

Low-Level
Communications

Exploring Palm OS

®

Written by Eric Shepherd
Edited by Susan Salituro
Engineering contributions by Rene Portier, Justin Morey, Kamran Khan, Tom Keel, David Schlesinger, Eric
Lapuyade

Copyright © 2004, PalmSource, Inc. and its affiliates. All rights reserved. This technical documentation contains
confidential and proprietary information of PalmSource, Inc. (“PalmSource”), and is provided to the licensee (“you”)
under the terms of a Nondisclosure Agreement, Product Development Kit license, Software Development Kit license
or similar agreement between you and PalmSource. You must use commercially reasonable efforts to maintain the
confidentiality of this technical documentation. You may print and copy this technical documentation solely for the
permitted uses specified in your agreement with PalmSource. In addition, you may make up to two (2) copies of this
technical documentation for archival and backup purposes. All copies of this technical documentation remain the
property of PalmSource, and you agree to return or destroy them at PalmSource’s written request. Except for the
foregoing or as authorized in your agreement with PalmSource, you may not copy or distribute any part of this
technical documentation in any form or by any means without express written consent from PalmSource, Inc., and
you may not modify this technical documentation or make any derivative work of it (such as a translation,
localization, transformation or adaptation) without express written consent from PalmSource.

PalmSource, Inc. reserves the right to revise this technical documentation from time to time, and is not obligated to
notify you of any revisions.

THIS TECHNICAL DOCUMENTATION IS PROVIDED ON AN “AS IS” BASIS. NEITHER PALMSOURCE NOR ITS
SUPPLIERS MAKES, AND EACH OF THEM EXPRESSLY EXCLUDES AND DISCLAIMS TO THE FULL EXTENT
ALLOWED BY APPLICABLE LAW, ANY REPRESENTATIONS OR WARRANTIES REGARDING THIS TECHNICAL
DOCUMENTATION, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION
ANY WARRANTIES IMPLIED BY ANY COURSE OF DEALING OR COURSE OF PERFORMANCE AND ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT,
ACCURACY, AND SATISFACTORY QUALITY. PALMSOURCE AND ITS SUPPLIERS MAKE NO
REPRESENTATIONS OR WARRANTIES THAT THIS TECHNICAL DOCUMENTATION IS FREE OF ERRORS OR IS
SUITABLE FOR YOUR USE. TO THE FULL EXTENT ALLOWED BY APPLICABLE LAW, PALMSOURCE, INC.
ALSO EXCLUDES FOR ITSELF AND ITS SUPPLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR
TORT (INCLUDING NEGLIGENCE), FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL,
EXEMPLARY OR PUNITIVE DAMAGES OF ANY KIND ARISING OUT OF OR IN ANY WAY RELATED TO THIS
TECHNICAL DOCUMENTATION, INCLUDING WITHOUT LIMITATION DAMAGES FOR LOST REVENUE OR
PROFITS, LOST BUSINESS, LOST GOODWILL, LOST INFORMATION OR DATA, BUSINESS INTERRUPTION,
SERVICES STOPPAGE, IMPAIRMENT OF OTHER GOODS, COSTS OF PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES, OR OTHER FINANCIAL LOSS, EVEN IF PALMSOURCE, INC. OR ITS SUPPLIERS HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR IF SUCH DAMAGES COULD HAVE BEEN
REASONABLY FORESEEN.

PalmSource, the PalmSource logo, BeOS, Graffiti, HandFAX, HandMAIL, HandPHONE, HandSTAMP, HandWEB,
HotSync, the HotSync logo, iMessenger, MultiMail, MyPalm, Palm, the Palm logo, the Palm trade dress, Palm
Computing, Palm OS, Palm Powered, PalmConnect, PalmGear, PalmGlove, PalmModem, Palm Pack, PalmPak,
PalmPix, PalmPower, PalmPrint, Palm.Net, Palm Reader, Palm Talk, Simply Palm and ThinAir are trademarks of
PalmSource, Inc. or its affiliates. All other product and brand names may be trademarks or registered trademarks of
their respective owners.

IF THIS TECHNICAL DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE SOFTWARE AND OTHER
DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT TO THE LICENSE AGREEMENTS
ACCOMPANYING THE SOFTWARE AND OTHER DOCUMENTATION.

Exploring Palm OS: Low-Level Communications
Document Number 3116-005
November 9, 2004
For the latest version of this document, visit
http://www.palmos.com/dev/support/docs/.

PalmSource, Inc.
1240 Crossman Avenue
Sunnyvale, CA 94089
USA
www.palmsource.com

http://www.palmos.com/dev/support/docs/
http://www.palmsource.com

Exploring Palm OS: Low-Level Communications

iii

Table of Contents

About This Document xix

Intended Audience . xix
Additional Resources xix

Part I: Serial Communication

1 Introduction to Serial Communications 3

Serial Communications Overview. 3
Serial Communications Components 3
Byte Ordering . 4

2 The Serial Manager 5

Steps for Using the Serial Manager 6
Opening a Port. . 7
Closing a Port . 9
Configuring the Port 9
Sending Data . 11
Receiving Data. 12
Serial Manager Tips and Tricks 18

3 The Serial Link Protocol 21

The Serial Link Protocol 21
SLP Packet Structures 21
Transmitting an SLP Packet 24
Receiving an SLP Packet 24

The Serial Link Manager. 24
Using the Serial Link Manager 25

4 Serial Manager Reference 29

Serial Manager Data Structures 29
DeviceInfoType . 29
SrmOpenConfigType 30
SrmRfCommOpenParamsType 31

iv

 Exploring Palm OS: Low-Level Communications

Serial Manager Constants 32
Port Constants . 32
Serial Capabilities Constants 33
Serial Settings Constants 33
SrmCtlEnum . 34
Status Constants . 36
Line Error Constants 36

Serial Manager Functions 37
SrmClearErr . 37
SrmClose . 38
SrmControl . 39
SrmExtOpen. 42
SrmGetDeviceCount 43
SrmGetDeviceInfo 44
SrmGetStatus . 45
SrmOpen . 46
SrmPrimeWakeupHandler. 47
SrmReceive . 48
SrmReceiveCheck 49
SrmReceiveFlush . 50
SrmReceiveWait . 51
SrmReceiveWindowClose 53
SrmReceiveWindowOpen 54
SrmSend . 55
SrmSendCheck. 56
SrmSendFlush . 57
SrmSendWait . 58
SrmSetReceiveBuffer 59
SrmSetWakeupHandler 60

Serial Manager Application-Defined Functions 61
WakeupHandlerProcPtr 61

5 Serial Link Manager 63

Serial Link Manager Functions 63
SlkClose . 63

Exploring Palm OS: Low-Level Communications

v

SlkCloseSocket . 64
SlkFlushSocket. 64
SlkOpen . 65
SlkOpenSocket . 65
SlkReceivePacket . 66
SlkSendPacket . 68
SlkSetSocketListener 69
SlkSocketPortID . 70
SlkSocketSetTimeout 71

Part II: Infrared Communication (Beaming)

6 Introduction to Infrared Communication (Beaming) 75

7 The IrDA Protocol Stack 77

8 Using the IrDA Protocols 79

The IrLAP Protocol Layer 79
The IrLMP Protocol Layer 79

The IrLMP Sequenced Packet Interface 79
The IrLMP Datagram Interface 81
Discovering IrDA Devices 82

The TinyTP Protocol Layer 83
The TinyTP Sequenced Packet Interface 83
The TinyTP Stream Interface 84

Getting and Providing Information About IrDA Services 86
Structure of the IAS Database 86
Getting Information about IrDA Services 86
Providing Information About Offered IrDA Services 87

9 IrDA Reference 89

IrDA Constants . 89
IASAttribTypeType 89
IASCharSetType . 89
IrDA Protocol Identifier Constants 90

vi

 Exploring Palm OS: Low-Level Communications

IrDA Socket Address Family Constant 90
IrLmpDiscoveryMethodType 91
IAS Constants . 91
setsockopt() commands 92
Special IrDA Device Addresses 92
Special IrLMP SAP Values 93

IrDA Data Types and Structures 94
IASAttribValueType 94
IASObjectType . 95
IASQueryType . 96
IrLapDeviceAddrType 97
IrLmpDeviceInfoType 98
IrLmpSAPType . 99
sockaddr_irda . 99

IrDALib Functions . 100
IASGetValueByClass 100
IASRegisterObject 101
IASRegisterService 101
IASUnregisterObject 102
IrDADiscoverDevices 103

Part III: Bluetooth

10 The Palm OS Bluetooth System 107

Capabilities of the Palm OS Bluetooth System 107
Bluetooth System Components 108

Bluetooth Library 109
Bluetooth Exchange Library 110
Bluetooth Stack Library 110
Bluetooth Devices 110
Bluetooth HCI Transport Modules 110
Hardware Device Drivers 110

Profiles . 111
Usage Scenarios . 114

Exploring Palm OS: Low-Level Communications

vii

Authentication and Encryption 116
Device Discovery . . 116
Telephony and Bluetooth 116

Dial-up Networking Profile 117
Headset Profile . 117
Hands-Free Profile 118

Personal-Area Networking. 119
Radio Power Management 119

11 Developing Bluetooth-enabled Applications 121

Overview of the Bluetooth Library 122
Compatibility . 122

The Management Entity 124
Opening the Library 124
Polling for Management Entity Events 124
Finding Nearby Devices. 127
Creating ACL Links 127
Working With Piconets 128
Closing the Management Entity 128

Bluetooth Sockets . . 129
L2CAP . 130
RFCOMM . . 131
SCO . 132

BSD Sockets . 133
Creating a Socket 133
Restrictions . 133

Service Discovery. . 134
Service Records . 134

Creating Persistent Services 135
Dealing with Bluetooth Shutdown 139

12 Bluetooth Exchange Library Support 141

Detecting the Bluetooth Exchange Library 141
Using the Exchange Manager With Bluetooth. 142

Bluetooth Exchange URLs 142
Obtaining the URL of a Remote Device 143

viii

 Exploring Palm OS: Low-Level Communications

ExgLibGet() and ExgLibRequest() 143

13 Bluetooth Reference 145

Bluetooth Structures and Types 145
BtLibClassOfDeviceType 145
BtLibDeviceAddressType 154
BtLibDeviceAddressTypePtr 154
BtLibFriendlyNameType 154
BtLibFriendlyNameTypePtr 155
BtLibL2CapChannelIdType 155
BtLibL2CapPsmType 155
BtLibLanguageBaseTripletType 155
BtLibManagementEventType 156
BtLibProfileDescriptorListEntryType 159
BtLibProtocolDescriptorListEntryType 160
BtLibProtocolEnum 161
BtLibRfCommServerIdType 161
BtLibSdpAttributeDataType 161
BtLibSdpAttributeIdType 164
BtLibSdpRecordHandle 165
BtLibSdpRemoteServiceRecordHandle 165
BtLibSdpUuidSizeEnum 165
BtLibSdpUuidType 166
BtLibServiceDescriptionType 167
BtLibServiceExecutionParamsType 168
BtLibServicePreparationParamsType 168
BtLibServiceRegistrationParamsType 169
BtLibSocketConnectInfoType 170
BtLibSocketEventType 172
BtLibSocketListenInfoType 174
BtLibSocketRef . 176
BtLibStringType . 177
BtLibUrlType . 177
sockaddr_bth . 178

Bluetooth Constants. 179

Exploring Palm OS: Low-Level Communications

ix

Bluetooth Data Element Sizes 179
Bluetooth Data Element Types 180
Bluetooth Device Names 182
Bluetooth Disconnection Codes 182
Bluetooth Error Codes 183
Bluetooth Module Names 187
BSD Sockets Constants 187
Character Encoding Constants 188
L2Cap Constants 193
Language ID Constants 193
Management Event Status Codes 196
Miscellaneous Bluetooth Constants 199
Attribute Identifier Constants 200
Protocol UUIDs . 201
RfComm Constants 202
Service Class UUIDs 202
Service Description Flags 205
BtLibAccessibleModeEnum 205
BtLibConnectionRoleEnum 206
BtLibGeneralPrefEnum 206
BtLibGetNameEnum 207
BtLibLinkModeEnum 207
BtLibLinkPrefsEnum 208
BtLibManagementEventEnum 208
BtLibProtocolEnum 210
BtLibSdpUuidSizeEnum 211
BtLibSocketEventEnum 211
BtLibSocketInfoEnum 214
Universal Service Attribute IDs 216

Bluetooth Application Launch Codes 217
sysBtLaunchCmdDoServiceUI 217
sysBtLaunchCmdDescribeService 217
sysBtLaunchCmdExecuteService 218
sysBtLaunchCmdPrepareService 218

Bluetooth Functions and Macros 220

x

 Exploring Palm OS: Low-Level Communications

BtLibAddrAToBtd 220
BtLibAddrBtdToA 220
BtLibCancelInquiry. 221
BtLibClose . 222
BtLibDiscoverDevices. 223
BtLibGetGeneralPreference 225
BtLibGetRemoteDeviceName 226
BtLibGetRemoteDeviceNameSynchronous 227
BtLibL2CapHToNL 228
BtLibL2CapHToNS 228
BtLibL2CapNToHL 229
BtLibL2CapNToHS 229
BtLibLinkConnect 230
BtLibLinkDisconnect 231
BtLibLinkGetState 232
BtLibLinkSetState 233
BtLibMEEventName 234
BtLibOpen . 234
BtLibPiconetCreate 235
BtLibPiconetDestroy 237
BtLibPiconetLockInbound 238
BtLibPiconetUnlockInbound 239
BtLibRegisterService 240
BtLibRfCommHToNL 240
BtLibRfCommHToNS 241
BtLibRfCommNToHL 241
BtLibRfCommNToHS 241
BtLibSdpCompareUuids 242
BtLibSdpGetPsmByUuid 243
BtLibSdpGetRawDataElementSize 244
BtLibSdpGetRawElementType 244
BtLibSdpGetServerChannelByUuid. 245
BtLibSdpHToNL 246
BtLibSdpHToNS 247
BtLibSdpNToHL 247

Exploring Palm OS: Low-Level Communications

xi

BtLibSdpNToHS 247
BtLibSdpParseRawDataElement 248
BtLibSdpServiceRecordCreate 249
BtLibSdpServiceRecordDestroy 250
BtLibSdpServiceRecordGetAttribute 251
BtLibSdpServiceRecordGetNumListEntries 253
BtLibSdpServiceRecordGetNumLists 255
BtLibSdpServiceRecordGetRawAttribute 256
BtLibSdpServiceRecordGetSizeOfRawAttribute 258
BtLibSdpServiceRecordGetStringOrUrlLength 260
BtLibSdpServiceRecordMapRemote 261
BtLibSdpServiceRecordSetAttribute 262
BtLibSdpServiceRecordSetAttributesForSocket 264
BtLibSdpServiceRecordSetRawAttribute 266
BtLibSdpServiceRecordsGetByServiceClass 267
BtLibSdpServiceRecordStartAdvertising 269
BtLibSdpServiceRecordStopAdvertising. 270
BtLibSdpUuidInitialize 271
BtLibSdpVerifyRawDataElement 271
BtLibSecurityFindTrustedDeviceRecord 273
BtLibSecurityGetTrustedDeviceRecordInfo 274
BtLibSecurityNumTrustedDeviceRecords 275
BtLibSecurityRemoveTrustedDeviceRecord 276
BtLibSetGeneralPreference 277
BtLibSocketAdvanceCredit 278
BtLibSocketClose. 279
BtLibSocketConnect 280
BtLibSocketCreate 281
BtLibSocketEventName 282
BtLibSocketGetInfo 282
BtLibSocketListen 284
BtLibSocketRespondToConnection 285
BtLibSocketSend 287
BtLibStartInquiry. 288

xii

 Exploring Palm OS: Low-Level Communications

Part IV: Networking and Sockets

14 Introduction to Sockets on Palm OS 293

Overview . 293
Unsupported Sockets Features 293

AF_UNIX and PF_UNIX Unsupported 293
No socketpair() Function 294
No UNIX-Style Asynchronous Features 294

Architecture of the Sockets Support System 294
Protocol Mapping . 295

15 Sockets & Network Support Reference 297

Overview . 297
Structures and Types 297

addrinfo . 298
hostent . 299
netent . 299
protoent . 300
servent . 300
sockaddr . 301
sockaddr_in . . 301
socklen_t . 302

Functions and Macros 302
accept. . 302
bind . 303
connect . 304
endhostent . 304
endnetent . 304
endprotoent . . 305
endservent . 305
freeaddrinfo . . 305
freehostent . 306
gai_strerror . 306
getaddrinfo . 306
gethostbyaddr . . 307

Exploring Palm OS: Low-Level Communications

xiii

gethostbyname. . 308
gethostbyname2 . 308
gethostent . . 309
getipnodebyaddr. 309
getipnodebyname 309
getnameinfo . . 310
getnetbyaddr . 311
getnetbyname . 311
getnetent . 312
getpeername. . 312
getsockname. . 312
getprotobyname . 313
getprotobynumber 313
getprotoent . 314
getservbyname. . 314
getservbyport . 314
getservent . . 315
getsockopt . 315
hstrerror . 316
htonl . 316
htons . . 316
inet_addr . 317
inet_aton . 317
inet_lnaof . 318
inet_makeaddr. . 318
inet_netof . 318
inet_network . 319
inet_ntoa . 319
inet_ntop . 319
inet_pton . 320
listen . 320
ntohl . 322
ntohs . . 322
recv . 322
recvfrom . 323

xiv

 Exploring Palm OS: Low-Level Communications

recvmsg. . 324
select . 324
send . 325
sendmsg . 326
sendto . 326
sethostent . . 327
setnetent . 328
setprotoent . 328
setservent . . 328
setsockopt . . 328
shutdown . . 329
socket. . 330

Part V: WiFi

16 Introduction to Wireless Networking 333

Overview . 333
WiFi Concepts . 333
Locating and Opening a WiFi Interface 334
Getting Information About the WiFi Interface 334

Determining Supported Encryption Modes 334
Getting the Interface Status 335
Identifying the Currently Connected Network 336
Determining Supported Channels and Transmission Rates . . 336
Getting the Signal Strength 337

Finding an Access Point or Ad-hoc Network 339
Active Scanning . 339
Passive Scanning 339
Obtaining Scan Results 340

Configuring Encryption 341
Connecting To a Network 342
Managing a Wireless Connection 345
Disconnecting From a Network. 345
Creating an Ad-hoc Network 346

Exploring Palm OS: Low-Level Communications

xv

17 WiFi Reference 347

Overview . 347
WiFi Constants . . 347

Channel Constants 347
Connection Status Constants 348
Event Type Constants 349
Power Mode Constants 350
RSSI Update Mode Constants 350
Scan Result Capability Constants 351
Security Capability Constants 351
Transmission Rate Flags 351
WEP Flag Constants 353

WiFi Data Structures and Types. 353
WifiEventType . 353
WifiScanResultsType 355

IOCTL Commands . 357
WIOCCONNECT 357
WIOCCREATEIBSS 358
WIOCDISCONNECT 358
WIOCGETBSSID 359
WIOCGETCHANNEL 359
WIOCGETCURRENTRSSI 360
WIOCGETMACADDR 360
WIOCGETPOWERMODE 360
WIOCGETRATES 361
WIOCGETRSSIUPDATE 362
WIOCGETSCANRESULTS 363
WIOCGETSECCAPS 364
WIOCGETSSID . 364
WIOCGETSTATUS 365
WIOCGETWEPFLAGS 365
WIOCJOIN . 366
WIOCPASSIVESCAN 367
WIOCSCAN . 368
WIOCSETDEFAULTKEY 369

xvi

 Exploring Palm OS: Low-Level Communications

WIOCSETKEY . 369
WIOCSETPOWERMODE 370
WIOCSETRATES 371
WIOCSETRSSIUPDATE 371
WIOCSETSECMODE 372
WIOCSETWEPFLAGS 372

Part VI: IOS STDIO

18 Using IOS STDIO 375

Introducing IOS STDIO 375
Synchronization Issues 375
Polling STREAMS File Descriptors 375

Using a PollBox to Monitor Multiple File Descriptors 377

19 IOS STDIO Reference 383

Overview . 383
IOS STDIO Data Structures and Types 383

cc_t . 383
iovec . . 383
PollBox . . 384
pollfd . 385
speed_t . . 386
strbuf . 386
tcflag_t . 387
termios . . 387

IOS STDIO Constants 388
Character Control Mode Constants 388
Input Control Mode Constants 389
Ioctl Command Constants 390
Local Mode Constants 391
Modulation Speed Constants 392
NCC Constant . . 393
Output Control Mode Constants 394

Exploring Palm OS: Low-Level Communications

xvii

Poll Mask Constants 395
Functions . 396

IOSClose . 396
IOSFastIoctl . 397
IOSFattach . 398
IOSFdetach . 399
IOSFnctl . 400
IOSGetmsg . 401
IOSGetpmsg. . 402
IOSIoctl . . 404
IOSOpen . 405
IOSPipe . . 406
IOSPoll . 408
IOSPutmsg . 409
IOSPutpmsg . . 410
IOSRead . 412
IOSReadv . . 413
IOSWrite . 414
IOSWritev . . 415
PbxAddFd . 417
PbxCreate . . 417
PbxDestroy . 418
PbxPoll . 418
PbxRemoveFd . . 419
PbxRun . . 419

Application-Defined Functions 420
PbxCallback . . 420

20 Driver Attributes API 421

Driver Attribute Constants 421
Driver Class Constants 421

Driver Attribute Functions 422
IOSGetNumDrivers 422
IOSGetDriverAttributesByIndex 423
IOSGetDriverAttributesByName 424

xviii

 Exploring Palm OS: Low-Level Communications

IOSGetDriverDescriptionByIndex 425
IOSGetDriverDescriptionByName 426
IOSGetDriverNameByIndex 427

21 Driver Installation API 429

IOS Installation Functions 429
IOSInstallDriver . 429
IOSRemoveDriver 430

Glossary 433

Index 435

Exploring Palm OS: Low-Level Communications

xix

About This

Document

This book covers the portions of Palm OS

®

 that make it possible to
develop applications that make use of telecommunication
technologies such as networking, infrared, Bluetooth, and serial
connectivity.

The primary focus of this book is the lower-level aspects of
communication. If your application needs to perform higher-level
functions, such as exchanging typed data objects or exchanging
standard vObjects, you should instead refer to the book

Exploring
Palm OS: High-Level Communications

.

Intended Audience

You should read this book if you want to write Palm OS
applications that use networking, Bluetooth, IrDA, or serial
communications to transmit and receive data between a Palm OS
device and either another Palm OS device or a peripheral device.

The APIs described in this book are only needed if your application
will perform communications of this nature. You should read

Exploring Palm OS: Programming Basics

 before this book, in order to
gain the necessary background in Palm OS programming. Read this
book when you find that you need to enable your application with
communications functionality.

Additional Resources

• Documentation

PalmSource publishes its latest versions of this and other
documents for Palm OS developers at

http://www.palmos.com/dev/support/docs/

http://www.palmos.com/dev/support/docs/

About This Document

Additional Resources

xx

 Exploring Palm OS: Low-Level Communications

• Training

PalmSource and its partners host training classes for Palm OS
developers. For topics and schedules, check

http://www.palmos.com/dev/training

• Knowledge Base

The Knowledge Base is a fast, web-based database of
technical information. Search for frequently asked questions
(FAQs), sample code, white papers, and the development
documentation at

http://www.palmos.com/dev/support/kb/

http://www.palmos.com/dev/training
http://www.palmos.com/dev/support/kb/

Part I
Serial
Communication

Palm OS provides a complete architecture for accessing and
manipulating devices using a serial interface.

The Serial Manager 5

The Serial Link Protocol 21

Serial Manager Reference 29

Serial Link Manager 63

Exploring Palm OS: Low-Level Communications

3

1

Introduction to
Serial

Communications

The Palm OS

®

 serial communications software provides high-
performance serial communications capabilities, including byte-
level serial I/O, best-effort packet-based I/O with CRC-16, reliable
data transport with retries and acknowledgments, connection
management, and modem dialing capabilities.

This part helps you understand the different parts of the serial
communications system and explains how to use them, discussing
these topics:

• The Serial Manager is responsible for byte-level serial I/O
and control of the RS-232, USB, Bluetooth, and IR signals.

• The Serial Link Protocol provides an efficient mechanism for
sending and receiving packets.

• Serial Link Manager is the Palm OS implementation of the
serial link protocol.

Serial Communications Overview

Serial communications in Palm OS are provided through the same
driver architecture as all other forms of communication. Serial
drivers operate as part of the I/O Subsystem.

Serial Communications Components

There are, however, some additional components built on top of this
architecture that provide additional services:

• The Serial Manager API provides a simplified mechanism for
performing serial communications, and also provides source

Introduction to Serial Communications

Serial Communications Overview

4

 Exploring Palm OS: Low-Level Communications

code compatibility for applications originally written for
previous versions of Palm OS. See “The Serial Manager” on
page 5.

• The Serial Link Protocol (SLP) provides best-effort packet
send and receive capabilities with CRC-16. Packet delivery is
left to the higher-level protocols; SLP does not guarantee it.
See “The Serial Link Protocol” on page 21.

• The Packet Assembly/Disassembly Protocol (PADP) sends
and receives buffered data. PADP is an efficient protocol
featuring variable-size block transfers with robust error
checking and automatic retries. Applications don’t need
access to this part of the system.

• The Desktop Link Protocol (DLP) provides remote access to
Palm OS data storage and other subsystems.

DLP facilitates efficient data synchronization between
desktop (PC or Macintosh) and Palm OS applications,
database backup, installation of code patches, extensions,
applications, and other databases, as well as Remote
Interapplication Communication (RIAC) and Remote
Procedure Calls (RPC).

Byte Ordering

It is important to be aware that the ARM processor uses little-endian
byte ordering, where the 68K series of processors used by older
Palm OS devices used big-endian byte ordering. This may be an
issue when transmitting data using a serial connection, and your
application is responsible for coping with byte order differences.

Exploring Palm OS: Low-Level Communications

5

2
The Serial Manager
The Palm OS® Serial Manager is responsible for byte-level serial I/O
and control of the RS-232, IR, Bluetooth, or USB signals. Under Palm
OS Cobalt and later versions of the operating system, the Serial
Manager is implemented as a STREAMS driver and a compatibility
library that lets you continue to use the Serial Manager API.

IMPORTANT: The Palm OS Cobalt Serial Manager implements
the API formerly known as the “New Serial Manager;” functions
with names beginning with “Srm” are supported. The Old Serial
Manager functions—those that begin with “Ser”—are not
supported under Palm OS Cobalt, version 6, and later.

Because the Serial Manager is now based on the Palm OS Cobalt I/
O architecture, the concept of “virtual serial drivers” is no longer
supported; instead, the Serial Manager works with the I/O
Subsystem and the Connection Manager to support communication
through any communications interface. The legacy Serial Manager
ports, such as serCradlePort, sysFileCVirtIrComm,
sysFileCVirtRfComm, and so on are still supported.

To ensure that the Serial Manager does not slow down processing of
user events, the Serial Manager receives data asynchronously. The
Serial Manager API, however, executes synchronously; if a Serial
Manager function blocks during execution, this does not affect the
system’s ability to keep receiving data.

The Serial Manager functions that send data return as soon as they
have handed off all the data to the lower-level IOS STREAMS write
queue. The actual transmission of the data will be handled later,
asynchronously.

This chapter describes the Serial Manager. It covers the following
topics:

• Steps for Using the Serial Manager

• Opening a Port

The Serial Manager

6 Exploring Palm OS: Low-Level Communications

• Closing a Port

• Configuring the Port

• Sending Data

• Receiving Data

• Serial Manager Tips and Tricks

About the Serial Manager

The Serial Manager provides an interface to communications
devices. These communications devices can include a serial port,
cradle port, infrared port, USB, Bluetooth, and other devices that are
accessible through the Connection Manager. This API provides a
degree of compatibility with software written for previous versions
of Palm OS.

Once a port is opened, the Serial Manager allocates a structure for
maintaining the current information and settings of the particular
port. The task or application that opens the port is returned a port
ID and must supply the port ID to refer to this port when other
Serial Manager functions are called.

Upon closing the port, the Serial Manager deallocates the open port
structure and closes the underlying IOS connection.

Note that applications can use the Connection Manager to obtain
the proper port name and other serial port parameters that the user
has stored in connection profiles for different connection types. For
more information, see the book Exploring Palm OS: High-Level
Communications for information on the Connection Manager.

Steps for Using the Serial Manager
Regardless of which version of the API you use, the main steps to
perform serial communication are the same. They are:

1. Open a serial port.
To open a port , you specify which port to open and obtain a
port ID that uniquely identifies this connection. You pass
that port ID to every other Serial Manager call you make.

See “Opening a Port” on page 7.

The Serial Manager

Exploring Palm OS: Low-Level Communications 7

2. If necessary, configure the connection.
You might need to change the baud rate or increase the size
of the receive queue before you use any other Serial Manager
calls. See “Configuring the Port” on page 9.

3. Send or receive data.
See “Sending Data” on page 11 and “Receiving Data” on
page 12.

4. Close the port.
See “Closing a Port” on page 9.

The next several sections describe these steps in more detail.

TIP: See “Serial Manager Tips and Tricks” on page 18 for
debugging information and information on how to fix common
errors.

Opening a Port
The Serial Manager is installed when the device is booted. Before
you can use it, however, you must enable the serial hardware by
opening a port.

