex
The index of the column for which the ID is being retrieved.

← columnIDP
The column ID.

Returns Returns errNone if the column ID was successfully retrieved, or
one of the following if an error occurred:

dmErrInvalidParam
dbRef doesn’t reference an open database, or table is
NULL.

dmErrNotSchemaDatabase
The specified database isn’t a schema database.

dmErrInvalidTableName
The database doesn’t contain a table with the specified name.

dmErrColumnIndexOutOfRange
The supplied column index exceeds the number of columns
in the table.

Comments See the Comments section under DbNumColumns() for an example
of how you use this function.

See Also DbNumColumns()

Schema Databases
DbGetColumnPropertyValue

354 Exploring Palm OS: Memory, Databases, and Files

DbGetColumnPropertyValue Function
Purpose Retrieve the value of a specified table column property.

Declared In SchemaDatabases.h

Prototype status_t DbGetColumnPropertyValue
(DmOpenRef dbRef, const char *table,
uint32_t columnID,
DbSchemaColumnProperty propID,
uint32_t *numBytesP, void **propValuePP)

Parameters → dbRef
DmOpenRef to an open database.

→ table
Table name.

→ columnID
The ID of the column for which the property is being
retrieved.

→ propID
The ID of the property being retrieved.

← numBytesP
The size, in bytes, of the retrieved property value.

← propValuePP
The retrieved property value.

Returns Returns errNone if the property value was successfully retrieved,
or one of the following if an error occurred:

dmErrInvalidParam
dbRef doesn’t reference an open database, numBytesP is
NULL, propValuePP is NULL, or table is NULL.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrInvalidTableName
The database doesn’t contain a table with the specified name.

dmErrInvalidColumnID
The specified table has no defined columns, or the specified
column index is not a defined column.

Schema Databases
DbGetColumnPropertyValues

Exploring Palm OS: Memory, Databases, and Files 355

dmErrInvalidPropID
The column doesn’t have a property with the specified
property ID.

memErrNotEnoughSpace
A memory error occurred.

Comments Your application is responsible for releasing the memory allocated
by this call to contain the property value. To do this, use
DbReleaseStorage(). After DbReleaseStorage() is called,
the references returned by DbGetColumnPropertyValue() must
be considered invalid since the underlying storage may have been
relocated.

See Also DbGetAllColumnPropertyValues(),
DbGetColumnPropertyValues(),
DbSetColumnPropertyValue()

DbGetColumnPropertyValues Function
Purpose Retrieve the value of one or more table column properties.

Declared In SchemaDatabases.h

Prototype status_t DbGetColumnPropertyValues
(DmOpenRef dbRef, const char *table,
uint32_t numProps,
const DbColumnPropertySpecType propSpecs[],
DbColumnPropertyValueType **propValuesPP)

Parameters → dbRef
DmOpenRef to an open database.

→ table
Table name.

→ numProps
The number of elements in the propSpecs array.

→ propSpecs
Array of column ID/property ID pairs. See
“DbColumnPropertySpecType” on page 291.

← propValuesPP
Array of property values. See
“DbColumnPropertyValueType” on page 292.

Schema Databases
DbGetColumnPropertyValues

356 Exploring Palm OS: Memory, Databases, and Files

Returns Returns errNone if the property value was successfully retrieved,
or one of the following if an error occurred:

dmErrInvalidParam
dbRef doesn’t reference an open database, numProps is
zero, propSpecs is NULL, propValuePP is NULL, or table
is NULL.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrInvalidTableName
The database doesn’t contain a table with the specified name.

dmErrMemError
A memory error occurred.

dmErrInvalidColumnID
The specified table has no defined columns, or the at least
one of the specified column indices is not a defined column.

dmErrInvalidPropID
At least one column doesn’t have a property with the
specified property ID.

memErrNotEnoughSpace
A memory error occurred.

Comments Your application is responsible for releasing the array allocated by
this call. To do this, use DbReleaseStorage(). After
DbReleaseStorage() is called, the references returned by
DbGetColumnPropertyValues() must be considered invalid
since the underlying storage may have been relocated.

See Also DbGetAllColumnPropertyValues(),
DbGetColumnPropertyValue(),
DbSetColumnPropertyValues()

Schema Databases
DbGetColumnValue

Exploring Palm OS: Memory, Databases, and Files 357

DbGetColumnValue Function
Purpose Retrieve a single column value for a row.

Declared In SchemaDatabases.h

Prototype status_t DbGetColumnValue (DmOpenRef dbRef,
uint32_t rowID, uint32_t columnID,
uint32_t offset, void **valuePP,
uint32_t *valueSizeP)

Parameters → dbRef
DmOpenRef to an open database.

→ rowID
Row ID or cursor ID identifying the row for which the
column value is to be retrieved.

→ columnID
The column ID.

→ offset
For variable-length columns, the column value offset from
which data is retrieved. This value is interpreted as a byte
offset.

← valuePP
The column value.

← valueSizeP
The size of the column value, in bytes.

Returns Returns errNone if successful, or one of the following if an error
occurred:

dmErrInvalidParam
rowID is not a row or cursor ID, or valuePP is NULL.

dmErrCursorBOF
The supplied cursor ID is BOF.

dmErrCursorEOF
The supplied cursor ID is EOF.

dmErrUniqueIDNotFound
The supplied cursor ID represents an invalid row.

dmErrNotSchemaDatabase
The specified database is not a schema database.

Schema Databases
DbGetColumnValue

358 Exploring Palm OS: Memory, Databases, and Files

dmErrUniqueIDNotFound
The supplied row or cursor ID doesn’t correspond to a row
within the database.

dmErrRecordDeleted
The specified row is marked as deleted.

dmErrInvalidColSpec
There are no columns defined for the specified table.

dmErrInvalidColumnID
The supplied column ID is invalid.

dmErrNoColumnData
The specified row has no data for the column.

dmErrReadOutOfBounds
The specified offset exceeds the bounds of the column.

dmErrBufferNotLargeEnough
The supplied buffer isn’t large enough to contain the column
value.

dmErrMemError
A memory error occurred.

Comments This function returns a reference to the column data. Offset-based
reads are not supported for fixed-length column data types; the
offset parameter is ignored for these data types. The column data
types that support offset-based reads are:

• VarChar

• Blob

• Vector

Your application is responsible for releasing the column value buffer
allocated by this call. To do this, use DbReleaseStorage().

See Also DbCopyColumnValue(), DbGetAllColumnValues(),
DbGetColumnValues(), DbWriteColumnValue()

Schema Databases
DbGetColumnValues

Exploring Palm OS: Memory, Databases, and Files 359

DbGetColumnValues Function
Purpose Retrieve one or more column values for a row.

Declared In SchemaDatabases.h

Prototype status_t DbGetColumnValues (DmOpenRef dbRef,
uint32_t rowID, uint32_t numColumns,
const uint32_t columnIDs,
DbSchemaColumnValueType **columnValuesPP)

Parameters → dbRef
DmOpenRef to an open database.

→ rowID
Row ID or cursor ID identifying the row for which the
column values are to be retrieved.

→ numColumns
The number of elements in the columnIDs array.

→ columnIDs
Array of one or more column IDs indicating the columns for
which values are to be retrieved.

← columnValuesPP
An array of data structures containing the retrieved column
values.

Returns Returns errNone if successful, or one of the following if an error
occurred:

dmErrInvalidParam
rowID is not a row or cursor ID, dbRef doesn’t reference an
open database, numColumns is zero, or columnValuesPP is
NULL.

dmErrCursorBOF
The supplied cursor ID is BOF.

dmErrCursorEOF
The supplied cursor ID is EOF.

dmErrUniqueIDNotFound
The supplied cursor ID represents an invalid row.

dmErrNotSchemaDatabase
The specified database is not a schema database.

Schema Databases
DbGetRowAttr

360 Exploring Palm OS: Memory, Databases, and Files

dmErrUniqueIDNotFound
The supplied row or cursor ID doesn’t correspond to a row
within the database.

dmErrRecordDeleted
The specified row is marked as deleted.

dmErrInvalidColSpec
There are no columns defined for the specified table.

dmErrInvalidColumnID
The one or more of the specified column IDs is invalid.

dmErrNoColumnData
The specified row has no data.

dmErrBufferNotLargeEnough
At least one of the supplied buffers isn’t large enough to
contain the corresponding column value.

dmErrMemError
A memory error occurred.

Comments Your application is responsible for releasing the array allocated by
this call. To do this, use DbReleaseStorage(). After
DbReleaseStorage() is called, the references returned by
DbGetColumnValues() must be considered invalid since the
underlying storage may have been relocated.

See Also DbCopyColumnValues(), DbGetAllColumnValues(),
DbGetColumnValue(), DbWriteColumnValues()

DbGetRowAttr Function
Purpose Retrieve a row’s attributes.

Declared In SchemaDatabases.h

Prototype status_t DbGetRowAttr (DmOpenRef dbRef,
uint32_t rowID, uint16_t *attrP)

Parameters → dbRef
DmOpenRef to an open database.

→ rowID
Row ID or cursor ID identifying the row for which attributes
are to be retrieved.

Schema Databases
DbGetRuleSet

Exploring Palm OS: Memory, Databases, and Files 361

← attrP
The row’s attributes. See “Schema Database Row Attributes”
on page 300 for the set of attributes that can be retrieved.

Returns Returns errNone if the row’s attributes were successfully retrieved,
or one of the following if an error occurred:

dmErrNotRecordDB
You’ve attempted to perform a row function on a resource
database.

dmErrIndexOutOfRange
The specified index is out of range.

See Also DbGetTableForRow(), DbSetRowAttr()

DbGetRuleSet Function
Purpose Get the current access rules for a secure database.

Declared In SchemaDatabases.h

Prototype status_t DbGetRuleSet (DatabaseID dbID,
AzmRuleSetType *ruleset)

Parameters → dbID
ID of the secure database for which access rules are to be
retrieved.

← ruleset
Handle to the database’s access rules.

Returns Returns errNone if the operation completed successfully, or one of
the following if an error occurred:

dmErrInvalidParam
dbID doesn’t reference a database or ruleset is NULL.

dmErrNotSecureDatabase
The specified database is not a secure database.

dmErrAccessDenied
You don’t have sufficient privileges to obtain the database’s
access rules.

Comments The database must exist, and must be a secure database.

Schema Databases
DbGetSortDefinition

362 Exploring Palm OS: Memory, Databases, and Files

This function requires that the calling application to be authorized
for the Modify action as defined by the Authorization Manager (that
is, it must be the application that created the secure database). If the
application does not have modification rights, the function fails
with dmErrAccessDenied.

See Also DbCreateSecureDatabase(),
DbCreateSecureDatabaseFromImage()

DbGetSortDefinition Function
Purpose Get a sort index given its position in the list of sort indices defined

for a database.

Declared In SchemaDatabases.h

Prototype status_t DbGetSortDefinition (DmOpenRef dbRef,
uint32_t sortIndex, char **orderByPP)

Parameters → dbRef
DmOpenRef to an open database.

→ sortIndex
An integer index value, ranging from 0 to one less than the
value returned from DbNumSortIndexes(), indicating
which sort index is desired.

← orderByPP
Upon return, *orderByPP points to the SQL string that
makes up the sort index.

Returns Returns errNone if the operation succeeded, or one of the
following otherwise:

dmErrInvalidParam
dbRef doesn’t reference an open database.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrInvalidIndex
The sortIndex parameter is greater than the highest sort
index value defined for this database.

Comments See the Comments section under DbNumSortIndexes() for an
example of how you use this function.

Schema Databases
DbGetTableForRow

Exploring Palm OS: Memory, Databases, and Files 363

DbGetTableForRow Function
Purpose Obtain the name of the table that contains a specified row.

Declared In SchemaDatabases.h

Prototype status_t DbGetTableForRow (DmOpenRef dbRef,
uint32_t rowID, char *buf, size_t bufSize)

Parameters → dbRef
DmOpenRef to an open database.

→ rowID
Row ID or cursor ID identifying the row for which the table
is to be determined.

← buf
Pass a pointer to the buffer into which the table name is to be
written.

→ bufSize
The size of buf, in bytes.

Returns Returns errNone if the operation succeeded, or one of the
following otherwise:

dmErrInvalidParam
dbRef doesn’t reference an open database, rowID isn’t a row
or cursor ID, buf is NULL, or bufSize is zero.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrUniqueIDNotFound
The specified row or cursor ID doesn’t correspond to a row
in the database.

dmErrMemError
The supplied buffer isn’t large enough to contain the table
name, or another memory error occurred.

See Also DbCursorGetCurrentRowID()

Schema Databases
DbGetTableName

364 Exploring Palm OS: Memory, Databases, and Files

DbGetTableName Function
Purpose Obtain a table’s name, given the index of the table within a

database.

Declared In SchemaDatabases.h

Prototype status_t DbGetTableName (DmOpenRef dbRef,
uint32_t index, char *table)

Parameters → dbRef
DmOpenRef to an open database.

→ index
Index of the table within the database.

← table
Table name.

Returns Returns errNone if the operation succeeded, or one of the
following otherwise:

dmErrInvalidParam
dbRef doesn’t reference an open database, or table is
NULL.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrSchemaIndexOutOfRange
The specified index is greater than the number of tables in the
database.

Comments Table indices are zero-based. That is, the first table in a database has
an index value of zero.

See Also DbNumTables()

Schema Databases
DbGetTableSchema

Exploring Palm OS: Memory, Databases, and Files 365

DbGetTableSchema Function
Purpose Get the schema for a table, including the definitions and properties

for all of the table’s columns.

Declared In SchemaDatabases.h

Prototype status_t DbGetTableSchema (DmOpenRef dbRef,
const char *table,
DbTableDefinitionType **schemaPP)

Parameters → dbRef
DmOpenRef to an open database.

→ table
Table name.

← schemaPP
The schema. Allocate a pointer to a
DbTableDefinitionType structure and supply the
address of this pointer when calling DbGetTableSchema().
Upon return, your pointer variable contains the address of a
DbTableDefinitionType structure containing the table
name, the number of columns in the table, and a pointer to
the first element in an array of column definition.

Returns Returns errNone if the schema was successfully retrieved, or one
of the following if an error occurred:

dmErrInvalidParam
dbRef doesn’t reference an open databases, no table name
was specified, or schemaPP is NULL.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrInvalidTableName
The database doesn’t contain a table with the specified name.

dmErrMemError
A memory error occurred.

Comments Your application is responsible for releasing the buffer pointed to by
*schemaPP. To do this, use DbReleaseStorage(). After
DbReleaseStorage() is called, the references returned by
DbGetTableSchema() must be considered invalid since the
underlying storage may have been relocated.

See Also DbGetTableName(), DbHasTable()

Schema Databases
DbHasSortIndex

366 Exploring Palm OS: Memory, Databases, and Files

DbHasSortIndex Function
Purpose Determine whether a particular sort index has been defined for a

database.

Declared In SchemaDatabases.h

Prototype Boolean DbHasSortIndex (DmOpenRef dbRef,
const char *orderBy)

Parameters → dbRef
DmOpenRef to an open database.

→ orderBy
The sort index being checked for. See “The SELECT
Statement” on page 37 for the format of this parameter.

Returns Returns errNone if the operation completed successfully, or one of
the following if an error occurred:

dmErrInvalidParam
dbRef doesn’t reference an open database.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrSQLParseError
The specified table name or the sort information specified in
the sort index is invalid.

See Also DbAddSortIndex(), DbRemoveSortIndex()

DbHasTable Function
Purpose Determine whether a specific table exists in a particular database.

Declared In SchemaDatabases.h

Prototype Boolean DbHasTable (DmOpenRef dbRef,
const char *table)

Parameters → dbRef
DmOpenRef to an open database.

→ table
Table name.

Returns Returns true if the specified database contains the named table.
Returns false if either the table doesn’t exist in the database,

Schema Databases
DbInsertRow

Exploring Palm OS: Memory, Databases, and Files 367

dbRef is not a valid reference to an open database, or the specified
database is not a schema database.

See Also DbGetTableName(), DbGetTableSchema()

DbInsertRow Function
Purpose Add a row to a specified database table.

Declared In SchemaDatabases.h

Prototype status_t DbInsertRow (DmOpenRef dbRef,
const char *table, uint32_t numColumnValues,
DbSchemaColumnValueType *columnValuesP,
uint32_t *rowIDP)

Parameters → dbRef
DmOpenRef to an open database.

→ table
Table name.

→ numColumnValues
Number of column values in the columnValuesP array.

→ columnValuesP
Array of column values, where each value represents a
column value for the new row.

← rowIDP
Row ID of the newly added row, or dbInvalidRowID if the
row couldn’t be added.

Returns Returns errNone if the row was added successfully, or one of the
following otherwise:

dmErrInvalidParam
dbRef doesn’t reference an open database.

dmErrInvalidTableName
The specified table name is invalid.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrReadOnly
The database is not open for write access.

Schema Databases
DbIsCursorID

368 Exploring Palm OS: Memory, Databases, and Files

dmErrInvalidColSpec
One or more column values doesn’t fit in the corresponding
column.

dmErrInvalidColumnID
The number of column values supplied exceeds the number
of columns in the table.

dmErrMemError
A memory error occurred.

Comments The new row is added to the end of the database. Any open cursors
are not updated; use DbCursorRequery() to update a particular
cursor’s contents.

If numColumnValues is zero or columnValuesP is NULL, an
empty row is created which may subsequently be written into using
either DbWriteColumnValue() or DbWriteColumnValues().

See Also DbArchiveRow(), DbDeleteRow(), DbRemoveRow()

DbIsCursorID Function
Purpose Determine whether a specified ID is a cursor ID.

Declared In SchemaDatabases.h

Prototype Boolean DbIsCursorID (uint32_t uniqueID)

Parameters → uniqueID
The ID to be checked.

Returns Returns true if uniqueID is a cursor ID, false otherwise.

Comments Cursor IDs can generally be used interchangeably with row IDs. If
you are using a cursor, however, it is more efficient to use a cursor
ID.

See Also DbIsRowID()

Schema Databases
DbIsRowInCategory

Exploring Palm OS: Memory, Databases, and Files 369

DbIsRowID Function
Purpose Determine whether a specified ID is a row ID.

Declared In SchemaDatabases.h

Prototype Boolean DbIsRowID (uint32_t uniqueID)

Parameters → uniqueID
The ID to be checked.

Returns Returns true if uniqueID is a row ID, false otherwise.

Comments Cursor IDs can generally be used interchangeably with row IDs. If
you are using a cursor, however, it is more efficient to use a cursor
ID.

See Also DbIsCursorID()

DbIsRowInCategory Function
Purpose Determine whether a row is a member of the specified categories,

depending on the given match mode criteria.

Declared In SchemaDatabases.h

Prototype status_t DbIsRowInCategory (DmOpenRef dbRef,
uint32_t rowID, uint32_t numCategories,
const CategoryID categoryIDs[],
DbMatchModeType matchMode,
Boolean *pIsInCategory)

Parameters → dbRef
DmOpenRef to an open database.

→ rowID
Row ID or cursor ID identifying the row for which category
membership is to be checked.

→ numCategories
Number of categories in the categoryIDs array.

→ categoryIDs
Array of category ID values.

→ matchMode
One of the following values:

Schema Databases
DbIsRowInCategory

370 Exploring Palm OS: Memory, Databases, and Files

DbMatchAny
(OR) Set pIsInCategory to true if the row
membership includes any of the categories specified
in the categoryIDs array.

DbMatchAll
(AND) Set pIsInCategory to true if the row
membership includes all of the categories specified in
the categoryIDs array, including rows with
additional category membership.

DbMatchExact
Set pIsInCategory to true if the row membership
exactly matches the categories specified in the
categoryIDs array.

← pIsInCategory
true if the row at the given index position has membership
in the given category set according to the supplied match
mode value. false otherwise.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

dmErrInvalidParam
dbRef doesn’t reference an open database, rowID isn’t a row
or cursor ID, numCategories is zero and categoryIDs is
not NULL, numCategories is nonzero and categoryIDs is
NULL, or matchMode isn’t one of the allowable values.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrUniqueIDNotFound
The specified row ID doesn’t reference a row within the
database.

dmErrRecordDeleted
The indicated row is marked as deleted.

dmErrMemError
A memory error occurred.

Comments To check whether a row has no category membership (that is, it
belongs to the “Unfiled” category), set numCategories to 0 and
categoryIDs to NULL.

Schema Databases
DbIsSortingEnabled

Exploring Palm OS: Memory, Databases, and Files 371

This function might always return false if

• none of the supplied category IDs is a valid category ID, and
the supplied match mode criteria value is DbMatchAny.

• any of the supplied category IDs is not a valid category ID,
and the supplied match mode criteria value is either
DbMatchAll or DbMatchExact.

See Also DbGetCategory()

DbIsSortingEnabled Function
Purpose Determine whether a given database keeps its contents sorted

according to one or more sort indices.

Declared In SchemaDatabases.h

Prototype status_t DbIsSortingEnabled (DmOpenRef dbP,
Boolean *enableP)

Parameters → dbP
DmOpenRef to an open database.

← enableP
true if the database contents are kept sorted, false
otherwise.

Returns Returns errNone if the operation completed successfully, or one of
the following if an error occurred:

dmErrInvalidParam
dbRef doesn’t reference an open database.

dmErrNotSchemaDatabase
The specified database is not a schema database.

See Also DbEnableSorting()

Schema Databases
DbMoveCategory

372 Exploring Palm OS: Memory, Databases, and Files

DbMoveCategory Function
Purpose Change the category membership for rows meeting a set of category

criteria to a specified category.

Declared In SchemaDatabases.h

Prototype status_t DbMoveCategory (DmOpenRef dbRef,
CategoryID toCategory,
uint32_t numFromCategories,
const CategoryID fromCategoryIDs[],
DbMatchModeType matchMode)

Parameters → dbRef
DmOpenRef to an open database.

→ toCategory
Category ID to which row membership should be moved.

→ numFromCategories
Number of elements in the fromCategoryIDs array.

→ fromCategoryIDs
Array of category ID values from which row membership is
to be moved.

→ matchMode
One of the following values:

DbMatchAny
(OR) Replace category membership for rows with
membership that includes any of the categories
specified in the fromCategoryIDs array.

DbMatchAll
(AND) Replace category membership for rows with
membership that includes all of the categories
specified in the fromCategoryIDs array, including
rows with additional category membership.

DbMatchExact
Replace category membership for rows with
membership that exactly matches the categories
specified in the fromCategoryIDs array.

Returns Returns errNone if the operation completed successfully, or one of
the following if an error occurred:

Schema Databases
DbMoveCategory

Exploring Palm OS: Memory, Databases, and Files 373

dmErrInvalidParam
dbRef doesn’t reference an open database, numCategories
is zero and fromCategoryIDs is not NULL,
numCategories is nonzero and fromCategoryIDs is
NULL, or matchMode isn’t one of the allowable values.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrReadOnly
The specified database is a read-only database or is open in
read-only mode.

dmErrMemError
A memory error occurred.

dmErrInvalidCategory
One or more of the specified categories is not a valid
category.

dmErrRecordBusy
At least one of the database’s rows is in use and cannot be
updated.

Comments The database must be opened with write access.

An application can also move row membership from no
membership (“Unfiled”) to membership in a single category by

• specifying a valid category ID value for the toCategory
parameter, AND

• specifying NULL for the fromCategoryIDs parameter and 0
for numFromCategories. In this case, the matchMode
parameter is ignored.

This function might perform no action if

• none of the category IDs in fromCategoryIDs are valid
and the match mode criteria value is DbMatchAny.

• any of the category IDs in fromCategoryIDs are not valid
and the match mode criteria value is either DbMatchAll or
DbMatchExact.