IMPORTANT: Applications that open a serial port are
responsible for closing it. Opening a serial port powers up the
communications hardware and drains batteries. To conserve
battery power, don’t keep the port open longer than necessary.

When you attempt to open a serial port, you must check for errors
upon return:

• If errNone is returned, the port was opened successfully.
The application can then perform its tasks and close the port
when finished.

The Serial Manager

8 Exploring Palm OS: Low-Level Communications

• If serErrAlreadyOpen is returned, the port was already
open. This error is returned if one of the underlying drivers
involved in the connection is already in use; for example, if
an active PPP session is currently using the UART.

• If any error is returned, the port was not opened, and the
application must not close it.

Opening a Port

To open a port , call the SrmOpen() function, specifying the port
(see “Specifying the Port” on page 9) and the initial baud rate of the
serial interface. SrmOpen returns a port ID that uniquely identifies
this connection. You pass this port ID to all other Serial Manager
calls.

The Serial Manager supports USB and Bluetooth connections as
well as RS-232 and IR connections. With the Bluetooth and USB
protocols, it is often more important to specify the reason why the
application is opening the port. The baud rate is unimportant as that
is negotiated in USB and Bluetooth protocols. To open a USB or
Bluetooth connection, use SrmExtOpen() instead of SrmOpen().
This function takes a SrmOpenConfigType structure, which
allows you to specify the purpose of the connection instead of the
baud rate.

Once the SrmOpen() or SrmExtOpen() call is made successfully,
it indicates that the Serial Manager has successfully allocated
internal structures to maintain the port and has successfully loaded
the serial driver for this port.

Listing 2.1 Opening the port

UInt16 portId;
Boolean serPortOpened = false;

err = SrmOpen(serPortCradlePort /* port */, 57600, /* baud */
 &portId);
if (err) {
 // display error message here.
}
//record our open status in global.
serPortOpened = true;

The Serial Manager

Exploring Palm OS: Low-Level Communications 9

Specifying the Port

Ports are specified using a hardware-independent port ID. Palm OS
will map them to the correct physical port by locating the
appropriate port using the Connection Manager.

See Chapter 4, “Port Constants,” on page 32 for a list of port IDs you
can use when opening a serial connection.

Closing a Port
Once an application is finished with the serial port, it must close the
port using the SrmClose() function. If SrmClose() returns no
error, it indicates that the Serial Manager has successfully closed the
driver and deallocated the data structures used for maintaining the
port.

To conserve battery power, it is important not to leave the serial port
open longer than necessary. It is generally better to close and reopen
the connection multiple times than it is to leave it open
unnecessarily.

Configuring the Port
A newly opened port has the default configuration. The default port
configuration is:

• A receive queue of 512 bytes

• CTS/RTS hardware flow control with a 5-second timeout on
CTS low

• 1 stop bit

• 8 data bits

• For RS-232 connections, the baud rate you specified when
you opened the port.

You can change this configuration if necessary before sending or
receiving data.

Using a Custom Receive Queue

The default receive queue size is 512 bytes. If you wish to use a
different size of buffer, you can do so by using a custom receive
queue.

The Serial Manager

10 Exploring Palm OS: Low-Level Communications

To use a custom receive queue, an application must:

• Allocate memory for the custom queue; this memory can be
allocated using malloc(), or can be either a local or global
variable. Be aware that the memory must remain in place as
long as the buffer is in use.

• Call SrmSetReceiveBuffer() with the new buffer and
the size of the new buffer as arguments.

• Restore the default queue before closing the port. That way,
any bits sent in have a place to go.

• Deallocate the custom queue after restoring the default
queue. The system only deallocates the default queue.

The following code fragment illustrates replacing the default queue
with a custom queue.

Listing 2.2 Replacing the receive queue

#define myCustomSerQueueSize 1024
void *customSerQP;
// Allocate a dynamic memory chunk for our custom receive
// queue.
customSerQP = MemPtrNew(myCustomSerQueueSize);
// Replace the default receive queue.
if (customSerQP) {
 err = SrmSetReceiveBuffer(portId, customSerQP,
 myCustomSerQueueSize);
}

// ... do Serial Manager work

// Now restore default queue and delete custom queue.
// Pass NULL for the buffer and 0 for bufSize to restore the
// default queue.
err = SrmSetReceiveBuffer(portId, NULL, 0);
if(customSerQP) {
 MemPtrFree(customSerQP);
 customSerQP = NULL;
}

Changing Other Configuration Settings

To change the other serial port settings, use SrmControl() .

The Serial Manager

Exploring Palm OS: Low-Level Communications 11

Listing 2.3 configures the serial port for 19200 baud, 8 data bits, even
parity, 1 stop bit, and full hardware handshake (input and output)
with a CTS timeout of 0.5 seconds. The CTS timeout specifies the
maximum number of system ticks the serial library will wait to send
a byte when the CTS input is not asserted. The CTS timeout is
ignored if srmSettingsFlagCTSAutoM is not set.

Listing 2.3 Changing the configuration

status_t err;
Int32 paramSize;
Int32 baudRate = 19200;
UInt32 flags = srmSettingsFlagBitsPerChar8 |
srmSettingsFlagParityOnM | srmSettingsFlagParityEvenM |
srmSettingsFlagStopBits1 | srmSettingsFlagRTSAutoM |
srmSettingsFlagCTSAutoM;
Int32 ctsTimeout = SysTicksPerSecond() / 2;

paramSize = sizeof(baudRate);
err = SrmControl(portId, srmCtlSetBaudRate, &baudRate,
 ¶mSize);

paramSize = sizeof(flags);
err = SrmControl(portId, srmCtlSetFlags, &flags, ¶mSize);

paramSize = sizeof(ctsTimeout);
err = SrmControl(portId, srmCtlSetCtsTimeout, &ctsTimeout,
 ¶mSize);

If you want to find out what the current configuration is, pass one of
the srmCtlGet... op codes to the SrmControl() function. For
example, to find out the current baud rate, pass
srmCtlGetBaudRate.

Sending Data
To send data, use SrmSend(). Sending data is performed
synchronously. To send data, the application only needs to have an
open connection with a port that has been configured properly and
then specify a buffer to send. The larger the buffer to send, the
longer the send function operates before returning to the calling
application. The send function returns the actual number of bytes

The Serial Manager

12 Exploring Palm OS: Low-Level Communications

that were placed in the UART’s FIFO. This makes it possible to
determine what was sent and what wasn’t in case of an error.

Listing 2.4 illustrates the use of SrmSend().

Listing 2.4 Sending data

UInt32 toSend, numSent;
status_t err;
Char msg[] = "logon\n";
toSend = StrLen(msg);
numSent = SrmSend(portId, msg, toSend, &err);
if (err == serErrTimeOut) {
 //cts timeout detected
}

If SrmSend() returns an error, or if you simply want to ensure that
all data has been sent, you can use any of the following functions:

• Use SrmSendCheck() to determine how many bytes are left
in the FIFO. Note that not all serial devices support this
feature.

If the hardware does not provide an exact reading, the
function returns an approximate number: 8 means full, 4
means approximately half-full. If the function returns 0, the
queue is empty.

• The SrmSendFlush() function can be used to flush
remaining bytes in the FIFO that have not been sent.

Under Palm OS Cobalt, the SrmSendWait() function no longer
waits to ensure that the data has been sent. There is no longer any
way to ensure that the data has actually been transmitted. This
function’s use is discouraged.

Receiving Data
Receiving data is a more involved process because it depends on the
receiving application actually listening for data from the port.

To receive data, an application must do the following:

The Serial Manager

Exploring Palm OS: Low-Level Communications 13

• Ensure that the code does not loop indefinitely waiting for
data from the receive queue.

The most common way to do this is to pass a timeout value
to EvtGetEvent() or IOSPoll() in your event loop.

If your code is outside of an event loop, you can use the
EvtEventAvail() function to see if the system has an
event it needs to process, and if so, call SysHandleEvent().

• To avoid having the system go to sleep while it’s waiting to
receive data, an application should call
EvtResetAutoOffTimer() periodically (or call
EvtSetAutoOffTimer()). For example, the Serial Link
Manager automatically calls EvtResetAutoOffTimer()
each time a new packet is received.

TIP: For many applications, the auto-off feature presents no
problem. Use EvtResetAutoOffTimer() with discretion;
applications that use it drain the battery.

• To receive the data, call SrmReceive(). Pass a buffer, the
number of bytes you want to receive, and the inter-byte
timeout in system ticks. This call blocks until all the
requested data have been received or an error occurs. This
function returns the number of bytes actually received. (The
error is returned in the last parameter that you pass to the
function.)

• If you want to wait until a certain amount of data is available
before you receive it, call SrmReceiveWait() before you
call SrmReceive(). Specify the number of bytes to wait for,
which must be less than the current receive buffer size, and
the amount of time to wait in milliseconds. If
SrmReceiveWait() returns errNone, it means that the
receive queue contains the specified number of bytes. If it
returns anything other than errNone, that number of bytes
is not available.

SrmReceiveWait() is useful, for example, if you are
receiving data packets. You can use SrmReceiveWait() to
wait until an entire packet is available and then read that
packet.

The Serial Manager

14 Exploring Palm OS: Low-Level Communications

• It’s common to want to receive data only when the system is
idle. In this case, have your event loop respond to the
nilEvent, which is generated whenever EvtGetEvent()
times out and another event is not available. In response to
this event, call SrmReceiveCheck() . Unlike
SrmReceiveWait(), SrmReceiveCheck() does not block
awaiting input. Instead, it immediately returns the number
of bytes currently in the receive queue. If there is data in the
receive queue, call SrmReceive() to receive it. If the queue
has no data, your event handler can simply return and allow
the system to perform other tasks.

• Check for and handle error conditions returned by any of the
receive function calls as described in “Handling Errors” on
page 14.

IMPORTANT: Always check for line errors. Due to
unpredictable conditions, there is no guarantee of success. If a
line error occurs, all other Serial Manager calls fail until you clear
the error.

For example code that shows how to receive data, see “Receive Data
Example” on page 15.

You can directly access the receive queue using the
SrmReceiveWindowOpen() and SrmReceiveWindowClose()
functions. These functions allow fast access to the buffer to reduce
buffer copying.

Handling Errors

If an error occurs on the line, all of the receive functions return the
error condition serErrLineErr. This error will continue to be
returned until you explicitly clear the error condition and continue.

To clear line errors, call SrmClearErr().

If you want more information about the error, call
SrmGetStatus() before you clear the line.

Listing 2.5 checks whether a framing or parity error has been
returned and clears the line errors.

The Serial Manager

Exploring Palm OS: Low-Level Communications 15

Listing 2.5 Handling line errors

void HandleSerReceiveErr(UInt16 portId, status_t err) {
 UInt32 lineStatus;
 UInt16 lineErrs;

 if (err == serErrLineErr) {
 SrmGetStatus(portId, &lineStatus, &lineErrs);
 // test for framing or parity error.
 if (lineErrs & serLineErrorFraming |
serLineErrorParity)
 {
 //framing or parity error occurred. Do something.
 }
 SrmClearErr(portId);
 }
}

TIP: See “Common Errors” on page 19 for some common
causes of line errors and how to fix them.

In some cases, you may want to discard any received data when an
error occurs. For example, if your protocol is packet driven and you
detect data corruption, you should flush the buffer before you
continue. To do so, call SrmReceiveFlush(). This function
flushes any bytes in the receive queue and then calls
SrmClearErr() for you.

SrmReceiveFlush() takes a timeout value as a parameter. If you
specify a timeout, it waits that period of time for any other data to
be received in the queue and flushes it as well. If you pass 0 for the
timeout, it simply flushes the data currently in the queue, clears the
line errors, and returns. The flush timeout has to be large enough to
flush out the noise but not so large that it flushes part of the next
packet.

Receive Data Example

Listing 2.6 shows how to receive large blocks of data using the Serial
Manager.

The Serial Manager

16 Exploring Palm OS: Low-Level Communications

Listing 2.6 Receiving data using the Serial Manager

#include <PalmOS.h> // all the system toolbox headers
#include <SerialMgr.h>
#define k2KBytes 2048
/**
*
* FUNCTION: RcvSerialData
*
* DESCRIPTION: An example of how to receive a large chunk of data
* from the Serial Manager. This function is useful if the app
* knows it must receive all this data before moving on. The
* YourDrainEventQueue() function is a chance for the application
* to call EvtGetEvent and handle other application events.
* Receiving data whenever it's available during idle events
* might be done differently than this sample.
*
* PARAMETERS:
* thePort -> valid portID for an open serial port.
* rcvDataP -> pointer to a buffer to put the received data.
* bufSize <-> pointer to the size of rcvBuffer and returns
* the number of bytes read.
*
**/
status_t RcvSerialData(UInt16 thePort, UInt8 *rcvDataP, UInt32 *bufSizeP)
{
UInt32 bytesLeft, maxRcvBlkSize, bytesRcvd, waitTime, totalRcvBytes = 0;
UInt8 *newRcvBuffer;
UInt16 dataLen = sizeof(UInt32);
status_t* error;

 // The default receive buffer is only 512 bytes; increase it if
 // necessary. The following lines are just an example of how to
 // do it, but its necessity depends on the ability of the code
 // to retrieve data in a timely manner.
 newRcvBuffer = MemPtrNew(k2KBytes); // Allocate new rcv buffer.
 if (newRcvBuffer)
 // Set new rcv buffer.
 error = SrmSetReceiveBuffer(thePort, newRcvBuffer, k2KBytes);
 if (error)
 goto Exit;
 else
 return memErrNotEnoughSpace;

 // Initialize the maximum bytes to receive at one time.
 maxRcvBlkSize = k2KBytes;
 // Remember how many bytes are left to receive.
 bytesLeft = *bufSizeP;

The Serial Manager

Exploring Palm OS: Low-Level Communications 17

 // Only wait 1/5 of a second for bytes to arrive.
 waitTime = 200;

 // Now loop while getting blocks of data and filling the buffer.
 do {
 // Is the max size larger then the number of bytes left?
 if (bytesLeft < maxRcvBlkSize)
 // Yes, so change the rcv block amount.
 maxRcvBlkSize = bytesLeft;
 // Try to receive as much data as possible,
 // but wait only 1/5 second for it.
 bytesRcvd = SrmReceive(thePort, rcvDataP, maxRcvBlkSize, waitTime,
 &error);
 // Remember the total number of bytes received.
 totalRcvBytes += bytesRcvd;
 // Figure how many bytes are left to receive.
 bytesLeft -= bytesRcvd;
 rcvDataP += bytesRcvd; // Advance the rcvDataP.
 // If there was a timeout and no data came through...
 if ((error == serErrTimeOut) && (bytesRcvd == 0))
 goto ReceiveError; // ...bail out and report the error.
 // If there's some other error, bail out.
 if ((error) && (error != serErrTimeOut))
 goto ReceiveError;

 // Call a function to handle any pending events because
 // someone might press the cancel button.
 YourDrainEventQueue();
 // Continue receiving data until all data has been received.
 } while (bytesLeft);

 ReceiveError:
 // Clearing the receive buffer can also be done right before
 // the port is to be closed.
 // Set back the default buffer when we're done.
 SrmSetReceiveBuffer(thePort, 0L, 0);

 Exit:
 MemPtrFree(newRcvBuffer); // Free the space.
 *bufSizeP = totalRcvBytes;
 return error;
}

The Serial Manager

18 Exploring Palm OS: Low-Level Communications

Serial Manager Tips and Tricks
The following tips and tricks help you debug your serial application
and help avoid errors in the first place.

Debugging Tips

The following are some tips to help you track down errors while
debugging.

• Debug first using the Palm OS Simulator. Debug on the
device last.

The Simulator supports all Serial Manager functions and lets
you test applications that use the Serial Manager. You can
use the desktop computer’s serial port to connect to outside
devices. For more information on how to set up and use the
emulator to debug serial communications, see the Simulator
documentation.

• Track communication errors and the amount of data sent and
received.

In your debug build, maintain individual counts for the
amount of data transferred and for each communication
error of interest. This includes timeouts and retries for
reliable protocols.

• Use an easily recognizable start-of-frame signature. This
helps during debugging of packet-based protocols.

• Implement developer back doors for debugging.

Implement a mechanism to trigger one or more debugging
features at runtime without recompiling. For example, you
may want to create a back door to disable the receive timeout
on one side to prevent it from timing out while you are
debugging the other side. Another back door might print
some debugging information to the display. For example,
your application might look for a pen down event in the
upper right corner of the digitizer while the page-up key is
being pressed to trigger one of your back doors.

The Serial Manager

Exploring Palm OS: Low-Level Communications 19

• Use the HotSync log for debug-time error logging on the
device.

You may use DlkSetLogEntry() to write your debugging
messages to the HotSync log on the device. The HotSync log
will accept up to 2KB of text. You may then switch to the
HotSync application to view the log.

NOTE: Restrict writing to the HotSync log to debugging. Users
will not appreciate having your debugging messages in their
HotSync log.

• If you have a protocol analyzer, use it to examine the data
that is actually sent and received.

Common Errors

Even if you’re careful, errors may crop up. Here are some frequently
encountered problems and their solutions.

• Nothing is being received

Check for a broken or incorrectly wired connection and make
sure the expected handshaking signals are received.

• Garbage is received

Check that baud rate, word length, and/or parity agree.

• Baud rate mismatch

If the two sides disagree on the baud rate, it may either show
up as a framing error, or the number of received characters
will be different from the number that was sent.

• Parity error

Parity errors indicate that the data has been damaged. They
can also mean that the sender and receiver have not been
configured to use the same parity or word length.

• Word-length mismatch

Word-length mismatches may show up as a framing error.

The Serial Manager

20 Exploring Palm OS: Low-Level Communications

• Framing error

Framing errors indicate a mismatch in the number of bits and
are reported when the stop bit is not received when it is
expected. This could indicate damaged data, but frequently it
signals a disagreement in common baud rate, word length, or
parity setting.

• Hardware overrun

The Serial Manager’s receive interrupt service routine cannot
keep up with incoming data. Enable full hardware
handshaking (see “Configuring the Port” on page 9).

• Software overrun

The application is not reading incoming data fast enough.
Read data more frequently, or use hardware flow control.
(see “Configuring the Port” on page 9).

Exploring Palm OS: Low-Level Communications 21

3
The Serial Link
Protocol

The Serial Link Protocol
The Serial Link Protocol (SLP) provides an efficient packet send and
receive mechanism that is used by the Palm OS® Desktop software
and Debugger. SLP provides robust error detection with CRC-16.
SLP is a best-effort protocol; it does not guarantee packet delivery
(packet delivery is left to the higher-level protocols). For enhanced
error detection and implementation convenience of higher-level
protocols, SLP specifies packet type, source, destination, and
transaction ID information as an integral part of its data packet
structure.

SLP Packet Structures
The following sections describe:

• SLP Packet Format

• Packet Type Assignment

• Socket ID Assignment

• Transaction ID Assignment

SLP Packet Format

Each SLP packet consists of a packet header, client data of variable
size, and a packet footer, as shown in Figure 3.1.

The Serial Link Protocol
The Serial Link Protocol

22 Exploring Palm OS: Low-Level Communications

Figure 3.1 Structure of a Serial Link Packet

• The packet header contains the packet signature, the
destination socket ID, the source socket ID, packet type,
client data size, transaction ID, and header checksum. The
packet signature is composed of the three bytes 0xBE, 0xEF,
0xED, in that order. The header checksum is an 8-bit
arithmetic checksum of the entire packet header, not
including the checksum field itself.

• The client data is a variable-size block of binary data
specified by the user and is not interpreted by the Serial Link
Protocol.

• The packet footer consists of the CRC-16 value computed
over the packet header and client data.

Packet footer

Client data

Packet header

signature (3):0xBE
0xEF
0xED

CRC-16 (2)

destination socket (1)
source socket (1)
packet type (1)
client data size (2)
transaction ID (1)
header checksum (1)

The Serial Link Protocol
The Serial Link Protocol

Exploring Palm OS: Low-Level Communications 23

Packet Type Assignment

Packet type values in the range of 0x00 through 0x7F are reserved
for use by the system software. The following packet type
assignments are currently implemented:

Socket ID Assignment

Socket IDs are divided into two categories: static and dynamic. The
static socket IDs are “well-known” socket ID values that are
reserved by the components of the system software. The dynamic
socket IDs are assigned at runtime when requested by clients of SLP.
Static socket ID values in the ranges 0x00 through 0x03 and 0xE0
through 0xFF are reserved for use by the system software. The
following static socket IDs are currently implemented or reserved:

Transaction ID Assignment

Transaction ID values are not interpreted by the Serial Link Protocol
and are for the sole benefit of the higher-level protocols. The
following transaction ID values are currently reserved:

0x00 Remote Debugger, Remote Console, and System Remote
Procedure Call packets.

0x02 PADP packets.

0x03 Loop-back test packets.

0x00 Remote Debugger socket.

0x01 Remote Console socket.

0x02 Remote UI socket.

0x03 Desktop Link Server socket.

0x04–0xCF Reserved for dynamic assignment.

0xD0–0xDF Reserved for testing.

0x00 and 0xFF Reserved for use by the system software.

The Serial Link Protocol
The Serial Link Manager

24 Exploring Palm OS: Low-Level Communications

Transmitting an SLP Packet
This section provides an overview of the steps involved in
transmitting an SLP packet. The next section describes the
implementation.

Transmission of an SLP packet consists of these steps:

1. Fill in the packet header and compute its checksum.
2. Compute the CRC-16 of the packet header and client data.
3. Transmit the packet header, client data, and packet footer.
4. Return an error code to the client.

Receiving an SLP Packet
Receiving an SLP packet consists of these steps:

1. Scan the serial input until the packet header signature is
matched.

2. Read in the rest of the packet header and validate its
checksum.

3. Read in the client data.
4. Read in the packet footer and validate the packet CRC.
5. Dispatch/return an error code and the packet (if successful)

to the client.

The Serial Link Manager
The Serial Link Manager is the Palm OS implementation of the
Serial Link Protocol.

The Serial Link Manager provides the mechanisms for managing
multiple client sockets, sending packets, and receiving packets both
synchronously and asynchronously. It also provides support for the
Remote Debugger and Remote Procedure Calls (RPC).

0x00 Reserved by the Palm OS implementation of SLP to
request automatic transaction ID generation.

0xFF Reserved for the connection manager’s WakeUp
packets.

The Serial Link Protocol
The Serial Link Manager

Exploring Palm OS: Low-Level Communications 25

Using the Serial Link Manager
Before an application can use the services of the Serial Link
Manager, the application must open the manager by calling
SlkOpen(). Success is indicated by error codes of 0 (zero) or
slkErrAlreadyOpen. The return value slkErrAlreadyOpen
indicates that the Serial Link Manager has already been opened
(most likely by another task). Other error codes indicate failure.

When you finish using the Serial Link Manager, call SlkClose().
SlkClose may be called only if SlkOpen() returned 0 (zero) or
slkErrAlreadyOpen. When the open count reaches zero,
SlkClose() frees resources allocated by SlkOpen().

To use the Serial Link Manager socket services, open a Serial Link
socket by calling SlkOpenSocket(). Pass a reference number or
port ID (for the Serial Manager) of an opened and initialized
communications library (see SlkClose()), a pointer to a memory
location for returning the socket ID, and a Boolean indicating
whether the socket is static or dynamic. If a static socket is being
opened, the memory location for the socket ID must contain the
desired socket number. If opening a dynamic socket, the new socket
ID is returned in the passed memory location. Sharing of sockets is
not supported. Success is indicated by an error code of 0 (zero). For
information about static and dynamic socket IDs, see “Socket ID
Assignment” on page 23.

When you have finished using a Serial Link socket, close it by
calling SlkCloseSocket(). This releases system resources
allocated for this socket by the serial link manager.

To set the interbyte packet receive timeout for a particular socket,
call SlkSocketSetTimeout().

To flush the receive stream for a particular socket, call
SlkFlushSocket(), passing the socket number and the interbyte
timeout.

To register a socket listener for a particular socket, call
SlkSetSocketListener(), passing the socket number of an
open socket and a pointer to the SlkSocketListenType
structure. Because the Serial Link Manager does not make a copy of
the SlkSocketListenType structure but instead saves the
pointer passed to it, the structure may not be an automatic variable

The Serial Link Protocol
The Serial Link Manager

26 Exploring Palm OS: Low-Level Communications

(that is, allocated on the stack). The SlkSocketListenType
structure may be a global variable in an application or a locked
chunk allocated from the dynamic heap. The
SlkSocketListenType structure specifies pointers to the socket
listener procedure and the data buffers for dispatching packets
destined for this socket. Pointers to two buffers must be specified:

• Packet header buffer (size of SlkPktHeaderType).

• Packet body buffer, which must be large enough for the
largest expected client data size.

Both buffers can be application global variables or locked chunks
allocated from the dynamic heap.

The socket listener procedure is called when a valid packet is
received for the socket. Pointers to the packet header buffer and the
packet body buffer are passed as parameters to the socket listener
procedure. The Serial Link Manager does not free the
SlkSocketListenType structure or the buffers when the socket is
closed; freeing them is the responsibility of the application. For this
mechanism to function, some task needs to assume the
responsibility to “drive” the Serial Link Manager receiver by
periodically calling SlkReceivePacket().

To send a packet, call SlkSendPacket(), passing a pointer to the
packet header (SlkPktHeaderType) and a pointer to an array of
SlkWriteDataType structures. SlkSendPacket() stuffs the
signature, client data size, and the checksum fields of the packet
header. The caller must fill in all other packet header fields. If the
transaction ID field is set to 0 (zero), the serial link manager
automatically generates and stuffs a new non-zero transaction ID.
The array of SlkWriteDataType structures enables the caller to
specify the client data part of the packet as a list of noncontiguous
blocks. The end of list is indicated by an array element with the
size field set to 0 (zero). Listing 3.1 incorporates the processes
described in this section.

Listing 3.1 Sending a Serial Link Packet

status_t err;
//serial link packet header
SlkPktHeaderType sendHdr;
//serial link write data segments

The Serial Link Protocol
The Serial Link Manager

Exploring Palm OS: Low-Level Communications 27

SlkWriteDataType writeList[2];
//packet body(example packet body)
UInt8 body[20];

// Initialize packet body
...

// Compose the packet header. Let Serial Link Manager
// set the transId.
sendHdr.dest = slkSocketDLP;
sendHdr.src = slkSocketDLP;
sendHdr.type = slkPktTypeSystem;
sendHdr.transId = 0;

// Specify packet body
writeList[0].size = sizeof(body); //first data block size
writeList[0].dataP = body; //first data block pointer
writeList[1].size = 0; //no more data blocks

// Send the packet
err = SlkSendPacket(&sendHdr, writeList);
 ...
}

Listing 3.2 Generating a New Transaction ID

//
// Example: Generating a new transaction ID given the
// previous transaction ID. Can start with any seed value.
//

UInt8 NextTransactionID (UInt8 previousTransactionID)
{
 UInt8 nextTransactionID;

 // Generate a new transaction id, avoid the
 // reserved values (0x00 and 0xFF)
 if (previousTransactionID >= (UInt8)0xFE)
 nextTransactionID = 1; // wrap around
 else
 nextTransactionID = previousTransactionID + 1;
 // increment

 return nextTransactionID;
}

The Serial Link Protocol
The Serial Link Manager

28 Exploring Palm OS: Low-Level Communications

To receive a packet, call SlkReceivePacket(). You may request a
packet for the passed socket ID only, or for any open socket that
does not have a socket listener. The parameters also specify buffers
for the packet header and client data, and a timeout. The timeout
indicates how long the receiver should wait for a packet to begin
arriving before timing out. A timeout value of (-1) means “wait
forever.” If a packet is received for a socket with a registered socket
listener, the packet is dispatched via its socket listener procedure.

Exploring Palm OS: Low-Level Communications 29

4
Serial Manager
Reference
This chapter provides reference material for the Serial Manager API:

• Serial Manager Data Structures

• Serial Manager Constants

• Serial Manager Functions

• Serial Manager Application-Defined Functions

The header file SerialMgr.h declares the Serial Manager API. The
file SystemResources.h defines some serial port constants.

Serial Manager Data Structures

DeviceInfoType Typedef
Purpose The DeviceInfoType structure defines information about a serial

device. This structure is returned by the SrmGetDeviceInfo()
function.

Prototype typedef struct DeviceInfoType {
 uint32_t serDevCreator;
 uint32_t serDevFtrInfo;
 uint32_t serDevMaxBaudRate;
 uint32_t serDevHandshakeBaud;
 char *serDevPortInfoStr;
 uint8_t reserved[8];
} DeviceInfoType;
typedef DeviceInfoType *DeviceInfoPtr;

Fields serDevCreator
Four-character creator ID for serial driver.

Serial Manager Reference
SrmOpenConfigType

30 Exploring Palm OS: Low-Level Communications

serDevFtrInfo
Flags defining features of this serial hardware. See Serial
Capabilities Constants for a description of these flags.

serDevMaxBaudRate
Maximum baud rate for this device.

serDevHandshakeBaud
Hardware handshaking is recommended for baud rates over
this rate.

serDevPortInfoStr
Description of serial hardware device or virtual device.

SrmOpenConfigType Struct
Purpose The SrmOpenConfigType structure specifies parameters for

opening a serial port. This structure is passed as a parameter to
SrmExtOpen().

Prototype typedef struct SrmOpenConfigType {
 uint32_t baud;
 uint32_t function;
 MemPtr drvrDataP;
 uint16_t drvrDataSize;
 uint16_t sysReserved0;
 uint32_t sysReserved1;
 uint32_t sysReserved2;
} SrmOpenConfigType;

Fields baud
Baud rate at which to open the connection. Serial drivers that
do not require baud rates ignore this field.

function
Reserved for system use.

drvrDataP
Pointer to a driver-specific data block.

drvrDataSize
The size of the data block pointed to by drvrDataP.

sysReserved0
Reserved for future use.

Serial Manager Reference
SrmRfCommOpenParamsType

Exploring Palm OS: Low-Level Communications 31

sysReserved1
Reserved for future use.

sysReserved2
Reserved for future use.

Comments The function field, which was used under Palm OS® 5.x and
earlier, is now reserved for system use.

SrmRfCommOpenParamsType Struct
Purpose Specifies open parameters for opening an RFCOMM port.

Prototype typedef struct SrmRfcommOpenParamsType {
 BtLibDeviceAddressType btAddr;
 uint16_t sysReserved0;
 char *serviceClassIDName;
} SrmRfcommOpenParamsType

Fields btAddr
The address of the Bluetooth device to connect to. If a null
address (00:00:00:00:00:00) is specified, a Bluetooth discovery
operation is performed at connect time.

sysReserved0
Reserved for system use.

serviceClassIDName
A string describing the service class ID to connect to. This is
usually set to “serial_port” for a standard RFCOMM
connection.

NOTE: This behavior has changed since Palm OS Garnet. 68K
applications remain binary compatible, but source code
compatibility is broken for newly-written applications. In addition, it
is no longer possible to use the Serial Manager to open an
RFCOMM port in server mode; use the IOS API instead.

Serial Manager Reference
Serial Manager Constants

32 Exploring Palm OS: Low-Level Communications

Serial Manager Constants

Port Constants
Purpose When you specify the port to open in the SrmOpen() or

SrmExtOpen() call, you can specify one of these ports to select a
standard interface instead of using the Connection Manager to
select the interface you want to use.

Constants serPortLocalHotSync
The physical HotSync® port. The Serial Manager
automatically detects whether this port is USB or RS-232.

serPortCradlePort
Cradle port. The Serial Manager automatically detects
whether this port is USB or RS-232. Most applications should
specify this as the port.

serPortIrPort
The IR port. This is a raw IrDA port with no protocol
support.

serPortConsolePort
The debug console port, either USB or RS-232. USB is
preferred where both are available.

serPortCradleRS232Port
Port for the RS-232 cradle. Specify this port if you want to
ensure that your application uses RS-232 communications
only.

serPortCradleUSBPort
Port for the USB cradle. This port may only be used by the
HotSync application.

sysFileCVirtIrComm
Serial communications over infrared (IrComm). Retained for
compatibility with previous versions of Palm OS.

sysFileCVirtRfComm
Serial communications over Bluetooth (RFCOMM). Retained
for compatibility with previous versions of Palm OS. This
port must be used by calling SrmExtOpen(), with
drvrDataP pointing to an SrmRfcommOpenParamsType
structure.

Serial Manager Reference
Serial Settings Constants

Exploring Palm OS: Low-Level Communications 33

Serial Capabilities Constants
Purpose The serial capabilities constant flags describe serial hardware

capabilities. These flags are set in the serDevFtrInfo field of the
DeviceInfoType structure.

Constants serDevCradlePort
Serial hardware controls RS-232 serial from cradle connector
of the device.

serDevRS232Serial
Serial hardware has RS-232 line drivers.

serDevIRDACapable
Serial hardware has IR line drivers and generates IrDA mode
serial signals.

serDevConsolePort
Serial device is the default console port.

serDevUSBCapable
Serial hardware controls USB serial from cradle connector of
the device.

serDevHotsyncCapable
Serial device can be used for HotSync.

Serial Settings Constants
Purpose The serial settings constants identify bit flags that correspond to

various serial hardware settings. Use SrmControl() with the op
code srmCtlSetFlags to control which settings are used.

Constants srmSettingsFlagStopBitsM
Mask for stop bits field

srmSettingsFlagStopBits1
1 stop bit (default)

srmSettingsFlagStopBits2
2 stop bits

srmSettingsFlagParityOnM
Mask for parity on

srmSettingsFlagParityEvenM
Mask for parity even

Serial Manager Reference
SrmCtlEnum

34 Exploring Palm OS: Low-Level Communications

srmSettingsFlagXonXoffM
Mask for Xon/Xoff flow control (not implemented)

srmSettingsFlagRTSAutoM
Mask for RTS receive flow control. This is the default.

srmSettingsFlagCTSAutoM
Mask for CTS transmit flow control

srmSettingsFlagBitsPerCharM
Mask for bits per character

srmSettingsFlagBitsPerChar5
5 bits per character

srmSettingsFlagBitsPerChar6
6 bits per character

srmSettingsFlagBitsPerChar7
7 bits per character

srmSettingsFlagBitsPerChar8
8 bits per character (default)

srmSettingsFlagFlowControlIn
Protect the receive buffer from software overruns. When this
flag and srmSettingsFlagRTSAutoM are set, which is the
default case, it causes the Serial Manager to assert RTS to
prevent the transmitting device from continuing to send data
when the receive buffer is full. Once the application receives
data from the buffer, RTS is de-asserted to allow data
reception to resume.

Note that this feature effectively prevents software overrun
line errors but may also cause CTS timeouts on the
transmitting device if the RTS line is asserted longer than the
defined CTS timeout value.

SrmCtlEnum Enum
Purpose The SrmCtlEnum enumerated type specifies a serial control

operation. Specify one of these enumerated types for the op
parameter to the SrmControl() call.

Constants srmCtlSetBaudRate
Sets the current baud rate for the serial hardware.

Serial Manager Reference
SrmCtlEnum

Exploring Palm OS: Low-Level Communications 35

srmCtlGetBaudRate
Gets the current baud rate for the serial hardware.

srmCtlSetFlags
Sets the current flag settings for the serial hardware. Specify
flags from the set described in Serial Settings Constants.

srmCtlGetFlags
Gets the current flag settings for the serial hardware.

srmCtlSetCtsTimeout
Sets the current CTS timeout value for hardware
handshaking.

srmCtlGetCtsTimeout
Gets the current CTS timeout value for hardware
handshaking.

srmCtlIrDAEnable
Enable IrDA connection on this serial port.ioctl

srmCtlIrDADisable
Disable IrDA connection on this serial port.

srmCtlRxEnable
Enable receiver (for IrDA).

srmCtlRxDisable
Disable receiver (for IrDA).

srmCtlEmuSetBlockingHook
Set a blocking hook routine for emulation mode only. Not
supported on the actual device.

srmCtlSystemReserved
Reserves op codes between 0x7000 and 0x8000 for system
use.

NOTE: Palm OS Cobalt no longer supports custom opcodes. If
you need the added flexibility, you should use IOS STDIO calls
directly.

Serial Manager Reference
Status Constants

36 Exploring Palm OS: Low-Level Communications

Status Constants
Purpose The status constants identify bit flags that correspond to the status

of serial signals. They can be returned by the SrmGetStatus()
function.

Constants srmStatusCtsOn
CTS line is active.

srmStatusRtsOn
RTS line is active.

srmStatusDsrOn
DSR line is active.

srmStatusBreakSigOn
Break signal is active.

srmStatusDtrOn
DTR is active.

srmStatusDcdOn
DCD is active.

srmStatusRingOn
Ring detected.

NOTE: You can set most of these signals by using
IOSIoctl() calls.

Line Error Constants
Purpose The line error constants identify bit flags that correspond to the line

errors that may occur on the port. They can be returned by the
SrmGetStatus() function.

Constants serLineErrorParity
Parity error

serLineErrorHWOverrun
Hardware overrun

serLineErrorFraming
Framing error

Serial Manager Reference
SrmClearErr

Exploring Palm OS: Low-Level Communications 37

serLineErrorBreak
Break signal asserted

serLineErrorHShake
Line handshake error

serLineErrorSWOverrun
Software overrun

serLineErrorCarrierLost
Carrier detect signal dropped

Serial Manager Functions

SrmClearErr Function
Clears the port of any line errors.

Declared In SerialMgr.h

Prototype status_t SrmClearErr (uint16_t portId)

Parameters → portID
Port ID returned from SrmOpen() or SrmExtOpen().

Returns This function returns the following error codes:

errNone
No error.

serErrNotSupported
The port is not the foreground port.

Serial Manager Reference
SrmClose

38 Exploring Palm OS: Low-Level Communications

SrmClose Function

Purpose Closes a serial port and makes it available to other applications,
regardless of whether the port is a foreground or background port.

Declared In SerialMgr.h

Prototype status_t SrmClose (uint16_t portId)

Parameters → portId
Port ID for port to be closed.

Returns This function returns the following error codes:

errNone
No error.

serErrBadPort
This port doesn’t exist.

serErrNotOpen
The serial port is not open.

serErrNoDevicesAvail
No serial devices could be found.

Comments If a foreground port is being closed and a background port exists,
the background will have access to the port as long as another
foreground port is not opened.

If a foreground port is being closed and a yielded port exists, the
yielded port will have access to the port as long as it does not yield
to the opening of another foreground port. If there are both a
yielded port and a background port for the foreground port being
closed, the yielded port takes precedence over the background port.

See Also SrmOpen()

Serial Manager Reference
SrmControl

Exploring Palm OS: Low-Level Communications 39

SrmControl Function

Purpose Performs a serial control function.

Declared In SerialMgr.h

Prototype status_t SrmControl (uint16_t portId,
uint16_t op, void *valueP,
uint16_t *valueLenP)

Parameters → portID
Port ID returned from SrmOpen() or SrmExtOpen().

→ op
Control operation to perform. Specify one of the
SrmCtlEnum enumerated types.

→ valueP
Pointer to a value to use for the operation. See Comments for
details.

↔ valueLenP
Pointer to the size of valueP. See Comments for details.

Returns This function returns the following error codes:

errNone
No error.

serErrBadParam
An invalid op code was specified.

serErrBadPort
This port doesn’t exist.

serErrNotOpen
The serial port is not open.

serErrNoDevicesAvail
No serial devices could be found.

serErrNotSupported
The specified op code is not supported in the current
configuration.

Serial Manager Reference
SrmControl

40 Exploring Palm OS: Low-Level Communications

Comments Table 4.1 shows what to pass for the valueP and valueLenP
parameters for each of the operation codes. Control codes not listed
do not use these parameters. See SrmCtlEnum for a complete list of
control codes.

Table 4.1 SrmControl Parameters

Operation Code Parameters

srmCtlSetBaudRate -> valueP = Pointer to int32_t (baud rate)
-> valueLenP = Pointer to
sizeof(int32_t)

srmCtlGetBaudRate <- valueP = Pointer to int32_t (baud rate)
<- valueLenP = Pointer to int16_t

srmCtlSetFlags -> valueP = Pointer to Uint32 (bitfield; see
Serial Settings Constants)
-> valueLenP = Pointer to
sizeof(uint32_t)

srmCtlGetFlags <- valueP = Pointer to uint32_t (bitfield)
<- valueLenP = Pointer to int16_t

srmCtlSetCtsTimeout -> valueP = Pointer to int32_t (timeout
value)
-> valueLenP = Pointer to
sizeof(int32_t)

srmCtlGetCtsTimeout <- valueP = Pointer to int32_t (timeout
value)
<- valueLenP = Pointer to int16_t

srmCtlUserDef <-> valueP = Pointer passed to the serial
driver
<-> valueLenP = Pointer to
sizeof(int32_t)
For a serial driver, these pointers are passed to
the driver’s control function and they contain
that functions return values (if any) upon
return.

Serial Manager Reference
SrmControl

Exploring Palm OS: Low-Level Communications 41

srmCtlSetCtsTimeout -> valueP = Pointer to int32_t (timeout
value)
-> valueLenP = Pointer to
sizeof(int32_t)

srmCtlGetCtsTimeout <- valueP = Pointer to int32_t (timeout
value)
<- valueLenP = Pointer to int16_t

srmCtlUserDef <-> valueP = Pointer passed to the serial
driver
<-> valueLenP = Pointer to
sizeof(int32_t)
For a serial driver, these pointers are passed to
the driver’s control function and they contain
that functions return values (if any) upon
return.

Serial Manager Reference
SrmExtOpen

42 Exploring Palm OS: Low-Level Communications

SrmExtOpen Function

Purpose Opens a foreground port connection with the specified
configuration.

Declared In SerialMgr.h

Prototype status_t SrmExtOpen (uint32_t port,
SrmOpenConfigType *configP,
uint16_t configSize, uint16_t *newPortIdP)

Parameters → port
The four-character port name (such as 'ircm' or 'u328') or
logical port number to be opened. (See Port Constants.)

→ configP
Pointer to the configuration structure specifying the serial
port’s properties. See SrmOpenConfigType.

→ configSize
The size of the configuration structure pointed to by
configP.

← newPortIdP
Contains the port ID to be passed to other Serial Manager
functions.

Returns This function returns the following error codes:

errNone
No error.

serErrBadPort
The port parameter does not specify a valid port.

serErrBadParam
The configP parameter is NULL.

serErrAlreadyOpen
The Serial Manager already has a port open.

memErrNotEnoughSpace
There was not enough memory available to open the port.

Comments Do not keep the port open any longer than necessary. An open serial
port consumes more energy from the device’s batteries.

Serial Manager Reference
SrmGetDeviceCount

Exploring Palm OS: Low-Level Communications 43

The values specified in the configP parameter depend on the type
of connection being made. For RS-232 connections, you specify the
baud rate but not a purpose. For USB connections, you specify a
purpose but not a baud rate.

When opening the RFCOMM ('rfcm') port, you should specify in
the configP->drvrDataP field a pointer to an
SrmRfcommOpenParamsType structure.

A newly opened port has its line errors cleared, the default CTS
timeout set (specified by the constant srmDefaultCTSTimeout), a
512-byte receive queue allocated, 1 stop bit, 8 bits per character, RTS
enabled, and flow control enabled. To increase the receive queue
size, use SrmSetReceiveBuffer(). To change the other serial
port settings, use SrmControl().

See Also SrmOpen()

SrmGetDeviceCount Function

Purpose Returns the number of available serial devices.

Declared In SerialMgr.h

Prototype status_t SrmGetDeviceCount
(uint16_t *numOfDevicesP)

Parameters ← numOfDevicesP
Pointer to address where the number of serial devices is
returned.

Returns errNone
No error.

See Also SrmGetDeviceInfo()

Serial Manager Reference
SrmGetDeviceInfo

44 Exploring Palm OS: Low-Level Communications

SrmGetDeviceInfo Function

Purpose Returns information about a serial device.

Declared In SerialMgr.h

Prototype status_t SrmGetDeviceInfo (uint32_t deviceID,
DeviceInfoType *deviceInfoP)

Parameters → deviceID
ID of serial device to get information for. You can pass a zero-
based index (0, 1, 2, ...), a valid port ID returned from
SrmOpen() or SrmExtOpen(), or a 4-character port name
(such as 'u328', 'u650', or 'ircm'). See Port Constants.

← deviceInfoP
Pointer to a DeviceInfoType structure where information
about the device is returned.

Returns This function returns the following error codes:

errNone
No error.

serErrBadPort
This port doesn’t exist.

serErrNoDevicesAvail
The Serial Manager cannot find any serial devices.

See Also SrmGetDeviceCount()

Serial Manager Reference
SrmGetStatus

Exploring Palm OS: Low-Level Communications 45

SrmGetStatus Function

Purpose Returns status information about the serial hardware.

Declared In SerialMgr.h

Prototype status_t SrmGetStatus (uint16_t portId,
uint32_t *statusFieldP, uint16_t *lineErrsP)

Parameters → portID
Port ID returned from SrmOpen() or SrmExtOpen().

← statusFieldP
Pointer to address where hardware status information for the
port is returned. This is a 32-bit field using the flags described
in Status Constants.

← lineErrsP
Pointer to address where the number of line errors for the
port is returned. The line error flags are described in Line
Error Constants.

Returns This function returns the following error codes:

errNone
No error.

serErrBadPort
This port doesn’t exist.

serErrNotSupported
The port is a yielded port.

serErrNoDevicesAvail
No serial devices could be found.

Comments Typically, SrmGetStatus() is called to retrieve the line errors for
the port if some of the send and receive functions return a
serErrLineErr error code.

Serial Manager Reference
SrmOpen

46 Exploring Palm OS: Low-Level Communications

SrmOpen Function

Purpose Opens a foreground port connection with the specified port name or
logical port number.

Declared In SerialMgr.h

Prototype status_t SrmOpen (uint32_t port, uint32_t baud,
uint16_t *newPortIdP)

Parameters → port
The four-character port name or logical port number to be
opened. See Port Constants for more information.

→ baud
Initial baud rate of port.

← newPortIdP
Contains the port ID to be passed to other Serial Manager
functions.

Returns This function returns the following error codes:

errNone
No error.

serErrAlreadyOpen
This port already has an installed foreground owner.

serErrBadPort
This port doesn’t exist.

memErrNotEnoughSpace
There was not enough memory available to open the port.

Comments Only one application or task may have access to a particular serial
port at any time.

Do not keep the port open any longer than necessary. An open serial
port consumes more energy from the device’s batteries.

Serial Manager Reference
SrmPrimeWakeupHandler

Exploring Palm OS: Low-Level Communications 47

SrmPrimeWakeupHandler Function

Purpose Sets the number of received bytes that triggers a call to the wakeup
handler function.

Declared In SerialMgr.h

Prototype status_t SrmPrimeWakeupHandler (uint16_t portId,
uint16_t minBytes)

Parameters → portId
Port ID returned from SrmOpen() or SrmExtOpen().

→ minBytes
Number of bytes that must be received before wakeup
handler is called. Typically, this is set to 1.

Returns This function returns the following error codes:

errNone
No error.

serErrBadPort
This port doesn’t exist.

serErrNotOpen
The port is not open.

serErrNoDevicesAvail
No serial devices could be found.

Comments This function primes a wakeup handler installed by
SrmSetWakeupHandler().

See Also SrmSetWakeupHandler(), WakeupHandlerProcPtr()

Serial Manager Reference
SrmReceive

48 Exploring Palm OS: Low-Level Communications

SrmReceive Function

Purpose Receives a specified number of bytes.

Declared In SerialMgr.h

Prototype uint32_t SrmReceive (uint16_t portId,
void *rcvBufP, uint32_t count,
int32_t timeout, status_t *errP)

Parameters → portID
Port ID returned from SrmOpen() or SrmExtOpen().

← rcvBufP
Pointer to buffer where received data is to be returned.

→ count
Length of data buffer (in bytes). This specifies the number of
bytes to receive.

→ timeout
The amount of time (in milliseconds) that the Serial Manager
waits to receive the requested block of data. At the end of the
timeout, data received up to that time is returned.

← errP
Error code.

Returns Number of bytes of data actually received.

Comments IMPORTANT: Note that in versions of Palm OS prior to 6.0, the
timeout was specified in ticks. It is now specified in milliseconds.

The following error codes can be returned in errP:

errNone
No error.

serErrBadPort
This port doesn’t exist.

serErrNotOpen
The port is not open.

Serial Manager Reference
SrmReceiveCheck

Exploring Palm OS: Low-Level Communications 49

serErrTimeOut
Unable to receive data within the specified timeout period.

serErrConfigurationFailed
The port needs time to configure, and the configuration has
failed.

serErrNotSupported
The port is not the foreground port.

serErrConfigurationFailed
The port could not configure itself.

serErrLineErr
A line error occurred during the receipt of data. Use
SrmGetStatus() to obtain the exact line error.

serErrNoDevicesAvail
No serial devices could be found.

See Also SrmReceiveCheck(), SrmReceiveFlush(),
SrmReceiveWait()

SrmReceiveCheck Function

Purpose Checks the receive FIFO and returns the number of bytes in the
serial receive queue.

Declared In SerialMgr.h

Prototype status_t SrmReceiveCheck (uint16_t portId,
uint32_t *numBytesP)

Parameters → portID
Port ID returned from SrmOpen() or SrmExtOpen().

← numBytesP
Number of bytes in the receive queue.

Returns This function returns the following error codes:

errNone
No error.

Serial Manager Reference
SrmReceiveFlush

50 Exploring Palm OS: Low-Level Communications

serErrBadPort
This port doesn’t exist.

serErrNotOpen
The port is not open.

serErrLineErr
A line error has occurred. Use SrmGetStatus() to obtain
the exact line error.

See Also SrmReceive(), SrmReceiveFlush(), SrmReceiveWait()

SrmReceiveFlush Function

Purpose Flushes the receive FIFOs.

Declared In SerialMgr.h

Prototype status_t SrmReceiveFlush (uint16_t portId,
int32_t timeout)

Parameters → portId
Port ID returned from SrmOpen() or SrmExtOpen().

→ timeout
Timeout value, in milliseconds.

Returns This function returns the following error codes:

errNone
No error.

serErrBadPort
This port doesn’t exist.

serErrNotOpen
The port is not open.

serErrNotSupported
The port is not the foreground port.

serErrNoDevicesAvail
No serial devices could be found.

Serial Manager Reference
SrmReceiveWait

Exploring Palm OS: Low-Level Communications 51

Comments IMPORTANT: Note that in versions of Palm OS prior to 6.0, the
timeout was specified in ticks. It is now specified in milliseconds.

The timeout value forces this function to wait a period of
microseconds after flushing the port to see if more data shows up to
be flushed. If more data arrives within the timeout period, the port
is flushed again and the timeout counter is reset and waits again.
The function only exits after no more bytes are received by the port
for the full timeout period since the last flush of the port. To avoid
this waiting behavior, specify 0 for the timeout period.

Any errors on the line are cleared before this function returns.

See Also SrmReceive, SrmReceiveCheck, SrmReceiveWait

SrmReceiveWait Function

Purpose Waits until some number of bytes of data have arrived into the serial
receive queue, then returns.

Declared In SerialMgr.h

Prototype status_t SrmReceiveWait (uint16_t portId,
uint32_t bytes, int32_t timeout)

Parameters → portID
Port ID returned from SrmOpen() or SrmExtOpen().

→ bytes
Number of bytes to wait for.

→ timeout
Timeout value, in microseconds.

Returns This function returns the following error codes:

errNone
No error.

serErrBadPort
This port doesn’t exist.

Serial Manager Reference
SrmReceiveWait

52 Exploring Palm OS: Low-Level Communications

serErrNotOpen
The port is not open.

serErrTimeOut
Unable to receive data within the specified timeout period.

serErrNotSupported
The port is not the foreground port.

serErrBadParam
The bytes parameter exceeds the size of the receive queue.
Use SrmSetReceiveBuffer() to increase the size of the
receive queue.

serErrLineErr
A line error occurred during the receipt of data. Use
SrmGetStatus() to obtain the exact line error.

serErrNoDevicesAvail
No serial devices could be found.

Comments IMPORTANT: Note that in versions of Palm OS prior to 6.0, the
timeout was specified in ticks. It is now specified in milliseconds.

If this function returns no error, the application can either check the
number of bytes currently in the receive queue (using
SrmReceiveCheck()) or it can just specify a buffer and receive the
data by calling SrmReceive().

Do not call SerReceiveWait() from within a wakeup handler. If
you do, the serErrTimeOut error is returned.

See Also SrmReceive(), SrmReceiveCheck(), SrmReceiveFlush()

Serial Manager Reference
SrmReceiveWindowClose

Exploring Palm OS: Low-Level Communications 53

SrmReceiveWindowClose Function

Purpose Closes direct access to the Serial Manager’s receive queue.

Declared In SerialMgr.h

Prototype status_t SrmReceiveWindowClose (uint16_t portId,
uint32_t bytesPulled)

Parameters → portId
Port ID returned from SrmOpen() or SrmExtOpen().

→ bytesPulled
Number of bytes the application read from the receive queue.

Returns This function returns the following error codes:

errNone
No error.

serErrBadPort
This port doesn’t exist.

serErrNotOpen
The port is not open.

serErrNotSupported
The port is not the foreground port.

serErrNoDevicesAvail
No serial devices could be found.

Comments Call this function when the application has read as many bytes as it
needs out of the receive queue or it has read all the available bytes.

See Also SrmReceiveWindowOpen()

Serial Manager Reference
SrmReceiveWindowOpen

54 Exploring Palm OS: Low-Level Communications

SrmReceiveWindowOpen Function

Purpose Provides direct access to the Serial Manager’s receive queue.

Declared In SerialMgr.h

Prototype status_t SrmReceiveWindowOpen (uint16_t portId,
UInt8 **bufPP, uint32_t *sizeP)

Parameters → portId
Port ID returned from SrmOpen() or SrmExtOpen().

← bufPP
Pointer to a pointer to the receive buffer.

← sizeP
Available bytes in buffer.

Returns This function returns the following error codes:

errNone
No error.

serErrBadPort
This port doesn’t exist.

serErrNotOpen
The port is not open.

serErrNotSupported
The port is not the foreground port.

serErrLineErr
The data in the queue contains line errors.

serErrNoDevicesAvail
No serial devices could be found.

Comments This function lets applications directly access the Serial Manager’s
receive queue to eliminate buffer copying by the Serial Manager.
This access is a “back door” route to the received data. After
retrieving data from the buffer, the application must call
SrmReceiveWindowClose().

Applications that want to empty the receive buffer entirely should
call the SrmReceiveWindowOpen() and

Serial Manager Reference
SrmSend

Exploring Palm OS: Low-Level Communications 55

SrmReceiveWindowClose() functions repeatedly until the buffer
size returned is 0.

IMPORTANT: Once an application calls
SrmReceiveWindowOpen(), it should not attempt to receive
data via the normal method of calling SrmReceive() or
SrmReceiveWait(), as these functions interfere with direct
access to the receive queue.

See Also SrmReceiveWindowClose()

SrmSend Function

Purpose Sends a block of data out the specified port.

Declared In SerialMgr.h

Prototype uint32_t SrmSend (uint16_t portId,
const void *bufP, uint32_t count,
status_t *errP)

Parameters → portID
Port ID returned from SrmOpen() or SrmExtOpen().

→ bufp
Pointer to data to send.

→ count
Length of data buffer, in bytes.

← errP
Error code. See the Comments section for details.

Returns Number of bytes of data actually sent.

Comments When SrmSend() returns, you should check the value returned in
the errP parameter. If errNone, then the entire data buffer was
sent. If not errNone, then the result equals the number of bytes sent
before the error occurred. The possible error values are:

Serial Manager Reference
SrmSendCheck

56 Exploring Palm OS: Low-Level Communications

errNone
No error.

serErrBadPort
This port doesn’t exist.

serErrNotOpen
The port is not open.

serErrTimeOut
Unable to send data within the specified CTS timeout period.

serErrNoDevicesAvail
No serial devices could be found.

serErrConfigurationFailed
The port configuration has failed.

serErrNotSupported
The specified port is not the foreground port.

See Also SrmSendCheck(), SrmSendFlush(), SrmSendWait()

SrmSendCheck Function

Purpose Checks the transmit FIFO and returns the number of bytes left to be
sent.

Declared In SerialMgr.h

Prototype status_t SrmSendCheck (uint16_t portId,
uint32_t *numBytesP)

Parameters → portID
Port ID returned from SrmOpen() or SrmExtOpen().

← numBytesP
Number of bytes left in the FIFO queue.

Returns This function returns the following error codes:

errNone
No error.

Serial Manager Reference
SrmSendFlush

Exploring Palm OS: Low-Level Communications 57

serErrBadPort
This port doesn’t exist.

serErrNotOpen
The port is not open.

serErrNotSupported
This feature not supported by the hardware.

serErrNoDevicesAvail
No serial devices could be found.

Comments Not all serial devices support this feature.

See Also SrmSend(), SrmSendFlush(), SrmSendWait()

SrmSendFlush Function

Purpose Flushes the transmit FIFO.

Declared In SerialMgr.h

Prototype status_t SrmSendFlush (uint16_t portId)

Parameters → portID
Port ID returned from SrmOpen() or SrmExtOpen().

Returns This function returns the following error codes:

errNone
No error.

serErrBadPort
This port doesn’t exist.

serErrNotOpen
The port is not open.

serErrNotSupported
The port is not the foreground port.

Serial Manager Reference
SrmSendWait

58 Exploring Palm OS: Low-Level Communications

serErrNoDevicesAvail
No serial devices could be found.

See Also SrmSend(), SrmSendCheck(), SrmSendWait()

SrmSendWait Function

Purpose Waits until all previous data has been sent from the transmit FIFO,
then returns.

Declared In SerialMgr.h

Prototype status_t SrmSendWait (uint16_t portId)

Parameters → portID
Port ID returned from SrmOpen() or SrmExtOpen().

Returns This function returns the following error codes:

errNone
No error.

serErrBadPort
This port doesn’t exist.

serErrNotOpen
The port is not open.

serErrTimeOut
Unable to send data within the CTS timeout period.

serErrNotSupported
The port is not the foreground port.

serErrNoDevicesAvail
No serial devices could be found.

Comments Consider calling this function if your software needs to detect when
all data has been transmitted by SrmSend(). The SrmSend()
function blocks until all data has been transmitted or a timeout
occurs. A subsequent call to SrmSendWait() blocks until all data

Serial Manager Reference
SrmSetReceiveBuffer

Exploring Palm OS: Low-Level Communications 59

queued up for transmission has been transmitted or until another
CTS timeout occurs (if CTS handshaking is enabled).

See Also SrmSend(), SrmSendCheck(), SrmSendFlush()

SrmSetReceiveBuffer Function

Purpose Installs a new buffer into the Serial Manager’s receive queue.