See Also DbRemoveCategoryAllRows()

Schema Databases
DbNumCategory

374 Exploring Palm OS: Memory, Databases, and Files

DbNumCategory Function
Purpose Determine how many categories a specified row is a member of.

Declared In SchemaDatabases.h

Prototype status_t DbNumCategory (DmOpenRef dbRef,
uint32_t rowID, uint32_t *pNumCategories)

Parameters → dbRef
DmOpenRef to an open database.

→ rowID
Row ID or cursor ID identifying the row being analyzed.

← pNumCategories
The number of categories of which the row is a member.

Returns Returns errNone if the operation completed successfully, or one of
the following if an error occurred:

dmErrInvalidParam
dbRef doesn’t reference an open database, rowID isn’t a row
or cursor ID, or pNumCategories is NULL.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrUniqueIDNotFound
The specified row ID doesn’t reference a row within the
database.

dmErrRecordDeleted
The indicated row is marked as deleted.

dmErrMemError
A memory error occurred.

See Also DbGetCategory()

Schema Databases
DbNumColumns

Exploring Palm OS: Memory, Databases, and Files 375

DbNumColumns Function
Purpose Get the number of columns in a specified table.

Declared In SchemaDatabases.h

Prototype status_t DbNumColumns (DmOpenRef dbRef,
const char *table, uint32_t *columnCountP)

Parameters → dbRef
DmOpenRef to an open database.

→ table
Table name.

← columnCountP
The number of columns in the table.

Returns Returns errNone if the operation completed successfully, or one of
the following if there was an error:

dmErrInvalidParam
dbRef doesn’t reference an open database or table is NULL.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrInvalidTableName
The database doesn’t contain a table with the specified name.

Comments Column IDs are zero-based. That is, they range from zero to one less
than the value returned by this function.

Example You can easily iterate through all of the columns in a table by doing
something like this:

uint32_t numCols;
uint32_t idx;
uint32_t colID;

err = DbNumColumns(myDatabase, myTableName, &numCols);
for(idx = 0; idx < numCols; idx++){
 err = DbGetColumnID(myDatabase, myTableName, idx, &colID);
 // do something based upon colID here
}

See Also DbGetAllColumnDefinitions(),
DbGetColumnDefinitions(), DbGetColumnID()

Schema Databases
DbNumSortIndexes

376 Exploring Palm OS: Memory, Databases, and Files

DbNumSortIndexes Function
Purpose Get the number of sort indices defined for a given database.

Declared In SchemaDatabases.h

Prototype status_t DbNumSortIndexes (DmOpenRef dbRef,
uint32_t *countP)

Parameters → dbRef
DmOpenRef to an open database.

← countP
The number of sort indices defined for the database.

Returns dmErrInvalidParam
dbRef doesn’t reference an open database.

dmErrNotSchemaDatabase
The specified database is not a schema database.

Comments This function returns the number of sort indices that are defined for
a specified database. The index values of those sort indices range
from 0 to one less than the value that this function returns. Most
functions that take a sort index as an argument require the SQL
statement used to create the sort index.

Example Code that iterates through all of the sort indices in a database might
look something like this:

uint32_t numSortIndexes, idx;
char *sortIndex;

err = DbNumSortIndexes(myDatabase, &numSortIndexes);
if (err == errNone){
 for (idx = 0; idx < numSortIndexes; idx++){
 err = DbGetSortDefinition(myDatabase, idx, &sortIndex);
 if (err == errNone){
 // process sort index here. The SQL is in *sortIndex
 }
 }
}

See Also DbGetSortDefinition(), DbHasSortIndex()

Schema Databases
DbNumTables

Exploring Palm OS: Memory, Databases, and Files 377

DbNumTables Function
Purpose Get the number of tables defined for a given database.

Declared In SchemaDatabases.h

Prototype status_t DbNumTables (DmOpenRef dbRef,
uint32_t *tableCountP)

Parameters → dbRef
DmOpenRef to an open database.

← tableCountP
The number of schemas defined for the database.

Returns Returns errNone if no error, or one of the following if an error
occurred:

dmErrInvalidParam
dbRef doesn’t reference an open database.

dmErrNotSchemaDatabase
The specified database is not a schema database.

Comments This function returns the number of tables that a specified database
contains. The indices of those tables range from 0 to one less than
the value that this function returns. Most functions that take a table
as an argument require the table’s name.

Example Code that iterates through all of the tables in a database might look
something like this:

uint32_t numTables, idx;
char tblName[dbDBNameLength];

err = DbNumTables(myDatabase, &numTables);
if (err == errNone){
 for (idx = 0; idx < numTables; idx++){
 err = DbGetTableName(myDatabase, idx, tblName);
 if (err == errNone){
 // process table here
 }
 }
}

See Also DbGetTableName()

Schema Databases
DbOpenDatabase

378 Exploring Palm OS: Memory, Databases, and Files

DbOpenDatabase Function
Purpose Open a schema database and return a reference to it.

Declared In SchemaDatabases.h

Prototype DmOpenRef DbOpenDatabase (DatabaseID dbID,
DmOpenModeType mode, DbShareModeType share)

Parameters → dbID
The database ID of the schema database to be opened.

→ mode
Access mode with which to open the database. See
DmOpenModeType for the set of values that you can supply
for this parameter.

→ share
How the database can be accessed by other applications
while your application has it open. See the definition of
DbShareModeType for the set of values that you can supply
for this parameter.

Returns A DmOpenRef to the open database. This function may display a
fatal error message if dbID is NULL. For all other errors, this
function returns 0; call DmGetLastErr() to obtain an error code
indicating the reason for failure.

Comments The database must exist and either the application or the user—or
both—must have correct access to open the database in the specified
mode.

IMPORTANT: When called from the main application thread,
this function may block. While blocked, the application will not
receive events and won’t redraw its windows. As well, deferred
sublaunches and notifications won’t execute while the main
application thread is blocked.

See Also DbCloseDatabase(), DbOpenDatabaseByName()

Schema Databases
DbOpenDatabaseByName

Exploring Palm OS: Memory, Databases, and Files 379

DbOpenDatabaseByName Function
Purpose Open the most recent revision of a schema database with the given

name and creator and return a reference to it.

Declared In SchemaDatabases.h

Prototype DmOpenRef DbOpenDatabaseByName (uint32_t creator,
const char *name, DmOpenModeType mode,
DbShareModeType share)

Parameters → creator
Schema database creator.

→ name
Schema database type.

→ mode
Access mode with which to open the database. See
DmOpenModeType for the set of values that you can supply
for this parameter.

→ share
How the database can be accessed by other applications
while your application has it open. See the definition of
DbShareModeType for the set of values that you can supply
for this parameter.

Returns A DmOpenRef to the open database. This function may display a
fatal error message if dbID is NULL. For all other errors, this
function returns 0; call DmGetLastErr() to obtain an error code
indicating the reason for failure.

Comments The database must exist and either the application or the user—or
both—must have correct access to open the database in the specified
mode.

IMPORTANT: When called from the main application thread,
this function may block. While blocked, the application will not
receive events and won’t redraw its windows. As well, deferred
sublaunches and notifications won’t execute while the main
application thread is blocked.

See Also DbCloseDatabase(), DbOpenDatabase()

Schema Databases
DbReleaseStorage

380 Exploring Palm OS: Memory, Databases, and Files

DbReleaseStorage Function
Purpose Release memory that was allocated by the operating system and

returned to your application as the result of a function call such as
DbGetColumnValues().

Declared In SchemaDatabases.h

Prototype status_t DbReleaseStorage (DmOpenRef dbRef,
void *ptr)

Parameters → dbRef
DmOpenRef to an open database.

→ ptr
Pointer to the memory to be released. This block of memory
must have been allocated by the operating system during the
course of a call to one of the functions listed in the Comments
section, below.

Returns Returns errNone if the operation completed successfully, or one of
the following if an error occurred:

dmErrInvalidParam
dbRef is NULL or ptr is NULL.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrReadOnly
The specified database is a read-only database or is open in
read-only mode.

dmErrCantFind
The block wasn’t allocated by calling one of the functions
listed in the Comments section, below.

dmErrInvalidID
A column value cannot be freed because the ID of the row
containing the value is invalid.

dmErrUniqueIDNotFound
A column value cannot be freed because the row containing
the value cannot be located.

dmErrInvalidTableName
A column property value cannot be freed because the table
name is no longer valid.

Schema Databases
DbRemoveCategory

Exploring Palm OS: Memory, Databases, and Files 381

dmErrInvalidColumnName
A column property value cannot be freed because the name
of the column is no longer valid.

dmErrInvalidColumnID
A column property value cannot be freed because the
column’s ID is no longer valid.

Comments Releases memory allocated by the following functions:

• DbGetColumnValue()

• DbGetColumnValues()

• DbGetAllColumnValues()

• DbGetColumnPropertyValue()

• DbGetColumnPropertyValues()

• DbGetAllColumnPropertyValues()

• DbGetColumnDefinitions()

• DbGetAllColumnDefinitions()

DbRemoveCategory Function
Purpose Remove membership in the specified categories from a single row.

Declared In SchemaDatabases.h

Prototype status_t DbRemoveCategory (DmOpenRef dbRef,
uint32_t rowID, uint32_t numToRemove,
const CategoryID categoryIDs[])

Parameters → dbRef
DmOpenRef to an open database.

→ rowID
Row ID or cursor ID identifying the row for which category
membership is to be altered.

→ numToRemove
Number of categories in the categoryIDs array.

→ categoryIDs
Array of category IDs indicating those categories for which
the specified row is no longer to be a member.

Schema Databases
DbRemoveCategory

382 Exploring Palm OS: Memory, Databases, and Files

Returns Returns errNone if the operation completed successfully, or one of
the following if an error occurred:

dmErrInvalidParam
dbRef doesn’t reference an open database, rowID isn’t a row
or cursor ID, or numToRemove is nonzero and
categoryIDs is NULL.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrReadOnly
The specified database is a read-only database or is open in
read-only mode.

dmErrUniqueIDNotFound
The specified row ID doesn’t reference a row within the
database.

dmErrMemError
A memory error occurred.

dmErrInvalidCategory
One or more of the specified categories is not a valid
category.

dmErrRecordBusy
The row is in use and cannot be updated.

Comments This function removes the specified category memberships from the
specified row but does not remove the actual category definitions
themselves, which are defined at the database level.

The database must be opened with write access. The specified
category IDs must be valid.

This function ignores category IDs for which the specified row is not
a member. If the categoryIDs array contains multiple instances of
a given category ID, the category membership is removed when the
first instance is encountered; the remaining instances are ignored.

See Also DbAddCategory(), DbMoveCategory(),
DbRemoveCategoryAllRows(), DbSetCategory()

Schema Databases
DbRemoveCategoryAllRows

Exploring Palm OS: Memory, Databases, and Files 383

DbRemoveCategoryAllRows Function
Purpose Remove category membership in the specified categories from all

rows in the database, depending on the match mode criteria.

Declared In SchemaDatabases.h

Prototype status_t DbRemoveCategoryAllRows
(DmOpenRef dbRef, uint32_t numCategories,
const CategoryID categoryIDs[],
DbMatchModeType matchMode)

Parameters → dbRef
DmOpenRef to an open database.

→ numCategories
Number of categories in the categoryIDs array.

→ categoryIDs
Array of category IDs indicating those categories for which
the specified row is no longer to be a member.

→ matchMode
One of the following values:

DbMatchAny
(OR): Remove categories from rows matching any of
the specified categories.

DbMatchAll
(AND): Remove categories from rows matching all of
the specified categories, including rows with
additional category membership.

DbMatchExact
Remove categories from rows matching exactly the
specified categories.

Returns Returns errNone if the operation completed successfully, or one of
the following if an error occurred:

dmErrInvalidParam
dbRef doesn’t reference an open database, numCategories
is zero and categoryIDs is not NULL, numCategories is
nonzero and categoryIDs is NULL, or matchMode isn’t one
of the allowable values.

Schema Databases
DbRemoveColumn

384 Exploring Palm OS: Memory, Databases, and Files

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrReadOnly
The specified database is a read-only database or is open in
read-only mode.

dmErrMemError
A memory error occurred.

dmErrInvalidCategory
One or more of the specified categories is not a valid
category.

dmErrRecordBusy
At least one of the database’s rows is in use and cannot be
updated.

Comments This function removes the specified category memberships from the
specified row but does not remove the actual category definitions
themselves, which are defined at the database level.

The database must be opened with write access. The specified
category IDs must be valid.

This function might perform no action if

• none of the supplied category IDs are valid and the match
mode is DbMatchAny.

• any of the category IDs are not valid and the match mode is
either DbMatchAll or DbMatchExact.

See Also DbAddCategory(), DbRemoveCategory(), DbSetCategory()

DbRemoveColumn Function
Purpose Remove a column definition from a specified database schema and

remove that column’s data for all table rows described by that
schema.

Declared In SchemaDatabases.h

Prototype status_t DbRemoveColumn (DmOpenRef dbRef,
const char *table, uint32_t columnID)

Parameters → dbRef
DmOpenRef to an open database.

Schema Databases
DbRemoveColumn

Exploring Palm OS: Memory, Databases, and Files 385

→ table
Table name.

→ columnID
ID of the column being removed.

Returns Returns errNone if the operation completed successfully, or one of
the following if an error occurred:

dmErrInvalidParam
dbRef doesn’t reference an open database, or table is
NULL.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrReadOnly
The database is not open for write access.

dmErrAccessDenied
You do not have authorization to modify the schema.

dmErrInvalidTableName
The database doesn’t contain a table with the specified name.

dmErrColumnDefinitionsLocked
The table’s column definitions are locked.

dmErrInvalidColSpec
The table has no columns defined.

dmErrInvalidColumnID
The specified table doesn’t have a column with the supplied
column ID.

dmErrRecordBusy
One or more rows are in use and cannot be modified.

dmErrMemError
A memory error occurred.

See Also DbAddColumn(), DbRemoveColumnProperty()

Schema Databases
DbRemoveColumnProperty

386 Exploring Palm OS: Memory, Databases, and Files

DbRemoveColumnProperty Function
Purpose Remove a single column property from a database table.

Declared In SchemaDatabases.h

Prototype status_t DbRemoveColumnProperty (DmOpenRef dbRef,
const char *table, uint32_t columnID,
DbSchemaColumnProperty propID)

Parameters → dbRef
DmOpenRef to an open database.

→ table
Table name.

→ columnID
ID of the column for which the property is being removed.

→ propID
ID of the column property being removed.

Returns Returns errNone if the operation completed successfully, or one of
the following if an error occurred:

dmErrInvalidParam
dbRef doesn’t reference an open database, or table is
NULL.

dmErrBuiltInProperty
The column property you are trying to remove is a built-in
property; it cannot be removed.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrReadOnly
The database is not open for write access.

dmErrAccessDenied
You do not have authorization to modify the schema.

dmErrInvalidTableName
The database doesn’t contain a table with the specified name.

dmErrColumnDefinitionsLocked
The table’s column definitions are locked.

dmErrInvalidColSpec
The table has no columns defined.

Schema Databases
DbRemoveRow

Exploring Palm OS: Memory, Databases, and Files 387

dmErrInvalidColumnID
The specified table doesn’t have a column with the supplied
column ID.

dmErrColumnPropertiesLocked
The specified column property is locked.

dmErrInvalidPropID
The specified column property ID doesn’t reference a column
within the table.

Comments This function removes the property corresponding to propID. The
memory associated with the property value is freed.

See Also DbSetColumnPropertyValue(), DbRemoveColumn()

DbRemoveRow Function
Purpose Remove a row from a database and dispose of its data chunks.

Declared In SchemaDatabases.h

Prototype status_t DbRemoveRow (DmOpenRef dbRef,
uint32_t rowID)

Parameters → dbRef
DmOpenRef to an open database.

→ rowID
Row ID or cursor ID identifying the row being removed.

Returns Returns errNone if the row was successfully removed, or one of the
following if an error occurred:

dmErrInvalidParam
dbRef doesn’t reference an open database, rowID isn’t a
cursor or row ID, or rowID is a cursor ID but doesn’t
represent a valid row within the cursor.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrReadOnly
The database is not open for write access.

dmErrRecordBusy
The specified row is in use and cannot be removed.

Schema Databases
DbRemoveSecretRows

388 Exploring Palm OS: Memory, Databases, and Files

memErrNotEnoughSpace
A memory error occurred.

See Also DbArchiveRow(), DbCursorRemoveAllRows(),
DbDeleteRow(), DbInsertRow(), DbRemoveSecretRows()

DbRemoveSecretRows Function
Purpose Remove all secret rows from the database.

Declared In SchemaDatabases.h

Prototype status_t DbRemoveSecretRows (DmOpenRef dbRef)

Parameters → dbRef
DmOpenRef to an open database.

Returns Returns errNone if the operation completed successfully, or one of
the following if an error occurred:

dmErrInvalidParam
dbRef doesn’t reference an open database.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrReadOnly
The database is not open for write access.

dmErrRecordBusy
At least one of the database’s secret rows is in use and cannot
be removed.

memErrNotEnoughSpace
A memory error occurred.

See Also DbRemoveRow()

Schema Databases
DbRemoveSortIndex

Exploring Palm OS: Memory, Databases, and Files 389

DbRemoveSortIndex Function
Purpose Remove a sort index from a database.

Declared In SchemaDatabases.h

Prototype status_t DbRemoveSortIndex (DmOpenRef dbRef,
const char *orderBy)

Parameters → dbRef
DmOpenRef to an open database.

→ orderBy
The sort index to be removed. See “The SELECT Statement”
on page 37 for the format of this parameter.

Returns Returns errNone if the operation completed successfully, or one of
the following if an error occurred:

dmErrInvalidParam
dbRef doesn’t reference an open database.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrReadOnly
The database is not open for write access.

dmErrAccessDenied
You do not have authorization to modify the database.

dmErrSQLParseError
The specified table name or the sort information specified in
the sort index is invalid.

dmErrInvalidSortDefn
The specified sort index isn’t defined for this database.

dmErrMemError
A memory error occurred.

Comments The database must exist and the application or user—or both—must
have write authorization to the database. The specified sort index
must also exist.

See Also DbAddSortIndex(), DbHasSortIndex()

Schema Databases
DbRemoveTable

390 Exploring Palm OS: Memory, Databases, and Files

DbRemoveTable Function
Purpose Remove a table definition from a schema database.

Declared In SchemaDatabases.h

Prototype status_t DbRemoveTable (DmOpenRef dbRef,
const char *table)

Parameters → dbRef
DmOpenRef to an open database.

→ table
Table name.

Returns Returns errNone if the operation completed successfully, or one of
the following if an error occurred:

dmErrInvalidParam
dbRef doesn’t reference an open database, or table is
NULL.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrInvalidTableName
table is not the name of a table in the specified database.

dmErrReadOnly
You’ve attempted to write to or modify a database that is
open in read-only mode.

dmErrAccessDenied
You do not have authorization to modify the database, or one
or more sort indices are defined for the table.

dmErrTableNotEmpty
The table contains one or more non-deleted rows.

Comments You cannot remove a table if it contains one or more non-deleted
rows or if any sort indices are defined for the table. You must first
delete or remove any such rows and sort indices before you can
remove the table.

See Also DbAddTable()

Schema Databases
DbSetCategory

Exploring Palm OS: Memory, Databases, and Files 391

DbSetCategory Function
Purpose Set category membership for a single database row.

Declared In SchemaDatabases.h

Prototype status_t DbSetCategory (DmOpenRef dbRef,
uint32_t rowID, uint32_t numToSet,
const CategoryID categoryIDs[])

Parameters → dbRef
DmOpenRef to an open database.

→ rowID
Row ID or cursor ID identifying the row for which category
membership is being set.

→ numToSet
Number of category IDs in the categoryIDs array.

→ categoryIDs
Array of category IDs identifying the categories that the row
is to be a member of. Upon successful completion, the row is
a member only of those categories identified in this array.

Returns Returns errNone if the operation completed successfully, or one of
the following if an error occurred:

dmErrInvalidParam
dbRef doesn’t reference an open database, the specified row
or cursor ID is not valid, or numToASet is nonzero and
categoryIDs is NULL.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrReadOnly
The database is not open for write access.

dmErrIndexOutOfRange
The specified row or cursor ID doesn’t reference a row within
the table.

dmErrRecordDeleted
The specified row is marked as deleted.

dmErrRecordBusy
The specified row is in use and cannot be updated.

Schema Databases
DbSetColumnPropertyValue

392 Exploring Palm OS: Memory, Databases, and Files

dmErrMemError
A memory error occurred.

dmErrInvalidCategory
The allowed number of categories has been exceeded, or a
category ID doesn’t correspond to a defined category.

Comments Any previous category membership for the row is overwritten by
the specified category membership. To remove all category
membership from a row (making it “Unfiled”), set numToSet to 0
and categoryIDs to NULL.

The database must be opened with write access. The supplied
category IDs must be valid.

If a given category ID occurs more than once in the category ID
array, the row is made a member of the category and the duplicate
category IDs are ignored.

See Also DbAddCategory(), DbGetCategory(), DbRemoveCategory()

DbSetColumnPropertyValue Function
Purpose Set a single property value for a database column property.

Declared In SchemaDatabases.h

Prototype status_t DbSetColumnPropertyValue
(DmOpenRef dbRef, const char *table,
uint32_t columnID,
DbSchemaColumnProperty propID,
uint32_t numBytes, const void *propValueP)

Parameters → dbRef
DmOpenRef to an open database.

→ table
Table name.

→ columnID
ID of the column for which the property value is being set.

→ propID
ID of the property being set.

→ numBytes
Size, in bytes, of the property value.

Schema Databases
DbSetColumnPropertyValue

Exploring Palm OS: Memory, Databases, and Files 393

→ propValueP
The property value.

Returns Returns errNone if the property value was successfully set, or one
of the following otherwise:

dmErrInvalidParam
dbRef doesn’t reference an open database, table is NULL,
or numBytes is nonzero and propValueP is NULL.

dmErrBuiltInProperty
The specified property is a built-in property.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrReadOnly
The database is not open for write access.

dmErrAccessDenied
You are not authorized to write to this table.

dmErrInvalidTableName
table isn’t defined within this database.

dmErrInvalidColumnID
The table doesn’t have a column with the specified column
ID.

dmErrColumnPropertiesLocked
The specified column property is locked.

dmErrMemError
A memory error occurred.

memErrNotEnoughSpace
A memory error occurred.

Comments This function frees the existing column property value and copies
the supplied property value to the storage heap. Because it makes a
copy of the property value, after calling this function your
application can free any local copy of the property value.

See Also DbGetColumnPropertyValue(),
DbSetColumnPropertyValues()

Schema Databases
DbSetColumnPropertyValues

394 Exploring Palm OS: Memory, Databases, and Files

DbSetColumnPropertyValues Function
Purpose Set one or more database column property values.

Declared In SchemaDatabases.h

Prototype status_t DbSetColumnPropertyValues
(DmOpenRef dbRef, const char *table,
uint32_t numProps,
const DbColumnPropertyValueType propValues[])

Parameters → dbRef
DmOpenRef to an open database.

→ table
Table name.

→ numProps
Number of elements in the propValues array.

→ propValues
Array of structures, each of which identifies a column, a
property, and a property value. See
DbColumnPropertyValueType for a description of the
structure.

Returns Returns errNone if the property value was successfully set, or one
of the following otherwise:

dmErrInvalidParam
dbRef doesn’t reference an open database, table is NULL,
numProps is nonzero, or propValues is NULL.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrReadOnly
The database is not open for write access.

dmErrAccessDenied
You are not authorized to write to this table.

dmErrInvalidTableName
table isn’t defined within this database.

dmErrInvalidColumnID
One of the specified column IDs doesn’t correspond to a table
column.

Schema Databases
DbSetRowAttr

Exploring Palm OS: Memory, Databases, and Files 395

dmErrColumnPropertiesLocked
One of the column properties is locked.

dmErrMemError
A memory error occurred.

memErrNotEnoughSpace
A memory error occurred.

Comments This function creates a column property if it does not exist and frees
an existing column property value if the column property already
exists. It copies the supplied property values to the storage heap.
Because it makes a copy of each supplied property value, after
calling this function your application can free any local copies of the
property values.

See Also DbGetColumnPropertyValues(),
DbSetColumnPropertyValue()

DbSetRowAttr Function
Purpose Set the attributes of a row.

Declared In SchemaDatabases.h

Prototype status_t DbSetRowAttr (DmOpenRef dbRef,
uint32_t rowID, uint16_t *attrP)

Parameters → dbRef
DmOpenRef to an open database.

→ rowID
Row ID or cursor ID identifying the row for which attributes
are being set.

→ attrP
Pointer to the new attributes for the row.

Returns Returns errNone if the attributes were set successfully, or one of
the following if an error occurred:

dmErrNotRecordDB
You’ve attempted to perform a row function on a resource
database.

dmErrIndexOutOfRange
The specified index is out of range.

Schema Databases
DbWriteColumnValue

396 Exploring Palm OS: Memory, Databases, and Files

dmErrReadOnly
You’ve attempted to write to or modify a database that is
open in read-only mode.

Comments Row attributes are documented under “Schema Database Row
Attributes” on page 300. This function can be used only to set those
attributes that are not system-only attributes (system-only attributes
are those that make up dbSysOnlyRecAttrs).

See Also DbGetRowAttr()

DbWriteColumnValue Function
Purpose Write a single column value for a row.

Declared In SchemaDatabases.h

Prototype status_t DbWriteColumnValue (DmOpenRef dbRef,
uint32_t rowID, uint32_t columnID,
uint32_t offset, int32_t bytesToReplace,
const void *srcP, uint32_t srcBytes)

Parameters → dbRef
DmOpenRef to an open database.

→ rowID
The row ID or cursor ID identifying the row for which the
column value is being written.

→ columnID
ID of the column being written.

→ offset
For variable-length columns, an offset, in bytes, to the
location within the column where the value is to be written.

→ bytesToReplace
For variable-length columns, the number of data bytes to be
replaced by the write operation, or -1 to replace all of the
column’s data for the row.

→ srcP
Data to write into the column.

→ srcBytes
Number of bytes to write.

Schema Databases
DbWriteColumnValue

Exploring Palm OS: Memory, Databases, and Files 397

Returns Returns errNone if the data was successfully written, or one of the
following otherwise:

dmErrInvalidParam
dbP doesn’t reference an open database, or rowID isn’t a row
or cursor ID.

dmErrCursorBOF
The specified cursor ID is BOF.

dmErrCursorEOF
The specified cursor ID is EOF.

dmErrUniqueIDNotFound
The specified row ID doesn’t correspond to a valid row
within the table.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrReadOnly
The database is not open for write access.

dmErrRecordDeleted
The row is marked as deleted.

dmErrRecordBusy
The row is busy and cannot be written to.

dmErrInvalidTableName
The database doesn’t contain a table with the specified name.

dmErrMemError
A memory error occurred.

dmErrWriteOutOfBounds
The write exceeded the bounds of the column.

memErrNotEnoughSpace
A memory error occurred.

Comments To remove existing column data, set srcP to NULL. If srcP is NULL,
srcBytes is ignored.

Offset-based writes are not supported for fixed-length column data
types; the offset and bytesToReplace parameters are ignored
for them. The list of column data types supporting offset based
writes are:

• VarChar

Schema Databases
DbWriteColumnValue

398 Exploring Palm OS: Memory, Databases, and Files

• Blob

• Vector

DbWriteColumnValue() does not merely replace one set of bytes
with an equal-sized set; depending on the bytesToReplace and
srcBytes parameters, the resulting value can be shorter or longer
than the original value. The following sections detail the operations
you can perform with this function.

Expand

If bytesToReplace is less than srcBytes, the resulting column
value is longer than the original value. For instance:

Original column data: "abcde"

offset: 2

bytesToReplace: 2

srcBytes: 8

*srcP: "12345678"

Updated column data: "ab12345678e"

Shrink

If bytesToReplace is greater than srcBytes, the resulting
column value is shorter than the original value. For instance:

Original column data: "abcde"

offset: 2

bytesToReplace: 3

srcBytes: 1

*srcP: "1"

Updated column data: "ab1"

Truncate

Taking the “shrink” scenario to its extreme, to simply remove a
portion of the original column data, set srcBytes to 0, as shown
here:

Original column data: "abcde"

Schema Databases
DbWriteColumnValue

Exploring Palm OS: Memory, Databases, and Files 399

offset: 2

bytesToReplace: 3

srcBytes: 0

*srcP: NULL

Updated column data: "ab"

Insert

If bytesToReplace is 0, the data is inserted into the original
column data. For instance:

Original column data: "abcde"

offset: 2

bytesToReplace: 0

srcBytes: 5

*srcP: "12345"

Updated column data: "ab12345cde"

Append

A variant on the “insert” scenario, if the offset parameter is set to
the length of the current column data and bytesToReplace is 0,
the data being written is appended to the current column data. For
example:

Original column data: "abcde"

offset: 5

bytesToReplace: 0

srcBytes: 5

*srcP: "12345"

Updated column data: "abcde12345"

Partial Replacement

To replace a portion of the original column data without changing
the size of the column data, bytesToReplace should equal
srcBytes, as shown here:

Schema Databases
DbWriteColumnValues

400 Exploring Palm OS: Memory, Databases, and Files

Original column data: "abcde"

offset: 2

bytesToReplace: 2

srcBytes: 2

*srcP: "12"

Updated column data: "ab12e"

Complete Replacement

To completely replace a column’s data, set offset to 0 and
bytesToReplace to -1. For example:

Original column data: "abcde"

offset: 0

bytesToReplace: -1

srcBytes: 5

*srcP: "12345"

Updated column data: "12345"

See Also DbCopyColumnValue(), DbGetColumnValue(),
DbWriteColumnValues()

DbWriteColumnValues Function
Purpose Write one or more column values for a row.

Declared In SchemaDatabases.h

Prototype status_t DbWriteColumnValues (DmOpenRef dbRef,
uint32_t rowID, uint32_t numColumnValues,
DbSchemaColumnValueType *columnValuesP)

Parameters → dbRef
DmOpenRef to an open database.

→ rowID
The row ID or cursor ID identifying the row for which the
column values are being written.

Schema Databases
DbWriteColumnValues

Exploring Palm OS: Memory, Databases, and Files 401

→ numColumnValues
Number of elements in the columnValuesP array.

→ columnValuesP
Array of structures, each containing a column ID and a value.

Returns Returns errNone if the data was successfully written, or one of the
following otherwise:

dmErrInvalidParam
dbP doesn’t reference an open database, or rowID isn’t a row
or cursor ID.

dmErrCursorBOF
The specified cursor ID is BOF.

dmErrCursorEOF
The specified cursor ID is EOF.

dmErrUniqueIDNotFound
The specified row ID doesn’t correspond to a valid row
within the table.

dmErrNotSchemaDatabase
The specified database is not a schema database.

dmErrReadOnly
The database is not open for write access.

dmErrRecordDeleted
The row is marked as deleted.

dmErrRecordBusy
The row is busy and cannot be written to.

dmErrInvalidTableName
The database doesn’t contain a table with the specified name.

dmErrMemError
A memory error occurred.

dmErrWriteOutOfBounds
The write exceeded the bounds of a column.

memErrNotEnoughSpace
A memory error occurred.

Schema Databases
DbWriteColumnValues

402 Exploring Palm OS: Memory, Databases, and Files

Comments A NULL value for the data field of the
DbSchemaColumnValueType structure is allowed; this removes
existing column data for the specified column and row.

See Also DbCopyColumnValues(), DbGetColumnValues(),
DbWriteColumnValue()

Exploring Palm OS: Memory, Databases, and Files 403

8
VFS Manager
The Virtual File System (VFS) Manager is a layer of software that
manages all installed file system libraries. It provides a unified API
to application developers while allowing them to seamlessly access
many different types of file systems —such as VFAT, HFS, and
NFS—on many different types of media, including Compact Flash,
Memory Stick, and SmartMedia.This chapter provides reference
material for the VFS Manager API, organized as follows:

VFS Manager Structures and Types 404

VFS Manager Constants 409

VFS Manager Functions and Macros 417

Application-Defined Functions 476

The header file VFSMgr.h declares the API that this chapter
describes.

For more information on file systems in Palm OS® and the VFS
Manager, see Chapter 3, “Virtual File Systems,” on page 69.

VFS Manager
VFS Manager Structures and Types

404 Exploring Palm OS: Memory, Databases, and Files

VFS Manager Structures and Types

FileInfoType Struct
Purpose Contains information about a specified file or directory.

Declared In VFSMgr.h

Prototype typedef struct FileInfoTag {
 uint32_t attributes;
 char *nameP;
 uint16_t nameBufLen;
 uint16_t reserved;
} FileInfoType, *FileInfoPtr

Fields attributes
Characteristics of the file or directory. See File and Directory
Attributes for the bits that make up this field.

nameP
Pointer to the buffer that receives the full name of the file or
directory. Initialize this parameter to NULL if you don’t want
to receive the name.

nameBufLen
Size of the nameP buffer, in bytes.

reserved
Reserved for future use.

Comments This information is returned as a parameter to
VFSDirEntryEnumerate().

VFS Manager
VFSAnyMountParamType

Exploring Palm OS: Memory, Databases, and Files 405

FileOrigin Typedef
Purpose Encodes references to files and directories.

Declared In VFSMgr.h

Prototype typedef uint16_t FileOrigin

FileRef Typedef
Purpose Container for a reference to an opened file or directory which is

supplied to various VFSFile... operations.

Declared In VFSMgr.h

Prototype typedef uint32_t FileRef

Comments Use VFSFileOpen() to obtain a FileRef value.

VFSAnyMountParamType Struct
Purpose A base structure for VFSSlotMountParamType,

VFSPOSEMountParamType, and other similar structures that may
be defined in the future. Use one or the other according to how you
set the mountClass parameter.

Declared In VFSMgr.h

Prototype typedef struct VFSAnyMountParamTag {
 uint16_t volRefNum;
 uint16_t size;
 uint32_t mountClass;
} VFSAnyMountParamType
typedef VFSAnyMountParamType *VFSAnyMountParamPtr

Fields volRefNum
The volume reference number. This is initially obtained
when you successfully mount a volume. It can then be used
to format a volume with VFSVolumeFormat() or unmount
a volume with VFSVolumeUnmount().

size

mountClass
Defines the type of mount to use with the specified volume.
See Volume Mount Classes for a list of mount types.

VFS Manager
VFSPOSEMountParamType

406 Exploring Palm OS: Memory, Databases, and Files

VFSPOSEMountParamType Struct
Purpose When you are mounting a volume through Palm OS® Emulator, the

vfsMountParam->mountClass must be set to
VFSMountClass_POSE. Note that ordinary applications and file
systems shouldn’t use VFSPOSEMountParamType.

Declared In VFSMgr.h

Prototype typedef struct VFSPOSEMountParamTag {
 VFSAnyMountParamType vfsMountParam;
 uint8_t poseSlotNum;
 uint8_t reserved;
 uint16_t reserved2;
} VFSPOSEMountParamType

Fields vfsMountParam
See the description of VFSAnyMountParamType for an
explanation of the fields in this structure. Set
vfsMountParam->mountClass to
VFSMountClass_POSE to mount a virtual slot.

poseSlotNum
Number of the virtual slot number to be mounted by Palm
OS Emulator.

reserved
Reserved for future use.

reserved2
Reserved for future use.

VFS Manager
VFSSlotMountParamType

Exploring Palm OS: Memory, Databases, and Files 407

VFSSlotMountParamType Struct
Purpose When you are mounting a card located in an Expansion Manager

slot, the vfsMountParam->mountClass field must be set to
VFSMountClass_SlotDriver.

Declared In VFSMgr.h

Prototype typedef struct VFSSlotMountParamTag {
 VFSAnyMountParamType vfsMountParam;
 uint16_t slotLibRefNum;
 uint16_t slotRefNum;
} VFSSlotMountParamType

Fields vfsMountParam
See the description of VFSAnyMountParamType for an
explanation of the fields in this structure. Set
vfsMountParam->mountClass to
VFSMountClass_SlotDriver to mount an Expansion
Manager slot.

slotLibRefNum
Reference number for the slot driver library allocated to the
given slot number.

slotRefNum
Number of the slot to be mounted.

VFS Manager
VolumeInfoType

408 Exploring Palm OS: Memory, Databases, and Files

VolumeInfoType Struct
Purpose Define information that is returned to VFSVolumeInfo() and used

throughout the VFS functions.

Declared In VFSMgr.h

Prototype typedef struct VolumeInfoTag {
 uint32_t attributes;
 uint32_t fsType;
 uint32_t fsCreator;
 uint32_t mountClass;
 uint16_t slotLibRefNum;
 uint16_t slotRefNum;
 uint32_t mediaType;
 uint32_t reserved;
} VolumeInfoType, *VolumeInfoPtr

Fields attributes
Characteristics of the volume. See Volume Attributes for the
bits that make up this field.

fsType
File system type for this volume. See Defined File Systems for
a list of the supported file systems.

fsCreator
Creator ID of this volume’s file system driver. This
information is used with VFSCustomControl().

mountClass
Mount class that mounted this volume. The supported
mount classes are listed under Volume Mount Classes.

slotLibRefNum
Reference to the slot driver library with which the volume is
mounted. This field is only valid when the mount class is
vfsMountClass_SlotDriver.

slotRefNum
Slot number where the card containing the volume is loaded.
This field is only valid when the mount class is
vfsMountClass_SlotDriver.

mediaType
Type of card media. See Defined Media Types in Chapter 25,
“Expansion Manager,” of Exploring Palm OS: System

VFS Manager
VFS Manager Error Codes

Exploring Palm OS: Memory, Databases, and Files 409

Management for the list of values. This field is only valid
when the mount class is vfsMountClass_SlotDriver.

reserved
Reserved for future use.

VFS Manager Constants

VFS Manager Error Codes
Purpose Error codes returned by the various VFS Manager functions.

Declared In VFSMgr.h

Constants #define vfsErrBadData (vfsErrorClass | 12)
The operation could not be completed because of invalid
data.

#define vfsErrBadName (vfsErrorClass | 14)
Invalid filename, path, or volume label.

#define vfsErrBufferOverflow (vfsErrorClass | 1)
The supplied buffer is too small.

#define vfsErrDirectoryNotFound (vfsErrorClass |
19)

Returned when the path leading up to the file does not exist.

#define vfsErrDirNotEmpty (vfsErrorClass | 13)
The directory is not empty and therefore cannot be deleted.

#define vfsErrFileAlreadyExists (vfsErrorClass |
6)

A file with this name exists already in this location.

#define vfsErrFileBadRef (vfsErrorClass | 3)
The file reference is invalid: it has been closed or was not
obtained from VFSFileOpen().

#define vfsErrFileEOF (vfsErrorClass | 7)
The file pointer is at the end of the file.

#define vfsErrFileGeneric (vfsErrorClass | 2)
Generic file error.

VFS Manager
VFS Manager Error Codes

410 Exploring Palm OS: Memory, Databases, and Files

#define vfsErrFileNotFound (vfsErrorClass | 8)
The file was not found at the specified location.

#define vfsErrFilePermissionDenied (vfsErrorClass
| 5)

The requested permissions could not be granted.

#define vfsErrFileStillOpen (vfsErrorClass | 4)
Returned from the underlying file system’s delete function if
the file is still open.

#define vfsErrIsADirectory (vfsErrorClass | 18)
This operation can only be performed on a regular file, not a
directory.

#define vfsErrNameShortened (vfsErrorClass | 20)
A volume name or filename was automatically shortened to
conform to the file system specification.

#define vfsErrNoFileSystem (vfsErrorClass | 11)
None of the installed file systems support this operation.

#define vfsErrNotADirectory (vfsErrorClass | 17)
This operation can only performed on a directory.

#define vfsErrUnimplemented (vfsErrorClass | 16)

#define vfsErrVolumeBadRef (vfsErrorClass | 9)
The volume reference number is invalid.

#define vfsErrVolumeFull (vfsErrorClass | 15)
There is insufficient space left on the volume.

#define vfsErrVolumeStillMounted (vfsErrorClass |
10)

Returned from the underlying file system’s format function if
the volume is still mounted.

VFS Manager
Defined File Systems

Exploring Palm OS: Memory, Databases, and Files 411

Defined File Systems
Purpose Identifiers for those file systems that are currently defined by the

VFS Manager. These values are used with VFSVolumeInfo() in
the VolumeInfoType.fsType parameter.

Declared In VFSMgr.h

Constants #define vfsFilesystemType_AFS 'afsu'
Unix Andrew file system

#define vfsFilesystemType_EXT2 'ext2'
Linux file system

#define vfsFilesystemType_FAT 'fats'
FAT32, FAT16, and FAT12, but only using 8.3 filenames

#define vfsFilesystemType_FFS 'ffsb'
Unix Berkeley block based file system

#define vfsFilesystemType_HFS 'hfss'
Macintosh standard hierarchical file system

#define vfsFilesystemType_HFSPlus 'hfse'
Macintosh extended hierarchical file system

#define vfsFilesystemType_HPFS 'hpfs'
OS2 High Performance file system

#define vfsFilesystemType_MFS 'mfso'
Macintosh original file system

#define vfsFilesystemType_NFS 'nfsu'
Unix Networked file system

#define vfsFilesystemType_Novell 'novl'
Novell file system

#define vfsFilesystemType_NTFS 'ntfs'
Windows NT file system

#define vfsFilesystemType_VFAT 'vfat'
FAT32, FAT16, and FAT12 extended to handle long
filenames

VFS Manager
Open Mode Constants

412 Exploring Palm OS: Memory, Databases, and Files

Open Mode Constants
Purpose Modes in which a file or directory is opened. They are used for the

openMode parameter to the VFSFileOpen() function.

Declared In VFSMgr.h

Constants #define vfsModeAll (vfsModeExclusive | vfsModeRead
| vfsModeWrite | vfsModeCreate | vfsModeTruncate
| vfsModeReadWrite | vfsModeLeaveOpen)

The complete set of open modes.

#define vfsModeCreate (0x0008U)
Create the file if it doesn't already exist. This open mode is
implemented in the VFS layer, rather than in the file system
library.

#define vfsModeExclusive (0x0001U)
Open and lock the file or directory. This mode excludes
anyone else from using the file or directory until it is closed.

#define vfsModeLeaveOpen (0x0020U)
Leave the file open even after the application exits.

#define vfsModeRead (0x0002U)
Open for read access.

#define vfsModeReadWrite (vfsModeWrite |
vfsModeRead)

Open for read/write access.

#define vfsModeTruncate (0x0010U)
Truncate the file to zero (0) bytes after opening, removing all
existing data. This open mode is implemented in the VFS
layer, rather than in the file system library.

#define vfsModeVFSLayerOnly (vfsModeCreate |
vfsModeTruncate)

Mask used to isolate those flags that are only used by the VFS
layer. These flags are not passed to the file system layer.

#define vfsModeWrite (0x0004U | vfsModeExclusive)
Open for write access.

VFS Manager
Volume Attributes

Exploring Palm OS: Memory, Databases, and Files 413

File and Directory Attributes
Purpose Bits that can be used individually or in combination when setting or

interpreting the file attributes for a given file or directory. See
VFSFileGetAttributes(), VFSFileSetAttributes(), and
the FileInfoType data structure for specific use.

Declared In VFSMgr.h

Constants #define vfsFileAttrAll (0x0000007fUL)
The complete set of file and directory attributes.

#define vfsFileAttrArchive (0x00000020UL)
Archived file or directory

#define vfsFileAttrDirectory (0x00000010UL)
Directory

#define vfsFileAttrHidden (0x00000002UL)
Hidden file or directory

#define vfsFileAttrLink (0x00000040UL)
Link to another file or directory

#define vfsFileAttrReadOnly (0x00000001UL)
Read-only file or directory

#define vfsFileAttrSystem (0x00000004UL)
System file or directory

#define vfsFileAttrVolumeLabel (0x00000008UL)
Volume label

Volume Attributes
Purpose Bits that can be used individually or in combination to make up the

attributes field in the VolumeInfoType structure.

Declared In VFSMgr.h

Constants #define vfsVolumeAttrHidden (0x00000004UL)
The volume should not be visible to the user.

#define vfsVolumeAttrReadOnly (0x00000002UL)
The volume is read only.

VFS Manager
Volume Mount Classes

414 Exploring Palm OS: Memory, Databases, and Files

#define vfsVolumeAttrSlotBased (0x00000001UL)
Reserved. Check the mount class to determine how a volume
is mounted.

Volume Mount Classes
Purpose Define how a given volume is mounted. The mountClass field in

the VFSAnyMountParamType and VolumeInfoType structures
takes on one of these values.

Declared In VFSMgr.h

Constants #define vfsMountClass_POSE 'pose'
Mount the volume through Palm OS Emulator. This is used
for testing.

#define vfsMountClass_POSE_BE 'esop'
Mount the volume through Palm OS Emulator, using big-
endan ordering. This is used for testing.

#define vfsMountClass_SlotDriver
sysFileTSlotDriver

Mount the volume with a slot driver shared library.

#define vfsMountClass_SlotDriver_BE 'sbil'
Mount the volume with a slot driver shared library, using
big-endian ordering.

Date Types
Purpose Dates that can be obtained for an open file or directory.

Declared In VFSMgr.h

Constants #define vfsFileDateAccessed (3)
Date the file was last accessed.

#define vfsFileDateCreated (1)
File creation date.

#define vfsFileDateModified (2)
Date the file was last modified.

Comments Use VFSFileGetDate() to obtain these dates for an open file or
directory, and VFSFileSetDate() to set them.

VFS Manager
Iterator Controls and Constants

Exploring Palm OS: Memory, Databases, and Files 415

Seek Origins
Purpose File positions to which an offset is added (or subtracted, if the offset

is negative) to get a seek position within the file.

Declared In VFSMgr.h

Compatibility #define vfsOriginBeginning (0)
The beginning of the file.

#define vfsOriginCurrent (1)
The current position within the file.

#define vfsOriginEnd (2)
The end of the file. Only negative offsets are allowed when
origin is set to vfsOriginEnd.

Iterator Controls and Constants
Purpose Control the directory and volume iteration process.

Declared In VFSMgr.h

Constants #define vfsIteratorStart (0L)
Start iterating.

#define vfsIteratorStop (0xffffffffL)
Iteration is complete.

#define vfsInvalidFileRef (0L)
There are no more files to be enumerated or an error
occurred.

#define vfsInvalidVolRef (0)
There are no more volumes to be enumerated or an error
occurred.

Comments To iterate the contents of a directory, use
VFSDirEntryEnumerate(). To iterate the contents of a volume,
use VFSVolumeEnumerate().

VFS Manager
Volume Mount Flags

416 Exploring Palm OS: Memory, Databases, and Files

Volume Mount Flags
Purpose Flags that control how a volume is mounted.

Declared In VFSMgr.h

Constants #define vfsMountFlagsReserved1 (0x08)
Reserved for future use.

#define vfsMountFlagsReserved2 (0x10)
Reserved for future use.

#define vfsMountFlagsReserved3 (0x20)
Reserved for future use.

#define vfsMountFlagsReserved4 (0x40)
Reserved for future use.

#define vfsMountFlagsReserved5 (0x80)
Reserved for future use.