Declared In SerialMgr.h

Prototype status_t SrmSetReceiveBuffer (uint16_t portId,
void *bufP, uint16_t bufSize)

Parameters → portID
Port ID returned from SrmOpen() or SrmExtOpen().

→ bufP
Pointer to new receive buffer. Ignored if bufSize is NULL.

→ bufSize
Size of new receive buffer in bytes. To remove this buffer and
allocate a new default buffer (512 bytes), specify 0.

Returns This function returns the following error codes:

errNone
No error.

serErrBadPort
This port doesn’t exist.

serErrNotOpen
This port is not open.

memErrNotEnoughSpace
Not enough memory to allocate default buffer.

serErrNoDevicesAvail
No serial devices could be found.

Comments The buffer that you pass to this function must remain allocated
while you have the serial port open. Before you close the serial port,

Serial Manager Reference
SrmSetWakeupHandler

60 Exploring Palm OS: Low-Level Communications

you must restore the default queue by calling
SrmSetReceiveBuffer() with NULL as the bufP and 0 as the
bufSize parameter.

IMPORTANT: Applications must install the default buffer before
closing the port (or disposing of the new receive queue).

SrmSetWakeupHandler Function

Purpose Installs a wakeup handler.

Declared In SerialMgr.h

Prototype status_t SrmSetWakeupHandler (uint16_t portId,
WakeupHandlerProcPtr procP, uint32_t refCon)

Parameters → portID
Port ID returned from SrmOpen() or SrmExtOpen().

→ procP
Pointer to a WakeupHandlerProcPtr() function. Specify
NULL to remove a handler.

→ refCon
User-defined data that is passed to the wakeup handler
function. This can any 32-bit value, including a pointer.

Returns This function returns the following error codes:

errNone
No error.

serErrBadPort
This port doesn’t exist.

serErrNotOpen
The port is not open.

serErrNoDevicesAvail
No serial devices could be found.

Serial Manager Reference
WakeupHandlerProcPtr

Exploring Palm OS: Low-Level Communications 61

Comments The wakeup handler is a function in your application that you want
to be called whenever there is data ready to be received on the
specified port.

The wakeup handler function will not become active until it is
primed with a number of bytes that is greater than 0, by the
SrmPrimeWakeupHandler() function. Every time a wakeup
handler is called, it must be re-primed (using
SrmPrimeWakeupHandler()) in order to be called again.

See Also SrmPrimeWakeupHandler(), WakeupHandlerProcPtr()

Serial Manager Application-Defined Functions

WakeupHandlerProcPtr Function

Purpose Called after some number of bytes are received by the Serial
Manager’s interrupt function.

Declared In SerialMgr.h

Prototype void (*WakeupHandlerProcPtr)(uint32_t refCon)

Parameters → refCon
User-defined data passed from the
SrmSetWakeupHandler() function.

Returns Returns nothing.

Comments This handler function is installed by calling
SrmSetWakeupHandler(). The number of bytes after which it is
called is specified by SrmPrimeWakeupHandler().

Under Palm OS Cobalt, the wakeup handler is called from a thread
in the application’s process. Because of this, it’s possible that the
handler can be called while the application is already calling a Serial
Manager function.

Serial Manager Reference
WakeupHandlerProcPtr

62 Exploring Palm OS: Low-Level Communications

If your application manages synchronization between the wakeup
handler and its main thread, it can call Serial Manager functions
within the wakeup handler. However, if your needs are complex, or
you want to maximize performance, you may benefit from using the
IOS API instead of the Serial Manager.

Two common implementations of wakeup handlers include:

• Calling EvtWakeup(), which causes any pending
EvtGetEvent call to return and then sends a nilEvent to
the current application.

• Using SrmReceiveWindowOpen() and
SrmReceiveWindowClose() to gain direct access to the
receive queue without blocking.

See Also SrmPrimeWakeupHandler(), SrmSetWakeupHandler()

Exploring Palm OS: Low-Level Communications 63

5
Serial Link Manager
This chapter provides reference material for the Serial Link Manager
API. The header file SerialLinkMgr.h declares the Serial Link
Manager API. For more information on the Serial Link Manager, see
Chapter 3, “The Serial Link Protocol,” on page 21.

This API is defined in the header file SerialLinkMgr.h.

Serial Link Manager Functions

SlkClose Function

Purpose Close down the Serial Link Manager.

Prototype status_t SlkClose (void)

Parameters None.

Returns errNone
No error.

slkErrNotOpen
The Serial Link Manager was not open.

Comments When the open count reaches zero, this routine frees resources
allocated by Serial Link Manager.

Serial Link Manager
SlkCloseSocket

64 Exploring Palm OS: Low-Level Communications

SlkCloseSocket Function

Purpose Closes a socket previously opened with SlkOpenSocket().

The caller is responsible for closing the communications library
used by this socket, if necessary.

Prototype status_t SlkCloseSocket (UInt16 socket)

Parameters → socket
The socket ID to close.

Returns errNone
No error.

slkErrSocketNotOpen
The socket was not open.

Comments SlkCloseSocket() frees system resources the Serial Link
Manager allocated for the socket. It does not free resources allocated
and passed by the client, such as the buffers passed to
SlkSetSocketListener(); this is the client’s responsibility. The
caller is also responsible for closing the communications library
used by this socket.

See Also SlkOpenSocket()

SlkFlushSocket Function

Purpose Flush the receive queue of the communications library associated
with the given socket.

Prototype status_t SlkFlushSocket (UInt16 socket,
Int32 timeout)

Parameters → socket
Socket ID.

→ timeout
Interbyte timeout in system milliseconds.

Serial Link Manager
SlkOpenSocket

Exploring Palm OS: Low-Level Communications 65

Returns errNone
No error.

slkErrSocketNotOpen
The socket wasn’t open.

SlkOpen Function

Purpose Initialize the Serial Link Manager.

Prototype status_t SlkOpen (void)

Parameters None.

Returns errNone
No error.

slkErrAlreadyOpen
No error.

Comments Initializes the Serial Link Manager, allocating necessary resources.
Return codes of 0 (zero) and slkErrAlreadyOpen both indicate
success. Any other return code indicates failure. The
slkErrAlreadyOpen function informs the client that someone
else is also using the Serial Link Manager. If the Serial Link Manager
was successfully opened by the client, the client needs to call
SlkClose() when it finishes using the Serial Link Manager.

SlkOpenSocket Function

Purpose Open a serial link socket and associate it with a communications
library. The socket may be a known static socket or a dynamically
assigned socket.

Prototype status_t SlkOpenSocket (UInt16 portID,
UInt16 *socketP, Boolean staticSocket)

Parameters → portID
Comm library reference number for socket.

Serial Link Manager
SlkReceivePacket

66 Exploring Palm OS: Low-Level Communications

↔ socketP
Pointer to location for returning the socket ID. If
staticSocket is true, then on entry this contains the
desired static socket number to open.

→ staticSocket
If true, socketP contains the desired static socket number
to open. If false, any free socket number is assigned
dynamically and opened.

Returns errNone
No error.

slkErrOutOfSockets
No more sockets can be opened.

Comments The communications library must already be initialized and opened
(see SrmOpen()). When finished using the socket, the caller must
call SlkCloseSocket() to free system resources allocated for the
socket. For information about well-known static socket IDs, see
Chapter 3, “The Serial Link Protocol,” on page 21.

SlkReceivePacket Function

Purpose Receive and validate a packet for a particular socket or for any
socket. Check for format and checksum errors.

Prototype status_t SlkReceivePacket (UInt16 socket,
Boolean andOtherSockets,
SlkPktHeaderPtr headerP, void *bodyP,
UInt16 bodySize, Int32 timeout)

Parameters → socket
The socket ID.

→ andOtherSockets
If true, ignore destination in packet header.

↔ headerP
Pointer to the packet header buffer (size of
SlkPktHeaderType). Note that the header is in big-endian
byte order.

Serial Link Manager
SlkReceivePacket

Exploring Palm OS: Low-Level Communications 67

↔ bodyP
Pointer to the packet client data buffer.

→ bodySize
Size of the client data buffer (maximum client data size
which can be accommodated).

→ timeout
Maximum number of system ticks to wait for beginning of a
packet; -1 means wait forever.

Returns errNone
No error.

slkErrSocketNotOpen
The socket was not open.

slkErrTimeOut
Timed out waiting for a packet.

slkErrWrongDestSocket
The packet being received had an unexpected destination.

slkErrChecksum
Invalid header checksum or packet CRC-16.

slkErrBuffer
Client data buffer was too small for packet’s client data.

If andOtherSockets is false, this routine returns with an error
code unless it gets a packet for the specific socket.

If andOtherSockets is true, this routine returns successfully if it
sees any incoming packet from the communications library used by
socket.

Comments You may request to receive a packet for the passed socket ID only, or
for any open socket which does not have a socket listener. The
parameters also specify buffers for the packet header and client
data, and a timeout. The timeout indicates how long the receiver
should wait for a packet to begin arriving before timing out. If a
packet is received for a socket with a registered socket listener, it
will be dispatched via its socket listener procedure. On success, the
packet header buffer and packet client data buffer is filled in with
the actual size of the packet’s client data in the packet header’s
bodySize field.

Serial Link Manager
SlkSendPacket

68 Exploring Palm OS: Low-Level Communications

SlkSendPacket Function

Purpose Send a serial link packet via the serial output driver.

Prototype status_t SlkSendPacket (SlkPktHeaderPtr headerP,
SlkWriteDataPtr writeList)

Parameters ↔ headerP
Pointer to the packet header structure with client information
filled in (see Comments).

→ writeList
List of packet client data blocks (see Comments).

Returns errNone
No error.

slkErrSocketNotOpen
The socket was not open.

slkErrTimeOut
Handshake timeout.

Comments SlkSendPacket() stuffs the signature, client data size, and the
checksum fields of the packet header. The caller must fill in all other
packet header fields. If the transaction ID field is set to 0 (zero), the
Serial Link Manager automatically generates and stuffs a new non-
zero transaction ID. The array of SlkWriteDataType structures
enables the caller to specify the client data part of the packet as a list
of noncontiguous blocks. The end of list is indicated by an array
element with the size field set to 0 (zero). This call blocks until the
entire packet is sent out or until an error occurs.

Serial Link Manager
SlkSetSocketListener

Exploring Palm OS: Low-Level Communications 69

SlkSetSocketListener Function

Purpose Register a socket listener for a particular socket.

Prototype status_t SlkSetSocketListener (UInt16 socket,
SlkSocketListenPtr socketP)

Parameters → socket
Socket ID.

→ socketP
Pointer to a SlkSocketListenType structure.

Returns errNone
No error.

slkErrBadParam
Invalid parameter.

slkErrSocketNotOpen
The socket was not open.

Comments Called by applications to set up a socket listener.

Since the Serial Link Manager does not make a copy of the
SlkSocketListenType structure, but instead saves the passed
pointer to it, the structure

• must not be an automatic variable (that is, local variable
allocated on the stack)

• may be a global variable in an application

• may be a locked chunk allocated from the dynamic heap

The SlkSocketListenType structure specifies pointers to the
socket listener procedure and the data buffers for dispatching
packets destined for this socket. Pointers to two buffers must be
specified: the packet header buffer (size of SlkPktHeaderType),
and the packet body (client data) buffer. The packet body buffer
must be large enough for the largest expected client data size. Both
buffers may be application global variables or locked chunks
allocated from the dynamic heap.

The socket listener procedure is called when a valid packet is
received for the socket. Pointers to the packet header buffer and the

Serial Link Manager
SlkSocketPortID

70 Exploring Palm OS: Low-Level Communications

packet body buffer are passed as parameters to the socket listener
procedure.

NOTE: The application is responsible for freeing the
SlkSocketListenType structure or the allocated buffers when
the socket is closed. The Serial Link Manager doesn’t do it.

SlkSocketPortID Function

Purpose Get the port ID associated with a particular socket; for use with the
new serial manager.

Prototype status_tSlkSocketPortID (UInt16 socket,
UInt16 *portIDP)

Parameters → socket
The socket ID.

↔ portIDP
Pointer to location for returning the port ID.

Returns errNone
No error.

slkErrSocketNotOpen
The socket was not open.

Serial Link Manager
SlkSocketSetTimeout

Exploring Palm OS: Low-Level Communications 71

SlkSocketSetTimeout Function

Purpose Set the interbyte packet receive-timeout for a particular socket.

Declared In SerialLinkMgr.h

Prototype status_t SlkSocketSetTimeout (UInt16 socket,
Int32 timeout)

Parameters → socket
Socket ID.

→ timeout
Interbyte packet receive-timeout in system ticks.

Returns errNone
No error.

slkErrSocketNotOpen
The socket was not open.

Serial Link Manager
SlkSocketSetTimeout

72 Exploring Palm OS: Low-Level Communications

Part II
Infrared
Communication
(Beaming)

Palm OS® provides a robust infrared communication architecture
using the IrDA standard. This part of Exploring Palm OS: Low-
Level Communications covers making use of infrared
communication in your applications.

Introduction to Infrared Communication (Beaming) . . . 75

The IrDA Protocol Stack 77

Using the IrDA Protocols 79

IrDA Reference 89

Exploring Palm OS: Low-Level Communications 75

6
Introduction to
Infrared
Communication
(Beaming)
Palm OS® provides three levels of support for beaming, or infrared
communication (IR):

• The Exchange Manager provides a high-level interface that
handles all of the communication details transparently. See
Chapter 4, “Object Exchange,” on page 105 of Exploring Palm
OS: High-Level Communications for more information.

• The Serial Manager provides a virtual driver that
implements the IrComm protocol. To use IrComm, you
specify sysFileCVirtIrComm as the port you want to open
and use the Serial Manager APIs to send and receive data on
that port. See Chapter 2, “The Serial Manager,” on page 5 for
information on how to use the Serial Manager APIs.

• The Sockets API lets you use the same functions you would
use for other communications methods to perform IR
communications.

This chapter focuses on using the Sockets API for beaming.

IMPORTANT: Versions of Palm OS prior to 6.0 offered a
separate library, called IRLib, for performing infrared
communications. This library has been deprecated and should not
be used when creating new applications.

The IR support provided by Palm OS is compliant with the IrDA
specifications. IrDA (Infrared Data Association), is an industry body
consisting of representatives from a number of companies involved

Introduction to Infrared Communication (Beaming)

76 Exploring Palm OS: Low-Level Communications

in IR development. For a good introduction to the IrDA standards,
see the IrDA web site at:

http://www.IrDA.org/

Palm OS implements all the required protocol layers (SIR, IrLAP,
IrLMP, and Tiny TP), as well as the OBEX layer, to support the
Exchange Manager, and the stack is capable of connection-based or
connectionless sessions.

IrLMP Information Access Service (IAS) is a component of the
IrLMP protocol that you will see mentioned in the interface. IAS
provides a database service through which devices can register
information about themselves and retrieve information about other
devices and the services they offer.

http://www.IrDA.org/

Exploring Palm OS: Low-Level Communications 77

7
The IrDA Protocol
Stack
The IrDA protocol stack serves primarily as a transport for the
Exchange Manager, which uses the Infrared Object Exchange
Protocol (IrOBEX) to transfer data objects between devices. IrOBEX
is built on top of the TinyTP protocol.

Additionally, the IrDA protocol stack’s IrComm module provides a
serial interface that allows the transfer of data over the infrared
media. This interface is implemented as a STREAMS module, which
lets it be used both by new applications and “legacy” applications
that have no specific knowledge of the underlying infrared media.
As an example, HotSync® uses IrComm to enable synchronizing
with an IrDA-equipped PC.

Figure 7.1 on page 78 shows the organization of the IrDA protocol
modules and how they interface with the rest of Palm OS®.

The IrDA Protocol Stack

78 Exploring Palm OS: Low-Level Communications

Figure 7.1 The IrDA protocol stack and how it interfaces with
the rest of the system

The IrDA protocol stack is available to applications through the
standard sockets API. Some additional IrDA-specific functionality is
provided through a new shared library, IrDALib.

NOTE: The IrLib provided by Palm OS Garnet and earlier
versions of Palm OS has been deprecated, and is no longer
available to native ARM applications. However, a compatibility
library exists to allow 68k “legacy” applications to continue to use
IrLib. New software must, however, be written to the new IrDALib
API.

Application ProcessIOS Process
STREAMS Subsystem

IrComm

TinyTP

IrLMP

IrLAP

Socket
Module

Device Manager

IR Driver

Application Code

STDIO
Library

Exchange
Library

IrLib
Library

Sockets Library

Exploring Palm OS: Low-Level Communications 79

8
Using the IrDA
Protocols

The IrLAP Protocol Layer
IrLAP, the Infrared Link Access Protocol, lies at the bottom of the
IrDA protocol stack. It provides a reliable, sequenced exchange of
frames between two IrDA-capable devices, as well as a process for
detecting (or “discovering”) other nearby IrDA devices.

Palm OS® Cobaltdoes not allow applications to directly interface
with the IrLAP protocol layer. IrLAP connections and discoveries
are managed entirely by the IrLMP protocol.

The IrLMP Protocol Layer
The IrLMP (Infrared Link Management Protocol) layer sits just
above IrLAP in the IrDA protocol stack. It serves as a multiplexer on
an IrLAP connection, allowing multiple concurrent “conversations”
between a pair of connected devices. Each conversation consists of a
sequenced stream of reliably-delivered messages; the messages are
guaranteed to be delivered to applications in the same order in
which they were sent. Message boundaries are preserved.

In addition, IrLMP provides an exclusive mode, in which a single
conversation can take full control of the underlying IrLAP
connection, locking out all others. This is useful for applications that
require a reduced-latency connection. Exclusive mode can be
controlled using the SO_IREXCLUSIVE setsockopt() command.

The IrLMP Sequenced Packet Interface
The IrLMP sequenced packet interface does not provide any
segmentation or reassembly of large messages, so the maximum
size of incoming and outgoing messages is limited to the data sizes

Using the IrDA Protocols
The IrLMP Protocol Layer

80 Exploring Palm OS: Low-Level Communications

negotiated during the establishment of the IrLAP connection.
IrLMP also provides no end-to-end flow control; when data is sent
through an IrLMP socket faster than it can be consumed at the other
end, messages will be discarded by the receiver’s IrLMP protocol,
thereby being lost to the receiving application.

Listing 8.1 demonstrates how to create and use IrDA socket
connections. This example creates a socket and listens for an
incoming connection. Once a connection is initiated, the code
creates a new socket for sending data to the remote device. Once
that’s been done, the code makes the first socket idle by calling
setsockopt() with the SO_IRIDLE command, gives the new
socket exclusive control with the SO_IREXCLUSIVE command, and
transmits data.

Once the data has been transmitted, the data transfer socket is
closed and the control socket is reactivated.

Listing 8.1 Creating and using IrDA socket connections

int s1, s2, s3;
struct sockaddr_irda addr;
int mtu, len;
char *buf;
int zero = 0;
int one = 1;

// create an IrLMP socket, and wait for someone to call us
s1 = socket(AF_IRDA, SOCK_SEQPACKET, IRPROTO_LMP);

memset(&addr, 0, sizeof(addr));
addr.sir_family = AF_IRDA;
addr.sir_lsap = 0x69;

bind(s1, (struct sockaddr *)&addr, sizeof(addr));
listen(s1, 1);
s2 = accept(s1, NULL, NULL);

// initiate another IrLMP socket connection to our caller
s3 = socket(AF_IRDA, SOCK_SEQPACKET, IRPROTO_LMP);

addr.sir_lsap = 0x12;
addr.sir_addr = IRADDR_ANY;
connect(s3, (struct sockaddr *)&addr, sizeof(addr));

Using the IrDA Protocols
The IrLMP Protocol Layer

Exploring Palm OS: Low-Level Communications 81

// mark first connection idle
setsockopt(s2, SOL_SOCKET, SO_IRIDLE, (const char *)&one, sizeof(one));

// take exclusive control of IrLAP connection
setsockopt(s3, SOL_SOCKET, SO_IREXCLUSIVE, (const char *)&one, sizeof(one));

// send a maximum-sized message
len = sizeof(mtu);
getsockopt(s3, SOL_SOCKET, SO_IRMTU, (const char *)&mtu, &len);
buf = malloc(mtu);
memset(buf, 0xff, mtu);
send(s3, buf, mtu, 0);

// close second connection, thereby relinquishing exclusive control
close(s3);

// the first connection can now become active
setsockopt(s2, SOL_SOCKET, SO_IRIDLE, (const char *)&zero, sizeof(zero));

The IrLMP Datagram Interface
IrLMP provides a datagram interface for connectionless data
exchange. Datagram messages are sent unreliably; it is not possible
for the sending application to be certain that any other device has
received a sent message. Additionally, datagram messages are
always broadcast, so they may be received by any and all IrDA-
capable devices within range of the sending device.

Listing 8.2 demonstrates how to broadcast a datagram and wait for
a reply.

Listing 8.2 Broadcasting a datagram message

int s;
sockaddr_irda addr;
char buf[40];
int len;

// create IrLMP datagram socket
s = socket(AF_IRDA, SOCK_DGRAM, 0);

// bind to IrLMP’s connectionless SAP
memset(&addr, 0, sizeof(addr));
addr.sir_family = AF_IRDA;
addr.sir_lsap = irLsapUnitdata;

Using the IrDA Protocols
The IrLMP Protocol Layer

82 Exploring Palm OS: Low-Level Communications

if (bind(s, (struct sockaddr *)&addr, sizeof(addr)) != 0) {
// another application beat us to it
return;

}

// broadcast datagram
memset(&buf, 0x69, sizeof(buf));
addr.sir_addr = IRADDR_BROADCAST;
sendto(s, buf, sizeof(buf), 0, (struct sockaddr *)&addr, sizeof(addr));

// listen for response
len = sizeof(addr);
recvfrom(s, buf, sizeof(buf), 0, (struct sockaddr *)&addr, &len);

Discovering IrDA Devices
Before you can establish a connection to an IrDA device, you have to
find it. This is done by discovering the available devices via the
IrDADiscoverDevices() function in the IrDALib shared library.
The sample code in Listing 8.3 demonstrates this process.

Listing 8.3 Discovery of IrDA devices

int s;
uint32_t nLogs;
IrLmpDeviceInfoType logs[2];
Boolean cached;
int i, j;
struct sockaddr_irda addr;

// perform discovery
nLogs = 2;
IrDADiscoverDevices(&nLogs, logs, &cached));

printf("discovery found %d %sdevices:\n", nLogs, (cached ? "cached " : ""));
for (i = 0; i < nLogs; i++) {

printf(" %08x ", logs[i].deviceAddr);
switch (logs[i].method) {
case kIirLmpSniffing:

printf("sniffed");
break;

case kIirLmpActiveDiscovery:
printf("discovered");
break;

Using the IrDA Protocols
The TinyTP Protocol Layer

Exploring Palm OS: Low-Level Communications 83

case kIirLmpPassiveDiscovery:
printf("found us");
break;

}

printf(" %d bytes of device info: ", logs[i].infoLen);
for (j = 0; j < logs[i].infoLen; j++)

printf("%c", logs[i].deviceInfo[j]);
printf("\n");

}

if (nLogs == 0) {
printf("found no devices - aborting test\n");
return;

}

// open irlmp socket
s = socket(AF_IRDA, SOCK_STREAM, 0);

// connect to first device discovered
memset(&addr, 0, sizeof(addr));
addr.sir_family = AF_IRDA;
strcpy(addr.sir_name, "OBEX");
addr.sir_addr = logs[0].deviceAddr;

connect(s, (struct sockaddr *)&addr, sizeof(addr));

This code discovers the available devices, printing out information
about them, then connects to the first device discovered by creating
a new socket and connecting to the socket using OBEX on a
STREAM based socket.

The TinyTP Protocol Layer

The TinyTP Sequenced Packet Interface
The Tiny Transport Protocol (TinyTP) sits on top of IrLMP in the
IrDA protocol stack. It builds upon the functionality of the IrLMP
sequenced packet interface by providing segmentation and
reassembly of large messages, as well as end-to-end flow control for
individual IrLMP connections.

Using the IrDA Protocols
The TinyTP Protocol Layer

84 Exploring Palm OS: Low-Level Communications

The code in Listing 8.4 shows how to create a socket to listen for a
sequenced TinyTP connection, enable automatic reassembly of
incoming messages, determine the connection’s MTU, and mark the
control socket as idle. Once this code is done executing, it’s time to
transfer data as seen in Listing 8.1.

Listing 8.4 Setting up a TinyTP sequenced packet connection

int s1, s2;
struct sockaddr_irda addr;
int mru, mtu, len;
int one = 1;

// create sequenced TTP socket
s1 = socket(AF_IRDA, SOCK_SEQPACKET, 0);

// bind to well-known lsap
memset(&addr, 0, sizeof(addr));
addr.sir_family = AF_IRDA;
addr.sir_lsap = irLsapAny;
strncpy(addr.sir_name, “IrTest”, sizeof(addr.sir_name));
bind(s1, (struct sockaddr *)&addr, sizeof(addr));

// enable automatic re-assembly of incoming messages
mru = 2345;
setsockopt(s1, SO_IRMRU, (const char *)&mru, sizeof(mru));

// wait for someone to connect to us
listen(s1, 1);
s2 = accept(s1, NULL, NULL);

// retrieve connection MTU
len = sizeof(mtu);
getsockopt(s2, SOL_SOCKET, SO_IRMTU, (const char *)&mtu, &len);

// mark connection idle
setsockopt(s2, SOL_SOCKET, SO_IRIDLE, (const char *)&one, sizeof(one));

The TinyTP Stream Interface
In addition to the sequenced packet interface, TinyTP provides a
stream interface, in which it manages all aspects of segmentation
and reassembly for the application. Applications can ignore the
TinyTP MTU negotiated for the connection and send messages of

Using the IrDA Protocols
The TinyTP Protocol Layer

Exploring Palm OS: Low-Level Communications 85

any length. The TinyTP stream interface will take care of
segmenting them as necessary, so attempting to send a message
larger than the MTU will not result in failure.

NOTE: When using the TinyTP stream interface, message
boundaries are not preserved end-to-end. The TinyTP protocol
module may break messages into multiple pieces, or combine
multiple small messages into a single larger message.

This is the easiest way to send data, as you can see from Listing 8.5.
All you do is open the connection and send and receive data on it.
No worrying about packet sizes or sequencing; it just works.

Listing 8.5 Sending and receiving data using a TinyTP stream

int s;
struct sockaddr_irda addr;
int mtu, len;
char *buf;
int i;
char c;

// create TinyTP stream socket
s = socket(AF_IRDA, SOCK_STREAM, IRPROTO_TTP);

// connect to anyone
memset(&addr, 0, sizeof(addr));
addr.sir_family = AF_IRDA;
strncpy(addr.sir_name, “IrTest”, sizeof(addr.sir_name));
addr.sir_addr = IRADDR_BROADCAST;
connect(s, (struct sockaddr *)&addr, sizeof(addr));

// retrieve connection MTU
len = sizeof(mtu);
getsockopt(s, SOL_SOCKET, SO_IRMTU, (const char *)&mtu, &len);

// send lots of data
buf = malloc(mtu * 2);
memset(buf, 0x69, mtu * 2);
send(s, buf, mtu * 2, 0);

// read response
for (i = 0; i < 200; i++)

recv(s, &c, sizeof(c), 0);

Using the IrDA Protocols
Getting and Providing Information About IrDA Services

86 Exploring Palm OS: Low-Level Communications

Getting and Providing Information About IrDA
Services

Every device with an IrDA protocol stack includes the Information
Access Service (IAS), which consists of a directory listing all of the
IrDA services that the device offers, as well as server software that
allows other devices to access this directory. The IAS query interface
provides a method for discovering services offered by a remote
device, by querying its IAS directory server.

Structure of the IAS Database
Entries in the IAS database consist of IAS objects, each of which
describes a single service offered by the device. These objects consist
of sets of attributes, typed name-value pairs containing specific
information about the service. Additionally, each object contains a
class name, which is a string that describes the object’s type. The
type indicates what attributes the object includes.

Getting Information about IrDA Services
The IASGetValueByClass() function lets an application ask a
remote device for attribute values with a given name belonging to a
given class. The connect() and bind() functions automatically
handle some aspects of IAS and provide a simplified interface to it,
as shown in “The IrLMP Protocol Layer” on page 79.

Listing 8.6 Querying IAS

IASQueryType query;
uint8_t buffer[256];

// look for an IrOBEX server on any remote device (the class and attribute
// names are well-known, specified by the IrOBEX standard document)
query.addr = IRADDR_BROADCAST;
query.className = “OBEX”;
query.attribName = “IrDA:TinyTP:LsapSel”;
query.resultBuf = buffer;
query.resultBufLen = sizeof(buffer);
if (IASQueryValueByClass(&query) == errNone &&
 query.attribCount > 0 &&
 query.attribValues[0]->attribType == kIASiasAttribIntegerAttrib)

Using the IrDA Protocols
Getting and Providing Information About IrDA Services

Exploring Palm OS: Low-Level Communications 87

{
printf(“Found IrOBEX server on device %08lx, at LSAP %04x\n”,

query.addr, query.attribValues[0]->value.integer);
}

Providing Information About Offered IrDA
Services
To advertise the existence of an IrDA service, an application needs
to add the service to its IAS directory. This can be done using the
bind() function, which automatically creates the IAS entry, or
manually as shown in Listing 8.7.

The IASRegisterObject() function associates an IAS service
entry with an IrDA socket. This is generally used by a server
application to inform remote devices of the location and type of
services the application offers. The function returns an object ID that
uniquely identifies the object. This object ID can be used to
unregister the service later through a call to
IASUnregisterObject().

An easier method of associating a service name with a server socket
is provided by the IASRegisterService() function. This
function creates an IAS entry of a service class specified when
calling it, containing a single entry specifying the LSAP address of
the specified socket. This attribute’s name will correctly reflect the
type of socket. For example, if a TinyTP socket is specified, the
attribute’s name will be “IrDA:TinyTP:LsapSel”.

Once registered, a service entry remains in the device’s IAS
database until either the socket with which it is associated is
unbound, or the IASUnregisterObject() function is called with
its ID.

Listing 8.7 Registering a service with IAS

#define N_ATTRIBS 2
IASObjectType obj;
const char *names[N_ATTRIBS] = {

“IrDA:IrLMP:InstanceName”,
“IrDA:IrLMP:LsapSel”

};
IASAttribValueType *values[N_ATTRIBS];

Using the IrDA Protocols
Getting and Providing Information About IrDA Services

88 Exploring Palm OS: Low-Level Communications

uint8_t buf1[10], buf2[20];

// fill out attribute values
values[0] = (IASAttribValueType *)buf1;
values[0]->attribType = iasAttribInteger;
values[0]->value.integer = <listener socket’s LSAP>;

values[1] = (IASAttribValueType *)buf2;
values[1]->attribType = kIASiasAttribUserStringAttrib;
values[1]->value.userString.charSet = iasAttribUserString;
strcpy(values[1]->value.userString.chars, “Bar”);

// advertise service on our listener socket
obj.className = “Foo”;
obj.attribCount = N_ATTRIBS;
obj.attribNames = names;
obj.attribValues = values;
if (IASRegisterObject(<listener socket>, &obj, false) == errNone) {

// our object is now in this device’s IAS information base, and will
// remain there until <listener socket> is closed

}

This code creates an array of IAS attribute structures (of type
IASAttribValueType) and fills each of them out with
information describing the attribute. It then sets up an IAS object (of
type IASObjectType) and calls IASRegisterObject() to
register the service.

Exploring Palm OS: Low-Level Communications 89

9
IrDA Reference

IrDA Constants

IASAttribTypeType Enum
Purpose Define IAS attribute types.

Declared In IAS.h

Constants

IASCharSetType Enum
Purpose Define character sets supported by IAS.

Declared In IAS.h

Constants

Constant Definition

iasAttribMissing The attribute is missing.

iasAttribInteger The attribute is an integer.

iasAttribOctetString The attribute is a string of bytes.

iasAttribUserString The attribute is a user string.

Constant Definition

iasCharSetASCII ASCII.

iasCharSetISO8859_1 ISO 8859-1.

iasCharSetISO8859_2 ISO 8859-2.

iasCharSetISO8859_3 ISO 8859-3.

IrDA Reference
IrDA Protocol Identifier Constants

90 Exploring Palm OS: Low-Level Communications

IrDA Protocol Identifier Constants
Purpose Define IrDA protocols when using the Sockets API.

Declared In IrDA.h

Constants

IrDA Socket Address Family Constant
Purpose Defines the address family used by IrDA socket connections.

Declared In posix/sys/socket.h

Constants AF_IRDA

Comments When creating a socket for use in IrDA communications, use the
AF_IRDA constant to indicate that the address is an IrDA device
address.

isaCharSetISO8859_4 ISO 8859-4.

isaCharSetISO8859_5 ISO 8859-5.

isaCharSetISO8859_6 ISO 8859-6.

isaCharSetISO8859_7 ISO 8859-7.

isaCharSetISO8859_8 ISO 8859-8.

isaCharSetISO8859_9 ISO 8859-9.

isaCharSetUnicode Unicode.

Constant Definition

Constant Definition

IRPROTO_LAP The IrLAP protocol.

IRPROTO_LMP The IrLMP protocol.

IRPROTO_TTP The TinyTP protocol.

IrDA Reference
IAS Constants

Exploring Palm OS: Low-Level Communications 91

IrLmpDiscoveryMethodType Enum
Purpose Define values for the discovery method specified in the

IrLmpDeviceInfoType structure.

Declared In IrDA.h

Constants

IAS Constants
Purpose Constants pertaining to IAS.

Declared In IAS.h

Constants

Constant Definition

irLmpSniffing The device was discovered while it
was performing an IrLAP sniffing
procedure, which is a special low-
power discovery procedure.

irLmpActiveDiscovery The device was discovered during
an IrLAP discovery procedure
initiated by the current device.

irLmpPassiveDiscovery The device was discovered as the
result of an IrLAP discovery
procedure initiated by the
discovered device.

Constant Definition

iasMaxAttribNameLen The maximum number of
characters in an IAS attribute’s
name.

iasMaxClassNameLen The maximum number of
characters in an IAS object’s class
name.

IrDA Reference
setsockopt() commands

92 Exploring Palm OS: Low-Level Communications

setsockopt() commands
Purpose Define IrDA-specific setockopt() commands.

Declared In IrDA.h

Constants

Special IrDA Device Addresses
Purpose Define special-purpose IrDA device addresses.

Declared In IrDA.h

Constants

iasMaxOctetStringLen The maximum number of bytes in
an octet-string IAS attribute.

iasMaxUserStringLen The maximum number of
characters in an IAS user-string
attribute.

Constant Definition

Constant Definition

SO_IRIDLE Invokes the LM_Idle.Request.

SO_IREXCLUSIVE Invokes the LM_AccessMode.Request.

SO_IRMTU Gets the MTU for the socket.

SO_IRMRU Sets or gets the socket’s MRU.

Constant Definition

IRADDR_ANY Refers to any available device.

IRADDR_BROADCAST The IrDA device broadcast address.

IrDA Reference
Special IrLMP SAP Values

Exploring Palm OS: Low-Level Communications 93

NOTE: Connecting to IRADDR_BROADCAST causes IrLMP to
automatically perform a discovery procedure, then connect to one
of the devices it discovers. Connecting to IRADDR_ANY will
initiate an IrLMP connection to whatever device is currently at the
other end of an established IrLAP connection; if IrLAP isn’t
already connected, the connect() will fail.

Special IrLMP SAP Values
Purpose Describe Service Access Points (SAPs) to which connection-oriented

sockets can be bound.

Declared In IrDA.h

Constants

Constant Definition

irLsapIAS The IAS query management interface.

irLsapUnitdata The Unitdata interface.

irLsapAny Any SAP.

IrDA Reference
IrDA Data Types and Structures

94 Exploring Palm OS: Low-Level Communications

IrDA Data Types and Structures

IASAttribValueType Typedef
Purpose Describes the type and value of an IAS attribute.

Declared In IAS.h

Prototype typedef PACKED struct IASAttribValueTag {
 uint8_t attribType;
 PACKED union {
 uint32_t integer;
 PACKED struct {
 uint16_t length;
 uint8_t bytes[0];
 } octetString;
 PACKED struct {
 uint8_t charSet;
 uint8_t length;
 uint8_t chars[1];
 } userString;
 } value;
} IASAttribValueType;

Fields attribType
An IASAttribTypeType value specifying the type of
attribute the structure represents.

value
A union containing the value of the attribute, depending on
the attribute type:

integer
The value of the attribute if it’s of type
iasAttribInteger.

octetString
The value of the attribute if it’s of type
iasAttribOctetString. The length field
indicates the number of bytes in the attribute string,
and bytes is the string itself.

IrDA Reference
IASObjectType

Exploring Palm OS: Low-Level Communications 95

userString
The value of the attribute if it’s of type
iasAttribUserString. The charSet field
indicates an IASCharSetType value specifying the
character set in which the string is defined, length
indicates the length of the string in bytes (not
characters), and chars is a length-byte long array
containing the string itself.

IASObjectType Struct
Purpose Describes an IAS object.

Declared In IAS.h

Prototype typedef struct IASObjectTag {
 const char *className;
 const uint8_t *hintBits;
 uint16_t attribCount;
 const char **attribNames;
 IASAttribValueType **attribValues;
} IASObjectType;

Fields className
The user-supplied class name.

hintBits
Bits to be included in IrLMP’s “IrLMPSupport” attribute.

attribCount
The number of attributes included in the object.

attribNames
An array of attribCount strings naming each of the
object’s attributes.

attribValues
An array of attribCount IASAttribValueType
structures, each describing the value of the corresponding
attribute.

IrDA Reference
IASQueryType

96 Exploring Palm OS: Low-Level Communications

IASQueryType Struct
Purpose Describes an IAS query.

Declared In IAS.h

Prototype typedef struct IASQueryTag {
 IrLapDeviceAddrType addr;
 const char *className;
 const char *attribName;
 uint8_t *resultBuf;
 uint32_t resultBufLen;
 uint16_t attribCount;
 IASAttribValueType **attribValues;
 uitn16_t *objectIDs;
 uint32_t resultSize;
} IASQueryType;

Fields addr
Address of the device to query. Can be IRADDR_ANY or
IRADDR_BROADCAST.

className
The name of the class to look for.

attribName
The name of the attribute to look for.

resultBuf
A pointer to a buffer to store the results into. This must point
to a buffer before using the structure in a query.

resultBufLen
The length of the resultBuf buffer in bytes. This must be
set to the length of the buffer before using the structure in a
query.

atttribCount
The IASGetValueByClass() function fills in this value
with the number of attributes retrieved as a result of the
query.

attribValues
The IASQueryValueByClass() function fills this out to
point to an array of the retrieved attribute values.

IrDA Reference
IrLapDeviceAddrType

Exploring Palm OS: Low-Level Communications 97

objectIDs
The IASGetValueByClass() function fills this field out
with a pointer to an array of the object IDs of all the found
attributes.

resultSize
The IASGetValueByClass() function fills out this field
with the size of the result in bytes.

IrLapDeviceAddrType Typedef
Purpose Specifies the address of an IrDA device.

Declared In IrDA.h

Prototype typedef uint32_t IrLapDeviceAddrType;

Comments IrDA device addresses are 32-bit integer values. A device’s IrDA
address is generated internally by its IrDA stack, and can be
changed by the stack without warning.

Additionally, a device address’ byte order is not defined; currently
addresses are in little-endian format, but that could change in the
future. Applications should therefore treat device addresses as an
opaque identifier with short lifespans. For example, the
sockaddr_irda structure’s sir_addr field should only be
populated with the results of a discovery procedure, and this should
be done soon after the discovery procedure has completed.

There are two special device addresses that are exempt to this rule:
IRADDR_ANY and IRADDR_BROADCAST are never returned by a
discovery procedure, and can be used in sockaddr_irda at any
time.

IrDA Reference
IrLmpDeviceInfoType

98 Exploring Palm OS: Low-Level Communications

IrLmpDeviceInfoType Struct
Purpose Provides information describing an IrDA device.

Declared In IrDA.h

Prototype typedef struct IrLmpDeviceInfoTag {
 IrLapDeviceAddrType deviceAddr;
 uint8_t method;
 uint8_t __pad0[2];
 uint8_t infoLen;
 uint8_t deviceInfo[32];
} IrLmpDeviceInfoType;

Fields deviceAddr
The 32-bit IrLAP device address of the device described by
the structure.

method
The method by which the device was discovered. This will be
one of the values specified by the
IrLmpDiscoveryMethodType enum.

__pad0
Reserved for system use. Do not use this field.

infoLen
The number of bytes of valid data in the deviceInfo array.

deviceInfo
Information about the device. Usually this is the name of the
device, with the first byte indicating the character set in
which the name is encoded, followed by a null-terminated
string naming the device. Only the first infoLen bytes
contain valid data.

IrDA Reference
sockaddr_irda

Exploring Palm OS: Low-Level Communications 99

IrLmpSAPType Typedef
Purpose Selects the Service Access Point (SAP) for IrLMP and TinyTP.

Declared In IrDA.h

Prototype typedef uint8_t IrLmpSAPType;

Comments The IrLmpSAPType is an 8-bit value that describes an IrLMP
Service Access Point. Constants for special SAPs (the IAS server
SAP and the unitdata SAP) are provided.

See Also IrLmpSAPType

sockaddr_irda Struct
Purpose Describes an IrLMP address for use with the Sockets API.

Declared In IrDA.h

Prototype struct sockaddr_irda {
 sa_family_t sir_family;
 char sir_name[25];
 IrLmpSAPType sir_lsap;
 IrLapDeviceAddrType sir_addr;
};

Fields sir_family
The IrDA address family; this must be set to AF_IRDA.

sir_name
Provides a simplified interface to the IrDA stack’s IAS query
and IAS entry management functionality. If this field is non-
null when the sockaddr_irda structure is passed to
bind(), the IrDA stack will add an IAS entry to the
information base and associate it with the specified LSAP.
The IAS entry’s class will be the value of the sir_name field,
and the entry will contain a single attribute specifying the
socket’s LSAP selector. The attribute name will depend on
the socket’s protocol; for example, an IRPROTO_LMP socket
would be “IrDA:IrLMP:LsapSel”.

If the sockaddr_irda passed to connect() contains a
non-null sir_name field, the IrDA stack will perform an IAS
query to resolve the specified name into an LSAP identifier. A
get-value-by-class query is used to perform the resolution;
the value of the sir_name field specifies which class to

IrDA Reference
IrDALib Functions

100 Exploring Palm OS: Low-Level Communications

query, and the attribute name is based on the socket’s
protocol. If the sir_name field is empty (the first character is
‘\0’), the IrDA stack will simply connect to the remote LSAP
specified by the sir_lsap field.

sir_lsap
Specifies the LSAP the connection should use.

sir_addr
Specifies the IrDA device address to which the connection is
to be established.

IrDALib Functions

IASGetValueByClass Function
Purpose Queries the Information Access Service (IAS) to find devices

matching the specified query parameters.

Declared In IAS.h

Prototype status_t IASGetValueByClass(IASQueryType
*ioQuery)

Parameters ↔ ioQuery
A pointer to an IASQueryType structure describing the
query to perform. On return, the structure is filled out with
information about the results of the query.

Returns errNone if no error occurred; otherwise returns an appropriate
error code.

IrDA Reference
IASRegisterService

Exploring Palm OS: Low-Level Communications 101

IASRegisterObject Function
Purpose Registers an IAS object into the handheld’s IAS directory.

Declared In IAS.h

Prototype int32_t IASRegisterObject(int iSocket,
const IASObjectType *iObject,
Boolean iExclusive)

Parameters → iSocket
The socket number of an IrDA socket with which to associate
the new IAS service entry.

→ iObject
The object to register into the IAS directory.

→ iExclusive
Specify true to create an exclusive-access entry in the IAS
directory.

Returns Returns the object ID of the newly-registered IAS object. If the
returned value is negative, it’s an error code.

NOTE: An object ID is always in the range 0x0000 through
0xffff, so it can be safely cast to a uint16_t and passed to
IASUnregisterObject() as needed.

IASRegisterService Function
Purpose Registers a service name in the handheld’s IAS directory.

Declared In IAS.h

Prototype int32_t IASRegisterService(int iSocket,
const char *iServiceClass,
const uint8_t *iHintsBits,
Boolean iExclusive)

Parameters → iSocket
The socket number of an IrDA socket with which to associate
the new IAS service entry.

→ iServiceClass
The name of the service class to register with IAS.

IrDA Reference
IASUnregisterObject

102 Exploring Palm OS: Low-Level Communications

→ iHintsBits
Bits to be included in IrLMP’s “IrLMPSupport” attribute in
the new IAS entry.

→ iExclusive
Specify true to create an exclusive-access entry in the IAS
directory.

Returns Returns the object ID of the newly-created IAS directory entry. If the
returned value is negative, it’s an error code.

NOTE: An object ID is always in the range 0x0000 through
0xffff, so it can be safely cast to a uint16_t and passed to
IASUnregisterObject() as needed.

IASUnregisterObject Function
Purpose Unregisters an IAS object from the IAS directory.

Declared In IAS.h

Prototype status_t IASUnregisterObject(int iSocket,
uint16_t iObjectID)

Parameters → iSocket
The socket number of the IrDA service to be unregistered.

→ iObjectID
The object ID of the service to unregister, as returned by
either IASRegisterObject() or
IASRegisterService().

IrDA Reference
IrDADiscoverDevices

Exploring Palm OS: Low-Level Communications 103

IrDADiscoverDevices Function
Purpose Discovers available IrDA devices within range of the handheld’s

IrDA transceiver.

Declared In IrDALib.h

Prototype status_t IrDADiscoverDevices(
uint32_t *ioNumLogs,
IrLmpDeviceInfoType *oLogs, Boolean *oCached)

Parameters ↔ ioNumLogs
On input, this should point to an integer indicating the size
of the oLogs array. On output, this value has been changed
to indicate how many devices were successfully discovered.

← oLogs
Points to an array of IrLmpDeviceInfoType structures
that the function will fill out with information about the
discovered devices.

← oCached
On return, indicates whether the returned device list is from
the cache (true) or a fresh discovery procedure (false).

Returns errNone if no error. Otherwise an appropriate error code.

Comments Discovery is performed through the IrLMP protocol module. If
discovery is requested while an IrLAP link is established, IrLMP
will return the results of the last discovery procedure, and oCached
will be set to true. If there is not an established link,
IrDADiscoverDevices() will perform a new discovery
procedure and will return false in the oCached field.

NOTE: IrLMP will never find more than six devices, so you don’t
need to look for more than that.

Although the IrDA specification doesn’t require it, the deviceInfo
field in a discovery log usually contains the name of the IrDA
device. On a Palm OS device, this is the HotSync® ID assigned by
the user the first time the device is synchronized. This name is
usually presented as a null-terminated string and is prefixed with a
byte indicating the string’s character set.

IrDA Reference
IrDADiscoverDevices

104 Exploring Palm OS: Low-Level Communications

Part III
Bluetooth

Palm OS® provides extensive support for Bluetooth, which can be
used for serial-style communications, BSD Sockets communication,
and object exchange. The following chapters cover developing
applications that use Bluetooth for communications.

The Palm OS Bluetooth System 107

Developing Bluetooth-enabled Applications. 121

Bluetooth Exchange Library Support 141

Bluetooth Reference 145

Exploring Palm OS: Low-Level Communications 107

10
The Palm OS
Bluetooth System
The Bluetooth APIs provide developers a way to access the
Palm OS® Bluetooth system and write Bluetooth-enabled
applications.

This documentation covers how to use the Palm OS Bluetooth APIs
but does not provide the basic understanding of Bluetooth concepts
and protocols that you need to write Bluetooth code. For more
information about Bluetooth, refer to the Specification of the Bluetooth
System, available at the Bluetooth Special Interest Group website at
www.bluetooth.com. There are also several third-party books
that you may wish to consult for helpful Bluetooth information.

NOTE: Palm OS supports version 1.2 of the Bluetooth
specification; however, no Bluetooth 1.2 specific features have
been exposed in the API at this time. However, two Bluetooth 1.2
compliant devices communicating with each other gain some
performance advantages that are transparent to both the
developer and to the user.

Capabilities of the Palm OS Bluetooth System
The Palm OS Bluetooth system enables a Palm Powered™ device to:

• access the Internet through LAN access points and cell
phones

• exchange objects such as business cards and appointments
over Bluetooth

• perform HotSync® operations over Bluetooth

The Palm OS Bluetooth System
Bluetooth System Components

108 Exploring Palm OS: Low-Level Communications

• communicate with other handhelds for multi-user
applications like games and various collaborative
applications

• send SMS messages and manage your phone’s internal
phone book.

• act as a Bluetooth modem, thus providing a gateway to the
Internet for other Bluetooth devices.

• use a Bluetooth headset.

• be controlled by a Bluetooth hands-free device.

The Palm OS Bluetooth system designers focused their efforts on
the user, recognizing that on the Palm OS technical interoperability
is simply not enough. The user cares about the overall experience.
The user’s “Bluetooth learning curve” should be short. And, as
always, simplicity is key.

Bluetooth System Components
The Palm OS Bluetooth system contains the following components,
which are built on top of the I/O Subsystem:

• Bluetooth Library

• Bluetooth Exchange Library

• Bluetooth Stack Library

• Bluetooth Devices

• Bluetooth HCI Transport Modules

• Hardware Device Drivers

This hierarchy is shown in Figure 10.1.

The Palm OS Bluetooth System
Bluetooth System Components

Exploring Palm OS: Low-Level Communications 109

Figure 10.1 The hierarchy of the Palm OS Bluetooth system

Bluetooth Library
The Bluetooth Library is a shared library that provides an API for
developers to develop Bluetooth applications. The API provides
functions in the following areas:

• Managing remote devices, piconets, and ACL links

• Communicating using the L2CAP, RFCOMM, and BNEP
protocols, as well as SCO links

• Advertising services and querying for remote services using
SDP

I/O Process

STREAMS Framework

Application Process

Application

BtLib

Bluetooth
Management
Entity Device

Bluetooth Devices (L2CAP, RFCOMM, SDP, etc.)

BtLibLo

Bluetooth Stack Library

Bluetooth HCI
Transport Module

Hardware Driver

The Palm OS Bluetooth System
Bluetooth System Components

110 Exploring Palm OS: Low-Level Communications

• Maintaining a list of favorite devices, some or all of which
may be paired with the local device

• Managing persistent service applications

The Bluetooth Library is actually split into two libraries.
Applications, which run outside the I/O Process, link to BtLib,
while BtLibLo executes within the I/O Process as part of the
STREAMS framework.

Bluetooth Exchange Library
The Bluetooth Exchange Library allows applications to use the
Palm OS Exchange Manager with Bluetooth as the link. The
Bluetooth Exchange Library communicates with the rest of the
Bluetooth system through the Bluetooth Library. RFCOMM is used
as the sole transport mechanism for the Exchange Manager.

Bluetooth Stack Library
The Bluetooth Stack is a shared library that implements the various
protocols of the Bluetooth specification. Palm OS developers don’t
need to access the Bluetooth Stack directly.

Bluetooth Devices
Bluetooth Devices are STREAMS drivers for the Management
Entity, and for the L2CAP, RFCOMM, BNEP, and SDP protocols, as
well as for SCO links.

Bluetooth HCI Transport Modules
Bluetooth HCI Transport Modules are STREAMS modules that
provide an interface between the STREAMS architecture and the
lower-level, hardware device driver for the radio.

Hardware Device Drivers
Hardware Device Drivers are shared libraries that act as device
drivers for different radios. Palm OS developers cannot access the
Bluetooth Device Drivers.

The Palm OS Bluetooth System
Profiles

Exploring Palm OS: Low-Level Communications 111

Profiles
Table 10.1 lists the profiles supported by the Palm OS Bluetooth
system.

Table 10.1 Supported Bluetooth profiles

Profile Description

Generic Access Defines the generic procedures
related to discovery of
Bluetooth devices, as well as
link aspects of connecting to
Bluetooth devices. Also defines
procedures related to the use of
different levels of security and
common format requirements
for parameters accessible at the
user interface level.

Serial Port Defines the protocols and
procedures used by devices
using Bluetooth for RS-232 (or
similar) serial cable emulation.
The scenario covered by this
profile deals with legacy
applications using Bluetooth as
a cable replacement through a
virtual serial port abstraction
(which in itself is operating
system-dependent).

The Palm OS Bluetooth System
Profiles

112 Exploring Palm OS: Low-Level Communications

Dial-up Networking Defines the protocols and
procedures used by devices
implementing the “Internet
Bridge” usage model; the usage
of a cellular phone or modem to
connect to a dial-up Internet
access server or other dial-up
service. Support is provided for
both the Terminal role (the
device connecting to the
modem) and the Gateway role
(the device acting as the phone
or modem).

LAN Access Defines LAN access using PPP
over RFCOMM. This profile has
been deprecated in favor of the
newer Personal Area
Networking profile described
below.

Generic Object Exchange Defines the protocols and
procedures used by the
applications providing the
usage models that need object
exchange capabilities.

Object Push Defines the requirements for the
protocols and procedures used
by applications providing the
object push usage model. This
profile makes use of the generic
object exchange profile to define
the interoperability
requirements for the protocols
needed by applications.

Table 10.1 Supported Bluetooth profiles (continued)

Profile Description

The Palm OS Bluetooth System
Profiles

Exploring Palm OS: Low-Level Communications 113

Headset (Gateway role) Palm OS supports the HSP in
the gateway role. HSP supports
the transport and control of
voice-grade audio between an
audio gateway such as a phone
and a headset, using an SCO
link to transport the audio and
an RfComm channel for control
functions.

Hands-Free (Gateway role) The HFP lets the user use an
audio gateway such as a phone,
transporting and controlling
voice-grade audio between the
two. A hands-free device is
typically installed in a car to
allow the driver to use a phone
without removing his or her
hands from the steering wheel.
Like HSP, HFP uses an SCO link
for the audio and an RfComm
channel for control functions.
However, HFP is a richer
profile, providing features to
initiate and accept calls, among
other things.

Table 10.1 Supported Bluetooth profiles (continued)

Profile Description

The Palm OS Bluetooth System
Profiles

114 Exploring Palm OS: Low-Level Communications

Note that although the Bluetooth system does not support the
Bluetooth Synchronization profile, it implements HotSync
operations over Bluetooth using the Serial Port profile. Also note
that network HotSync operations use PPP.

The Bluetooth system can dial and control voice calls on a
Bluetooth-enabled phone as if it were connected through a serial
cable. It does this using AT modem commands and not the Cordless
Telephony profile.

Usage Scenarios
Bluetooth-enabled devices are able to communicate with a variety
of remote Bluetooth devices. The Bluetooth system uses the profiles
defined by the Bluetooth specification in order to support the
following usage scenarios:

• Palm OS device connects to the Internet via a cell phone to
access email, browse the Web, or perform a remote HotSync
operation.

– Generic Access Protocol

– Serial Port Profile

– Dialup Networking Profile, Terminal role

Personal-Area Networking
(PANU role)

PANP makes a Bluetooth
piconet look like an Ethernet
network, letting it be used
under TCP/IP. The PANU role
lets the device connect to
another PANU, to a Group Ad-
Hoc Network Service, or to a
Network Access Point.

Personal-Area Networking
(GN role)

The GN role lets the device
servce as a bridge, to which
multiple PANUs can connect.

Table 10.1 Supported Bluetooth profiles (continued)

Profile Description

The Palm OS Bluetooth System
Profiles

Exploring Palm OS: Low-Level Communications 115

• Palm OS device connects to the Internet via an access point or
a desktop computer to access email, browse the Web, or
perform a remote HotSync operation.

– Generic Access Protocol

– Personal-Area Networking Profile, PANU role

• Palm OS device connects to a desktop computer to perform a
HotSync operation.

– Generic Access Protocol

– Serial Port Profile

• Palm OS device connects to a cell phone to dial or to manage
SMS messages.

– Generic Access Protocol

– Serial Port Profile

• Palm OS device sends and receives addresses, appointments,
or Palm OS applications to or from some other device.

– Generic Access Protocol

– Serial Port Profile

– Generic Object-Exchange Profile

– Object Push Profile, client or server role

• Another device connects to a Palm OS telephony device to
access the Internet.

– Generic Access Protocol

– Serial Port Profile

– Dialup Networking Profile, Gateway role

• Palm OS device uses a Bluetooth headset.

– Generic Access Protocol

– Serial Port Profile

– Headset Profile, Audio Gateway role

• Palm OS telephony device controlled by a hands-free device.

– Generic Access Protocol

– Serial Port Profile

– Hands-Free Profile, Audio Gateway role

The Palm OS Bluetooth System
Authentication and Encryption

116 Exploring Palm OS: Low-Level Communications

• Palm OS device hosts or joins an ad-hoc personal area
network, for multi-user games or other collaborative
operations.

– Generic Access Profile

– Personal-Area Networking Profile, GN (or PANU) role

Authentication and Encryption
The Bluetooth system handles the generation, utilization, and
storage of authentication and encryption keys at the OS level.

The Bluetooth system doesn’t support Authorization. Access
concerns beyond authentication are left up to the individual
application, as in a standard networking environment.

The Bluetooth system supports security modes 1 and 2: the “non-
secure” and “service-level enforced security” modes. Security mode
3—”link-level enforced security”—isn’t supported by the Bluetooth
system.

Device Discovery
In a system of Bluetooth devices, ad-hoc networks are established
between the devices. The “inquiry” procedure is used to discover
Bluetooth devices within range. The specification defines two
inquiry modes, “General” and “Limited.” The General mode, which
is supported by the Bluetooth system, is used by devices that need
to discover devices that are made discoverable continuously or for
no specific condition. Limited mode, on the other hand, is used to
devices that need to discover devices that are made discoverable for
only a limited period of time, during temporary conditions, or for a
specific event. The Bluetooth system doesn’t support the Limited
inquiry mode.

Telephony and Bluetooth
The Dialup Networking Profile (DUNP), the Headset Profile (HSP),
and the Hands-Free Profile (HFP) provide features that are relevant

The Palm OS Bluetooth System
Telephony and Bluetooth

Exploring Palm OS: Low-Level Communications 117

for smart phones. DUNP is integrated with the Palm OS Telephony
Manager. Sample source code is provided for both HSP and HFP.

Dial-up Networking Profile
Palm OS supports both the gateway and data terminal roles for
DUNP. As a data terminal, DUNP allows the Palm OS device to use
a Bluetooth phone as a modem. As a gateway, DUNP lets a Palm OS
smart phone be used as a modem by other devices, such as a laptop
computer.

Support for the gateway role is new to Palm OS Cobalt, version 6.1.
Any Palm OS device that supports the gateway role must also
support telephony. When a data terminal connects to a Palm OS
DUNP gateway, the Palm OS device will open a data connection to
its local telephony service, then serve as a bridge between the data
terminal and the network.