#define vfsMountFlagsUseThisFileSystem (0x01)
Pass this flag to cause the volume to be mounted or
formatted using the file system specified by the specified file
system.

Comments Volumes can be mounted explicitly, with VFSVolumeMount(), or
as part of the volume format process, done with
VFSVolumeFormat().

Pass no flags (0) to have the VFS Manager attempt to mount or
format the volume using a file system appropriate to the slot.

Miscellaneous Constants and Definitions
Purpose The VFS Manager also includes these #defines.

Declared In VFSMgr.h

Constants #define SIZEOF_LargestVFSMountParamType (128)

#define SIZEOF_VFSAnyMountParamType (8)

#define SIZEOF_VFSPOSEMountParamType
(SIZEOF_VFSAnyMountParamType + 4)

VFS Manager
VFSCustomControl

Exploring Palm OS: Memory, Databases, and Files 417

#define SIZEOF_VFSSlotMountParamType
(SIZEOF_VFSAnyMountParamType + 4)

#define vfsFtrIDDefaultFS (1)
Feature number used in conjunction with a creator ID of
sysFileCVFSMgr to determine the device’s default
filesystem.

#define vfsFtrIDVersion (0)
Feature number used to obtain the version of the VFS
Manager in the device’s ROM. Use this number in
conjunction with a creator ID of sysFileCVFSMgr.

#define vfsHandledStartPrc (0x02)

#define vfsHandledUIAppSwitch (0x01)

#define vfsMgrVersionNum ((uint16_t)300)
The version of the VFS Manager APIs in this SDK. Compare
this to the value of the vfsFtrIDVersion feature.

VFS Manager Functions and Macros

VFSCustomControl Function
Purpose Make a custom API call to a particular file system, given its creator

ID. You can use VFSVolumeInfo() to determine the creator ID of
the file system for a given volume.

Declared In VFSMgr.h

Prototype status_t VFSCustomControl (uint32_t fsCreator,
uint32_t apiCreator, uint16_t apiSelector,
void *valueP, uint16_t *valueLenP)

Parameters → fsCreator
Creator of the file system to call. A value of zero (0) tells the
VFS Manager to check each registered file system, looking for
one which supports the call.

→ apiCreator
Registered creator ID.

VFS Manager
VFSCustomControl

418 Exploring Palm OS: Memory, Databases, and Files

→ apiSelector
Custom operation to perform.

↔ valueP
A pointer to a buffer containing data specific to the operation.
On exit, depending on the function of the particular custom
call and on the value of valueLenP, the contents of this
buffer may have been updated.

↔ valueLenP
On entry, points to the size of the valueP buffer. On exit, this
value reflects the size of the data written to the valueP
buffer. If valueLenP is NULL, valueP is passed to the file
system but is not updated on exit.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

expErrNotOpen
The file system library necessary for this call has not been
installed or has not been opened.

expErrUnsupportedOperation
The specified opcode and/or creator is unsupported or
undefined.

sysErrParamErr
The valueP buffer is too small.

vfsErrNoFileSystem
VFS Manager cannot find an appropriate file system to
handle the request.

Comments The driver identifies the call and its API by a registered creator ID
and a selector. This allows file system developers to extend the API
by defining selectors for their creator IDs. It also allows file system
developers to support selectors (and custom calls) defined by other
file system developers.

This function must return expErrUnsupportedOperation for all
unsupported or undefined opcodes and/or creators.

VFS Manager
VFSDirCreate

Exploring Palm OS: Memory, Databases, and Files 419

VFSDirCreate Function
Purpose Create a new directory.

Declared In VFSMgr.h

Prototype status_t VFSDirCreate (uint16_t volRefNum,
const char *dirNameP)

Parameters → volRefNum
Volume reference number returned from
VFSVolumeEnumerate().

→ dirNameP
Pointer to the full path of the directory to be created.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

expErrNotOpen
The file system library necessary for this call has not been
installed or has not been opened.

vfsErrBadName
Some or all of the path, up to but not including the last
component specified in the dirNameP parameter, does not
exist.

vfsErrFileAlreadyExists
A file with this name already exists in this location.

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate file system to
handle the request.

vfsErrVolumeBadRef
The volume has not been mounted.

vfsErrVolumeFull
There is not enough space left on the volume.

Comments All parts of the path except the last component must already exist.
The vfsFileAttrDirectory attribute is set with this function.

VFSDirCreate() does not open the directory. Any operations you
want to perform on this directory require a reference, which is
obtained through a call to VFSFileOpen().

VFS Manager
VFSDirEntryEnumerate

420 Exploring Palm OS: Memory, Databases, and Files

VFSDirEntryEnumerate Function
Purpose Enumerate the entries in a given directory. Entries can include files,

links, and other directories.

Declared In VFSMgr.h

Prototype status_t VFSDirEntryEnumerate (FileRef dirRef,
uint32_t *dirEntryIteratorP,
FileInfoType *infoP)

Parameters → dirRef
Directory reference returned from VFSFileOpen().

↔ dirEntryIteratorP
Pointer to the index of the last entry enumerated. For the first
iteration, initialize this parameter to the constant
vfsIteratorStart. Upon return, this references the next
entry in the directory. If infoP is the last entry, this
parameter is set to vfsIteratorStop.

↔ infoP
Pointer to the FileInfoType data structure that contains
information about the given directory entry. The nameP and
nameBufLen fields in this structure must be initialized prior
to calling VFSDirEntryEnumerate.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

expErrEnumerationEmpty
There are no directory entries left to enumerate.

expErrNotOpen
The file system library necessary for this call has not been
installed or has not been opened.

sysErrParamErr
The dirEntryIteratorP is not valid.

vfsErrFileBadRef
The specified file reference is invalid.

vfsErrIsNotADirectory
The specified file reference is valid, but does not point to a
directory.

VFS Manager
VFSDirEntryEnumerate

Exploring Palm OS: Memory, Databases, and Files 421

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate file system to
handle the request.

Comments The directory to be enumerated must first be opened with
VFSFileOpen() in order to obtain a file reference. In order to
obtain information on all entries in a directory you must make
repeated calls to VFSDirEntryEnumerate inside a loop.
Boundaries on the iteration are the defined constants
vfsIteratorStart and vfsIteratorStop. Before the first call
to VFSDirEntryEnumerate, dirEntryIteratorP should be
initialized to vfsIteratorStart. Each iteration then changes the
value pointed to by dirEntryIteratorP. When information on
the last entry in the directory is returned, dirEntryIteratorP is
set to vfsIteratorStop.

WARNING! Creating, renaming, or deleting any file or directory
invalidates the enumeration. After any such operation, the
enumeration will need to be restarted.

Example The following code excerpt illustrates how to use
VFSDirEntryEnumerate.

FileInfoType info;
FileRef dirRef;
UInt32 dirIterator;
char *fileName = MemPtrNew(256); // should check for err

// open the directory first, to get the directory reference
// volRefNum must have already been defined
err = VFSFileOpen(volRefNum, "/", vfsModeRead, &dirRef);
if(err == errNone) {

 info.nameP = fileName; // point to local buffer
 info.nameBufLen = 256;
 dirIterator = vfsIteratorStart
 while (dirIterator != vfsIteratorStop) {
 // Get the next file
 err = VFSDirEntryEnumerate (dirRef, &dirIterator,
 &info);
 if (err == errNone) {
 // Do something with the directory entry information
 // Pull the attributes from info.attributes

VFS Manager
VFSExportDatabaseToFile

422 Exploring Palm OS: Memory, Databases, and Files

 // The file name is in fileName
 } else {
 // handle error, possibly by breaking out of the
loop
 }
 } else {
 // handle directory open error here
 }
 MemPtrFree(fileName);
}

VFSExportDatabaseToFile Function
Purpose Save the specified database to a PDB or PRC file on an external

storage card.

Declared In VFSMgr.h

Prototype status_t VFSExportDatabaseToFile
(uint16_t volRefNum, const char *pathNameP,
DatabaseID dbID)

Parameters → volRefNum
Volume on which the destination file should be created.

→ pathNameP
Pointer to the complete path and name of the destination file
to be created.

→ dbID
ID of the database being exported.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

expErrNotEnoughPower
There is insufficient battery power to perform the database
export operation.

vfsErrBadName
The path name specified in pathNameP is not valid.

Comments This utility function exports a database from main memory to a PDB
or PRC file on an external storage card. This function is the opposite
of VFSImportDatabaseFromFile(). It first creates the file
specified in the pathNameP parameter with VFSFileCreate().

VFS Manager
VFSExportDatabaseToFileCustom

Exploring Palm OS: Memory, Databases, and Files 423

After opening the file the Exchange Manager function
ExgDBWrite() is called with an internal callback function for
exporting the file from the Data Manager. The Exchange Manager
makes repeated calls to this callback function, which receives the
data back in blocks. Once all the data has been exported, VFS
Manager closes the file.

This function is used, for example, to copy applications from main
memory to a storage card.

See Also VFSExportDatabaseToFileCustom(), VFSFileWrite(),
VFSImportDatabaseFromFile()

VFSExportDatabaseToFileCustom Function
Purpose Save the specified database to a PDB or PRC file on an external

storage card. This function differs from
VFSExportDatabaseToFile() in that it allows you to track the
progress of the export operation.

Declared In VFSMgr.h

Prototype status_t VFSExportDatabaseToFileCustom
(uint16_t volRefNum, const char *pathNameP,
DatabaseID dbID, VFSExportProcPtr exportProcP,
void *userDataP)

Parameters → volRefNum
Volume on which the destination file should be created.

→ pathNameP
Pointer to the complete path and name of the destination file
to be created.

→ dbID
ID of the database being exported.

→ exportProcP
User-defined callback function that tracks the progress of the
export. This function should allow the user to cancel the
export. Pass NULL if you don’t have a progress callback
function. See VFSExportProcPtr() for the requirements of
this function.

VFS Manager
VFSExportDatabaseToFileCustomV40

424 Exploring Palm OS: Memory, Databases, and Files

→ userDataP
Pointer to any data you want to pass to the callback function
specified in exportProcP. This information is not used
internally by the VFS Manager. Pass NULL if you don’t have a
progress callback function or if that function doesn’t need
any such data.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

expErrNotEnoughPower
There is insufficient battery power to perform the database
export operation.

vfsErrBadName
The path name specified in pathNameP is not valid.

This function can also return any error code other than errNone
produced by your callback function.

Comments This function is similar to VFSExportDatabaseToFile() in that
it exports a database from main memory to a PDB or PRC file on an
external storage card. It extends the functionality by allowing you to
specify a callback function that tracks the progress of the export. It
first creates the file specified in the pathNameP parameter with
VFSFileCreate(). After opening the file, the Exchange Manager
function ExgDBWrite() is called with an internal callback function
for exporting the file from the Data Manager. Exchange Manager
makes repeated calls to this function, which receives the data back
in blocks. The progress tracker, if one has been specified, is also
called every time a new chunk of data is passed back. Once all the
data has been exported, the VFS Manager closes the file.

See Also VFSExportDatabaseToFile(), VFSFileWrite(),
VFSImportDatabaseFromFileCustom()

VFSExportDatabaseToFileCustomV40 Function
Purpose Save the specified database to a PDB or PRC file on an external

storage card. This function differs from

VFS Manager
VFSExportDatabaseToFileCustomV40

Exploring Palm OS: Memory, Databases, and Files 425

VFSExportDatabaseToFile() in that it allows you to track the
progress of the export operation.

Declared In VFSMgr.h

Prototype status_t VFSExportDatabaseToFileCustomV40
(uint16_t volRefNum, const char *pathNameP,
uint16_t cardNo, LocalID dbID,
VFSExportProcPtr exportProcP, void *userDataP)

Parameters → volRefNum
Volume on which the destination file should be created.

→ pathNameP
Pointer to the complete path and name of the destination file
to be created.

→ cardNo
Card number on which the PDB or PRC being exported
resides.

→ dbID
ID of the database being exported.

→ exportProcP
User-defined callback function that tracks the progress of the
export. This function should allow the user to cancel the
export. Pass NULL if you don’t have a progress callback
function. See VFSExportProcPtr() for the requirements of
this function.

→ userDataP
Pointer to any data you want to pass to the callback function
specified in exportProcP. This information is not used
internally by the VFS Manager. Pass NULL if you don’t have a
progress callback function or if that function doesn’t need
any such data.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

expErrNotEnoughPower
There is insufficient battery power to perform the database
export operation.

vfsErrBadName
The path name specified in pathNameP is not valid.

VFS Manager
VFSExportDatabaseToFileV40

426 Exploring Palm OS: Memory, Databases, and Files

This function can also return any error code other than errNone
produced by your callback function.

Comments This function is similar to VFSExportDatabaseToFile() in that
it exports a database from main memory to a PDB or PRC file on an
external storage card. It extends the functionality by allowing you to
specify a callback function that tracks the progress of the export. It
first creates the file specified in the pathNameP parameter with
VFSFileCreate(). After opening the file, the Exchange Manager
function ExgDBWrite() is called with an internal callback function
for exporting the file from the Data Manager. Exchange Manager
makes repeated calls to this function, which receives the data back
in blocks. The progress tracker, if one has been specified, is also
called every time a new chunk of data is passed back. Once all the
data has been exported, the VFS Manager closes the file.

This function is used, for example, to copy applications from main
memory to a storage card.

Compatibility This function is only provided for compatibility with previous
versions of Palm OS; the cardNo parameter is ignored.

See Also VFSExportDatabaseToFile(), VFSFileWrite(),
VFSImportDatabaseFromFileCustom()

VFSExportDatabaseToFileV40 Function
Purpose Save the specified database to a PDB or PRC file on an external

storage card.

Declared In VFSMgr.h

Prototype status_t VFSExportDatabaseToFileV40
(uint16_t volRefNum, const char *pathNameP,
uint16_t cardNo, LocalID dbID)

Parameters → volRefNum
Volume on which the destination file should be created.

→ pathNameP
Pointer to the complete path and name of the destination file
to be created.

VFS Manager
VFSExportDatabaseToFileV40

Exploring Palm OS: Memory, Databases, and Files 427

→ cardNo
Card number on which the PDB or PRC being exported
resides.

→ dbID
ID of the database being exported.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

expErrNotEnoughPower
There is insufficient battery power to perform the database
export operation.

vfsErrBadName
The path name specified in pathNameP is not valid.

Comments This utility function exports a database from main memory to a PDB
or PRC file on an external storage card. This function is the opposite
of VFSImportDatabaseFromFile(). It first creates the file
specified in the pathNameP parameter with VFSFileCreate().
After opening the file the Exchange Manager function
ExgDBWrite() is called with an internal callback function for
exporting the file from the Data Manager. The Exchange Manager
makes repeated calls to this callback function, which receives the
data back in blocks. Once all the data has been exported, VFS
Manager closes the file.

This function is used, for example, to copy applications from main
memory to a storage card.

Compatibility This function is only provided for compatibility with previous
versions of Palm OS; the cardNo parameter is ignored.

See Also VFSExportDatabaseToFileCustom(), VFSFileWrite(),
VFSImportDatabaseFromFile()

VFS Manager
VFSFileClose

428 Exploring Palm OS: Memory, Databases, and Files

VFSFileClose Function
Purpose Close a file or directory that has been opened with

VFSFileOpen().

Declared In VFSMgr.h

Prototype status_t VFSFileClose (FileRef fileRef)

Parameters → fileRef
File reference number returned from VFSFileOpen().

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

expErrNotOpen
The file system library necessary for this call has not been
installed or has not been opened.

vfsErrFileBadRef
The specified file reference is invalid.

VFSFileCreate Function
Purpose Create a file. This function cannot be used to create a directory; use

VFSDirCreate() instead.

Declared In VFSMgr.h

Prototype status_t VFSFileCreate (uint16_t volRefNum,
const char *pathNameP)

Parameters → volRefNum
Reference number of the volume on which to create the file.
This volume reference number is returned from
VFSVolumeEnumerate().

→ pathNameP
Pointer to the full path of the file to be created. All parts of
the path, excluding the filename, must already exist.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

expErrNotOpen
The file system library necessary for this call has not been
installed or has not been opened.

VFS Manager
VFSFileDBGetRecord

Exploring Palm OS: Memory, Databases, and Files 429

vfsErrBadName
The pathNameP is invalid.

vfsErrFileAlreadyExists
A file with this name already exists in this location.

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate file system to
handle the request.

vfsErrVolumeBadRef
The volume has not been mounted.

vfsErrVolumeFull
There is not enough space left on the volume.

Comments It is the responsibility of the file system library to ensure that all
filenames are translated into a format that is compatible with the
native format of the file system, such as the 8.3 convention for a FAT
file system without long filename support. See “Naming Files” on
page 80 for a description of how to construct a valid path.

This function does not open the file. Use VFSFileOpen() to open
the file.

This function should not be used to create a directory. To create a
directory use VFSDirCreate().

See Also VFSFileDelete()

VFSFileDBGetRecord Function
Purpose Load a record from an opened PDB file on an external card into the

storage heap.

Declared In VFSMgr.h

Prototype status_t VFSFileDBGetRecord (FileRef ref,
uint16_t recIndex, MemHandle *recHP,
uint8_t *recAttrP, uint32_t *uniqueIDP)

Parameters → ref
The file reference returned from VFSFileOpen(). Note that
the open file must be a PDB file.

VFS Manager
VFSFileDBGetRecord

430 Exploring Palm OS: Memory, Databases, and Files

→ recIndex
The index of the record to load.

← recHP
Pointer to the record data’s handle in the storage heap. If
NULL is returned in this parameter there is either no data in
this field or an error occurred reading this data from the file.
If the handle is not NULL, you must dispose of the allocated
handle using MemHandleFree().

← recAttrP
Pointer to the attributes of the record. The values returned
are identical to the atttributes returned from
DmRecordInfoV50(). See “Non-Schema Database Record
Attributes” on page 108 for a description of each attribute.
Pass NULL for this parameter if you do not want to retrieve
this information.

← uniqueIDP
Pointer to the unique identifier for this record. Pass NULL for
this parameter if you do not want to retrieve this
information.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

dmErrIndexOutOfRange
The recIndex is out of range.

dmErrNotRecordDB
The file referenced by ref is not a record database.

memErrNotEnoughSpace
There is not enough space in memory for the requested
record entry.

sysErrParamErr
A NULL value was passed in for the recHP, recAttrP, and
uniqueIDP parameters.

vfsErrBadData
The local offsets (localChunkID) from the top of the PDB to
the start of the raw record data for this entry are out of order.

Comments This function is analogous to DmGetRecord() but works with files
on an external card rather than databases in main memory. This
function allocates a handle of the appropriate size from the storage

VFS Manager
VFSFileDBGetResource

Exploring Palm OS: Memory, Databases, and Files 431

heap and returns it in the recHP parameter. The caller is responsible
for freeing this memory, using MemHandleFree(), when it is no
longer needed.

NOTE: This function is not efficient for multiple accesses and
should be used sparingly.

See Also VFSFileReadData()

VFSFileDBGetResource Function
Purpose Load a resource into the storage heap from an opened PRC file.

Declared In VFSMgr.h

Prototype status_t VFSFileDBGetResource (FileRef ref,
DmResourceType type, DmResourceID resID,
MemHandle *resHP)

Parameters → ref
The file reference returned from VFSFileOpen(). Note that
the open file must be a PRC file.

→ type
The type of resource to load. See Chapter 2, “Palm OS
Databases,” for more information on resources.

→ resID
The ID of resource to load.

← resHP
Pointer to the resource data handle that was loaded into
memory.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

dmErrNotResourceDB
The file referenced by ref is not a resource database.

dmErrResourceNotFound
The requested resource was not found.

VFS Manager
VFSFileDBInfo

432 Exploring Palm OS: Memory, Databases, and Files

memErrNotEnoughSpace
There is not enough space in memory for the requested
resource entries.

sysErrParamErr
resHP is NULL.

Comments This function locates the specified resource in the open PRC file. See
Exploring Palm OS: Palm OS File Formats for more information on the
layout of PRC files.

Once the resource is found, VFSFileDBGetResource allocates a
handle of the appropriate size in the storage heap and reads it into
memory. The handle to this memory location is returned through
the resHP parameter. The caller is responsible for freeing this
memory, using MemHandleFree(), when it is no longer needed.

NOTE: This function is not efficient for multiple accesses and
should be used sparingly.

VFSFileDBInfo Function
Purpose Get information about a database represented by an open PRC or

PDB file.

Declared In VFSMgr.h

Prototype status_t VFSFileDBInfo (FileRef ref, char *nameP,
uint16_t *attributesP, uint16_t *versionP,
uint32_t *crDateP, uint32_t *modDateP,
uint32_t *bckUpDateP, uint32_t *modNumP,
MemHandle *appInfoHP, MemHandle *sortInfoHP,
uint32_t *typeP, uint32_t *creatorP,
uint16_t *numRecordsP)

Parameters → ref
The file reference returned from VFSFileOpen(). Note that
the open file must be a PRC or PDB file.

VFS Manager
VFSFileDBInfo

Exploring Palm OS: Memory, Databases, and Files 433

← nameP
Pointer to a 32-byte character array in which the database
name is returned. Pass NULL for this parameter if you do not
want to retrieve the database name.

← attributesP
Pointer to the database attributes stored in the file. The
values returned are identical to the atttributes returned from
DmDatabaseInfo(). See “Database Attributes” on page 109
for a description of each attribute. Pass NULL for this
parameter if you do not want to retrieve the database’s
attributes.

← versionP
Pointer to the application-specific version number of the
database. The default version number is zero (0). Pass NULL
for this parameter if you do not want to retrieve the version
number.

← crDateP
Pointer to the date the database was created, expressed in
seconds since midnight (00:00:00) January 1, 1904. Pass NULL
for this parameter if you do not want to retrieve the creation
date.

← modDateP
Pointer to the date the database was last modified, expressed
in seconds since midnight (00:00:00) January 1, 1904. A
database’s modification date is updated only if a change has
been made to the database when it is opened with write
access. Pass NULL for this parameter if you do not want to
retrieve the database’s modification date.

← bckUpDateP
Pointer to the date the database was last backed up,
expressed in seconds since midnight (00:00:00) January 1,
1904. Pass NULL for this parameter if you do not want to
retrieve the database’s backup date.

← modNumP
Pointer to the number of times the database was modified.
This number is updated every time a record is added,
modified, or deleted. Pass NULL for this parameter if you do
not want to retrieve the modification count.

VFS Manager
VFSFileDBInfo

434 Exploring Palm OS: Memory, Databases, and Files

← appInfoHP
Pointer to the application info block handle. If NULL is
returned in this parameter, either there is no data in this field
or an error occurred reading this data from the file. If a value
other than NULL is returned, you must dispose of the
allocated handle using MemHandleFree(). If you do not
want to retrieve the application info block, pass NULL for this
parameter.

← sortInfoHP
Pointer to the sort info block handle. If NULL is returned in
this parameter, either there is no data in this field or an error
occurred reading this data from the file. If a value other than
NULL is returned, you must dispose of the allocated handle
using MemHandleFree(). Pass NULL for this parameter if
you do not want to retrieve the sort info block handle.

← typeP
Pointer to the type of database as it was created. This may be
a user-defined database type or a database type defined by
Palm OS. Some of the more common database types returned
here are:

'appl'
Standard Palm™ application (resource database)

'libr'
Standard shared library

'libf'
File system shared library

'libs'
Slot driver shared library

'data'
Standard Palm data file (record database)

Pass NULL for this parameter if you do not want to retrieve
the database’s type.

← creatorP
Pointer to the database’s creator. Pass NULL for this
parameter if you do not want to retrieve this information.

VFS Manager
VFSFileDelete

Exploring Palm OS: Memory, Databases, and Files 435

← numRecordsP
Pointer to the number of records in the database. Pass NULL
for this parameter if you do not want to retrieve this
information.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

memErrNotEnoughSpace
There is not enough space in memory for the database
header.

vfsErrBadData
The file referenced by the ref parameter is too small to
contain a database header, or the database header is
corrupted.

Comments This function is analogous to DmDatabaseInfo(), but it works
with files on an external card rather than with databases in main
memory. See Exploring Palm OS: Palm OS File Formats for a
description of the header block in PRC and PDB files.

See Also VFSFileGetAttributes(), VFSFileGetDate()

VFSFileDelete Function
Purpose Delete a closed file or directory.

Declared In VFSMgr.h

Prototype status_t VFSFileDelete (uint16_t volRefNum,
const char *pathNameP)

Parameters → volRefNum
Volume reference number returned from
VFSVolumeEnumerate().

→ pathNameP
Pointer to the full path of the file or directory to be deleted.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

expErrNotOpen
The file system library necessary for this call has not been
installed or has not been opened.

VFS Manager
VFSFileEOF

436 Exploring Palm OS: Memory, Databases, and Files

vfsErrBadName
The path name specified in pathNameP is not valid.

vfsErrDirNotEmpty
The directory being deleted is not empty.

vfsErrFileStillOpen
The file is still open.

vfsErrFileNotFound
The file could not be found.

vfsErrFilePermissionDenied
The requested permissions could not be granted.

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate file system to
handle the request.

vfsErrVolumeBadRef
The volume has not been mounted.

VFSFileEOF Function
Purpose Get end-of-file status for an open file. This function only operates on

files and cannot be used with directories.

Declared In VFSMgr.h

Prototype status_t VFSFileEOF (FileRef fileRef)

Parameters → fileRef
File reference returned from VFSFileOpen().

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

vfsErrFileEOF
The file pointer is at the end of file.

expErrNotOpen
The file system library necessary for this call has not been
installed or has not been opened.

vfsErrFileBadRef
The specified file reference is invalid.

VFS Manager
VFSFileGetAttributes

Exploring Palm OS: Memory, Databases, and Files 437

vfsErrIsADirectory
The specified file reference points to a directory instead of a
file. This is an invalid operation on a directory.

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate file system to
handle the request.

VFSFileGetAttributes Function
Purpose Obtain the attributes of an open file or directory.

Declared In VFSMgr.h

Prototype status_t VFSFileGetAttributes (FileRef fileRef,
uint32_t *attributesP)

Parameters → fileRef
File reference returned from VFSFileOpen().

← attributesP
Pointer to the attributes associated with the file or directory.
See “File and Directory Attributes” on page 413 for a list of
values that can be returned through this parameter.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

expErrNotOpen
The file system library necessary for this call has not been
installed or has not been opened.

vfsErrFileBadRef
The specified file reference is invalid.

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate file system to
handle the request.

See Also VFSFileDBInfo(), VFSFileGetDate(), VFSFileSetAttributes()

VFS Manager
VFSFileGetDate

438 Exploring Palm OS: Memory, Databases, and Files

VFSFileGetDate Function
Purpose Obtain the dates on an open file or directory.

Declared In VFSMgr.h

Prototype status_t VFSFileGetDate (FileRef fileRef,
uint16_t whichDate, uint32_t *dateP)

Parameters → fileRef
File reference returned from VFSFileOpen().

→ whichDate
Specifies which date—creation, modification, or last access—
you want. Supply one of the values listed under “Date
Types” on page 414.

← dateP
Pointer to the requested date. This field is expressed in the
standard Palm OS date format — the number of seconds
since midnight (00:00:00) January 1, 1904.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

expErrNotOpen
The file system library necessary for this call has not been
installed or has not been opened.

expErrUnsupportedOperation
The specified date type is not supported by the underlying
file system.

vfsErrFileBadRef
The specified file reference is invalid.

sysErrParamErr
The whichDate parameter is not one of the defined
constants.

Comments Note that not all file systems are required to support all date types.
If the supplied date type is not supported by the file system,
VFSFileGetDate returns expErrUnsupportedOperation.

See Also VFSFileDBInfo(), VFSFileGetAttributes(), VFSFileSetDate()

VFS Manager
VFSFileOpen

Exploring Palm OS: Memory, Databases, and Files 439

VFSFileOpen Function
Purpose Open a file or directory and returns a reference for it.

Declared In VFSMgr.h

Prototype status_t VFSFileOpen (uint16_t volRefNum,
const char *pathNameP, uint16_t openMode,
FileRef *fileRefP)

Parameters → volRefNum
The volume reference number returned from
VFSVolumeEnumerate().

→ pathNameP
Pointer to the full path of the file or directory to be opened.
This must be a valid path. It cannot be empty and can not
contain null characters. The format of the pathname should
match what the underlying file system supports. See
“Naming Files” on page 80 for a description of how to
construct a valid path.

→ openMode
Mode to use when opening the file. See “Open Mode
Constants” on page 412 for a list of accepted modes.

← fileRefP
Pointer to the opened file or directory reference which is
supplied to various other VFSFile... operations. This
value is filled in on return.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

expErrCardReadOnly
The open mode requested includes write access but the file is
read-only.

expErrNotOpen
The file system library necessary for this call has not been
installed or has not been opened.

vfsErrBadName
The pathNameP parameter is invalid.

vfsErrFileNotFound
The specified file or directory could not be found.

VFS Manager
VFSFileOpenFromURL

440 Exploring Palm OS: Memory, Databases, and Files

vfsErrFilePermissionDenied
The file cannot be opened in the requested open mode, or it
has already been opened with vfsModeExclusive.

vfsErrVolumeBadRef
The specified volume has not been mounted.

See Also VFSFileClose(), VFSDirEntryEnumerate(),
VFSFileOpenFromURL()

VFSFileOpenFromURL Function
Purpose Open a file or directory given a URL to that file or directory.

Declared In VFSMgr.h

Prototype status_t VFSFileOpenFromURL
(const char *fileURLP, uint16_t openMode,
FileRef *fileRefP, uint16_t *numOccurrencesP)

Parameters → *fileURLP
URL to the file or directory to be opened. This must be a valid
URL. It cannot be empty and can not contain null characters.

→ openMode
Mode to use when opening the file. See “Open Mode
Constants” on page 412 for a list of accepted modes.

← fileRefP
Pointer to the opened file or directory reference number
which can then be supplied to various other VFSFile...
operations. This value is filled in on return.

← numOccurrencesP
The number of files the URL matched. Set this pointer to
NULL if you don’t need this information.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

expErrCardReadOnly
The open mode requested includes write access but the file is
read-only.

VFS Manager
VFSFileOpenFromURL

Exploring Palm OS: Memory, Databases, and Files 441

expErrNotOpen
The file system library necessary for this call has not been
installed or has not been opened.

vfsErrBadName
The pathNameP parameter is invalid.

vfsErrFileNotFound
The specified file or directory could not be found.

vfsErrFilePermissionDenied
The file cannot be opened in the requested open mode, or it
has already been opened with vfsModeExclusive.

vfsErrVolumeBadRef
The specified volume has not been mounted.

Comments VFSOpenFileFromURL() exists to aid a higher-level entity, such
as the Exchange Manager, in opening a file referenced in a URL such
as file:///VolumeName/PALM/Launcher/myApp.prc (see
Exploring Palm OS: High-Level Communications for a specification of
the URL format) This function differs from VFSFileOpen() in its
use of a volume name (in the URL) instead of a volume reference
number to differentiate the card. This difference allows the URL to
be saved in a “bookmark” and later re-used to open the same file;
this wouldn’t work with volume reference numbers since they
change with every insertion and removal of a card. In the case
where multiple cards with the same volume name are present in a
device at the same time, each card is checked for the presence of the
file, and if multiple instances of the same file are found on these
different cards the one with the most recent modification date is
opened and returned. In this instance the optional
numOccurrencesP parameter is set to the number of matching
files found.

See Also VFSFileClose(), VFSDirEntryEnumerate(),
VFSFileOpen()

VFS Manager
VFSFileRead

442 Exploring Palm OS: Memory, Databases, and Files

VFSFileRead Function
Purpose Read data from a file into the dynamic heap. This function only

operates on files and cannot be used with directories; use
VFSDirEntryEnumerate() to explore the contents of a directory.

Declared In VFSMgr.h

Prototype status_t VFSFileRead (FileRef fileRef,
uint32_t numBytes, void *bufP,
uint32_t *numBytesReadP)

Parameters → fileRef
File reference returned from VFSFileOpen().

→ numBytes
Number of bytes to read.

← bufP
Pointer to the destination chunk where the data is to be
stored. This can be a pointer to any writable memory.

← numBytesReadP
Pointer to an unsigned integer that reflects the number of
bytes actually read. This value is set on return and does not
need to be initialized. If no bytes are read the value is set to
zero. Pass NULL for this parameter if you do not need to
know how many bytes were read.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

expErrNotOpen
The file system library necessary for this call has not been
installed or has not been opened.

vfsErrFileBadRef
The specified file reference is invalid.

vfsErrFileEOF
The end of the file has been reached.

vfsErrFilePermissionDenied
Read permission is not enabled for this file.

vfsErrIsADirectory
The specified file reference is for a directory instead of a file.
This is an invalid operation on a directory.

VFS Manager
VFSFileReadData

Exploring Palm OS: Memory, Databases, and Files 443

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate file system to
handle the request.

Comments The file system does not use DmWrite() and cannot be used to read
data into the storage heap.

See Also VFSFileReadData(), VFSFileWrite(), VFSImportDatabaseFromFile()

VFSFileReadData Function
Purpose Read data from a file into a chunk of memory in the storage heap.

This function only operates on files and cannot be used with
directories; use VFSDirEntryEnumerate() to explore the
contents of a directory.

Declared In VFSMgr.h

Prototype status_t VFSFileReadData (FileRef fileRef,
uint32_t numBytes, void *bufBaseP,
uint32_t offset, uint32_t *numBytesReadP)

Parameters → fileRef
File reference returned in VFSFileOpen().

→ numBytes
Number of bytes to read.

← bufBaseP
Pointer to the destination chunk in the storage heap where
the data is to be stored. This pointer must be obtained
through the appropriate call to the Memory Manager API.

→ offset
Offset, in bytes, within the bufBaseP chunk where the data
is to be written.

← numBytesReadP
Pointer to an unsigned integer that reflects the number of
bytes actually read. This value is set on return and does not
need to be initialized. If no bytes are read, the value is set to
zero. Pass NULL for this parameter if you do not need to
know how many bytes were read.

VFS Manager
VFSFileRename

444 Exploring Palm OS: Memory, Databases, and Files

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

expErrNotOpen
The file system library necessary for this call has not been
installed or has not been opened.

vfsErrFileBadRef
The specified file reference is invalid.

vfsErrFileEOF
The end of the file has been reached.

vfsErrFilePermissionDenied
Read permission is not enabled for this file.

vfsErrIsADirectory
The specified file reference is for a directory instead of a file.
This is an invalid operation on a directory.

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate file system to
handle the request.

Comments When data is read from an external card with VFSFileReadData,
it is copied into a chunk of memory in the storage heap. This chunk
must be allocated by the application before the call to
VFSFileReadData(). This function calls DmWrite() to put the
data in the storage heap.

See Also VFSFileRead(), VFSFileWrite()

VFSFileRename Function
Purpose Rename a closed file or directory. This function cannot be used to

move a file to another directory within the file system.

Declared In VFSMgr.h

Prototype status_t VFSFileRename (uint16_t volRefNum,
const char *pathNameP, const char *newNameP)

Parameters → volRefNum
Volume reference number returned from
VFSVolumeEnumerate().

VFS Manager
VFSFileRename

Exploring Palm OS: Memory, Databases, and Files 445

→ pathNameP
Pointer to the full path of the file or directory to be renamed.

→ newNameP
Pointer to the new filename. Note that this is the name of the
file only and does not include the path to the file.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

expErrNotOpen
The file system library necessary for this call has not been
installed or has not been opened.

vfsErrBadName
The name provided in either pathNameP or newNameP is
invalid. This is also returned if the string pointed to by
newNameP is a path, rather than a filename.

vfsErrFileAlreadyExists
A file with the new name already exists in this location.

vfsErrFileNotFound
The source file could not be found.

vfsErrFilePermissionDenied
Write permission is not enabled for this file.

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate file system to
handle the request.

vfsErrVolumeBadRef
The volume has not been mounted.

vfsErrVolumeFull
There is not enough space left on the volume.

Comments WARNING! This function invalidates directory enumeration. You
cannot continue enumerating files after renaming one of them
with this function. If you need to operate on additional files in the
directory, you must first restart the enumeration.

Example Below is an example of how to use VFSFileRename. Note that the
renamed file remains in the /PALM/Programs directory;

VFS Manager
VFSFileResize

446 Exploring Palm OS: Memory, Databases, and Files

VFSFileRename can’t be used to move files from one directory to
another.

// volRefNum must have been previously defined; most likely,
// it was returned by VFSVolumeEnumerate

err = VFSFileRename(volRefNum, "/PALM/Programs/foo.prc",
 "bar.prc");
if (err != errNone) {
 // handle error...
}

VFSFileResize Function
Purpose Change the size of an open file. This function only operates on files

and cannot be used with directories.

Declared In VFSMgr.h

Prototype status_t VFSFileResize (FileRef fileRef,
uint32_t newSize)

Parameters → fileRef
File reference returned from VFSFileOpen().

→ newSize
The desired new size of the file. This can be larger or smaller
then the current file size.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

expErrNotOpen
The file system library necessary for this call has not been
installed or has not been opened.

vfsErrFileBadRef
The specified file reference is invalid.

vfsErrIsADirectory
The specified file reference points to a directory instead of a
file. This is an invalid operation on a directory.

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate file system to
handle the request.

VFS Manager
VFSFileSeek

Exploring Palm OS: Memory, Databases, and Files 447

vfsErrVolumeFull
There is not enough space left on the volume.

Comments The location of the file pointer is undefined after a call to this
function.

See Also VFSFileSize()

VFSFileSeek Function
Purpose Set the position within an open file from which to read or write. This

function only operates on files and cannot be used with directories.

Declared In VFSMgr.h

Prototype status_t VFSFileSeek (FileRef fileRef,
FileOrigin origin, int32_t offset)

Parameters → fileRef
File reference returned from VFSFileOpen().

→ origin
Origin to use when calculating the new position. The
offset parameter indicates the desired new position
relative to this origin, which can be one of the constants listed
under “Seek Origins” on page 415.

→ offset
Offset, either positive or negative, from the origin to which
the current position should be set. A value of zero (0)
positions you at the specified origin.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

expErrNotOpen
The file system library necessary for this call has not been
installed or has not been opened.

vfsErrFileBadRef
The specified file reference is invalid.

vfsErrFileEOF
The file pointer is at the end of file.

VFS Manager
VFSFileSetAttributes

448 Exploring Palm OS: Memory, Databases, and Files

vfsErrIsADirectory
The specified file reference points to a directory instead of a
file. This is an invalid operation on a directory.

sysErrParamErr
The specified origin is not one of the defined constants.

Comments During a call to this function, if the resulting position would be
beyond the end of the file, it sets the position to the end of the file.

See Also VFSFileSize(), VFSFileTell()

VFSFileSetAttributes Function
Purpose Change the attributes of an open file or directory.

Declared In VFSMgr.h

Prototype status_t VFSFileSetAttributes (FileRef fileRef,
uint32_t attributes)

Parameters → fileRef
File reference returned from VFSFileOpen().

→ attributes
Attributes to associate with the file or directory. See “File and
Directory Attributes” on page 413 for a list of values you can
use when setting this parameter:

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

expErrNotOpen
The file system library necessary for this call has not been
installed or has not been opened.

sysErrParamErr
One of the parameters is invalid.

vfsErrFileBadRef
The specified file reference is invalid.

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate file
system to handle the request.

VFS Manager
VFSFileSetDate

Exploring Palm OS: Memory, Databases, and Files 449

Comments NOTE: You cannot use this function to set the
vfsFileAttrDirectory or vfsFileAttrVolumeLabel
attributes. The vfsFileAttrDirectory is set when you call
VFSDirCreate(). The vfsFileAttrVolumeLabel is set
when you call VFSVolumeSetLabel(). This function may fail
when setting other attributes, depending on the underlying file
system.

See Also VFSFileGetAttributes(), VFSFileSetDate()

VFSFileSetDate Function
Purpose Change the dates on an open file or directory.

Declared In VFSMgr.h

Prototype status_t VFSFileSetDate (FileRef fileRef,
uint16_t whichDate, uint32_t date)

Parameters → fileRef
File reference returned in VFSFileOpen().

→ whichDate
Specifies which date—creation, modification, or last access—
to modify. Supply one of the values listed under “Date
Types” on page 414.

→ date
The new date. This field should be expressed in the standard
Palm OS date format — the number of seconds since
midnight (00:00:00) January 1, 1904.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

expErrNotOpen
The file system library necessary for this call has not been
installed or has not been opened.

expErrUnsupportedOperation
The specified date type is not supported by the underlying
file system.

VFS Manager
VFSFileSize

450 Exploring Palm OS: Memory, Databases, and Files

sysErrParamErr
The whichDate parameter is not one of the defined
constants.

vfsErrFileBadRef
The specified file reference is invalid.

vfsErrFilePermissionDenied
Write permission is not enabled for this file.

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate file system to
handle the request.

Comments Note that not all file systems are required to support all date types.
If the supplied date type is not supported by the file system,
VFSFileGetDate returns expErrUnsupportedOperation.

See Also VFSFileGetDate(), VFSFileSetAttributes()

VFSFileSize Function
Purpose Obtain the size of an open file. This function only operates on files

and cannot be used with directories.

Declared In VFSMgr.h

Prototype status_t VFSFileSize (FileRef fileRef,
uint32_t *fileSizeP)

Parameters → fileRef
File reference returned from VFSFileOpen().

← fileSizeP
Pointer to the size of the open file.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

expErrNotOpen
The file system library necessary for this call has not been
installed or has not been opened.

vfsErrFileBadRef
The specified file reference is invalid.

VFS Manager
VFSFileTell

Exploring Palm OS: Memory, Databases, and Files 451

vfsErrIsADirectory
The specified file reference points to a directory instead of a
file. This is an invalid operation on a directory.

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate file system to
handle the request.

See Also VFSFileResize(), VFSFileTell(), VFSVolumeSize()

VFSFileTell Function
Purpose Get the current position of the file pointer within an open file. This

function only operates on files and cannot be used with directories.

Declared In VFSMgr.h

Prototype status_t VFSFileTell (FileRef fileRef,
uint32_t *filePosP)

Parameters → fileRef
File reference returned from VFSFileOpen().

← filePosP
Pointer to the current file position.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

expErrNotOpen
The file system library necessary for this call has not been
installed or has not been opened.

vfsErrFileBadRef
The specified file reference is invalid.

vfsErrIsADirectory
The specified file reference points to a directory instead of a
file. This is an invalid operation on a directory.

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate file system to
handle the request.

See Also VFSFileSeek(), VFSFileSize()

VFS Manager
VFSFileWrite

452 Exploring Palm OS: Memory, Databases, and Files

VFSFileWrite Function
Purpose Write data to an open file. This function only operates on files and

cannot be used with directories.

Declared In VFSMgr.h

Prototype status_t VFSFileWrite (FileRef fileRef,
uint32_t numBytes, const void *dataP,
uint32_t *numBytesWrittenP)

Parameters → fileRef
File reference returned from VFSFileOpen().

→ numBytes
The number of bytes to write.

→ dataP
Pointer to the data that is to be written.

← numBytesWrittenP
Pointer to an unsigned integer that reflects the number of
bytes actually written. This value is set on return and does
not need to be initialized. If no bytes are written the value is
set to zero. Pass NULL for this parameter if you do not need to
know how many bytes were written.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

expErrNotOpen
The file system library necessary for this call has not been
installed or has not been opened.

vfsErrFileBadRef
The specified file reference is invalid.

vfsErrFilePermissionDenied
Write permission is not enabled for this file.

vfsErrIsADirectory
The specified file reference points to a directory instead of a
file. This is an invalid operation on a directory.

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate file system to
handle the request.

VFS Manager
VFSGetDefaultDirectory

Exploring Palm OS: Memory, Databases, and Files 453

vfsErrVolumeFull
There is not enough space left on the volume.

See Also VFSExportDatabaseToFile(), VFSExportDatabaseToFileCustom(),
VFSFileRead(), VFSFileReadData()

VFSGetDefaultDirectory Function
Purpose Determine the default location on the given volume for files of a

particular type.

Declared In VFSMgr.h

Prototype status_t VFSGetDefaultDirectory
(uint16_t volRefNum, const char *fileTypeStr,
char *pathStr, uint16_t *bufSizeP)

Parameters → volRefNum
Volume reference number returned from
VFSVolumeEnumerate().

→ fileTypeStr
Pointer to the requested file type, as a null-terminated string.
The file type may either be a MIME media type/subtype pair,
such as "image/jpeg", “text/plain”, or “audio/basic”; or a
file extension, such as “.jpeg.”

← pathStr
Pointer to the buffer which receives the default directory
path for the requested file type.

← bufSizeP
Pointer to the size of the path (including the null terminator).
Set this to the size of pathStr buffer on input. Reflects the
number of bytes copied to pathStr on output. Note that if
truncation occurred the actual length of the string might be
less than indicated by this value.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

vfsErrBadName
There is no default directory registered for the requested file
type.

VFS Manager
VFSImportDatabaseFromFile

454 Exploring Palm OS: Memory, Databases, and Files

vfsErrBufferOverflow
A match was found, but the pathStr buffer is too small to
hold the resulting path string. A partial path is returned in
pathStr.

vfsErrFileNotFound
No match was found for the specified volume. The error
could have occurred with either the media type specified for
this volume or the file type requested.

Comments This function returns the complete path to the default directory
registered for the specified file type. A default directory can be
registered for each type of media supported. The directory should
be registered under media and file type. Note that this directory is
typically a “root” directory for the file type; any subdirectories
under this root directory should also be searched for files of the
appropriate type.

This function can be used by an image viewer application, for
example, to find the directory containing images without having to
know what type of media the volume was on. This could be
“/DCIM”, “/images”, or something else depending on the type of
media.

See Also VFSDirEntryEnumerate(), VFSRegisterDefaultDirectory(),
VFSUnregisterDefaultDirectory()

VFSImportDatabaseFromFile Function
Purpose Create a database from a PDB or PRC file on an external storage

card.

Declared In VFSMgr.h

Prototype status_t VFSImportDatabaseFromFile
(uint16_t volRefNum, const char *pathNameP,
DatabaseID *dbIDP)

Parameters → volRefNum
Volume on which the source file resides.

→ pathNameP
Pointer to the full path and name of the source file.

VFS Manager
VFSImportDatabaseFromFile

Exploring Palm OS: Memory, Databases, and Files 455

← dbIDP
Pointer to a variable that receives the database ID of the new
database. If the database already resides in the storage heap,
the database ID of the existing database is returned along
with the error dmErrAlreadyExists.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

dmErrAlreadyExists
The PRC or PDB file already exists in the storage heap. In this
case dbIDP is set to point to the existing file.

expErrNotEnoughPower
There is insufficient battery power to complete the requested
operation.

vfsErrBadName
The path name specified in pathNameP is not valid.