Headset Profile
PalmSource provides a sample application—including source
code—for HSP that can be used both as a normal application and as
a persistent Bluetooth service application. Users can launch it as a
normal application, but because it registers itself as a Bluetooth
service, it can automatically launch in a thread in the System
Process when an inbound connection is detected from the headset.

The sample application provides the following features:

• Connections (the ACL link, RfComm connection, and SCO
link) can be establishes either from the audio gateway or the
headset.

• Connections can be released either by the audio gateway or
the headset.

• Volume control can be performed remotely, by the audio
gateway.

The sample HSP service application can be found in the samples/
Bluetooth/BtHeadset directory in the SDK.

The Palm OS Bluetooth System
Telephony and Bluetooth

118 Exploring Palm OS: Low-Level Communications

Hands-Free Profile
PalmSource also provides a sample HFP application that can be
used as either a normal application and as a service application. The
HFP sample application simulates all the interaction between the
audio gateway and the network. For example, there is user interface
to let the user simulate an inbound connection from the network to
the audio gateway.

The HFP sample application includes the following features
(assuming the hands-free kit being used supports them):

• Service-level connection management; establishment and
release of the ACL link and RfComm connection are possible
from either the audio gateway or the hands-free unit. Each
side of the connection informs the other of which features
they support.

• Phone status information; changes in the registration status,
call status, and call setup status that the audio gateway
detects are reported to the hands-free kit.

• Audio connection handling; the SCO link can be established
or released by either the audio gateway or the hands-free kit.

• Accept or reject an incoming voice call.

• Terminate a call.

• Audio connection transfer during an ongoing call; the SCO
link can be established and released during an ongoing call
without disturbing the call, from either the audio gateway or
the hands-free kit.

• Place a call with a phone number supplied by the hands-free
kit. Support for this feature is optional in the hands-free kit.

• Place a call using memory dialing. Support for this feature is
optional in the hands-free kit.

• Place a call to the last number dialed. Support for this feature
is optional in the hands-free kit.

• Call waiting notification. Support for this feature is optional
in the hands-free kit.

• Calling line identification. Support for this feature is optional
in the hands-free kit.

The Palm OS Bluetooth System
Radio Power Management

Exploring Palm OS: Low-Level Communications 119

• Ability to transmit DTMF codes. Support for this feature is
optional in the hands-free kit.

• Remote audio volume control. Support for this feature is
optional in the hands-free kit.

The sample application does not support the following features,
which are optional in both the audio gateway and in the hands-free
kit:

• Three way calling.

• Echo canceling and noise reduction.

• Voice recognition activiation.

• Attaching a phone number to a voice tag.

The sample HFP service application can be found in the samples/
Bluetooth/BtHandsfree directory in the SDK.

Personal-Area Networking
PANP lets a Bluetooth piconet look like an ethernet, using that
ethernet beneath TCP/IP. PANP uses the Basic Network
Encapsulation Protocol (BNEP) below IP and above L2Cap to
provide the illusion of ethernet.

PANP lets a distributed application, such as multi-player games or
communication tools, work over Bluetooth without having to write
any Bluetooth specific code. Any TCP/IP application can work over
Bluetooth—the user simply needs to select “BluetoothPAN” as the
connection type in the connection preferences.

NOTE: At this time, Palm OS only supports the PAN User
(PANU) and Group Ad-Hoc Network Service (GN) roles for PANP.
The Network Access Point (NAP) role is not supported at this
time.

Radio Power Management
The extended battery life of Palm Powered devices is considered to
be a key competitive advantage by many Palm Powered device

The Palm OS Bluetooth System
Radio Power Management

120 Exploring Palm OS: Low-Level Communications

manufacturers. The Bluetooth system helps preserve battery life by
taking advantage of the Bluetooth power efficiency modes (hold,
park, and sniff) and the internal power management functionality
built into the Bluetooth radio chipset.

Applications don’t explicitly put the radio into the sniff, park, or
standby modes. Instead, power management is under the control of
the Bluetooth system. When participating in a piconet, the
Bluetooth system honors requests from the other members of the
piconet to enter any of the defined power-saving modes.

Exploring Palm OS: Low-Level Communications 121

11
Developing
Bluetooth-enabled
Applications
Palm OS® exposes Bluetooth through multiple interfaces, allowing
you to choose the interface that is best suited for the task at hand.
Bluetooth development is supported through IOS STDIO calls.
Object transfer is supported through the Exchange Manager using
the Bluetooth Exchange Library, which is discussed in Chapter 12,
“Bluetooth Exchange Library Support.” Finally, you can program
directly with the Bluetooth Library APIs, which is the subject of this
section.

Regardless of which approach you take, your applications should
check if the Bluetooth system is running on the device before using
any Bluetooth APIs. To do so, use the code shown in Listing 11.1:

Listing 11.1 Making sure the device has Bluetooth support

UInt32 btVersion;

// Make sure Bluetooth components are installed
if (FtrGet(btLibFeatureCreator, btLibFeatureVersion,

&btVersion) != errNone) {
// Alert the user if it's the active application
if ((launchFlags & sysAppLaunchFlagNewGlobals) &&

(launchFlags & sysAppLaunchFlagUIApp))
FrmAlert (MissingBtComponentsAlert);

return sysErrRomIncompatible;
}

Developing Bluetooth-enabled Applications
Overview of the Bluetooth Library

122 Exploring Palm OS: Low-Level Communications

Overview of the Bluetooth Library
From a programmer’s perspective, the functions of the Bluetooth
library fall into six areas: management entity, sockets, service
discovery, security, persistent services, and utility.

• The management entity functions deal with the radio,
baseband, and link manager parts of the Bluetooth
specification. You use them to find nearby devices and to
establish ACL links.

• The socket functions enable communication with L2CAP,
RFCOMM, and SDP protocols, as well as with SCO links.

• The service discovery functions manage the local service
database and query remote devices’ service databases.

• The security functions manage a set of trusted devices—
devices that do not have to authenticate when they create a
secure connection with the Palm OS device.

• The persistent service functions provide a means of installing
applications that run in the background and respond to
inbound connections from remote devices.

• The utility functions perform useful data conversions.

Compatibility
The entire communications architecture has changed with Palm OS
Cobalt. While existing applications will continue to run, using a
compatibility library, applications written to the Palm OS Cobalt
and later Bluetooth need to conform to a few modest changes to the
API.

Deprecated Functions

The functions BtLibRegisterManagementNotification()
and BtLibUnregisterManagementNotification() no longer
exist; instead, applications read events from the Management Entity
device directly by polling its file descriptor.

The BtLibServicesOpen(), BtLibServicesClose(), and
BtLibServicesIndicateSessionStart() functions have
been removed as well. Services are no longer a special case.

Developing Bluetooth-enabled Applications
Overview of the Bluetooth Library

Exploring Palm OS: Low-Level Communications 123

Additionally, the BtLibDiscoverSingleDevice(),
BtLibDiscoverMultipleDevices(), and
BtLibGetSelectedDevices() functions have been replaced by
one function: BtLibDiscoverDevices().

Parameter Changes

Functions that used to take a Bluetooth library reference number as
an input parameter now require a file descriptor to one of the
Management Entity, L2CAP, RFCOMM, or SDP device, depending
on the specific function.

The BtLibOpen() function now returns an IOS file descriptor to
the Management Entity device, and BtLibClose() closes that file
descriptor. BtLibOpen() also no longer necessarily causes a radio
state event; applications should not wait for a radio state event after
calling BtLibOpen(). If the hardware is not available, the call to
BtLibOpen() will simply fail. Likewise, BtLibOpen() will no
longer necessarily cause an accessibility event; if the application
needs to know the accessibility state, it should call
BtLibGetGeneralPreference().

BtLibSocketCreate() no longer has callback procedure and
callback context parameters. The function now returns a file
descriptor opened to an L2CAP, RFCOMM, or SDP device.
BtLibSocketClose() closes the file descriptor.

The BtLibSocketRef type is now a 32-bit value. It is a file
descriptor to the underlying STREAMS device.

New Functions

There are several new functions:

• BtLibGetRemoteDeviceNameSynchronous()

• BtLibMEEventName()

• BtLibSocketEventName()

• BtLibRegisterService()

Events

Applications now obtain events by polling IOS file descriptors,
instead of through a callback function. See “Polling for Management
Entity Events”.

Developing Bluetooth-enabled Applications
The Management Entity

124 Exploring Palm OS: Low-Level Communications

The Management Entity
Three basic management tasks common among Bluetooth
applications are finding the Bluetooth devices in range, establishing
ACL links, and working with piconets. However, in order for your
code to use any of the functions that do these operations, you need
to poll for events on the STREAMS devices for the relevant
protocols.

Opening the Library
To open the Bluetooth library, use the BtLibOpen() function. If
this returns without error, the Bluetooth Management Entity device
is open and ready to go.

BtLibOpen() returns a file descriptor to the Management Entity.
Every Management Entity file descriptor sees the same
Management Entity; every program monitoring ME events receives
the same events.

Polling for Management Entity Events
Most management calls are asynchronous. In other words, they start
an operation and return before the operation actually completes.
When the operation completes, the Bluetooth Library notifies the
application by way of events posted on the Management Entity’s
event queue.

In some cases, a management function fails before starting the
asynchronous operation. In this case, an event does not get sent. You
can tell whether or not to expect to receive an event as a result of the
call by looking at the management function’s return code:

btLibErrNoError
The operation has completed and no event will be sent.

btLibErrPending
The operation has started successfully and an appropriate
event will be sent,

any other error code
The operation failed and no event will be sent.

Developing Bluetooth-enabled Applications
The Management Entity

Exploring Palm OS: Low-Level Communications 125

You can poll for these events either by calling IOSPoll() directly,
or by using a PollBox. See Chapter 18, “Polling STREAMS File
Descriptors,” on page 375 for an introduction to event polling.

As a simple example, consider the task of finding nearby devices,
discussed in the next section. The callback function must respond to
four events: btLibManagementEventInquiryResult,
btLibManagementEventInquiryComplete,
btLibManagementEventInquiryCanceled, and
btLibManagementEventRadioState. The code in Listing 11.2 is
a skeleton of the PollBox callback you need.

Listing 11.2 Polling for Management Entity events using a
PollBox

void HandlePbxMEEvent(struct PollBox *pbx, struct pollfd *pollFd, void *) {
status_t error;
int32_t flags;

static BtLibManagementEventTypemEvent;
static char mData[sizeof(BtLibFriendlyNameType)];
static struct strbuf ctlBuf = { sizeof(mEvent), 0, (char*)&mEvent };
static struct strbuf datBuf = { sizeof(mData), 0, (char*)&mData[0] };

// We must be here for a reason...

ErrFatalErrorIf(!(pollFd->revents & (POLLIN|POLLERR|POLLHUP|POLLNVAL)),
"no event flag");

// We must have the Management Entity file descriptor.
ErrFatalErrorIf(pollFd->fd != gFdME, "not the ME fd");
ErrFatalErrorIf(pollFd->fd < 0, "ME fd closed");

// Check for error/eof from poll, read the event message.
flags = 0;
if ((pollFd->revents & (POLLERR|POLLHUP|POLLNVAL)) ||

IOSGetmsg(pollFd->fd, &ctlBuf, &datBuf, &flags, &error) != 0) {
PbxRemoveFd(pbx, pollFd->fd);
BtLibClose(pollFd->fd);
gFdME = -1;
return;

}

// We must have an event struct in the control part.
ErrFatalErrorIf(ctlBuf.len != sizeof(BtLibManagementEventType),

"no event struct");

Developing Bluetooth-enabled Applications
The Management Entity

126 Exploring Palm OS: Low-Level Communications

// Decode the event.

switch (mEvent.event) {
case btLibManagementEventRadioState:

// The radio state has changed.
break;

case btLibManagementEventInquiryResult:
// A device has been found. Save it in a list.
break;

case btLibManagementEventInquiryComplete:
// The inquiry is finished.
break;

case btLibManagementEventInquiryCanceled:
// The inquiry has been canceled.
break;

}
}

This example includes some simple error condition checks for the
PollBox callback being called with events that aren’t Management
Entity events.

To install this PollBox event handler, you would use code similar to
that shown in Listing 11.3.

Listing 11.3 Installing the Management Event handler PollBox
callback

int32_t gFdME;

error = BtLibOpen(&gFdME);
if (error) {

// Unable to open the Bluetooth Library.
} else {

PbxAddFd(gPollBox, gFdME, POLLIN, HandlePbxMEEvent, 0);
}

For a list of management events, see
“BtLibManagementEventEnum” in Chapter 13, “Bluetooth
Reference.”

Developing Bluetooth-enabled Applications
The Management Entity

Exploring Palm OS: Low-Level Communications 127

Finding Nearby Devices
There are two ways to find Bluetooth devices that are within range:

• Use the BtLibDiscoverDevices() function to find
nearby devices. These functions bring up a user interface that
allows the user to choose one or more devices.

• Perform a device inquiry using BtLibStartInquiry().
This is more difficult to do than using the discovery function,
but provides more flexibility.

When you call BtLibStartInquiry(), the Bluetooth Library
searches for all devices in range. Whenever it finds a device, it
generates a btLibManagementEventInquiryResult event.
When the inquiry has completed, a
btLibManagementEventInquiryComplete event is generated.
To cancel the inquiry, call BtLibCancelInquiry(). The
btLibManagementEventInquiryCanceled event is generated
when the cancellation succeeds.

Creating ACL Links
Once you have the device address of a remote device, you can
attempt to create an ACL link to it using the
BtLibLinkConnect() function. This causes the
btLibManagementEventACLConnectOutbound event to be
generated, and the status code within that event indicates whether
or not the link was successfully established.

To disconnect a link, use the BtLibLinkDisconnect() function.
This causes the btLibManagementEventACLDisconnect event
to be generated. Note that the same event is generated when the
remote device initiates the disconnection; the status code will
indicate why the connection was terminated.

Your program must also respond to
btLibManagementEventACLConnectInbound events that
indicate that a remote device has established a link with the
handheld. You can disconnect an inbound link with the
BtLibLinkDisconnect() function.

Developing Bluetooth-enabled Applications
The Management Entity

128 Exploring Palm OS: Low-Level Communications

Working With Piconets
Bluetooth supports up to seven slaves in a piconet. The Bluetooth
Library provides simplified APIs to create and destroy piconets.

Note that the Bluetooth 1.1 specification suggests that the upper
software layers place slaves in hold or park mode while new
connections are established. This isn’t well–defined in the
specification, and is difficult to do because of timing. The Bluetooth
Library expects the radio baseband to handle piconet timing.

To create a piconet, the “master” calls BtLibPiconetCreate().
Slaves can then discover the master and join the piconet, or the
master can discover and connect to the slaves. The master stops
advertising once the limit of seven slaves has been reached. Note
that any device should be capable of acting as a slave.

The piconet can be locked to prevent additional slaves from joining.
The master can still discover and add slaves, however. With the
piconet locked, there is a bandwidth improvement of approximately
10%.

In the Bluetooth Library, the following functions support the
management of piconets:

• BtLibPiconetCreate(): create a piconet or reconfigure
an existing piconet so the local device is the master.

• BtLibPiconetDestroy(): destroy the piconet by
disconnecting links to all devices and removing all
restrictions on whether the local device is a master or a slave.

• BtLibPiconetLockInbound(): prevent remote devices
from creating ACL links into the piconet.

• BtLibPiconetUnlockInbound(): allow additional slaves
to create ACL links into the piconet.

Remember the following limitations of piconets: Slave-to-slave
communication is not permitted. The master cannot “broadcast” to
slaves.

Closing the Management Entity
When you’re finished using the Bluetooth Library, you should call
BtLibClose(), passing the Management Entity’s file descriptor.
When you do this, and there are no longer any open ME file

Developing Bluetooth-enabled Applications
Bluetooth Sockets

Exploring Palm OS: Low-Level Communications 129

descriptors or open and connected L2CAP or RFCOMM file
descriptors, any remaining ACL links will be disconnected.

Bluetooth Sockets
The Bluetooth Library uses the concept of sockets to manage
communication between Bluetooth devices. A socket represents a
bidirectional packet-based link to a remote device. Sockets run over
ACL connections. The Bluetooth library can accommodate up to 16
simultaneous sockets.

Five types of sockets are supported by the Bluetooth Library. L2CAP
and RFCOMM sockets establish data channels and send and receive
arbitrary data over those channels. SDP sockets allow you to query
remote devices about the services those devices provide.

To send a packet of data over an L2CAP or RFCOMM socket, use
the BtLibSocketSend() function.

SCO links are seen as a new socket type in BtLib. You can use
BtLibSocketCreate() and BtLibSocketClose() to establish
and break SCO links; however, once they’re established, all data
transfer is managed in hardware, so there is nothing further for
software to do with them.

BNEP sockets are only used within the Bluetooth system and are
generally not useful to developers. Sending data over a BNEP
socket using BtLibSocketSend() must involve sending valid
ethernet frames containing a 14-byte ethernet header followed by
data.

NOTE: Versions of Palm OS prior to 6.0 required that the data
buffer remain unchanged until the
btLibSocketEventSendComplete event arrives. This is no
longer the case; you can immediately release or reuse the buffer
after BtLibSocketSend() returns.

When incoming data arrives, the IOSGetmsg() function returns a
message with no control part and a data part containing the
received data.

Developing Bluetooth-enabled Applications
Bluetooth Sockets

130 Exploring Palm OS: Low-Level Communications

L2CAP
L2CAP sockets don’t allow for flow control.

Establishing Inbound L2CAP Connections

To set up for inbound L2CAP connections, you call the following:

1. BtLibSocketCreate(): create an L2CAP socket.
2. BtLibSocketListen(): set up an L2CAP socket as a

listener.
3. BtLibSdpServiceRecordCreate(): allocate a memory

chunk that represents an SDP service record.
4. BtLibSdpServiceRecordSetAttributesForSocket():

initialize an SDP memory record so it can represent the
newly-created L2CAP listener socket as a service

5. BtLibSdpServiceRecordStartAdvertising(): make
an SDP memory record representing a local SDP service
record visible to remote devices.

When you get a btLibSocketEventConnectRequest event, you
need to respond with a call to
BtLibSocketRespondToConnection(). You then receive a
btLibSocketEventConnectedInbound event with an inbound
socket with which you can send and receive data.

The listening socket remains open and will notify you of further
connection attempts. In other words, you can use a single L2CAP
listening socket to spawn several inbound sockets. You cannot close
the listening socket until after you close its inbound sockets.

Establishing Outbound L2CAP Connections

To establish an outbound L2CAP connection, you first establish an
ACL link to the remote device. Then you call:

1. BtLibSocketCreate(): create an SDP socket.
2. BtLibSdpGetPsmByUuid(): get an available L2CAP PSM

using SDP.
3. BtLibSocketClose(): close the SDP socket.
4. BtLibSocketCreate(): create an L2CAP socket.
5. BtLibSocketConnect(): create an outbound L2CAP

connection.

Developing Bluetooth-enabled Applications
Bluetooth Sockets

Exploring Palm OS: Low-Level Communications 131

RFCOMM
RFCOMM emulates a serial connection. It is used when using the
Serial Manager API to perform Bluetooth communications, as well
as by the Bluetooth Exchange Library.

When using RFCOMM, you can only have one inbound connection
per listener socket. Flow control uses a “credit” system: you need to
advance a credit to the far end before you can receive a data packet.

RFCOMM defines the notions of server and client. A server uses
SDP to advertise its existence and listens for inbound connections. A
client creates an outbound RFCOMM connection to a server.

Establishing Inbound RFCOMM Connections

To set up for inbound RFCOMM connections, call the following:

1. BtLibSocketCreate(): create an RFCOMM socket.
2. BtLibSocketListen(): set up the RFCOMM socket as a

listener.
3. BtLibSdpServiceRecordCreate(): allocate a memory

chunk that represents an SDP service record.
4. BtLibSdpServiceRecordSetAttributesForSocket():

initialize an SDP memory record so it can represent the
newly-created RFCOMM listener socket as a service

5. BtLibSdpServiceRecordStartAdvertising(): make
the SDP memory record representing your local SDP service
record visible to remote devices.

When you get a btLibSocketEventConnectRequest event, you
need to respond with a call to
BtLibSocketRespondToConnection(). You then receive a
btLibSocketEventConnectedInbound event with an inbound
socket with which you can send and receive data. To send data, use
the BtLibSocketSend() function. When incoming data arrives,
the IOSGetmsg() function returns a message with no control part
and a data part containing the received data.

The listening socket will not notify you of further connection
attempts. In other words, a single RFCOMM listening socket can
only spawn a single inbound RFCOMM socket. You cannot close the
listening socket until after you close its inbound socket.

Developing Bluetooth-enabled Applications
Bluetooth Sockets

132 Exploring Palm OS: Low-Level Communications

Establishing Outbound RFCOMM Connections

To establish an outbound RFCOMM connection, you first establish
an ACL link to the remote device. Then you call:

1. BtLibSocketCreate(): create an SDP socket.
2. BtLibSdpGetServerChannelByUuid(): get an available

RFCOMM server channel using SDP.
3. BtLibSocketCreate(): create an RFCOMM socket.
4. BtLibSocketConnect(): Create an outbound RFCOMM

connection.

Using Serial-on-L2CAP and Serial-on-RFCOMM

The Serial-on-L2CAP and Serial-on-RFCOMM modules, whose
names are btModSerL2cName and btModSerRfcName in
BtLibTypes.h, are STREAMS modules that can be pushed onto
an L2CAP or RFCOMM file descriptor.

These modules can be pushed onto the file descriptor either before
or after connecting the socket. If pushed before connecting,
BtLibSocketXXX() functions and events will be transparent to
the module until the connection is established. In particular, the
connection event will be visible to the application.

Once the socket is connected, or if the module is pushed after
establishing the connection, then only pure data can be read or
written by the application; the module handles things like flow
control for you.

A disconnect event appears as an error condition from IOSRead()
or IOSWrite(). Closing the file descriptor will disconnect the
socket if it’s connected.

SCO
SCO sockets are used to transmit audio between a Palm OS smart
phone and a hands-free kit or headset. The only operations that can
be performed on SCO sockets are to create, connect, and close them.
Everything else is done in hardware.

Developing Bluetooth-enabled Applications
BSD Sockets

Exploring Palm OS: Low-Level Communications 133

BSD Sockets
You can use the standard BSD Sockets API to perform Bluetooth
communications using the RFCOMM protocol. Use the
sockaddr_bth structure to define a Bluetooth device address
when using the BSD Sockets API.

Creating a Socket
You obtain a Bluetooth RFCOMM sotcket by specifying the address
family AF_BTH, the socket type SOCK_STREAM, and the protocol
BTHPROTO_RFCOMM when calling socket():

myBtSocket = socket(AF_BTH, SOCK_STREAM, BTHPROTO_RFCOMM);

Restrictions
A listening socket can have no backlog, and can only accept a single
incoming connection, after which it becomes dead (meaning that it
doesn’t listen for incoming connections anymore). In addition, once
accept() has been called and has returned a newly connected
socket, the listening socket must not be closed until the accepted
connection is closed first.

Listing 11.4 Listening for an incoming connection

listenerSocket = socket();
bind(listenerSocket);
listen(listenerSocket);
select(listenerSocket);
dataSocket = accept(listenerSocket);
...
close(dataSocket);
close(listenerSocket);

If the application wishes to listen for further connections, it needs to
explicitly start listening again by calling listen().

For more information about Palm OS support for the BSD Sockets
API, see Part IV, “Networking and Sockets.”

Developing Bluetooth-enabled Applications
Service Discovery

134 Exploring Palm OS: Low-Level Communications

Service Discovery
The service discovery functions are used to create and advertise
service records to remote devices, and to discover services available
on remote devices.

NOTE: While Palm OS Cobalt, version 6.1 supports service
discovery, it does not support the full Service Discovery
Application Profile, since there is no service browser provided.

Service Records
A service record is a sequence of service attributes. A service
attribute consists of two components: an attribute ID and an
attribute value.

Universal attributes are those service attributes whose definitions
are common to all service records. Among them is the
ServiceClassIDList, which is a list of service class identifiers. Every
service record must have a ServiceClassIDList.

An attribute ID is a 16-bit unsigned integer that distinguishes each
service attribute from other service attributes within a service
record. The attribute ID also identifies the semantics of the
associated attribute value.

An attribute value is a data element whose meaning is determined
by the corresponding attribute ID and the service class of the service
record in which the attribute is contained.

A data element is a typed data representation consisting of two
fields: a header field and a data field. The header field, in turn, is
composed of two parts: a type descriptor and a size descriptor. The
data is a sequence of bytes whose length is specified by the size
descriptor and whose meaning is partially specified by the type
descriptor.

To fully understand SDP service records, how they are encoded,
interpreted, and so forth, see the Service Discovery Protocol section
in Volume 1 of the Bluetooth Specification, version 1.2.

Developing Bluetooth-enabled Applications
Creating Persistent Services

Exploring Palm OS: Low-Level Communications 135

NOTE: Only one outstanding query at a time is allowed per SDP
socket.

Creating Persistent Services
Applications that support Bluetooth can register themselves as
persistent Bluetooth services, that are automatically started in a
thread in the System Process when other Bluetooth enabled devices
connect to them.

NOTE: For examples of Bluetooth persistent service
applications, see the samples/Bluetooth/BtHeadset and
samples/Bluetooth/BtHandsfree directories in the SDK.
The code snippets shown here are adapted from these examples,
but the complete source code is a valuable resource you should
review.

Registering a Persistent Service

To register as a persistent service, an application must register the
service at boot and system reset time, as shown in Listing 11.5.

Listing 11.5 Registering a persistent service

uint32_t PilotMain(uint16_t cmd, MemPtr cmdPBP, uint16_t launchFlags) {
BtLibServiceRegistrationParamsType params;
status_t error = errNone;
...
switch(cmd) {

case sysLaunchCmdBoot:
case sysLaunchCmdSystemReset:

params.appCodeRscId = sysResIDDefault;
params.appType = myAppRscType;
params.appCreator = myAppCreator;
params.stackSize = 5000;
params.protocol = btLibRfCommProtocol;
params.pushSerialModule = false;
params.execAsNormalApp = false;
error = BtLibRegisterService(¶ms);
break;

...

Developing Bluetooth-enabled Applications
Creating Persistent Services

136 Exploring Palm OS: Low-Level Communications

}
return error;

}

Describing a Persistent Service

The Bluetooth system may shut down or reinitialize itself at any
time for a variety of reasons: the on/auto/off preference may be set
to “off,”, the device may be powered off, the radio hardware may be
physically detached, or some application may close its last
Bluetooth file descriptor that had been used to communicate with
remote devices. To support this, the service application needs to
implement the sysBtLaunchCmdDescribeService launch code
to fill out a BtLibServiceDescriptionType structure. This is
demonstrated in Listing 11.6.

Listing 11.6 Describing a Bluetooth persistent service

case sysBtLaunchCmdDescribeService:
int size;
MemHandle theResHdl;
MemPtr theResPtr;

// Describe our service for the Bluetooth panel services view.
((BtLibServiceDescriptionType*)cmdPBP)->flags = 0;

// Get the profile service name str
theResHdl = DmGetResource(myDmOpenRef, (DmResourceType) strRsc,

infoNameStrRscId);
theResPtr = MemHandleLock(theResHdl);
size = strlen(theResPtr) + 1;
if ((((BtLibServiceDescriptionType*)cmdPBP)->nameP = MemPtrNew(size))

== NULL) {
return btLibErrOutOfMemory;

}
MemMove(((BtLibServiceDescriptionType*)cmdPBP)->nameP, theResPtr,

size);
MemHandleUnlock(theResHdl);
DmReleaseResource(theResHdl);

// Get the profile service description str
theResHdl = DmGetResource(myDmOpenRef, (DmResourceType) strRsc,

infoDescStrRscId);
theResPtr = MemHandleLock(theResHdl);
size = strlen(theResPtr) + 1;

Developing Bluetooth-enabled Applications
Creating Persistent Services

Exploring Palm OS: Low-Level Communications 137

if ((((BtLibServiceDescriptionType*)cmdPBP)->descriptionP =
MemPtrNew(size)) == NULL) {

return btLibErrOutOfMemory;
}
MemMove(((BtLibServiceDescriptionType*)cmdPBP)->descriptionP,

theResPtr, size);
MemHandleUnlock(theResHdl);
DmReleaseResource(theResHdl);
break;

The example loads the strings from resources, copies them into the
BtLibServiceDescriptionType structure, and releases the
resources.

Providing Advanced Configuration Options

If the persistent service needs to provide the ability for the user to
configure it, it should implement the
sysBtLaunchCmdDoServiceUI launch code, which is sent when
the user clicks the “Advanced” button in the Bluetooth services
view. In response to this launch code, the application can present
user interface to configure the service.

Preparing the Service to Listen for Incoming Connections

When the system is ready for the service application to begin
listening for incoming connections, it sends the application the
sysBtLaunchCmdPrepareService launch code with a
BtLibServicePreparationParamsType structure as input.

This structure includes a handle to an empty SDP service record,
which the service application needs to fill out to describe the offered
serice, as well as the file descriptor for the socket on which the
service application should listen for incoming connections.