Comments This utility function imports a PDB or PRC file resident on an
external storage card into a new database in the storage heap. It first
calls VFSFileOpen() to open the file specified in pathNameP.
Assuming that a corresponding PRC or PDB does not already exist
in the storage heap, VFSImportDatabaseFromFile() calls the
Exchange Manager function ExgDBRead() with an internal
callback function for importing a file to the Data Manager. The
Exchange Manager makes repeated calls to this function, which
passes the data back in blocks. Once the file has been successfully
imported, the owner (the imported file, if it’s an executable, or the
associated application if it is not) is sent a
sysAppLaunchCmdSyncNotify launch code to make it aware of
the new database.

This function only imports the specified PDB or PRC file; it does not
import bundled databases or overlays. If there are bundled
databases and/or overlays associated with the PDB or PRC file you
are importing, you will need to write additional code to explicitly
handle them.

This function doesn’t provide any progress indication to the user. If
you need to provide feedback to the user as the file import
progresses, use VFSImportDatabaseFromFileCustom()
instead.

VFS Manager
VFSImportDatabaseFromFileCustom

456 Exploring Palm OS: Memory, Databases, and Files

This function is used, for example, to copy applications from a
storage card to main memory.

See Also VFSExportDatabaseToFile(), VFSFileRead()

VFSImportDatabaseFromFileCustom Function
Purpose Create a database from the specified PDB or PRC file on an external

storage card. This function differs from
VFSImportDatabaseFromFile() in that it allows you to track
the progress of the import operation.

Declared In VFSMgr.h

Prototype status_t VFSImportDatabaseFromFileCustom
(uint16_t volRefNum, const char *pathNameP,
DatabaseID *dbIDP,
VFSImportProcPtr importProcP, void *userDataP)

Parameters → volRefNum
Volume on which the source file resides.

→ pathNameP
Pointer to the full path and name of the source file.

← dbIDP
Pointer to the variable that receives the database ID of the
new database. If the database already resides in the storage
heap, the database ID of the existing database is returned
along with the error dmErrAlreadyExists.

→ importProcP
User-defined callback function that tracks the progress of the
import. This function should allow the user to cancel the
import. Pass NULL if you don’t have a progress callback
function. See VFSImportProcPtr() for the requirements of
this function.

→ userDataP
Pointer to any data you want to pass to the callback function
specified in importProcP. This information is not used
internally by the VFS Manager. Pass NULL if you don’t have a
progress callback function, or if that function doesn’t need
any such data.

VFS Manager
VFSImportDatabaseFromFileCustom

Exploring Palm OS: Memory, Databases, and Files 457

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

vfsErrBadName
The path name specified in pathNameP is not valid.

expErrNotEnoughPower
The power required to import a database is not available.

dmErrAlreadyExists
The PRC or PDB file already exists in main memory. In this
case the cardNoP and dbIDP are set to point to the existing
file.

Comments This function is similar to VFSImportDatabaseFromFile() in
that it imports a PDB or PRC file on an external storage card into a
new database on the storage heap. It extends the functionality by
allowing you to specify a callback function that tracks the progress
of the export. It first calls VFSFileOpen() to open the file specified
in pathNameP. If a corresponding PRC or PDB does not already
exist in main memory, it calls the Exchange Manager function
ExgDBRead() with an internal callback function for importing the
file from the Data Manager. The Exchange Manager makes repeated
calls to this function, which receives the data back in blocks. The
progress tracker, if one has been specified, is also called every time a
new chunk of data is passed back. Once the file has been
successfully imported, the owner (the imported file, if it’s an
executable, or the associated application if it is not) is sent a
sysAppLaunchCmdSyncNotify launch code to make it aware of
the new database.

Like VFSImportDatabaseFromFile, this function only imports
the specified PDB or PRC file; it does not import bundled databases
or overlays.

This function is used, for example, to copy applications from a
storage card to main memory.

See Also VFSFileRead(), VFSExportDatabaseToFileCustom()

VFS Manager
VFSImportDatabaseFromFileCustomV40

458 Exploring Palm OS: Memory, Databases, and Files

VFSImportDatabaseFromFileCustomV40
Function

Purpose Create a database from the specified PDB or PRC file on an external
storage card. This function differs from
VFSImportDatabaseFromFile() in that it allows you to track
the progress of the import operation.

Declared In VFSMgr.h

Prototype status_t VFSImportDatabaseFromFileCustomV40
(uint16_t volRefNum, const char *pathNameP,
uint16_t *cardNoP, LocalID *dbIDP,
VFSImportProcPtr importProcP, void *userDataP)

Parameters → volRefNum
Volume on which the source file resides.

→ pathNameP
Pointer to the full path and name of the source file.

← cardNoP
Pointer to the variable that receives the card number of the
newly-created database. If the database already resides in the
storage heap, the card number of the existing database is
returned along with the error dmErrAlreadyExists.

← dbIDP
Pointer to the variable that receives the database ID of the
new database. If the database already resides in the storage
heap, the database ID of the existing database is returned
along with the error dmErrAlreadyExists.

→ importProcP
User-defined callback function that tracks the progress of the
import. This function should allow the user to cancel the
import. Pass NULL if you don’t have a progress callback
function. See VFSImportProcPtr() for the requirements of
this function.

→ userDataP
Pointer to any data you want to pass to the callback function
specified in importProcP. This information is not used
internally by the VFS Manager. Pass NULL if you don’t have a
progress callback function, or if that function doesn’t need
any such data.

VFS Manager
VFSImportDatabaseFromFileCustomV40

Exploring Palm OS: Memory, Databases, and Files 459

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

vfsErrBadName
The path name specified in pathNameP is not valid.

expErrNotEnoughPower
The power required to import a database is not available.

dmErrAlreadyExists
The PRC or PDB file already exists in main memory. In this
case the cardNoP and dbIDP are set to point to the existing
file.

Comments This function is similar to VFSImportDatabaseFromFile() in
that it imports a PDB or PRC file on an external storage card into a
new database on the storage heap. It extends the functionality by
allowing you to specify a callback function that tracks the progress
of the export. It first calls VFSFileOpen() to open the file specified
in pathNameP. If a corresponding PRC or PDB does not already
exist in main memory, it calls the Exchange Manager function
ExgDBRead() with an internal callback function for importing the
file from the Data Manager. The Exchange Manager makes repeated
calls to this function, which receives the data back in blocks. The
progress tracker, if one has been specified, is also called every time a
new chunk of data is passed back. Once the file has been
successfully imported, the owner (the imported file, if it’s an
executable, or the associated application if it is not) is sent a
sysAppLaunchCmdSyncNotify launch code to make it aware of
the new database.

Like VFSImportDatabaseFromFile, this function only imports
the specified PDB or PRC file; it does not import bundled databases
or overlays.

This function is used, for example, to copy applications from a
storage card to main memory.

Compatibility This function is only provided for compatibility with previous
versions of Palm OS. The returned *cardNoP is always 0.

See Also VFSFileRead(), VFSExportDatabaseToFileCustom(),
VFSImportDatabaseFromFileCustom()

VFS Manager
VFSImportDatabaseFromFileV40

460 Exploring Palm OS: Memory, Databases, and Files

VFSImportDatabaseFromFileV40 Function
Purpose Create a database from a PDB or PRC file on an external storage

card.

Declared In VFSMgr.h

Prototype status_t VFSImportDatabaseFromFileV40
(uint16_t volRefNum, const char *pathNameP,
uint16_t *cardNoP, LocalID *dbIDP)

Parameters → volRefNum
Volume on which the source file resides.

→ pathNameP
Pointer to the full path and name of the source file.

← cardNoP
Pointer to a variable that receives the card number of the
newly-created database. If the database already resides in the
storage heap, the card number of the existing database is
returned along with the error dmErrAlreadyExists.

← dbIDP
Pointer to a variable that receives the database ID of the new
database. If the database already resides in the storage heap,
the database ID of the existing database is returned along
with the error dmErrAlreadyExists.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

dmErrAlreadyExists
The PRC or PDB file already exists in the storage heap. In this
case dbIDP is set to point to the existing file.

expErrNotEnoughPower
There is insufficient battery power to complete the requested
operation.

vfsErrBadName
The path name specified in pathNameP is not valid.

Comments This utility function imports a PDB or PRC file resident on an
external storage card into a new database in the storage heap. It first
calls VFSFileOpen() to open the file specified in pathNameP.
Assuming that a corresponding PRC or PDB does not already exist
in the storage heap, VFSImportDatabaseFromFile() calls the

VFS Manager
VFSRegisterDefaultDirectory

Exploring Palm OS: Memory, Databases, and Files 461

Exchange Manager function ExgDBRead() with an internal
callback function for importing a file to the Data Manager. The
Exchange Manager makes repeated calls to this function, which
passes the data back in blocks. Once the file has been successfully
imported, the owner (the imported file, if it’s an executable, or the
associated application if it is not) is sent a
sysAppLaunchCmdSyncNotify launch code to make it aware of
the new database.

This function only imports the specified PDB or PRC file; it does not
import bundled databases or overlays. If there are bundled
databases and/or overlays associated with the PDB or PRC file you
are importing, you will need to write additional code to explicitly
handle them.

This function doesn’t provide any progress indication to the user. If
you need to provide feedback to the user as the file import
progresses, use VFSImportDatabaseFromFileCustom()
instead.

This function is used, for example, to copy applications from a
storage card to main memory.

Compatibility This function is only provided for compatibility with previous
versions of Palm OS. The returned *cardNoP is always 0.

See Also VFSExportDatabaseToFile(), VFSFileRead(),
VFSImportDatabaseFromFile()

VFSRegisterDefaultDirectory Function
Purpose Register a specific directory as the default location for files of a

given type on a particular kind of external storage card. This

VFS Manager
VFSRegisterDefaultDirectory

462 Exploring Palm OS: Memory, Databases, and Files

function is generally called by a slot driver for files and media types
that are supported by that slot driver.

Declared In VFSMgr.h

Prototype status_t VFSRegisterDefaultDirectory
(const char *fileTypeStr, uint32_t mediaType,
const char *pathStr)

Parameters → fileTypeStr
Pointer to the file type to register. This is a null-terminated
string that can either be a MIME media type/subtype pair,
such as “image/jpeg”, “text/plain”, or “audio/basic”; or a
file extension, such as “.jpeg”.

→ mediaType
Type of card media for which the default directory is being
associated. See “Defined Media Types” on page 262 in
Exploring Palm OS: System Management for the list of accepted
values.

→ pathStr
Pointer to the default directory path to be associated with the
specified file type. This string must be null-terminated, and
must be the full path to the directory.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

sysErrParamErr
Either the fileTypeStr parameter is NULL or the pathStr
parameter is NULL.

vfsErrFileAlreadyExists
A default directory has already been registered for this file
type on the specified card media type.

Comments This function first verifies that a default directory has not already
been registered for the specified combination of file type and media
type, and returns vfsErrFileAlreadyExists if one has been
registered. To change an existing entry in the registry, you must first
remove the existing entry with a call to
VFSUnregisterDefaultDirectory() before re-registering it
with VFSRegisterDefaultDirectory.

The specified directory registered for a given file type is intended to
be the “root” default directory. If a given default directory has one

VFS Manager
VFSUnregisterDefaultDirectory

Exploring Palm OS: Memory, Databases, and Files 463

or more subdirectories, applications should also search those
subdirectories for files of the appropriate type.

NOTE: Registering a directory as the default location for files of
a given type on a particular type of media doesn’t automatically
register that file type with HotSync Exchange. See “HotSync
Exchange” on page 138 of Exploring Palm OS: High-Level
Communications for information on registering file types with
HotSync Exchange.

See Also VFSGetDefaultDirectory()

VFSUnregisterDefaultDirectory Function
Purpose Sever the association between a particular file type and a default

directory for a given type of card media.

Declared In VFSMgr.h

Prototype status_t VFSUnregisterDefaultDirectory
(const char *fileTypeStr, uint32_t mediaType)

Parameters → fileTypeStr
Pointer to the file type with which the default directory is
associated. This is a null-terminated string that can either be
a MIME media type/subtype pair, such as “image/jpeg”,
“text/plain”, or “audio/basic”; or a file extension, such as
“.jpeg”.

→ mediaType
Type of card media for which the default directory is
associated. See “Defined Media Types” on page 262 in
Exploring Palm OS: System Management for the list of accepted
values.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

sysErrParamErr
The fileTypeStr parameter is NULL.

VFS Manager
VFSVolumeEnumerate

464 Exploring Palm OS: Memory, Databases, and Files

vfsErrFileNotFound
A default directory could not be found in the registry for the
specified file and media type.

Comments NOTE: Caution is advised when using this function, since you
may remove another application’s registration, causing data to
mysteriously disappear from those applications.

See Also VFSGetDefaultDirectory(), VFSRegisterDefaultDirectory()

VFSVolumeEnumerate Function
Purpose Enumerate the mounted volumes.

Declared In VFSMgr.h

Prototype status_t VFSVolumeEnumerate
(uint16_t *volRefNumP, uint32_t *volIteratorP)

Parameters ← volRefNumP
Pointer to the reference number for the volume represented
by the current enumeration, or vfsInvalidVolRef if there
are no more volumes to be enumerated or an error occurred.

↔ volIteratorP
Pointer to a variable that holds the index of the current
enumeration. Set the variable to vfsIteratorStart prior
to the first iteration. Each call to VFSVolumeEnumerate
updates the variable to the index of the next volume. When
the last volume is reached, the variable pointed to by
volIteratorP is set to vfsIteratorStop.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

expErrEnumerationEmpty
There are no volumes to enumerate.

sysErrParamErr
The value pointed to by volIteratorP is not valid. This
error is also returned when volIteratorP is
vfsIteratorStop.

VFS Manager
VFSVolumeFormat

Exploring Palm OS: Memory, Databases, and Files 465

Comments This function returns a pointer to the volume reference number in
the volRefNumP parameter. In order to traverse all volumes you
must make repeated calls to VFSVolumeEnumerate() inside a
loop. Before the first call to VFSVolumeEnumerate, the variable
pointed to by volIteratorP should be initialized to
vfsIteratorStart. Each iteration then increments
volIteratorP to the next entry after updating volRefNumP.
When the last volume is reached, *volIteratorP is set to
vfsIteratorStop. If there are no volumes to enumerate,
VFSVolumeEnumerate returns expErrEnumerationEmpty
when first called.

Example Below is an example of how to use VFSVolumeEnumerate.

UInt16 volRefNum;
UInt32 volIterator = vfsIteratorStart;

while (volIterator != vfsIteratorStop) {
 err = VFSVolumeEnumerate(&volRefNum, &volIterator);
 if (err == errNone) {
 // Do something with the volRefNum
 } else {
 // handle error... possibly by
 // breaking out of the loop
 }
}

VFSVolumeFormat Function
Purpose Format and mount the volume installed in a given slot.

Declared In VFSMgr.h

Prototype status_t VFSVolumeFormat (uint8_t flags,
uint16_t fsLibRefNum,
VFSAnyMountParamPtr vfsMountParamP)

Parameters → flags
Flags that control how the volume should be formatted.
Currently, the only flag not reserved is
vfsMountFlagsUseThisFileSystem. Pass this flag to
cause the volume to be formatted using the file system
specified by fsLibRefNum. Pass zero (0) to have the VFS

VFS Manager
VFSVolumeFormat

466 Exploring Palm OS: Memory, Databases, and Files

Manager attempt to format the volume using a file system
appropriate to the slot.

→ fsLibRefNum
Reference number of the file system library for which the
volume should be formatted. If the flags field is not set to
vfsMountFlagsUseThisFileSystem, this parameter is
ignored.

↔ vfsMountParamP
Parameters to be used when formatting the volume and
when mounting the volume after it has been formatted.
Supply a pointer to either a VFSSlotMountParamType or a
VFSPOSEMountParamType structure. Note that you’ll need
to cast your structure pointer to a VFSAnyMountParamPtr.
Set the mountClass field to the appropriate value: if you are
mounting to an Expansion Manager slot, set mountClass to
VFSMountClass_SlotDriver and initialize
slotLibRefNum and slotRefNum to the appropriate
values. See the descriptions of VFSAnyMountParamType,
VFSSlotMountParamType, and
VFSPOSEMountParamType for information on the fields
that make up these data structures.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

expErrNotEnoughPower
There is insufficient battery power to format and/or mount a
volume.

expErrNotOpen
The file system library necessary for this call has not been
installed or has not been opened.

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate file system to
handle the request.

Comments The slot driver currently only supports one volume per slot. If the
volume is successfully formatted and mounted, the reference
number of the mounted volume is returned in vfsMountParamP-
>volRefNum. If the format is unsuccessful or cancelled,
vfsMountParamP->volRefNum is set to vfsInvalidVolRef.

VFS Manager
VFSVolumeFormat

Exploring Palm OS: Memory, Databases, and Files 467

If vfsMountFlagsUseThisFileSystem is passed as a flag,
VFSVolumeFormat attempts to format the volume using the file
system library specified by fsLibRefNum. Typically the flag
parameter is not set. In this case VFSVolumeFormat tries to find a
compatible library to format the volume, as follows:

1. Check to see if the default file system library feature is set. If
it is, and if that file system is installed, it is used to format the
volume. You can set the default file system using FtrSet();
supply sysFileCVFSMgr for the feature creator, and
vfsFtrIDDefaultFS for the feature number.

2. Check to see if any of the installed file systems are natively
supported for the slot on which the VFS Manager is trying to
format. If one of them is, it is used to format the volume.

3. If none of the installed file systems can perform the format
using the slot’s native type, a dialog displays warning the
user that their media may become incompatible with other
devices if they continue with the format. The user may
continue or cancel the format. If the user chooses to continue,
VFSVolumeFormat formats the volume using the first file
system library that was installed.

When calling VFSVolumeFormat, the volume can either be
mounted or unmounted. The underlying file system library call
requires the volume to be unmounted. VFSVolumeFormat checks
to see if the volume is currently mounted and unmounts it, if
necessary, using VFSVolumeUnmount() before making the file
system call. If the file system successfully formats the volume,
VFSVolumeFormat mounts it and posts a
sysNotifyVolumeMountedEvent notification.

VFS Manager
VFSVolumeGetLabel

468 Exploring Palm OS: Memory, Databases, and Files

Example The following code excerpt formats a volume on an Expansion
Manager slot using a compatible file system.

VFSSlotMountParamType slotParam;
UInt32 slotIterator = expIteratorStart;

slotParam.vfsMountParamP.mountClass =
 VFSMountClass_SlotDriver;
err = ExpSlotEnumerate(&slotParam.slotRefNum,
 &slotIterator);
err = ExpSlotLibFind(slotParam.slotRefNum,
 &slotParam.slotLibRefNum);

err = VFSVolumeFormat(NULL, NULL,
 (VFSAnyMountParamPtr) & slotParam);

See Also VFSVolumeMount()

VFSVolumeGetLabel Function
Purpose Determine the volume label for a particular volume.

Declared In VFSMgr.h

Prototype status_t VFSVolumeGetLabel (uint16_t volRefNum,
char *labelP, size_t bufSize)

Parameters → volRefNum
Volume reference number returned from
VFSVolumeEnumerate().

← labelP
Pointer to a character buffer into which the volume name is
placed.

→ bufSize
Length, in bytes, of the labelP buffer.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

expErrNotOpen
The file system library necessary for this call has not been
installed or has not been opened.

VFS Manager
VFSVolumeInfo

Exploring Palm OS: Memory, Databases, and Files 469

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate file system to
handle the request.

vfsErrVolumeBadRef
The specified volume has not been mounted.

vfsErrBufferOverflow
The value specified in bufSize is not big enough to receive
the full volume label.

vfsErrNameShortened
There was an error reading the full volume name. A
shortened version is being returned.

Comments Volume reference numbers can change each time you mount a given
volume. To keep track of a particular volume, save the volume’s
label rather than its reference number. Volume labels can be up to
255 characters long. They can contain any normal character,
including spaces and lower case characters, in any character set as
well as the following special characters: $ % ' - _ @ ~ ` ! () ^ # & + , ;
= [].

See Also VFSVolumeSetLabel()

VFSVolumeInfo Function
Purpose Get information about the specified volume.

Declared In VFSMgr.h

Prototype status_t VFSVolumeInfo (uint16_t volRefNum,
VolumeInfoType *volInfoP)

Parameters → volRefNum
Volume reference number returned from
VFSVolumeEnumerate().

← volInfoP
Pointer to the structure that receives the volume information
for the specified volume. See VolumeInfoType for more
information on the fields in this data structure.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

VFS Manager
VFSVolumeMount

470 Exploring Palm OS: Memory, Databases, and Files

expErrNotOpen
The file system library necessary for this call has not been
installed or has not been opened.

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate file system to
handle the request.

vfsErrVolumeBadRef
The specified volume reference number is invalid.

See Also VFSVolumeGetLabel(), VFSVolumeSize()

VFSVolumeMount Function
Purpose Mount the card’s volume on the specified slot.

Declared In VFSMgr.h

Prototype status_t VFSVolumeMount (uint8_t flags,
uint16_t fsLibRefNum,
VFSAnyMountParamPtr vfsMountParamP)

Parameters → flags
Flags that control how the volume should be mounted.
Currently, the only flag not reserved is
vfsMountFlagsUseThisFileSystem. Pass this flag to
cause the volume to be mounted using the file system
specified by fsLibRefNum. Pass zero (0) to have the VFS
Manager attempt to mount the volume using a file system
appropriate for the slot.

→ fsLibRefNum
Reference number of the file system library for which the
volume should be mounted. If the flags field is not set to
vfsMountFlagsUseThisFileSystem, this parameter is
ignored.

↔ vfsMountParamP
Parameters to be used when mounting the volume after it has
been formatted. Supply a pointer to either a
VFSSlotMountParamType or a
VFSPOSEMountParamType structure. Note that you’ll need
to cast your structure pointer to a VFSAnyMountParamPtr.
Set the mountClass field to the appropriate value: if you are

VFS Manager
VFSVolumeMount

Exploring Palm OS: Memory, Databases, and Files 471

mounting to an Expansion Manager slot, set mountClass to
VFSMountClass_SlotDriver and initialize
slotLibRefNum and slotRefNum to the appropriate
values. See the descriptions of VFSAnyMountParamType,
VFSSlotMountParamType, and
VFSPOSEMountParamType for information on the fields
that make up these data structures.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

expErrNotEnoughPower
There is insufficient battery power to mount a volume.

expErrNotOpen
The file system library necessary for this call has not been
installed or has not been opened.

sysErrParamErr
vfsMountParamP was initialized to NULL.

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate file system to
handle the request.

vfsErrVolumeStillMounted
The volume is already mounted with a different file system
than was specified in fsLibRefNum.

Comments The slot driver only supports one volume per slot. The reference
number of the mounted volume is returned in vfsMountParamP-
>volRefNum. If vfsMountFlagsUseThisFileSystem is passed
as a flag, VFSVolumeMount attempts to mount the volume using
the file system library specified by fsLibRefNum. Otherwise
VFSVolumeMount tries to find a file system library which is able to
mount the volume. If none of the installed file system libraries is
able to mount the volume, VFSVolumeMount attempts to re-format
the volume (using VFSVolumeFormat()) and then mount it. If
VFSVolumeMount manages to successfully mount the volume, it
ends by posting a sysNotifyVolumeMountedEvent notification.

After VFSVolumeMount successfully mounts a volume, it
broadcasts sysNotifyVolumeMountedEvent. The VFS Manager,
upon being notified of this event, searches the newly-mounted
volume for /PALM/start.prc. If start.prc is found in the /

VFS Manager
VFSVolumeMount

472 Exploring Palm OS: Memory, Databases, and Files

PALM directory, the VFS Manager copies it to main memory and
launches it. If start.prc is not found, the VFS Manager switches
to the Launcher instead. This behavior can be overridden; see “Card
Insertion and Removal” on page 61 of Exploring Palm OS: System
Management.

When VFSVolumeMount is called, if the volume is already
mounted with a different file system than was specified in
fsLibRefNum, a vfsErrVolumeStillMounted error is returned.
If the volume is already mounted with the same file system that is
specified in fsLibRefNum, or if
vfsMountFlagsUseThisFileSystem is not set,
VFSVolumeMount returns errNone and sets volRefNumP to the
reference number of the currently mounted volume.

Example The following code excerpt mounts a volume on an Expansion
Manager slot using a compatible file system.

VFSSlotMountParamType slotParam ;
UInt32 slotIterator = expIteratorStart;

slotParam.vfsMountParamP.mountClass =
 VFSMountClass_SlotDriver;
err = ExpSlotEnumerate(&slotParam.slotRefNum,
 &slotIterator);
err = ExpSlotLibFind(slotParam.slotRefNum,
 &slotParam.slotLibRefNum);

err = VFSVolumeMount(NULL, NULL,
 (VFSAnyMountParamPtr) & slotParam);

See Also VFSVolumeFormat(), VFSVolumeUnmount()

VFS Manager
VFSVolumeSetLabel

Exploring Palm OS: Memory, Databases, and Files 473

VFSVolumeSetLabel Function
Purpose Change the volume label for a mounted volume.

Declared In VFSMgr.h

Prototype status_t VFSVolumeSetLabel (uint16_t volRefNum,
const char *labelP)

Parameters → volRefNum
Volume reference number returned from
VFSVolumeEnumerate().

→ labelP
Pointer to the label to be applied to the specified volume.
This string must be null-terminated.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

expErrNotOpen
The file system library necessary for this call has not been
installed or has not been opened.

vfsErrBadName
The supplied label is invalid.

vfsErrNameShortened
Indicates that the label name was too long. A shortened
version of the label name was used instead.

vfsErrVolumeBadRef
The specified volume has not been mounted.

Comments Volume labels can be up to 255 characters long. They can contain
any normal character, including spaces and lower case characters, in
any character set as well as the following special characters: $ % ' - _
@ ~ ` ! () ^ # & + , ; = []. See “Naming Volumes” on page 77 for
guidelines on naming.

VFS Manager
VFSVolumeSize

474 Exploring Palm OS: Memory, Databases, and Files

NOTE: Most clients should not need to call this function. This
function may create or delete a file in the root directory, which
would invalidate any current calls to
VFSDirEntryEnumerate().

See Also VFSVolumeGetLabel()

VFSVolumeSize Function
Purpose Determine the total amount of space on a volume, as well as the

amount that is currently being used.

Declared In VFSMgr.h

Prototype status_t VFSVolumeSize (uint16_t volRefNum,
uint32_t *volumeUsedP, uint32_t *volumeTotalP)

Parameters → volRefNum
Volume reference number returned from
VFSVolumeEnumerate().

← volumeUsedP
Pointer to a variable that receives the amount of space, in
bytes, in use on the volume.

← volumeTotalP
Pointer to a variable that receives the total amount of space
on the volume, in bytes.

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

expErrNotOpen
The file system library necessary for this call has not been
installed or has not been opened.

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate file system to
handle the request.

VFS Manager
VFSVolumeUnmount

Exploring Palm OS: Memory, Databases, and Files 475

vfsErrVolumeBadRef
The specified volume has not been mounted.

See Also VFSVolumeInfo()

VFSVolumeUnmount Function
Purpose Unmount the given volume.

Declared In VFSMgr.h

Prototype status_t VFSVolumeUnmount (uint16_t volRefNum)

Parameters → volRefNum
Volume reference number returned from
VFSVolumeEnumerate().

Returns Returns errNone if the operation completed successfully, or one of
the following otherwise:

expErrNotOpen
The file system library necessary for this call has not been
installed or has not been opened.

vfsErrNoFileSystem
The VFS Manager cannot find an appropriate file system to
handle the request.

vfsErrVolumeBadRef
The specified volume has not been mounted.

Comments This function closes any opened files and posts a
sysNotifyVolumeUnmountedEvent notification once the file
system is successfully unmounted.

See Also VFSVolumeMount()

VFS Manager
Application-Defined Functions

476 Exploring Palm OS: Memory, Databases, and Files

Application-Defined Functions

VFSExportProcPtr Function
Purpose User-defined callback function supplied to

VFSExportDatabaseToFileCustom() that tracks the progress
of the export.

Declared In VFSMgr.h

Prototype status_t (*VFSExportProcPtr)
(uint32_t totalBytes, uint32_t offset,
void *userDataP)

Parameters → totalBytes
The total number of bytes being exported.

→ offset
Undefined.

→ userDataP
Pointer to any application-specific data passed to the callback
function. This pointer may be NULL if your callback doesn’t
need any such data.

Returns Your progress tracker should allow the user to abort the export.
Return errNone if the export should continue, or any other value to
abort the export process. If you return a value other than errNone,
that value will be returned by
VFSExportDatabaseToFileCustom().

Comments See “Progress Dialogs” on page 31 of Exploring Palm OS: User
Interface for more information on writing a progress tracker.

See Also VFSImportProcPtr()

VFS Manager
VFSImportProcPtr

Exploring Palm OS: Memory, Databases, and Files 477

VFSImportProcPtr Function
Purpose User-defined callback function supplied to

VFSImportDatabaseFromFileCustom() that tracks the
progress of the import.

Declared In VFSMgr.h

Prototype status_t (*VFSImportProcPtr)
(uint32_t totalBytes, uint32_t offset,
void *userDataP)

Parameters → totalBytes
The total number of bytes being imported.

→ offset
The number of bytes that have already been imported. This
value, along with the total number of bytes being imported,
allows you to inform the user how far along the import is.

→ userDataP
Pointer to NY application-specific data passed to the callback
function. This pointer may be NULL if your callback doesn’t
need any such data.

Returns Your progress tracker should allow the user to abort the import.
Return errNone if the import should continue, or any other value
to abort the import process. If you return a value other than
errNone, that value will be returned by
VFSImportDatabaseFromFileCustom().

Comments See “Progress Dialogs” on page 31 of Exploring Palm OS: User
Interface for more information on writing a progress tracker.

See Also VFSExportProcPtr()

VFS Manager
VFSImportProcPtr

478 Exploring Palm OS: Memory, Databases, and Files

Exploring Palm OS: Memory, Databases, and Files 479

Index

A
alarms

and expansion 74
appInfoStringsRsc 111
application design

assigning version number 66
removing deleted records 66

application launcher
and expansion 71

application name
on expansion cards 72, 81

applications
running from a card 81

archiving
marking record as archived 119

B
block device driver 76
busy bit 204

C
CardInfo application 76, 89
category

DmSeekRecordInCategory 150
moving records 181

CategoryID 100
chunk 5
chunks

disposing of chunk 176
locking 177
size 178
unlocking 178, 203

creating a chunk 8
creating database 57
creating resources 63

D
Data Manager

and the VFS Manager 69
using 57

Data Manager error codes 158
database headers 55

fields 55
database ID 149

database version number 66
DatabaseID 100
databases

closing 128
creating 129, 133
cutting and pasting 122
deleting. See also DmDatabaseProtect
getting and setting information 58
on expansion cards 81
overlays 192, 197

dbActionBackup 301
dbActionDelete 301
dbActionEditSchema 301
dbActionRead 301
dbActionRestore 302
dbActionWrite 302
DbAddCategory() 305
DbAddColumn() 306
DbAddSortIndex() 308
DbAddTable() 310
dbAllRecAttrs 300
dbAllSchemaColAttrs 301
DbArchiveRow() 311
dbBlob 296
dbBoolean 296
dbChar 296
DbCloseDatabase() 312
dbColumnAttribProperty 295
dbColumnDatatypeProperty 295
dbColumnNameProperty 295
DbColumnPropertySpecType 291
dbColumnPropertyUpperBound 303
DbColumnPropertyValueType 292
dbColumnSizeProperty 295
DbCopyColumnValue() 312
DbCopyColumnValues() 314
DbCreateDatabase() 316
DbCreateSecureDatabase() 318
DbCreateSecureDatabaseFromImage() 320
DbCursorArchiveAllRows() 321
DbCursorBindData() 322
DbCursorBindDataWithOffset() 323
dbCursorBOFPos 303
DbCursorClose() 324

480 Exploring Palm OS: Memory, Databases, and Files

DbCursorDeleteAllRows() 325
dbCursorEnableCaching 302
dbCursorEOFPos 303
DbCursorFlushCache() 326
DbCursorGetCurrentPosition() 326
DbCursorGetCurrentRowID() 327
DbCursorGetPositionForRowID() 328
DbCursorGetRowCount() 329
DbCursorGetRowIDForPosition() 329
dbCursorIncludeDeleted 302
DbCursorIsBOF() 330
DbCursorIsDeleted() 330
DbCursorIsEOF() 331
DbCursorMove() 331
DbCursorMoveFirst() 332
DbCursorMoveLast() 333
DbCursorMoveNext() 334
DbCursorMovePrev() 334
DbCursorMoveToRowID() 336
dbCursorOnlyDeleted 302
dbCursorOnlySecret 302
DbCursorOpen() 337
DbCursorOpenWithCategory() 338
DbCursorRelocateRow() 335
DbCursorRemoveAllRows() 340
DbCursorRequery() 341
DbCursorSetAbsolutePosition() 342
dbCursorSortByCategory 302
DbCursorUpdate() 343
dbDate 296
dbDateTime 296
dbDateTimeSecs 296
dbDBNameLength 303
DbDeleteRow() 344
dbDouble 296
DbEnableSorting() 345
dbFetchAbsolute 304
dbFetchFirst 304
dbFetchLast 304
dbFetchNext 304
dbFetchPrior 304
dbFetchRelative 304
dbFetchRowID 304

DbFetchType 304
dbFloat 296
DbGetAllColumnDefinitions() 346
DbGetAllColumnPropertyValues() 347
DbGetAllColumnValues() 349
DbGetCategory() 350
DbGetColumnDefinitions() 351
DbGetColumnID() 353
DbGetColumnPropertyValue() 354
DbGetColumnPropertyValues() 355
DbGetColumnValue() 357
DbGetColumnValues() 359
DbGetRowAttr() 360
DbGetRuleSet() 361
DbGetSortDefinition() 362
DbGetTableForRow() 363
DbGetTableName() 364
DbGetTableSchema() 365
DbHasSortIndex() 366
DbHasTable() 366
DbInsertRow() 367
dbInt16 296
dbInt32 296
dbInt64 296
dbInt8 296
dbInvalidCursorID 303
dbInvalidRowID 303
DbIsCursorID() 368
DbIsRowID() 369
DbIsRowInCategory() 369
DbIsSortingEnabled() 371
DbMatchAll 293
DbMatchAny 293
DbMatchExact 293
DbMatchModeType 293
DbMaxRecordCategories 303
dbMaxRowIndex 303
DbMoveCategory() 372
DbNumCategory() 374
DbNumColumns() 375
DbNumSortIndexes() 376
DbNumTables() 377
DbOpenDatabase() 378

Exploring Palm OS: Memory, Databases, and Files 481

DbOpenDatabaseByName() 379
dbRecAttrArchive 300
dbRecAttrDelete 300
dbRecAttrReadOnly 300
dbRecAttrSecret 300
DbReleaseStorage() 380
DbRemoveCategory() 381
DbRemoveCategoryAllRows() 383
DbRemoveColumn() 384
DbRemoveColumnProperty() 386
DbRemoveRow() 387
DbRemoveSecretRows() 388
DbRemoveSortIndex() 389
DbRemoveTable() 390
dbSchemaColDynamic 301
dbSchemaColNonSyncable 301
DbSchemaColumnData 293
DbSchemaColumnDefnType 294
DbSchemaColumnProperty 295
DbSchemaColumnType 296
DbSchemaColumnValueType 297
dbSchemaColWritable 301
DbSetCategory() 391
DbSetColumnPropertyValue() 392
DbSetColumnPropertyValues() 394
DbSetRowAttr() 395
DbShareModeType 298
dbShareNone 298
dbShareRead 299
dbShareReadWrite 299
dbStringVector 296
dbSysOnlyRecAttrs 300
DbTableDefinitionType 299
dbTime 296
dbUInt16 297
dbUInt32 297
dbUInt64 297
dbUInt8 297
dbVarChar 297
dbVector 297
DbWriteColumnValue() 396
DbWriteColumnValues() 400
default directories 72

determining by file type 89
registered upon initialization 90
registering new 90

delete bit 140, 145
deleted records 66
deleting databases 57

See also DmDatabaseProtect
deleting records 66, 144
directories

basic operations 86
default for file type 89
enumerating files within 88

dmAllCategories 111, 190
dmAllHdrAttrs 109
dmAllRecAttrs 108
DmArchiveRecord() 119
DmAttachRecord() 120
DmAttachResource() 122
DmBackupFinalize() 123
DmBackupInitialize() 124
DmBackupRestoreStatePtr 100
DmBackupRestoreStateType 100
DmBackupUpdate() 125
dmCategoryLength 111
DmCloseDatabase() 128
DmCloseIteratorByTypeCreator() 128
DmCompareFunctionType() 237
DmCreateDatabase() 57, 61, 129
DmCreateDatabaseFromImage() 131
DmCreateDatabaseFromImageV50() 132
DmCreateDatabaseV50() 133
DmDatabaseInfo() 58, 61, 66, 134
DmDatabaseInfoPtr 101
DmDatabaseInfoType 101
DmDatabaseInfoV50() 135
DmDatabaseProtectV50() 137
DmDatabaseSize() 58, 138
DmDatabaseSizeV50() 139
dmDBNameLength 111, 129, 133, 226
dmDefaultRecordsID 111
DmDeleteCategory() 140
DmDeleteDatabase() 57, 61, 128, 141
DmDeleteDatabaseV50() 143
DmDeleteRecord() 66, 144

482 Exploring Palm OS: Memory, Databases, and Files

DmDetachRecord() 145
DmDetachResource() 146
dmErrAccessDenied 112
dmErrAlreadyExists 113
dmErrAlreadyOpenForWrites 113
dmErrBadOverlayDBName 113
dmErrBaseRequiresOverlay 113
dmErrBufferNotLargeEnough 113
dmErrBuiltInProperty 113
dmErrCantFind 113
dmErrCantOpen 113
dmErrCategoryLimitReached 113
dmErrColumnDefinitionsLocked 113
dmErrColumnIDAlreadyExists 113
dmErrColumnIndexOutOfRange 114
dmErrColumnNameAlreadyExists 114
dmErrColumnPropertiesLocked 114
dmErrCorruptDatabase 114
dmErrCursorBOF 119
dmErrCursorEOF 119
dmErrDatabaseNotProtected 114
dmErrDatabaseOpen 114
dmErrDatabaseProtected 114
dmErrDeviceLocked 114
dmErrEncryptionFailure 114
dmErrIndexOutOfRange 114
dmErrInvalidCategory 114
dmErrInvalidColSpec 114
dmErrInvalidColType 115
dmErrInvalidColumnID 115
dmErrInvalidColumnName 115
dmErrInvalidDatabaseName 115
dmErrInvalidID 115
dmErrInvalidIndex 115
dmErrInvalidOperation 115
dmErrInvalidParam 115
dmErrInvalidPrimaryKey 115
dmErrInvalidPropID 115
dmErrInvalidSchemaDefn 115
dmErrInvalidSizeSpec 116
dmErrInvalidSortDefn 116
dmErrInvalidSortIndex 116
dmErrInvalidTableName 115

dmErrInvalidVectorType 116
dmErrMemError 116
dmErrNoColumnData 116
dmErrNoCustomProperties 116
dmErrNoData 116
dmErrNoMoreData 116
dmErrNoOpenDatabase 116
dmErrNotRecordDB 116
dmErrNotResourceDB 117
dmErrNotSchemaDatabase 117
dmErrNotSecureDatabase 117
dmErrNotValidRecord 117
dmErrNoUserPassword 117
dmErrOneOrMoreFailed 117
dmErrOpenedByAnotherTask 117
dmErrOperationAborted 117
dmErrReadOnly 117
dmErrReadOutOfBounds 117
dmErrRecordArchived 117
dmErrRecordBusy 117
dmErrRecordDeleted 117
dmErrRecordInWrongCard 118
dmErrResourceNotFound 118
dmErrROMBased 118
dmErrSchemaBase 118
dmErrSchemaIndexOutOfRange 118
dmErrSchemaNotFound 118
dmErrSeekFailed 118
dmErrSortDisabled 118
dmErrSQLParseError 118
dmErrTableNameAlreadyExists 118
dmErrTableNotEmpty 118
dmErrUniqueIDNotFound 118
dmErrUnknownLocale 119
dmErrWriteOutOfBounds 119
dmFindAllDB 103
dmFindClassicDB 103
DmFindDatabase() 57, 130, 134, 142, 144, 147
DmFindDatabaseByTypeCreator() 148
DmFindDatabaseV50() 149
dmFindExtendedDB 103
DmFindRecordByID() 150
DmFindRecordByOffsetInCategory() 150

Exploring Palm OS: Memory, Databases, and Files 483

DmFindResource() 152
DmFindResourceType() 153
dmFindSchemaDB 103
DmFindType 103
DmGet1ResourceV50() 154, 174, 188
DmGetAppInfo() 155
DmGetAppInfoIDV50() 155
DmGetDatabaseLockState() 156
DmGetDatabaseV50() 144, 157
DmGetFallbackOverlayLocale() 158
DmGetLastErr() 158
DmGetNextDatabaseByTypeCreator() 160
DmGetNextDatabaseByTypeCreatorV50() 163
DmGetOpenInfo() 165
DmGetOverlayDatabaseLocale() 166
DmGetOverlayDatabaseName() 167
DmGetOverlayLocale() 167
DmGetPositionInCategory() 168
DmGetRecord() 58, 169
DmGetRecordAttr() 169
DmGetRecordCategory() 170
DmGetRecordID() 171
DmGetRecordSortPosition() 172
DmGetResource() 173, 174
DmGetResourceByIndex() 174
DmGetResourceV50() 175
DmGetStorageInfo() 176
DmHandleFree() 176
DmHandleLock() 177
DmHandleResize() 177
DmHandleSize() 178
DmHandleUnlock() 178
dmHdrAttrAppInfoDirty 109
dmHdrAttrBackup 109
dmHdrAttrBundle 109
dmHdrAttrCopyPrevention 109
dmHdrAttrExtendedDB 110
dmHdrAttrHidden 109
dmHdrAttrLaunchableData 110
dmHdrAttrOKToInstallNewer 110
dmHdrAttrOpen 110
dmHdrAttrReadOnly 110
dmHdrAttrRecyclable 110, 128

dmHdrAttrResDB 110
dmHdrAttrResetAfterInstall 110
dmHdrAttrSchema 110
dmHdrAttrSecure 110
dmHdrAttrStream 110
DmInitiateAutoBackupOfOpenDatabase() 179
DmInsertionSort() 180
dmInvalidRecIndex 111
dmMaxRecordIndex 111, 120, 183
dmModeExclusive 104
dmModeReadOnly 104
dmModeReadWrite 104
dmModeShowSecret 104
dmModeWrite 104
DmMoveCategory() 181
DmMoveRecord() 182
DmNewHandle() 183
DmNewRecord() 183
DmNewResource() 63, 184
DmNextOpenDatabase() 185
DmNextOpenDatabaseV50() 186
DmNextOpenResDatabase() 187
DmNextOpenResDatabaseV50() 188
DmNumDatabases() 189
DmNumDatabasesV50() 189
DmNumRecords() 190
DmNumRecordsInCategory() 190
DmNumResources() 191
DmOpenDatabase() 104, 192
DmOpenDatabaseByTypeCreator() 194
DmOpenDatabaseByTypeCreatorV50() 195
DmOpenDatabaseInfoV50() 196
DmOpenDatabaseV50() 197
DmOpenDBNoOverlay() 104, 199
DmOpenDBNoOverlayV50() 200
DmOpenIteratorByTypeCreator() 201
DmOpenModeType 103
DmOpenRef 104
DmPtrResize() 202
DmPtrSize() 203
DmPtrUnlock() 203
DmQueryNextInCategory() 204
DmQueryRecord() 58, 205

484 Exploring Palm OS: Memory, Databases, and Files

DmQuickSort() 206
dmRecAttrBusy 108
dmRecAttrCategoryMask 108
dmRecAttrDelete 108
dmRecAttrDirty 108
dmRecAttrSecret 108
dmRecNumCategories 111
dmRecordIDReservedRange 112
DmRecordInfoV50() 207
DmRecoverHandle() 208
DmReleaseRecord() 58, 169, 184, 208
DmReleaseResource 61, 185
DmReleaseResource() 209
DmRemoveRecord() 66, 209
DmRemoveResource() 210
DmRemoveSecretRecords() 211
DmResetRecordStates() 212
DmResizeRecord() 58, 212
DmResizeResource() 213
DmResourceID 105
DmResourceInfo() 214
DmResourceInfoV50() 215
DmResourceType 105
DmRestoreFinalize() 216
DmRestoreInitialize() 217
DmRestoreUpdate() 218
DmSearchRecordOpenDatabases() 222
DmSearchResourceOpenDatabases() 174, 223
DmSearchStatePtr 105, 161, 164
DmSearchStateType 105, 161, 164
dmSearchWildcardID 112
dmSeekBackward 112, 151
dmSeekForward 112
dmseekForward 151
DmSet() 223
DmSetDatabaseInfo() 58, 66, 224
DmSetDatabaseInfoV50() 226
DmSetDatabaseProtection 128
DmSetDatabaseProtection() 228
DmSetFallbackOverlayLocale() 229
DmSetOverlayLocale() 230
DmSetRecordAttr() 230

DmSetRecordCategory() 231
DmSetRecordID() 232
DmSetRecordInfoV50() 233
DmSetResourceInfo() 234
DmSortRecordInfoPtr 106
DmSortRecordInfoType 106
DmStorageInfoPtr 107
DmStorageInfoType 107
DmStrCopy() 235
dmSysOnlyHdrAttrs 111
dmSysOnlyRecAttrs 108
dmUnfiledCategory 112
dmUnusedRecordID 112
DmWrite() 236
DmWriteCheckV50() 236
driver

block device 76
dynamic heap 3

E
error code from Data Manager call 158
ExgDBDeleteProcPtr 453
expansion

and legacy applications 73
and Palm databases 81
and the launcher 71
applications on cards 72
auto-start PRC 71, 81
card-launched applications 72
custom calls 92
custom I/O 93
default directories 72
file system operations 78
lifetime of card-launched applications 73
naming apps on expansion cards 72, 81
notifications 74
standard directories 71
standard directory layout 71
volume operations 74

expansion cards
reading and writing 82

Expansion Manager
custom I/O 93

Exploring Palm OS: Memory, Databases, and Files 485

F
file streaming

and the VFS Manager 69
file systems

and filenames 80
and volume names 77
and volumes 74
basic operations 78
custom calls to 92
nonstandard functionality 92
VFAT 81