Listing 11.7 Preparing the service

BtLibServicePreparationParamsType *params =
(BtLibServicePreparationParamsType *) cmdPBP;

BtLibSdpUuidType gGWSdpUUIDList[3];
status_t error;
...
case sysBtLaunchCmdPrepareService:

BtLibSdpUuidInitialize(gGWSdpUUIDList[0],
btLibSdpUUID_SC_HEADSET_AUDIO_GATEWAY, btLibUuidSize16);

Developing Bluetooth-enabled Applications
Creating Persistent Services

138 Exploring Palm OS: Low-Level Communications

BtLibSdpUuidInitialize(gGWSdpUUIDList[1],
btLibSdpUUID_SC_GENERIC_AUDIO, btLibUuidSize16);

error = BtLibSdpServiceRecordSetAttributesForSocket(
params->fdListener,
gGWSdpUUIDList,
2,
HEADSET_GW_SERVICE_NAME,
strlen(HEADSET_GW_SERVICE_NAME);
params->serviceRecH
);

break;

The code snippet in Listing 11.7 comes from the BtHeadset sample
program. It supports the audio gateway and generic audio services,
for which it builds UUIDs using the
BtLibSdpUuidInitialize() macro and inserts them into an
array. It then sets the attributes on the listener socket to watch for
attempts to connect to those particular services, and sets the name of
the service, by calling
BtLibSdpServiceRecordSetAttributesForSocket().

Executing the Service

When a connection attempt arrives at the listener socket, Palm OS
sends the sysBtLaunchCmdExecuteService launch code to the
service application. This sublaunch occurs in a thread within the
System Process, and the application should not exit until the service
finishes the transaction.

Listing 11.8 Processing the service transaction

BtLibServiceExecutionParamsType *params;
...

case sysBtLaunchCmdExecuteService:
params = (BtLibServiceExecutionParamsType *) cmdPBP;
if (AppStart() == errNone) {

...
/* perform the transaction */
...

}
AppStop();
break;

...

Developing Bluetooth-enabled Applications
Dealing with Bluetooth Shutdown

Exploring Palm OS: Low-Level Communications 139

When the service begins running, it needs to initialize itself by
opening its database, creating a PollBox to process events, open the
Bluetooth Management Entity file descriptor, and so forth. In this
example, this is all done by the AppStart() function.

Then the application can run an event loop to process incoming data
and respond to that data, as well as to provide progress user
interface and so forth.

Once the transaction is finished, the service application must close
the data socket, which is specified by the fdData field in the
BtLibServiceExecutionParamsType structure, before exiting.

Dealing with Bluetooth Shutdown
The Bluetooth system shuts down when the user changes the on/off
preference or the radio hardware is physically detached. When this
happens, all opened Bluetooth file descriptors start to produce
errors.

When an application detects M_ERROR on any Bluetooth file
descriptor, it must immediately close all its Bluetooth file
descriptors.

Developing Bluetooth-enabled Applications
Dealing with Bluetooth Shutdown

140 Exploring Palm OS: Low-Level Communications

Exploring Palm OS: Low-Level Communications 141

12
Bluetooth Exchange
Library Support
Accompanying the Bluetooth Library is the Bluetooth Exchange
Library, a shared library that allows applications to support
Bluetooth using the standard Exchange Manager APIs. The
Bluetooth Exchange Library conforms to the Object Push and
Generic Object Exchange profiles.

For more information about the Exchange Manager, see Chapter 4,
“Object Exchange,” on page 105 of the book Exploring Palm OS:
High-Level Communications.

Detecting the Bluetooth Exchange Library
To check for the presence of the Bluetooth Exchange Library, you
use FtrGet:

err = FtrGet(btexgFtrCreator,
 btexgFtrNumVersion, &btExgLibVersion);

If the Bluetooth Exchange Library is present, FtrGet returns
errNone. In this case, the value pointed to by btExgLibVersion
contains the version number of the Bluetooth Exchange Library. The
format of the version number is 0xMMmfsbbb, where MM is the
major version, m is the minor version, f is the bug fix level, s is the
stage, and bbb is the build number. Stage 3 indicates a release
version of the library. Stage 2 indicates a beta release, stage 1
indicates an alpha release, and stage 0 indicates a development
release. So, for example, a value of 0x01013000 would correspond
to the released version 1.01 of the Bluetooth Exchange Library.

Bluetooth Exchange Library Support
Using the Exchange Manager With Bluetooth

142 Exploring Palm OS: Low-Level Communications

Using the Exchange Manager With Bluetooth
Using the Exchange Manager with Bluetooth is almost exactly like
using it with IrDA and SMS. The differences are as follows:

• The URL you use when you send an object has some special
fields specific to Bluetooth.

• Your application may want to know the URL of the device or
devices with which it is communicating. The Exchange
Manager provides a way to get this information.

• The ExgLibGet() and ExgLibRequest() functions are
not supported with Bluetooth.

These differences are discussed further in the following sections.

Bluetooth Exchange URLs
If you send objects using the Bluetooth Exchange Library and use a
URL, you can send the objects to single or multiple devices at the
same time depending on the way the URL is formed. A Bluetooth
Exchange Library URL can have one of the following forms:

_btobex:filename

_btobex://filename

_btobex://?_multi/filename
Performs a device inquiry, presents the available devices to
the user, and allows the user to choose one or more devices.
Sends the object to all selected devices.

_btobex://?_single/filename
Performs a device inquiry, presents the available devices to
the user, and allows the user to choose only one device.
Sends the object to that device.

_btobex://address1[,address2, ...]/filename
Sends the object to the device(s) with the specified Bluetooth
device address(es). The addresses are in the form
“xx:xx:xx:xx:xx:xx”.

Do not combine these URL forms. Doing so may give unintended
results.

Bluetooth Exchange Library Support
ExgLibGet() and ExgLibRequest()

Exploring Palm OS: Low-Level Communications 143

Obtaining the URL of a Remote Device
For some applications you need to know the URL that addresses the
remote device from which you receive data. This is especially useful
for games. You can get the URL after calling ExgAccept() using
the ExgControl() function code exgLibCtlGetUrl as shown in
the following code:

ExgCtlGetURLType getUrl;
UInt16 getUrlLen;

// First get the size of the URL
getUrl.socketP = exgSocketP;
getUrl.URLP = NULL;
getUrl.URLSize = 0;
getUrlLen = sizeof(getUrl);
ExgControl(exgSocketP, exgLibCtlGetURL, &getUrl, &getUrlLen);

// Now get the URL
getUrl.URLP = MemPtrNew(getUrl.URLSize);
ExgControl(exgSocketP, exgLibCtlGetURL, &getUrl, &getUrlLen);

// getUrl.URLP points to a null-terminated URL string
// describing the remote device, for example,
// “_btobex://01:23:45:67:89:ab/”
...
// Free the URL after you’re done with it
MemPtrFree(getUrl.URLP);

ExgLibGet() and ExgLibRequest()
The Bluetooth Exchange Library does not support the pull functions
provided by ExgLibGet() and ExgLibRequest(). If you want
to perform these functions, you must use the general Bluetooth
Library APIs. See “Developing Bluetooth-enabled Applications”.

Bluetooth Exchange Library Support
ExgLibGet() and ExgLibRequest()

144 Exploring Palm OS: Low-Level Communications

Exploring Palm OS: Low-Level Communications 145

13
Bluetooth Reference
This chapter provides complete reference material to the Palm OS®
Bluetooth Library, BtLib.

Bluetooth Structures and Types 145

Bluetooth Constants 179

Bluetooth Application Launch Codes. 217

Bluetooth Functions and Macros 220

The header file BtLibTypes.h declares the types and constants
that this chapter describes, while the file BtLib.h declares the
functions and macros.

Bluetooth Structures and Types

BtLibClassOfDeviceType Typedef
Purpose A bit pattern representing the class of device and the services it

supports.

Declared In BtLibTypes.h

Prototype typedef uint32_t BtLibClassOfDeviceType

Comments A device may support multiple services but only belongs to a single
class. The class is specified in two parts: the major class, which
broadly classifies the type of device, and the minor class, which
together with the major class specifies the type of device in more
detail.

An example is a simple cellular telephone. It provides Telephony
and Object Exchange services. Its major device class is Phone, and
its minor device class is Cellular.

The Bluetooth Assigned Numbers specification defines a “Class of
Device/Service” (CoD) value as having three bit fields. One field

Bluetooth Reference
BtLibClassOfDeviceType

146 Exploring Palm OS: Low-Level Communications

specifies the major service classes supported by the device. Another
field specifies the major device class. The third field specifies the
minor device class.

The constants provided here allow you to construct a CoD that
conforms to the Bluetooth specification. You simply perform a
logical OR of the constants representing the service classes the
device supports, the constant representing the device’s major class,
and the constant representing the device’s minor class.

For example, device class of the simple cellular telephone can be
computed as follows:

cellPhoneCOD = btLibCOD_Telephony |
 btLibCOD_ObjectTransfer |
 btLibCOD_Major_Phone |
 BtLibCOD_Minor_Phone_Cellular;

Constants are also provided to mask the individual bit fields in a
device class.

Major Service Classes

These constants define the Bluetooth major service classes. The
service classes are described in the Specification of the Bluetooth
System.

Table 13.1 Major service classes

Constant

btLibCOD_Audio

btLibCOD_Capturing

btLibCOD_Information

btLibCOD_LimitedDiscoverableMode

btLibCOD_Networking

btLibCOD_ObjectTransfer

btLibCOD_Positioning

Bluetooth Reference
BtLibClassOfDeviceType

Exploring Palm OS: Low-Level Communications 147

Major Device Classes

These constants define the Bluetooth major device classes. The
major device classes are described in the Specification of the Bluetooth
System.

Computer Minor Device Classes

These constants define the minor device classes associated with the
computer major class. They are described in the Bluetooth Assigned
Numbers specification.

btLibCOD_Rendering

btLibCOD_Telephony

Table 13.2 Major device classes

Constant

btLibCOD_Major_Audio

btLibCOD_Major_Computer

btLibCOD_Major_Imaging

btLibCOD_Major_Lan_Access_Point

btLibCOD_Major_Misc

btLibCOD_Major_Peripheral

btLibCOD_Major_Phone

btLibCOD_Major_Unclassified

Table 13.1 Major service classes

Constant

Bluetooth Reference
BtLibClassOfDeviceType

148 Exploring Palm OS: Low-Level Communications

Phone Minor Device Classes

These constants define the minor device classes that are associated
with the phone major class. They are described in the Bluetooth
Assigned Numbers specification.

LAN Access Point Minor Device Classes

These constants define load factors for the LAN access point major
device class. LAN access point load factors are described in more
detail in the Bluetooth Assigned Numbers specification.

Table 13.3 Computer minor device classes

Constant

btLibCOD_Minor_Comp_Desktop

btLibCOD_Minor_Comp_Handheld

btLibCOD_Minor_Comp_Laptop

btLibCOD_Minor_Comp_Palm

btLibCOD_Minor_Comp_Server

btLibCOD_Minor_Comp_Unclassified

Table 13.4 Phone minor device classes

Constant

btLibCOD_Minor_Phone_Unclassified

btLibCOD_Minor_Phone_Cellular

btLibCOD_Minor_Phone_Cordless

btLibCOD_Minor_Phone_ISDN

btLibCOD_Minor_Phone_Smart

btLibCOD_Minor_Phone_Modem

Bluetooth Reference
BtLibClassOfDeviceType

Exploring Palm OS: Low-Level Communications 149

Audio Minor Device Classes

These constants define the minor classes associated with the audio
major class. They are described in more detail in the Bluetooth
Assigned Numbers specification.

Table 13.5 LAN access point minor device classes

Constant Meaning

btLibCOD_Minor_Lan_0 Fully available

btLibCOD_Minor_Lan_17 1-17% utilized

btLibCOD_Minor_Lan_33 17-33% utilized

btLibCOD_Minor_Lan_50 33-50% utilized

btLibCOD_Minor_Lan_67 50-67% utilized

btLibCOD_Minor_Lan_83 67-83% utilized

btLibCOD_Minor_Lan_99 83-99% utilized

btLibCOD_Minor_Lan_NoService Fully utilized

Table 13.6 Audio minor device classes

Constant

btLibCOD_Minor_Audio_Unclassified

btLibCOD_Minor_Audio_Headset

btLibCOD_Minor_Audio_CamCorder

btLibCOD_Minor_Audio_CarAudio

btLibCOD_Minor_Audio_GameToy

btLibCOD_Minor_Audio_HandFree

btLibCOD_Minor_Audio_HeadPhone

btLibCOD_Minor_Audio_HifiAudio

Bluetooth Reference
BtLibClassOfDeviceType

150 Exploring Palm OS: Low-Level Communications

Peripheral Minor Device Classes

These constants define the minor classes associated with the
peripheral major class. They are described in more detail in the
Bluetooth Assigned Numbers specification.

btLibCOD_Minor_Audio_LoudSpeaker

btLibCOD_Minor_Audio_MicroPhone

btLibCOD_Minor_Audio_PortableAudio

btLibCOD_Minor_Audio_SetTopBox

btLibCOD_Minor_Audio_VCR

btLibCOD_Minor_Audio_VideoCamera

btLibCOD_Minor_Audio_VideoConf

btLibCOD_Minor_Audio_VideoDisplayAndLoudSpeaker

btLibCOD_Minor_Audio_VideoMonitor

Table 13.7 Peripheral minor device classes

Constant

btLibCOD_Minor_Peripheral_CardReader

btLibCOD_Minor_Peripheral_Combo

btLibCOD_Minor_Peripheral_DigitizerTablet

btLibCOD_Minor_Peripheral_GamePad

btLibCOD_Minor_Peripheral_Joystick

btLibCOD_Minor_Peripheral_Keyboard

btLibCOD_Minor_Peripheral_Pointing

btLibCOD_Minor_Peripheral_RemoteControl

Table 13.6 Audio minor device classes

Constant

Bluetooth Reference
BtLibClassOfDeviceType

Exploring Palm OS: Low-Level Communications 151

Imaging Minor Device Classes

These constants define the minor classes associated with the
imaging major class. They are described in more detail in the
Bluetooth Assigned Numbers specification.

Masks

These constants define bit masks to isolate certain fields of the
device class.

btLibCOD_Minor_Peripheral_Sensing

btLibCOD_Minor_Peripheral_Unclassified

Table 13.8 Imaging minor device classes

Constant

btLibCOD_Minor_Imaging_Camera

btLibCOD_Minor_Imaging_Display

btLibCOD_Minor_Imaging_Printer

btLibCOD_Minor_Imaging_Scanner

btLibCOD_Minor_Imaging_Unclassified

Table 13.7 Peripheral minor device classes

Constant

Table 13.9 Masks

Constant Meaning

btLibCOD_Service_Mask A mask to isolate the major
service class field from the other
fields of the device class.

btLibCOD_Major_Mask A mask to isolate the major
device class field from the other
fields of the device class.

Bluetooth Reference
BtLibClassOfDeviceType

152 Exploring Palm OS: Low-Level Communications

btLibCOD_Minor_Mask A mask to isolate the minor
device class field from the other
fields of the device class.

btLibCOD_ServiceAny Used as a device filter for the
BtLibDiscoverDevices()
function. With this filter, devices
providing any service appear in
the device list. Same as
btLibCOD_Service_Mask.

btLibCOD_Major_Any Used as a device filter for the
BtLibDiscoverDevices()
function. With this filter, devices
in any major device class appear
in the device list. Same as
btLibCOD_Major_Mask.

btLibCOD_Minor_Any Used as a device filter for the
BtLibDiscoverDevices()
function. With this filter, devices
in any minor device class appear
in the device list. Same as
btLibCOD_Minor_Mask.

btLibCOD_Minor_Comp_Any Used as a device filter for the
BtLibDiscoverDevices()
function. When this filter is used
in conjunction with
btLibCOD_Major_Computer,
all devices broadcasting
themselves as computers appear
in the device list. Same as
btLibCOD_Minor_Any.

Table 13.9 Masks

Constant Meaning

Bluetooth Reference
BtLibClassOfDeviceType

Exploring Palm OS: Low-Level Communications 153

btLibCOD_Minor_Phone_Any Used as a device filter for the
BtLibDiscoverDevices()
function. When this filter is used
in conjunction with
btLibCOD_Major_Phone, all
devices broadcasting themselves
as phones appear in the device
list. Same as
btLibCOD_Minor_Any.

btLibCOD_Minor_LAN_Any Used as a device filter for the
BtLibDiscoverDevices()
function. When this filter is used
in conjunction with
btLibCOD_Major_Lan_Acces
s_Point, all devices
broadcasting themselves as LAN
access points appear in the
device list. Same as
btLibCOD_Minor_Any.

btLibCOD_Minor_Audio_Any Used as a device filter for the
BtLibDiscoverDevices()
function. When this filter is used
in conjunction with
btLibCOD_Major_Audio, all
devices broadcasting themselves
as audio devices appear in the
device list. Same as
btLibCOD_Minor_Any.

Table 13.9 Masks

Constant Meaning

Bluetooth Reference
BtLibDeviceAddressType

154 Exploring Palm OS: Low-Level Communications

BtLibDeviceAddressType Struct
Purpose Defines the address of a Bluetooth device.

Declared In BtLibTypes.h

Prototype typedef struct BtLibDeviceAddressType {
 uint8_t address[btLibDeviceAddressSize];
} BtLibDeviceAddressType

Fields address
btLibDeviceAddressSize byte long Bluetooth device
address.

BtLibDeviceAddressTypePtr Typedef
Purpose A pointer to a Bluetooth address.

Declared In BtLibTypes.h

Prototype typedef BtLibDeviceAddressType
 *BtLibDeviceAddressTypePtr

BtLibFriendlyNameType Struct
Purpose Contains the user-friendly name of a device.

Declared In BtLibTypes.h

Prototype typedef struct BtLibFriendlyNameType {
 uint8_t nameLength;
 uint8_t name[btLibMaxDeviceNameLength];
} BtLibFriendlyNameType

Fields nameLength
The length of the name, including the null terminator.

name
Buffer for the null-terminated device name.

Comments The BtLibFriendlyNameType structure is used to get and set a
device’s friendly name.

NOTE: The nameLength field includes the name string’s null
terminator.

Bluetooth Reference
BtLibLanguageBaseTripletType

Exploring Palm OS: Low-Level Communications 155

BtLibFriendlyNameTypePtr Typedef
Purpose Defines a pointer to a friendly Bluetooth device name.

Declared In BtLibTypes.h

Prototype typedef BtLibFriendlyNameType
 *BtLibFriendlyNameTypePtr

BtLibL2CapChannelIdType Typedef
Purpose Specifies an L2CAP channel ID.

Declared In BtLibTypes.h

Prototype typedef uint16_t BtLibL2CapChannelIdType

Comments An L2CAP channel ID uniquely identifies the local endpoint of an
L2CAP connection on a given device. L2CAP channel IDs are
assigned by the system when an L2CAP connectoin is established.

BtLibL2CapPsmType Typedef
Purpose The BtLibL2CapPsmType type represents a Protocol and Server

Multiplexer (PSM) value. See the “Logical Link and Adaptation
Protocol Specification” chapter of the Specification of the Bluetooth
System for more information about PSM values. The Bluetooth
library only supports two-byte PSM values.

Declared In BtLibTypes.h

Prototype typedef uint16_t BtLibL2CapPsmType

BtLibLanguageBaseTripletType Struct
Purpose The BtLibLanguageBaseTripletType structure represents a

language base attribute identifier list attribute. See the “Service

Bluetooth Reference
BtLibManagementEventType

156 Exploring Palm OS: Low-Level Communications

Discovery Protocol” chapter of the Specification of the Bluetooth
System for more information.

Declared In BtLibTypes.h

Prototype typedef struct BtLibLanguageBaseTripletType {
 uint16_t naturalLanguageIdentifier;
 uint16_t characterEncoding;
 uint16_t baseAttributeID;
} BtLibLanguageBaseTripletType

Fields naturalLanguageIdentifier
A uint16_t representing a natural language. See Language
ID Constants for a set of constants that can be used in this
field.

characterEncoding
A uint16_t representing a character set encoding. See
Character Encoding Constants for a set of constants that can
be used in this field.

baseAttributeID
Base attribute identifiers for attributes represented in this
language. See Attribute Identifier Constants for offsets that
are added to this value to get the attribute identifiers for
specific attributes represented in this language.

BtLibManagementEventType Struct
Purpose The BtLibManagementEventType structure contains detailed

information regarding a management event. All management
events have some common data. Most management events have
data specific to those events. The specific data uses a union that is
part of the BtLibManagementEvent data structure.

Declared In BtLibTypes.h

Prototype typedef struct _BtLibManagementEventType {
 BtLibManagementEventEnum event;
 uint8_t padding1;
 uint16_t padding2;
 status_t status;
 union {
 BtLibDeviceAddressType bdAddr;
 BtLibAccessibleModeEnum accessible;

Bluetooth Reference
BtLibManagementEventType

Exploring Palm OS: Low-Level Communications 157

 struct {
 BtLibDeviceAddressType bdAddr;
 } nameResult;
 struct {
 BtLibDeviceAddressType bdAddr;
 uint16_t padding;
 BtLibClassOfDeviceType classOfDevice;
 } inquiryResult;
 struct {
 BtLibDeviceAddressType bdAddr;
 BtLibLinkModeEnum curMode;
 uint8_t padding;
 uint16_t interval;
 } modeChange;
 struct {
 BtLibDeviceAddressType bdAddr;
 Boolean enabled;
 } encryptionChange;
 struct {
 BtLibDeviceAddressType bdAddr;
 BtLibConnectionRoleEnum newRole;
 } roleChange;
 struct {
 BtLibDeviceAddressType bdAddr;
 int8_t rssi;
 } rssi;
 } eventData;
} BtLibManagementEventType

Fields event
The event opcode.

padding1
Reserved for system use.

padding2
Reserved for system use.

status
The event’s error code.

bdAddr
The Bluetooth device address; used by events
btLibManagementEventACLConnectInbound,
btLibManagementEventACLConnectOutbound,

Bluetooth Reference
BtLibManagementEventType

158 Exploring Palm OS: Low-Level Communications

btLibManagementEventACLDisconnect, and
btLibManagementEventAuthenticationComplete.

accessible
Indicates the state of the Bluetooth radio’s accessibility. Used
by the btLibManagementEventAccessibilityChange
event.

nameResult
bdAddr contains the Bluetooth device’s address. The data
part of the message contains a BtLibFriendlyNameType
structure. Used by the
btLibManagementEventNameResult and
btLibManagementEventLocalNameChange events.

inquiryResult
Information about a single device found during an inquiry
procedure. bdAddr contains the address of the device found
and classOfDevice identifies the device class. padding is
reserved for system use. The data part of the message
contains a structure of type BtLibFriendlyNameType with
the remote device’s name according to the local name cache;
if the name isn’t in the cache, the string is null. Used by the
btLibManagementEventInquiryResult

modeChange
Used by the btLibManagementEventModeChange event.
bdAddr specifies the address of an ACL link whose mode
has changed. curMode indicates the new current mode, and
interval indicates the length of time to remain in that
mode, if applicable. padding is, as usual, reserved for
system use.

encryptionChange
Used by btLibManagementEventEncryptionChange.
bdAddr specifies the address of the ACL link whose
encryption has changed, and enabled indicates whether
encryption is on or off.

roleChange
Used by btLibManagementEventRoleChange. bdAddr
indicates the address of the device whose role has changed,
and newRole specifies the device’s new role.

Bluetooth Reference
BtLibProfileDescriptorListEntryType

Exploring Palm OS: Low-Level Communications 159

rssi
The Receiver Signal Strength Indicator indicates whether the
signal strength of the receiver is below (negative), within
(zero), or above (positive) the “Golden Receive Power
Range,” in units of one decibel. Not used in Palm OS Cobalt.0.

Comments Applications obtain Management Entity events by calling
IOSGetmsg() on a file descriptor opened to a Management Entity
device. The control part of the message obtained this way contains a
BtLibManagementEventType object. For some events, there’s
also a data part containing additional information.

The eventData union lets the structure only include data needed
by the particular event message.

BtLibProfileDescriptorListEntryType Struct
Purpose The BtLibProfileDescriptorListEntryType structure

represents an entry in a profile descriptor list attribute. See the
“Service Discovery Protocol” chapter of the Specification of the
Bluetooth System for more information about profile descriptor list
attributes.

Declared In BtLibTypes.h

Prototype typedef struct
BtLibProfileDescriptorListEntryType {
 BtLibSdpUuidType profUUID;
 uint8_t padding1;
 uint16_t version;
 uint16_t padding2;
} BtLibProfileDescriptorListEntryType

Fields profUUID
The profile’s UUID.

padding1
Reserved for system use.

version
The profile version.

padding2
Reserved for system use.

Bluetooth Reference
BtLibProtocolDescriptorListEntryType

160 Exploring Palm OS: Low-Level Communications

BtLibProtocolDescriptorListEntryType Struct
Purpose The BtLibProtocolDescriptorListEntryType structure

represents an entry in a protocol descriptor list attribute. See the
“Service Discovery Protocol” chapter of the Specification of the
Bluetooth System for more information.

Declared In BtLibTypes.h

Prototype typedef struct
BtLibProtocolDescriptorListEntryType {
 BtLibSdpUuidType protoUUID;
 uint8_t padding1;
 uint16_t padding2;
 union {
 BtLibL2CapPsmType psm;
 BtLibRfCommServerIdType channel;
 } param;
} BtLibProtocolDescriptorListEntryType

Fields protoUUID
The protocol’s UUID.

padding1
Reserved for system use.

padding2
Reserved for system use.

param
A union containing two members: psm and channel. psm is
applicable for a L2Cap protocol descriptor and specifies the
Protocol and Service Multiplexor. channel is applicable to a
RfComm protocol descriptor and specifies the server
channel.

Bluetooth Reference
BtLibSdpAttributeDataType

Exploring Palm OS: Low-Level Communications 161

BtLibProtocolEnum Typedef
Purpose Specifies the protocol being used on a Bluetooth connection.

Declared In BtLibTypes.h

Prototype typedef enum {
 btLibL2CapProtocol,
 btLibRfCommProtocol,
 btLibSdpProtocol,
 btLibSCOProtocol,
 btLibBNEPProtocol
} BtLibProtocolEnum

Fields btLibL2CapProtocol
L2Cap.

btLibRfCommProtocol
RfComm.

btLibSdpProtocol
SDP.

btLibSCOProtocol
SCO.

btLibBNEPProtocol
BNEP.

BtLibRfCommServerIdType Typedef
Purpose The BtLibRfCommServerIdType type represents a RfComm

server channel. See the “RFCOMM with TS 07.10” chapter of the
Specification of the Bluetooth System for more information about
server channels.

Declared In BtLibTypes.h

Prototype typedef uint8_t BtLibRfCommServerIdType

BtLibSdpAttributeDataType Struct
Purpose The BtLibSdpAttributeDataType union is used to encapsulate

an SDP attribute or a list entry in an SDP attribute. The
BtLibSdpServiceRecordGetAttribute() function gets an

Bluetooth Reference
BtLibSdpAttributeDataType

162 Exploring Palm OS: Low-Level Communications

attribute or a list entry and return its contents in a
BtLibSdpAttributeDataType. The
BtLibSdpServiceRecordSetAttribute() function sets an
attribute or list entry according to the contents of a
BtLibSdpAttributeDataType. This type supports the universal
attributes defined in the Specification of the Bluetooth System.

Declared In BtLibTypes.h

Prototype typedef union BtLibSdpAttributeDataType {
 BtLibSdpUuidType serviceClassUuid;
 uint32_t serviceRecordState;
 BtLibSdpUuidType serviceIdUuid;
 BtLibProtocolDescriptorListEntryType
protocolDescriptorListEntry;
 BtLibSdpUuidType browseGroupUuid;
 BtLibLanguageBaseTripletType
languageBaseTripletListEntry;
 uint32_t timeToLive;
 uint8_t availability;
 BtLibProfileDescriptorListEntryType
profileDescriptorListEntry;
 BtLibUrlType documentationUrl;
 BtLibUrlType clientExecutableUrl;
 BtLibUrlType iconUrl;
 BtLibStringType serviceName;
 BtLibStringType serviceDescription;
 BtLibStringType providerName;
} BtLibSdpAttributeDataType

Fields serviceClassUuid
The service class UUID.

serviceRecordState
Used to cache service attributes. If this attribute is contained
in a service record, its value is guaranteed to change each
time any other attribute is added to, deleted from, or
changed within the service record. This lets a client detect
whether or not the record has changed by simply looking at
the value of this attribute; if the value is has changed since
the last time it was checked, the record has been altered.

serviceIdUuid
The service’s UUID.

Bluetooth Reference
BtLibSdpAttributeDataType

Exploring Palm OS: Low-Level Communications 163

protocolDescriptorListEntry
See “BtLibProtocolDescriptorListEntryType” on page 160.

browseGroupUuid
A list of UUIDs, each of which represents a browse group to
which the service record belongs. The top level browser
group ID, called PublicBrowseRoot, represents the root of the
browsing directory. Its value is 00001002-0000-1000-8000-
00805F9B34FB (UUID16 0x1002), as specified in the Bluetooth
Assigned Numbers document.

languageBaseTripletListEntry
Describes a language triplet. See
“BtLibLanguageBaseTripletType” on page 155.

timeToLive
The number of seconds for which the information in the
service record is expected to remain valid and unchanged.
This interval is measured from the time that the attribute
value is retrieved from the SDP server. It doesn’t guarantee
that the record will be available or unchanged, but instead
recommends a polling interval for monitoring the service
record for changes.

availability
Represents the relative ability of the service to accept
additional clients. A value of 0xFF indicates that the service is
not in use and is fully available to accept clients, while a
value of 0x00 means the service is not accepting new clients.
For services that support multiple simultaneous clients,
intermediate values indicate the relative availability of the
service on a linear scale.