FileClearerr() 246
FileClose() 247
FileControl() 247
FileDelete() 248
FileDeleteV50() 249
FileDmRead() 249
FileEOF() 250
fileErrCloseError 240
fileErrCorruptFile 240
fileErrCreateError 240
fileErrEOF 240
fileErrInUse 240
fileErrInvalidDescriptor 240
fileErrInvalidParam 240
fileErrIOError 240
fileErrMemError 240
fileErrNotFound 240
fileErrNotStream 240
fileErrOpenError 240
FileError() 251
fileErrOutOfBounds 240
fileErrPermissionDenied 241
fileErrReadOnly 241
fileErrReplaceError 241
fileErrTypeCreatorMismatch 241
FileFlush() 251
FileGetLastError() 252
FileHand 239
FileInfoType 404
fileModeAllFlags 241
fileModeAnyTypeCreator 242
fileModeAppend 241
fileModeDontOverwrite 242

fileModeExclusive 242
fileModeLeaveOpen 242
fileModeReadOnly 241
fileModeReadWrite 241
fileModeTemporary 242
fileModeUpdate 241
fileNullHandle 242
fileOpClearError 244
fileOpDestructiveReadMode 243
FileOpen() 252
FileOpEnum 243
FileOpenV50() 254
fileOpFlush 245
fileOpGetCreatedStatus 245
fileOpGetEOFStatus 243
fileOpGetIOErrorStatus 244
fileOpGetLastError 244
fileOpGetOpenDbRef 245
fileOpLAST 246
fileOpNone 243
FileOrigin 405
fileOriginBeginning 246
fileOriginCurrent 246
fileOriginEnd 246
FileOriginEnum 246
FileRead() 256
FileReadLow() 257
FileRef 405
FileRewind() 258
files

enumerating 88
naming 77, 80
paths to 80
reading and writing 82
referencing 80

FileSeek() 258
FileTell() 259
FileTruncate() 260
FileWrite() 260
finding database 57
formatting volumes 75

H
heap ID 5

486 Exploring Palm OS: Memory, Databases, and Files

heaps
overview 5

HotSync 66

I
ID

database 149
local 7

L
launcher

and expansion 71
local IDs 7
LocalID 264
LocalIDKind 269
locking a chunk 6, 8, 177

M
mapping file types to directories 89
MemCmp() 270
MemDebugMode() 270
memDebugModeAllHeaps 266
memDebugModeCheckOnAll 266
memDebugModeCheckOnChange 266
memDebugModeFillFree 266
memDebugModeNoDMCall 266
memDebugModeRecordMaxDynHeapUsed 266
memDebugModeRecordMinDynHeapFree 266
memDebugModeScrambleOnAll 266
memDebugModeScrambleOnChange 266
memDebugModeValidateParams 267
MemDynHeapGetInfo() 271
MemDynHeapOption() 272
MemDynHeapReleaseUnused() 272
memErrAlreadyInitialized 268
memErrCardNotPresent 268
memErrChunkLocked 268
memErrChunkNotLocked 268
memErrEndOfHeapReached 268
memErrFirst 268
memErrHeapInvalid 269
memErrInvalidParam 269
memErrInvalidStoreHeader 269

memErrLast 269
memErrNoCardHeader 269
memErrNoRAMOnDevice 269
memErrNoStore 269
memErrNotEnoughSpace 269
memErrRAMOnlyDevice 269
memErrROMOnlyDevice 269
memErrWriteProtect 269
MemHandleDataStorage() 273
MemHandleFree() 273
MemHandleHeapID() 274
MemHandleLock() 8, 274
MemHandleNew() 8, 275
MemHandleResize() 275
MemHandleSetOwner() 276
MemHandleSize() 277
MemHandleUnlock() 8, 277
MemHeapCheck() 277
MemHeapCompact() 278
MemHeapDynamic() 279
memHeapFlagReadOnly 268
memHeapFlagROMBased 268
MemHeapFlags() 279
memHeapFlagWritable 268
MemHeapFreeBytes() 279
MemHeapID() 280
MemHeapInfoPtr 264
MemHeapInfoType 264
MemHeapScramble() 281
MemHeapSize() 281
memIDHandle 269
memIDPtr 269
MemMove() 8, 282
MemNumHeaps() 282
MemNumRAMHeaps() 282
memOptGetAbsMaxMemUsage 267
memOptGetAbsMinMemUsage 267
memOptGetForceMemReleaseThreshold 267
memOptGetMaxUnusedMem 267
memOptSetAbsMaxMemUsage 267
memOptSetAbsMinMemUsage 267
memOptSetForceMemReleaseThreshold 267
memOptSetMaxUnusedMem 268

Exploring Palm OS: Memory, Databases, and Files 487

Memory Manager
See also Data Manager
See also Resource Manager

Memory Stick 89
MemPtrDataStorage() 283
MemPtrFree() 283
MemPtrHeapID() 284
MemPtrNew() 284
MemPtrRealloc() 285
MemPtrRecoverHandle() 8, 286
MemPtrResize() 286
MemPtrSetOwner() 287
MemPtrSize() 287
MemPtrUnlock() 288
MemSet() 8, 288
MemSetDebugMode() 289
MIME types 89

N
naming conventions 77, 80
notifications

expansion 74

O
omErrDatabaseRequiresOverlay 193, 198
omOverlayDBType 192, 197
overlays 192, 197
owner ID 7

P
PDB files

exploring on expansion cards 85
on expansion cards 81

PRC files
exploring on expansion cards 85
on expansion cards 81

R
records

deleting 144
detaching 146
ID 150
retrieving information 207

resource database header 60
Resource Manager

using 61
resource type 153
resources

retrieving 173, 175
retrieving information 214, 215
storing 14

ROM-based records 168, 205

S
secret records, removing 211
SIZEOF_LargestVFSMountParamType 416
SIZEOF_VFSAnyMountParamType 416
SIZEOF_VFSPOSEMountParamType 416
SIZEOF_VFSSlotMountParamType 417
slots

and volumes 75, 76
standard directories on expansion media 71
start.prc 71, 81
stat 260
storage heap 3
sysAppLaunchCmdCardLaunch 72
sysAppLaunchCmdNormalLaunch 73
sysAppLaunchStartFlagNoUISwitch 72
sysNotifyDBDeletedEvent 142, 143
sysResIDExtPrefs 198
sysResTExtPrefs 198

T
tAIN resource 72

U
UI resources, storing 14
UIResources.r 198
unlocking a chunk 8
user interface elements

storing (Resource Manager) 14

V
version number 66
VFS Manager 70

and file streaming 69

488 Exploring Palm OS: Memory, Databases, and Files

and the Data Manager 69
custom calls 92
custom I/O 93
directory operations 86
enumerating files 88
file paths 80
file system operations 78
filenames 80
functions 69
volume operations 74

VFSAnyMountParamPtr 405
VFSAnyMountParamType 405
VFSCustomControl() 92, 417
VFSDirCreate() 87, 419
VFSDirEntryEnumerate() 88, 420
vfsErrBadData 409
vfsErrBadName 409
vfsErrBufferOverflow 409
vfsErrDirectoryNotFound 409
vfsErrDirNotEmpty 409
vfsErrFileAlreadyExists 409
vfsErrFileBadRef 409
vfsErrFileEOF 409
vfsErrFileGeneric 409
vfsErrFileNotFound 410
vfsErrFilePermissionDenied 410
vfsErrFileStillOpen 410
vfsErrIsADirectory 410
vfsErrNameShortened 410
vfsErrNoFileSystem 410
vfsErrNotADirectory 410
vfsErrUnimplemented 410
vfsErrVolumeBadRef 410
vfsErrVolumeFull 410
vfsErrVolumeStillMounted 410
VFSExportDatabaseToFile() 83, 422
VFSExportDatabaseToFileCustom() 83, 423
VFSExportDatabaseToFileCustomV40() 424
VFSExportDatabaseToFileV40() 426
VFSExportProcPtr() 476
vfsFileAttrAll 413
vfsFileAttrArchive 413
vfsFileAttrDirectory 413
vfsFileAttrHidden 413

vfsFileAttrLink 413
vfsFileAttrReadOnly 413
vfsFileAttrSystem 413
vfsFileAttrVolumeLabel 413
VFSFileClose() 79, 87, 428
VFSFileCreate() 79, 428
vfsFileDateAccessed 414
vfsFileDateCreated 414
vfsFileDateModified 414
VFSFileDBGetRecord() 85, 429
VFSFileDBGetResource() 431
VFSFileDBInfo() 432
VFSFileDelete() 79, 87, 435
VFSFileEOF() 79, 436
VFSFileGetAttributes() 79, 87, 437
VFSFileGetDate() 80, 87, 438
VFSFileOpen() 79, 87, 439
VFSFileOpenFromURL() 440
VFSFileRead() 79, 442
VFSFileReadData() 79, 443
VFSFileRename() 79, 87, 444
VFSFileResize() 79, 446
VFSFileSeek() 79, 447
VFSFileSetAttributes() 80, 87, 448
VFSFileSetDate() 80, 87, 449
VFSFileSize() 79, 450
vfsFilesystemType_AFS 411
vfsFilesystemType_EXT2 411
vfsFilesystemType_FAT 411
vfsFilesystemType_FFS 411
vfsFilesystemType_HFS 411
vfsFilesystemType_HFSPlus 411
vfsFilesystemType_HPFS 411
vfsFilesystemType_MFS 411
vfsFilesystemType_NFS 411
vfsFilesystemType_Novell 411
vfsFilesystemType_NTFS 411
vfsFilesystemType_VFAT 411
VFSFileTell() 79, 451
VFSFileWrite() 79, 452
vfsFtrIDDefaultFS 417
vfsFtrIDVersion 417
VFSGetDefaultDirectory() 89, 453

Exploring Palm OS: Memory, Databases, and Files 489

vfsHandledStartPrc 417
vfsHandledUIAppSwitch 417
VFSImportDatabaseFromFile() 454
VFSImportDatabaseFromFileCustom() 83, 456
VFSImportDatabaseFromFileCustomV40() 458
VFSImportDatabaseFromFileV40() 460
VFSImportProcPtr() 477
vfsInvalidFileRef 415
vfsInvalidVolRef 415
vfsIteratorStart 415
vfsIteratorStop 415
vfsMgrVersionNum 417
vfsModeAll 412
vfsModeCreate 412
vfsModeExclusive 412
vfsModeLeaveOpen 412
vfsModeRead 412
vfsModeReadWrite 412
vfsModeTruncate 412
vfsModeVFSLayerOnly 412
vfsModeWrite 412
vfsMountClass_POSE 414
vfsMountClass_POSE_BE 414
vfsMountClass_SlotDriver 414
vfsMountClass_SlotDriver_BE 414
vfsMountFlagsReserved1 416
vfsMountFlagsReserved2 416
vfsMountFlagsReserved3 416
vfsMountFlagsReserved4 416
vfsMountFlagsReserved5 416

vfsMountFlagsUseThisFileSystem 416
VFSPOSEMountParamType 406
VFSRegisterDefaultDirectory() 461
VFSSlotMountParamType 407
VFSUnregisterDefaultDirectory() 463
vfsVolumeAttrHidden 413
vfsVolumeAttrReadOnly 413
vfsVolumeAttrSlotBased 414
VFSVolumeEnumerate() 464
VFSVolumeFormat() 75, 465
VFSVolumeGetLabel() 75, 468
VFSVolumeInfo() 75, 76, 469
VFSVolumeMount() 74, 470
VFSVolumeSetLabel() 75, 473
VFSVolumeSize() 75, 474
VFSVolumeUnmount() 74, 475
VolumeInfoType 408
volumes

and file systems 74
and slots 75
automatically mounted 74
basic operations 74
formatting 75
hidden 75, 76
labeling 75
matching to slots 76
mounting 74
naming 77
read-only 75
size 75
space available 75
unmounting 74

490 Exploring Palm OS: Memory, Databases, and Files

	Memory, Databases, and Files
	Table of Contents
	About This Document
	The Exploring Palm OS Series
	Additional Resources
	Changes to This Document
	3108-002
	3108-001

	Concepts
	Memory
	Memory Architecture
	The Dynamic Heaps
	The Storage Heaps
	Heap Details
	Chunks

	The Memory Manager
	Allocating and Freeing Memory Chunks
	Manipulating Chunk Contents

	Summary of Memory Management

	Palm OS Databases
	Database Overview
	Schema Databases
	Resources and Resource Databases
	Uniquely Identifying Databases
	Database Attributes
	Automatic Database Backup and Restore

	Working with Schema Databases
	Schemas and Tables
	Schema Database Rows
	Cursors
	Secure Databases
	Concurrent Database Access

	Working with Non-Schema Databases
	Structure of a Non-Schema Database Header
	Working with Non-Schema Databases
	Record Attributes
	Resource Databases

	Data Manager Tips
	File Streaming Layer
	Using the File Streaming API

	Virtual File Systems
	VFS Manager
	The VFS Manager, the Data Manager, and File Streaming APIs
	Checking for the Presence of the VFS Manager

	Standard Directories
	Applications on Cards
	Volume Operations
	Hidden Volumes
	Matching Volumes to Slots
	Naming Volumes

	File Operations
	Common Operations
	Naming Files
	Working with Palm OS Databases

	Directory Operations
	Directory Paths
	Common Operations
	Enumerating the Files in a Directory
	Determining the Default Directory for a Particular File Type
	Default Directories Registered at Initialization

	Custom Calls
	Custom I/O

	Summary of VFS Manager

	Reference
	Data Manager
	Data Manager Structures and Types
	CategoryID
	DatabaseID
	DmBackupRestoreStateType
	DmDatabaseInfoType
	DmFindType
	DmOpenModeType
	DmOpenRef
	DmResourceID
	DmResourceType
	DmSearchStateType
	DmSortRecordInfoType
	DmStorageInfoType

	Data Manager Constants
	Non-Schema Database Record Attributes
	Database Attributes
	Miscellaneous Data Manager Constants
	Data Manager Error Codes

	Data Manager Functions and Macros
	DmArchiveRecord
	DmAttachRecord
	DmAttachResource
	DmBackupFinalize
	DmBackupInitialize
	DmBackupUpdate
	DmCloseDatabase
	DmCloseIteratorByTypeCreator
	DmCreateDatabase
	DmCreateDatabaseFromImage
	DmCreateDatabaseFromImageV50
	DmCreateDatabaseV50
	DmDatabaseInfo
	DmDatabaseInfoV50
	DmDatabaseProtectV50
	DmDatabaseSize
	DmDatabaseSizeV50
	DmDeleteCategory
	DmDeleteDatabase
	DmDeleteDatabaseV50
	DmDeleteRecord
	DmDetachRecord
	DmDetachResource
	DmFindDatabase
	DmFindDatabaseByTypeCreator
	DmFindDatabaseV50
	DmFindRecordByID
	DmFindRecordByOffsetInCategory
	DmFindResource
	DmFindResourceType
	DmGet1ResourceV50
	DmGetAppInfo
	DmGetAppInfoIDV50
	DmGetDatabaseLockState
	DmGetDatabaseV50
	DmGetFallbackOverlayLocale
	DmGetLastErr
	DmGetNextDatabaseByTypeCreator
	DmGetNextDatabaseByTypeCreatorV50
	DmGetOpenInfo
	DmGetOverlayDatabaseLocale
	DmGetOverlayDatabaseName
	DmGetOverlayLocale
	DmGetPositionInCategory
	DmGetRecord
	DmGetRecordAttr
	DmGetRecordCategory
	DmGetRecordID
	DmGetRecordSortPosition
	DmGetResource
	DmGetResourceByIndex
	DmGetResourceV50
	DmGetStorageInfo
	DmHandleFree
	DmHandleLock
	DmHandleResize
	DmHandleSize
	DmHandleUnlock
	DmInitiateAutoBackupOfOpenDatabase
	DmInsertionSort
	DmMoveCategory
	DmMoveRecord
	DmNewHandle
	DmNewRecord
	DmNewResource
	DmNextOpenDatabase
	DmNextOpenDatabaseV50
	DmNextOpenResDatabase
	DmNextOpenResDatabaseV50
	DmNumDatabases
	DmNumDatabasesV50
	DmNumRecords
	DmNumRecordsInCategory
	DmNumResources
	DmOpenDatabase
	DmOpenDatabaseByTypeCreator
	DmOpenDatabaseByTypeCreatorV50
	DmOpenDatabaseInfoV50
	DmOpenDatabaseV50
	DmOpenDBNoOverlay
	DmOpenDBNoOverlayV50
	DmOpenIteratorByTypeCreator
	DmPtrResize
	DmPtrSize
	DmPtrUnlock
	DmQueryNextInCategory
	DmQueryRecord
	DmQuickSort
	DmRecordInfoV50
	DmRecoverHandle
	DmReleaseRecord
	DmReleaseResource
	DmRemoveRecord
	DmRemoveResource
	DmRemoveSecretRecords
	DmResetRecordStates
	DmResizeRecord
	DmResizeResource
	DmResourceInfo
	DmResourceInfoV50
	DmRestoreFinalize
	DmRestoreInitialize
	DmRestoreUpdate
	DmSearchRecordOpenDatabases
	DmSearchResourceOpenDatabases
	DmSet
	DmSetDatabaseInfo
	DmSetDatabaseInfoV50
	DmSetDatabaseProtection
	DmSetFallbackOverlayLocale
	DmSetOverlayLocale
	DmSetRecordAttr
	DmSetRecordCategory
	DmSetRecordID
	DmSetRecordInfoV50
	DmSetResourceInfo
	DmStrCopy
	DmWrite
	DmWriteCheckV50

	Application-Defined Functions
	DmCompareFunctionType

	File Stream
	File Stream Structures and Types
	FileHand

	File Stream Constants
	File Stream Error Codes
	Primary Open Modes
	Secondary Open Modes
	Miscellaneous File Stream Constants
	FileOpEnum
	FileOriginEnum

	File Stream Functions and Macros
	FileClearerr
	FileClose
	FileControl
	FileDelete
	FileDeleteV50
	FileDmRead
	FileEOF
	FileError
	FileFlush
	FileGetLastError
	FileOpen
	FileOpenV50
	FileRead
	FileReadLow
	FileRewind
	FileSeek
	FileTell
	FileTruncate
	FileWrite

	Memory Manager
	Memory Manager Structures and Types
	LocalID
	MemHeapInfoType

	Memory Manager Constants
	Debug Mode Flags
	Dynamic Heap Options
	Heap Flags
	Memory Manager Error Codes
	LocalIDKind

	Memory Manager Functions and Macros
	MemCmp
	MemDebugMode
	MemDynHeapGetInfo
	MemDynHeapOption
	MemDynHeapReleaseUnused
	MemHandleDataStorage
	MemHandleFree
	MemHandleHeapID
	MemHandleLock
	MemHandleNew
	MemHandleResize
	MemHandleSetOwner
	MemHandleSize
	MemHandleUnlock
	MemHeapCheck
	MemHeapCompact
	MemHeapDynamic
	MemHeapFlags
	MemHeapFreeBytes
	MemHeapID
	MemHeapScramble
	MemHeapSize
	MemMove
	MemNumHeaps
	MemNumRAMHeaps
	MemPtrDataStorage
	MemPtrFree
	MemPtrHeapID
	MemPtrNew
	MemPtrRealloc
	MemPtrRecoverHandle
	MemPtrResize
	MemPtrSetOwner
	MemPtrSize
	MemPtrUnlock
	MemSet
	MemSetDebugMode

	Schema Databases
	Schema Databases Structures and Types
	DbColumnPropertySpecType
	DbColumnPropertyValueType
	DbMatchModeType
	DbSchemaColumnData
	DbSchemaColumnDefnType
	DbSchemaColumnProperty
	DbSchemaColumnType
	DbSchemaColumnValueType
	DbShareModeType
	DbTableDefinitionType

	Schema Databases Constants
	Schema Database Row Attributes
	Table Column Attributes
	Schema Database Access Rule Action Types
	Cursor Open Flags
	Miscellaneous Schema Database Constants
	DbFetchType

	Schema Databases Functions and Macros
	DbAddCategory
	DbAddColumn
	DbAddSortIndex
	DbAddTable
	DbArchiveRow
	DbCloseDatabase
	DbCopyColumnValue
	DbCopyColumnValues
	DbCreateDatabase
	DbCreateSecureDatabase
	DbCreateSecureDatabaseFromImage
	DbCursorArchiveAllRows
	DbCursorBindData
	DbCursorBindDataWithOffset
	DbCursorClose
	DbCursorDeleteAllRows
	DbCursorFlushCache
	DbCursorGetCurrentPosition
	DbCursorGetCurrentRowID
	DbCursorGetPositionForRowID
	DbCursorGetRowCount
	DbCursorGetRowIDForPosition
	DbCursorIsBOF
	DbCursorIsDeleted
	DbCursorIsEOF
	DbCursorMove
	DbCursorMoveFirst
	DbCursorMoveLast
	DbCursorMoveNext
	DbCursorMovePrev
	DbCursorRelocateRow
	DbCursorMoveToRowID
	DbCursorOpen
	DbCursorOpenWithCategory
	DbCursorRemoveAllRows
	DbCursorRequery
	DbCursorSetAbsolutePosition
	DbCursorUpdate
	DbDeleteRow
	DbEnableSorting
	DbGetAllColumnDefinitions
	DbGetAllColumnPropertyValues
	DbGetAllColumnValues
	DbGetCategory
	DbGetColumnDefinitions
	DbGetColumnID
	DbGetColumnPropertyValue
	DbGetColumnPropertyValues
	DbGetColumnValue
	DbGetColumnValues
	DbGetRowAttr
	DbGetRuleSet
	DbGetSortDefinition
	DbGetTableForRow
	DbGetTableName
	DbGetTableSchema
	DbHasSortIndex
	DbHasTable
	DbInsertRow
	DbIsCursorID
	DbIsRowID
	DbIsRowInCategory
	DbIsSortingEnabled
	DbMoveCategory
	DbNumCategory
	DbNumColumns
	DbNumSortIndexes
	DbNumTables
	DbOpenDatabase
	DbOpenDatabaseByName
	DbReleaseStorage
	DbRemoveCategory
	DbRemoveCategoryAllRows
	DbRemoveColumn
	DbRemoveColumnProperty
	DbRemoveRow
	DbRemoveSecretRows
	DbRemoveSortIndex
	DbRemoveTable
	DbSetCategory
	DbSetColumnPropertyValue
	DbSetColumnPropertyValues
	DbSetRowAttr
	DbWriteColumnValue
	DbWriteColumnValues

	VFS Manager
	VFS Manager Structures and Types
	FileInfoType
	FileOrigin
	FileRef
	VFSAnyMountParamType
	VFSPOSEMountParamType
	VFSSlotMountParamType
	VolumeInfoType

	VFS Manager Constants
	VFS Manager Error Codes
	Defined File Systems
	Open Mode Constants
	File and Directory Attributes
	Volume Attributes
	Volume Mount Classes
	Date Types
	Seek Origins
	Iterator Controls and Constants
	Volume Mount Flags
	Miscellaneous Constants and Definitions

	VFS Manager Functions and Macros
	VFSCustomControl
	VFSDirCreate
	VFSDirEntryEnumerate
	VFSExportDatabaseToFile
	VFSExportDatabaseToFileCustom
	VFSExportDatabaseToFileCustomV40
	VFSExportDatabaseToFileV40
	VFSFileClose
	VFSFileCreate
	VFSFileDBGetRecord
	VFSFileDBGetResource
	VFSFileDBInfo
	VFSFileDelete
	VFSFileEOF
	VFSFileGetAttributes
	VFSFileGetDate
	VFSFileOpen
	VFSFileOpenFromURL
	VFSFileRead
	VFSFileReadData
	VFSFileRename
	VFSFileResize
	VFSFileSeek
	VFSFileSetAttributes
	VFSFileSetDate
	VFSFileSize
	VFSFileTell
	VFSFileWrite
	VFSGetDefaultDirectory
	VFSImportDatabaseFromFile
	VFSImportDatabaseFromFileCustom
	VFSImportDatabaseFromFileCustomV40
	VFSImportDatabaseFromFileV40
	VFSRegisterDefaultDirectory
	VFSUnregisterDefaultDirectory
	VFSVolumeEnumerate
	VFSVolumeFormat
	VFSVolumeGetLabel
	VFSVolumeInfo
	VFSVolumeMount
	VFSVolumeSetLabel
	VFSVolumeSize
	VFSVolumeUnmount

	Application-Defined Functions
	VFSExportProcPtr
	VFSImportProcPtr

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V