For example, a service that can accept up to three clients
should provide service availability values of 0xFF, 0xAA,
0x55, and 0x00 when 0, 1, 2, or 3 clients are using the service.

A non-zero value for availability doesn’t necessarily
guarantee availability; it should be considered a hint as to
how likely a connection is to be accepted.

profileDescriptorListEntry
Describes an entry in a profile descriptor list. See
“BtLibProfileDescriptorListEntryType” on page 159.

documentationUrl
A URL to documentation for the service.

Bluetooth Reference
BtLibSdpAttributeIdType

164 Exploring Palm OS: Low-Level Communications

clientExecutableUrl
An URL to the program that is executed to run the service.

iconUrl
An URL to an icon to use to represent the service.

serviceName
The name of the service.

serviceDescription
A human-readable description of the service.

providerName
A string containing the name of the person or organization
providing the service. The offset 0x0002 must be added to the
attribute ID base (contained in the
LangugaeBaseAttributeIDList attribute) in order to
compute the attribute ID for this attribute.

Comments Note that if you’re retrieving a string or a URL using the
BtLibSdpServiceRecordGetAttribute() function, you first
need to allocate a buffer in addition to this union. This buffer must
be large enough to contain the anticipated size of the string or URL.
You must also initialize the string pointer and string length fields of
the appropriate BtLibAttributeDataType union member. For
example, if you’re retrieving an icon URL, you need to set
iconURL.url to point to the buffer. You also need to set
iconURL.urllen to the length of the buffer.

See Also BtLibSdpUuidType, BtLibSocketEventType,
BtLibProfileDescriptorListEntryType,
BtLibLanguageBaseTripletType, BtLibUrlType, BtLibStringType

BtLibSdpAttributeIdType Typedef
Purpose The BtLibSdpAttributeIdType type represents a SDP attribute

identifier.

Declared In BtLibTypes.h

Prototype typedef uint16_t BtLibSdpAttributeIdType

Bluetooth Reference
BtLibSdpUuidSizeEnum

Exploring Palm OS: Low-Level Communications 165

BtLibSdpRecordHandle Typedef
Purpose The BtLibSdpRecordHandle type, also called an SDP memory

handle, provides a memory handle to an SDP memory record.

Declared In BtLibTypes.h

Prototype typedef MemHandle BtLibSdpRecordHandle

Comments A SDP memory record can have two roles: it can contain a local SDP
service record or it can refer to an SDP service record on a remote
device. In the latter role, the SDP memory record is said to be
mapped to a service record on the remote device. The
BtLibSdpServiceRecordMapRemote() function performs this
mapping.

BtLibSdpRemoteServiceRecordHandle Typedef
Purpose The BtLibSdpRemoteServiceRecordHandle type represents a

SDP service record handle on a remote device as defined in the
“Service Discovery Protocol” chapter of the Specification of the
Bluetooth System. The documentation refers to this type as a remote
service record handle.

Declared In BtLibTypes.h

Prototype typedef uint32_t
 BtLibSdpRemoteServiceRecordHandle

Comments Note that this type is different from the BtLibSdpRecordHandle
type, which refers to a memory chunk containing an SDP service
record.

BtLibSdpUuidSizeEnum Typedef
Purpose The BtLibSdpUuidSizeEnum enum specifies the sizes that a

UUID can have. See BtLibSdpUuidType for more information.

Declared In BtLibTypes.h

Prototype typedef Enum8 BtLibSdpUuidSizeEnum

Bluetooth Reference
BtLibSdpUuidType

166 Exploring Palm OS: Low-Level Communications

BtLibSdpUuidType Struct
Purpose The BtLibSdpUuidType structure represents a Universally

Unique Identifier (UUID). A UUID is a 128-bit value that is
generated in a manner that guarantees (with very high probability)
that it is different from every other UUID.

Declared In BtLibTypes.h

Prototype typedef struct BtLibSdpUuidType {
 BtLibSdpUuidSizeEnum size;
 uint8_t UUID[16];
} BtLibSdpUuidType

Fields size
The number of bits used to specify the UUID. See
BtLibSdpUuidSizeEnum.

UUID
The value of the UUID. If you’re setting the value of this
field, use the BtLibSdpUuidInitialize() macro.

Comments The “Service Discovery Protocol” chapter of the Specification of the
Bluetooth System reserves a set of UUIDs for common Bluetooth
services and protocols. You can specify these with 32 bits—the
remaining 96 bits have a fixed value. A subset of these can be
specified with 16 bits zero-extended to 32 bits. Therefore you can
specify a UUID using 16, 32, or 128 bits.

You generally don’t set this type directly. Instead, you use the
BtLibSdpVerifyRawDataElement() macro.

Bluetooth Reference
BtLibServiceDescriptionType

Exploring Palm OS: Low-Level Communications 167

BtLibServiceDescriptionType Struct
Purpose Parameters returned from a service application’s

sysBtLaunchCmdDescribeService launch code handler.

Declared In BtLibTypes.h

Prototype typedef struct {
 uint32_t flags;
 char *nameP;
 char *descriptionP;
} BtLibServiceDescriptionType

Fields flags
A bit mask of service description flags. See “Service
Description Flags” on page 205 for possible values.

nameP
A pointer to a brief name of the service, to be displayed in the
Bluetooth panel.

descriptionP
A pointer to a verbose description of what the service offers,
which is also displayed by the Bluetooth panel.

Comments The Bluetooth panel sends this launch code to obtain the
information it needs to display in its services view.

The nameP and descriptionP must be set to localized strings in
buffers allocated using MemPtrNew() or malloc(). nameP should
be a short name for display in a menu, while descriptionP
should be a longer description that is displayed when the service is
selected in the services view.

For example, nameP might be “Personal Area Networking” while
descriptionP might be “Allow other devices to connect and form
an ad-hoc local network.”

Bluetooth Reference
BtLibServiceExecutionParamsType

168 Exploring Palm OS: Low-Level Communications

BtLibServiceExecutionParamsType Struct
Purpose Specifies parameters passed to a service application when the

sysBtLaunchCmdExecuteService launch code is sent.

Declared In BtLibTypes.h

Prototype typedef struct {
 int32_t fdData;
} BtLibServiceExecutionParamsType

Fields fdData
The connected L2Cap or RfComm socket.

Comments The fdData parameter is a file descriptor opened to a connected
L2Cap or RfComm device instance, with a serial interface module
optionally pushed onto that depending on the
pushSerialModule registration flag.

On entry, the file descriptor is connected to its remote peer and is
ready for data transfer. On exit, the file descriptor must be closed.

BtLibServicePreparationParamsType Struct
Purpose Parameters passed to a service application’s

sysBtLaunchCmdPrepareService launch code handler.

Declared In BtLibTypes.h

Prototype typedef struct {
 int32_t fdListener;
 BtLibSdpRecordHandle serviceRecH;
} BtLibServicePreparationParamsType

Fields fdListener
The L2Cap or RfComm listener file descriptor.

serviceRecH
Empty service record to be filled out.

Comments The fdListener parameter is a file descriptor opened to an L2Cap
or RfComm device instance. On entry, it’s already been marked as a
listener. On return it must be left unchanged; the Bluetooth system
will take care of calling
BtLibSdpServiceRecordStartAdvertising() to advertise

Bluetooth Reference
BtLibServiceRegistrationParamsType

Exploring Palm OS: Low-Level Communications 169

the service, and BtLibSocketClose() after an inbound
connection is made.

The serviceRecH parameter is a handle on a local SDP service
record. On entry, it’s empty. On exit, it must be set up to describe the
service the application has to offer.

In most cases, the application can respond to this launch code by
simply calling
BtLibSdpServiceRecordSetAttributesForSocket(),
passing the fdListener and serviceRecH parameters along
with a class UUID and a service name.

In more complicated cases, the application may need to use other
SDP functions to make needed changes to the service record. In
these cases, it’s the application’s responsibility to open a
Management Entity device instance to pass to those functions and
to close that instance before returning.

BtLibServiceRegistrationParamsType Struct
Purpose Service parameters passed to the BtLibRegisterService()

function.

Declared In BtLibTypes.h

Prototype typedef struct {
 uint32_t stackSize;
 uint32_t appType;
 uint32_t appCreator;
 uint16_t appCodeRscId;
 BtLibProtocolEnum protocol;
 uint8_t execAsNormalApp:1, pushSerialModule:1;
} BtLibServiceRegistrationParamsType

Fields stackSize
The service thread’s stack size in bytes.

appType
The service application’s resource database type.

appCreator
The service application’s resource database creator.

Bluetooth Reference
BtLibSocketConnectInfoType

170 Exploring Palm OS: Low-Level Communications

appCodeRscId
The resource ID of the application’s code resource.

protocol
Which protocol the service uses (L2Cap or RfComm).

execAsNormalApp
A bit flag indicating whether the application should run in
the Application Process (1) or the System Process (0).

pushSerialModule
A bit flag indicating whether a serial interface module should
be pushed onto the protocol device instance (1) or not (0).

Comments The thread or threads that execute the service’s entry points will be
created with a stack of at least stackSize bytes.

The service’s preparation entry point is always invoked in the
System Process, regardless of the setting of the execAsNormalApp
flag; this flag only controlls where the execution entry point is
invoked.

NOTE: In the current version of Palm OS Cobalt, only execution
in the System Process is supported, so execAsNormalApp
should always be 0.

BtLibSocketConnectInfoType Struct
Purpose The BtLibSocketConnectInfoType structure allows you to

specify the address of the remote device and data specific to the
protocol of the socket. The protocol-specific data is stored as a
union; the member of the union that is valid depends on the
protocol.

Declared In BtLibTypes.h

Prototype typedef struct BtLibSocketConnectInfoType {
 BtLibDeviceAddressTypePtr remoteDeviceP;
 union {
 struct {
 BtLibL2CapPsmType remotePsm;
 uint16_t minRemoteMtu;
 uint16_t localMtu;

Bluetooth Reference
BtLibSocketConnectInfoType

Exploring Palm OS: Low-Level Communications 171

 } L2Cap;
 struct {
 BtLibRfCommServerIdType remoteService;
 uint8_t advancedCredit;
 uint16_t maxFrameSize;
 } RfComm;
 struct {
 uint16_t localService;
 uint16_t remoteService;
 } bnep;
 } data;
 uint16_t padding;
} BtLibSocketConnectInfoType

Fields remoteDeviceP
A pointer to a BtLibDeviceAddressType that contains the
address of the remote device.

data
A union containing protocol-specific information. This union
has three members: L2Cap, RfComm, and bnep.

L2Cap
For L2Cap, there are three fields:

remotePsm
A BtLibL2CapPsmType representing the protocol
and service multiplexer (PSM) identifier of the
protocol to which this socket should connect. This
identifier is obtained using the Service Discovery
Protocol (SDP).

minRemoteMtu
The minimum MTU, or packet size, that your
application can support.

localMtu
The MTU, or packet size, of the local device.

RfComm
For RfComm, there are three fields as well:

remoteService
A BtLibRfCommServerIdType representing the
RfComm service channel on the remote device to

Bluetooth Reference
BtLibSocketEventType

172 Exploring Palm OS: Low-Level Communications

which this socket should connect. This identifier is
obtained using the Service Discovery Protocol (SDP).

advancedCredit
An amount of credit the socket advances to the remote
device when it successfully connects. Additional
credit can be advanced using the
BtLibSocketCreate function once the connection
has been established.

maxFrameSize
The maximum frame size your application can handle.
This value must be between BT_RF_MINFRAMESIZE
and BT_RF_MAXFRAMESIZE. If your application can
handle any frame size, set this value to
BT_RF_DEFAULT_FRAMESIZE.

bnep
There are two fields for BNEP, which indicate which role the
local and remove devices should each play. The roles must be
one of three 16-bit UUIDs: 0x1115 for PANU, 0x1116 for NAP,
and 0x1117 for GN.

localService
The UUID of the local role.

remoteService
The UUID of the remote role.

padding
Reserved for system use.

See Also BtLibSocketSend(), BtLibSocketClose()

BtLibSocketEventType Struct
Purpose The BtLibSocketEventType structure contains detailed

information regarding a socket event. All socket events have some
common data. Most socket events have additional data specific to

Bluetooth Reference
BtLibSocketEventType

Exploring Palm OS: Low-Level Communications 173

those events. The specific data is stored in a union that is part of the
BtLibSocketEvent data structure.

Declared In BtLibTypes.h

Prototype typedef struct _BtLibSocketEventType {
 BtLibSocketEventEnum event;
 uint8_t padding1;
 uint16_t padding2;
 status_t status;
 union {
 BtLibSocketRef newSocket;
 BtLibDeviceAddressType requestingDevice;
 struct {
 BtLibSdpRemoteServiceRecordHandle
remoteHandle;
 union {
 BtLibL2CapPsmType psm;
 BtLibRfCommServerIdType channel;
 } param;
 uint16_t padding;
 } sdpByUuid;
 struct {
 uint16_t numSrvRec;
 } sdpServiceRecordHandles;
 struct {
 BtLibSdpAttributeIdType attributeID;
 uint16_t padding;
 BtLibSdpRecordHandle recordH;
 union {
 struct {
 BtLibSdpAttributeDataType
attributeValues;
 uint16_t listNumber;
 uint16_t listEntry;
 } data;
 struct {
 uint16_t valSize;
 } rawData;
 uint16_t valSize;
 uint16_t strLength;

Bluetooth Reference
BtLibSocketListenInfoType

174 Exploring Palm OS: Low-Level Communications

 uint16_t numItems;
 } info;
 } sdpAttribute;
 } eventData;
} BtLibSocketEventType

Fields event
BtLibSocketEventEnum enum member that indicates
which socket event has occurred.

padding1
Reserved for system use.

padding2
Reserved for system use.

status
Status of the event. See “BtLibSocketEventEnum” on
page 211 for more details about how to interpret this field for
specific events.

eventData
fieldData associated with the event. The member of this
union that is valid depends on the event. See
BtLibSocketEventEnum for more information.

BtLibSocketListenInfoType Struct
Purpose The BtLibSocketListenInfoType structure allows you to

specify data specific to the protocol of the listening socket. This data
is stored in the data field, which is a union consisting of two
members: L2Cap, and RfComm. The member of the union that is
valid depends on the protocol of the listening socket.

Declared In BtLibTypes.h

Prototype typedef struct BtLibSocketListenInfoType {
 union {
 struct {
 BtLibL2CapPsmType localPsm;
 uint16_t localMtu;
 uint16_t minRemoteMtu;
 } L2Cap;
 struct {
 BtLibRfCommServerIdType serviceID;

Bluetooth Reference
BtLibSocketListenInfoType

Exploring Palm OS: Low-Level Communications 175

 uint8_t advancedCredit;
 uint16_t maxFrameSize;
 } RfComm;
 struct {
 Boolean listenNAP;
 Boolean listenGN;
 Boolean listenPANU;
 } BNEP;
 } data;
 uint16_t padding;
} BtLibSocketListenInfoType

Fields data
A union which can represent L2Cap, RfComm, or BNEP.

L2Cap
L2Cap has the following fields:

localPsm
A BtLibL2CapPsmType representing the protocol
and service multiplexer (PSM) identifier of the
protocol to be used with this socket. You can identify
your own protocol provided that its PSM value is odd,
is within the range of 0x1001 to 0xFFFF, and has the
9th bit (0x0100) set to zero. These limitations are
specified by the Specification of the Bluetooth System. If
you set this field to BT_L2CAP_RANDOM_PSM, the
BtLibSocketListen function automatically creates
a suitable PSM for the channel and returns it in this
structure.

localMtu
The maximum transmission unit (MTU), or packet
size, of the local device.

minRemoteMtu
The minimum packet size that your application can
support.

RfComm
RfComm has the following fields:

Bluetooth Reference
BtLibSocketRef

176 Exploring Palm OS: Low-Level Communications

serviceID
A BtLibRfCommServerIdType representing the
socket’s RfComm service channel. It is assigned by
RfComm and returned in this field when you call
BtLibSocketListen.

advancedCredit
An amount of credit the socket advances to the remote
device when it successfully connects. Additional
credit can be advanced using the
BtLibSocketCreate function once the connection
has been established.

maxFrameSize
The maximum frame size your application can handle.
This value must be between BT_RF_MINFRAMESIZE
and BT_RF_MAXFRAMESIZE. If your application can
handle any frame size, set this value to
BT_RF_DEFAULT_FRAMESIZE.

BNEP
BNEP has the following fields, which specify which of the
three PAN profile services it is willing to support:

listenNAP
true if the NAP service is supported.

listenGN
true if the GN service is supported.

listenPANU
true if the PANU service is supported.

padding
Reserved for system use.

See Also BtLibSocketClose()

BtLibSocketRef Typedef
Purpose The BtLibSocketRef type identifies a socket.

Declared In BtLibTypes.h

Prototype typedef int32_t BtLibSocketRef

Bluetooth Reference
BtLibUrlType

Exploring Palm OS: Low-Level Communications 177

Comments Note that in versions of Palm OS prior to 6.0, the BtLibSocketRef
was a 16-bit value.

BtLibStringType Struct
Purpose The BtLibStringType structure represents a string in an SDP

attribute.

Declared In BtLibTypes.h

Prototype typedef struct BtLibStringType {
 char *str;
 uint16_t strLen;
 uint16_t padding;
} BtLibStringType

Fields str
An array of characters representing the string. This array is
not null-terminated.

strLen
The length of the string, in bytes.

padding
Reserved for system use.

BtLibUrlType Struct
Purpose The BtLibUrlType structure represents a uniform resource locator

(URL) in an SDP attribute.

Declared In BtLibTypes.h

Prototype typedef struct BtLibUrlType {
 char *url;
 uint16_t urlLen;
 uint16_t padding;
} BtLibUrlType

Fields url
An array of characters representing the URL. This array is not
null-terminated.

urlLen
The length of the string, in bytes.

Bluetooth Reference
sockaddr_bth

178 Exploring Palm OS: Low-Level Communications

padding
Reserved for system use.

sockaddr_bth Struct
Purpose A variant of the BSD Sockets sockaddr structure for use with

Bluetooth.

Declared In BtLibTypes.h

Prototype typedef struct sockaddr_bth {
 sa_family_t sa_family;
 BtLibDeviceAddressType btAddr;
 BtLibSdpUuidType serviceClassId;
 uint8_t padding1;
 uint16_t padding2;
} sockaddr_bth

Fields sa_family
The socket address family; for Bluetooth, this should be
AF_BTH.

btAddr
A BtLibDeviceAddressType indicating the address of the
Bluetooth device. This address is used on the client side to
specify the remote Bluetooth device to which to connect. A
value of all zeros implies that a discovery operation must be
performed to allow the user to select the remote device.

serviceClassId
The UUID of the SDP service. On the client side, it specifies
the service class to which to connect; on the server side, it
specifies the service class to advertise.

padding1
Reserved for system use.

padding2
Reserved for system use.

Bluetooth Reference
Bluetooth Data Element Sizes

Exploring Palm OS: Low-Level Communications 179

Bluetooth Constants

Bluetooth Data Element Sizes
Purpose Define the possible sizes of Bluetooth Data Elements.

Declared In BtLibTypes.h

Constants

See Also “Bluetooth Data Element Types”

Table 13.10Bluetooth Data Element sizes

Constant Meaning

btLibDESD_1BYTE Specifies a 1-byte element.
However, if the element type is
btLibDETD_NIL, then the size is
actually 0.

btLibDESD_2BYTES Specifies a 2-byte element.

btLibDESD_4BYTES Specifies a 4-byte element.

btLibDESD_8BYTES Specifies an 8-byte element.

btLibDESD_16BYTES Specifies a 16-byte element.

btLibDESD_ADD_8BITS The element’s actual data size, in
bytes, is contained in the next eight
bits.

btLibDESD_ADD_16BITS The element’s actual data size, in
bytes, is contained in the next 16
bits.

btLibDESD_ADD_32BITS The element’s actual data size, in
bytes, is contained in the next 32
bits.

btLibDESD_MASK AND this value with the first byte
of a Data Element to obtain the
element’s size.

Bluetooth Reference
Bluetooth Data Element Types

180 Exploring Palm OS: Low-Level Communications

Bluetooth Data Element Types
Purpose Define the types of Data Elements supported by the Bluetooth

system.

Declared In BtLibTypes.h

Constants

Constant Meaning

btLibDETD_ALT Specifies a Data Element alternative.
The data contains a sequence of Data
Elements. This type is sometimes used
to distinguish between two possible
sequences. Must use size
btLibDESD_ADD_8BITS,
btLibDESD_ADD_16BITS, or
btLibDESD_ADD_32BITS.

btLibDETD_BOOL Specifies a Boolean value. Must use size
btLibDESD_1BYTE.

btLibDETD_NIL Specifies nil, the null type. Requires a
size of btLibDESD_1BYTE, which for
this type actually means 0 bytes.

btLibDETD_SEQ Specifies a Data Element sequence. The
data contains a sequence of Data
Elements. Must use size
btLibDESD_ADD_8BITS,
btLibDESD_ADD_16BITS, or
btLibDESD_ADD_32BITS.

btLibDETD_SINT Specifies a signed integer. Must use size
btLibDESD_1BYTE,
btLibDESD_2BYTES,
btLibDESD_4BYTES,
btLibDESD_8BYTES, or
btLibDESD_16BYTES

Bluetooth Reference
Bluetooth Data Element Types

Exploring Palm OS: Low-Level Communications 181

See Also “Bluetooth Data Element Sizes”

btLibDETD_TEXT Specifies a text string. Must use size
btLibDESD_ADD_8BITS,
btLibDESD_ADD_16BITS, or
btLibDESD_ADD_32BITS.

btLibDETD_UINT Specifies an unsigned integer. Must use
size btLibDESD_1BYTE,
btLibDESD_2BYTES,
btLibDESD_4BYTES,
btLibDESD_8BYTES, or
btLibDESD_16BYTES.

btLibDETD_URL Specifies a Uniform Resource Locator
(URL). Must use size
btLibDESD_ADD_8BITS,
btLibDESD_ADD_16BITS, or
btLibDESD_ADD_32BITS.

btLibDETD_UUID Specifies a Universally Unique
Identifier (UUID). Must use size
btLibDESD_2BYTES,
btLibDESD_4BYTES, or
btLibDESD_16BYTES.

btLibDETD_MASK AND this value with the first byte of a
Data Element to obtain the element’s
type.

Constant Meaning

Bluetooth Reference
Bluetooth Device Names

182 Exploring Palm OS: Low-Level Communications

Bluetooth Device Names
Purpose Define the names of Bluetooth STREAMS devices.

Declared In BtLibTypes.h

Constants

Bluetooth Disconnection Codes
Purpose Values for the status field of btLibSocketEventDisconnected

events, which explain why the disconnect occurred.

Declared In BtLibTypes.h

Constants

Table 13.11Bluetooth device names

Constant Meaning

btDevMeName Management Entity device.

btDevL2cName L2Cap device.

btDevRfcName RfComm device.

btDevSdpName SDP device.

btDevSCOName SCO device.

btDevBNEPName BNEP device.

Constant Meaning

btLibL2DiscReasonUnknown Unknown reason.

btLibL2DiscUserRequest Either the local or remote user requested
disconnection.

btLibL2DiscRequestTimeout An L2Cap request timed out.

btLibL2DiscLinkDisc The underlying ACL link disconnected.

btLibL2DiscQosViolation Quality of Service violation.

btLibL2DiscSecurityBlock Local Security Manager refused the
connection.

Bluetooth Reference
Bluetooth Error Codes

Exploring Palm OS: Low-Level Communications 183

Bluetooth Error Codes
Purpose Error codes that can occur when issuing Bluetooth calls.

Declared In BtLibTypes.h

Constants

btLibL2DiscConnPsmUnsupported The remote device does not support the
requested PSM.

btLibL2DiscConnSecurityBlock The remote Security Manager refused the
connection.

btLibL2DiscConnNoResources Remote device is out of resources.

btLibL2DiscConfigUnacceptable Configuration failed due to invalid
parameters.

btLibL2DiscConfigReject Configuration rejected for unknown
reasons.

btLibL2DiscConfigOptions Configuration failed due to unrecognized
configuration options.

Constant Meaning

Error Description

btLibErrNoError Success.

btLibErrAlreadyConnected A connection is already in place.

btLibErrAlreadyOpen The Bluetooth Library is already open
(this isn’t an error, just a friendly
notification).

btLibErrBatteryTooLow The battery power is too low to perform
the requested operation.

btLibErrBluetoothOff The user has turned off Bluetooth.

btLibErrBusy A needed resource is busy.

btLibErrCanceled The operation was canceled.

Bluetooth Reference
Bluetooth Error Codes

184 Exploring Palm OS: Low-Level Communications

btLibErrError Generic error.

btLibErrFailed Remote operation completed but failed.

btLibErrInProgress An operation is already in progress.

btLibErrInUseByService The resource is in use by a service.

btLibErrNoAclLink No ACL link to the remote device.

btLibErrNoAdminDaemon The daemon has not opened the admin
device.

btLibErrNoConnection No connection on socket.

btLibErrNoPiconet A piconet is required for this operation.

btLibErrNoPrefs The preferences are missing.

btLibErrNotFound The requested value was not found.

btLibErrNotInProgress Operation is not in progress.

btLibErrOutOfMemory Memory allocation failed.

btLibErrParamError Invalid parameter to function.

btLibErrPending Operation will complete later; status and
results will arrive in an event.

btLibErrRadioFatal The Bluetooth hardware has failed while
in use.

btLibErrRadioInitFailed Initialization of the Bluetooth radio failed.

btLibErrRadioInitialized The Bluetooth hardware was initialized
successfully. This isn’t an error, just a
notification.

btLibErrRadioSleepWake The Bluetooth hareware failed because
the device went to sleep.

btLibErrRoleChange Could not perform master/slave role
switch.

Error Description

Bluetooth Reference
Bluetooth Error Codes

Exploring Palm OS: Low-Level Communications 185

btLibErrError Generic error.

btLibErrFailed Remote operation completed but failed.

btLibErrInProgress An operation is already in progress.

btLibErrInUseByService The resource is in use by a service.

btLibErrNoAclLink No ACL link to the remote device.

btLibErrNoAdminDaemon The daemon has not opened the admin
device.

btLibErrNoConnection No connection on socket.

btLibErrNoPiconet A piconet is required for this operation.

btLibErrNoPrefs The preferences are missing.

btLibErrNotFound The requested value was not found.

btLibErrNotInProgress Operation is not in progress.

btLibErrOutOfMemory Memory allocation failed.

btLibErrParamError Invalid parameter to function.

btLibErrPending Operation will complete later; status and
results will arrive in an event.

btLibErrRadioFatal The Bluetooth hardware has failed while
in use.

btLibErrRadioInitFailed Initialization of the Bluetooth radio failed.

btLibErrRadioInitialized The Bluetooth hardware was initialized
successfully. This isn’t an error, just a
notification.

btLibErrRadioSleepWake The Bluetooth hareware failed because
the device went to sleep.

btLibErrRoleChange Could not perform master/slave role
switch.

Error Description

Bluetooth Reference
Bluetooth Error Codes

186 Exploring Palm OS: Low-Level Communications

btLibErrSdpAdvertised Invalid operation on an advertised
record.

btLibErrSdpAttributeNotSet Attribute is not set for record.

btLibErrSdpFormat Service record is improperly formatted.

btLibErrSdpInvalidResponse Invalid data in SDP response.

btLibErrSdpMapped Invalid operation on mapped record.

btLibErrSdpNotAdvertised Invalid operation on an unadvertised
record.

btLibErrSdpNotMapped Invalid operation on an unmapped
record.

btLibErrSdpQueryContinuation Invalid continuation data.

btLibErrSdpQueryDisconnect SDP disconnected.

btLibErrSdpQueryHandle Invalid service record handle.

btLibErrSdpQueryPduSize Invalid Protocol Data Unit (PDU) size.

btLibErrSdpQueryResources Insufficient resources for request.

btLibErrSdpQuerySyntax Invalid request syntax.

btLibErrSdpQueryVersion Invalid or unsupported SDP version.

btLibErrSdpRemoteRecord Invalid operation on the remote SDP
record.

btLibErrSocket Invalid socket reference.

btLibErrSocketChannelUnavailable Channel unavailable on remote device.

btLibErrSocketProtocol Invalid protocol for operation.

btLibErrSocketPsmUnavailable PSM is already in use.

btLibErrSocketRole Invalid role (connecor/listener).

btLibErrSocketUserDisconnect The user terminated the connection.

Error Description

Bluetooth Reference
BSD Sockets Constants

Exploring Palm OS: Low-Level Communications 187

Bluetooth Module Names
Purpose Names of the Bluetooth STREAMS modules.

Declared In BtLibTypes.h

Constants

BSD Sockets Constants
Purpose Constants used when utilizing the BSD Sockets API.

Declared In BtLibTypes.h

Constants

btLibErrTooMany Capacity reached (specific meaning varies
depending on the function called).

btLibNotYetSupported Unsupported feature.

Error Description

Constant Meaning

btModSerL2cName Serial-on-L2Cap module.

btModSerRfcName Serial-on-RfComm module.

btModTPISerRfcName TPI-on-serial-on-RfComm module.

Constant Meaning

BTADDR_ANY Represents any Bluetooth device
address for BSD Sockets API calls.

BTHPROTO_RFCOMM The protocol to use when creating an
RfComm socket using the BSD Sockets
API.

Bluetooth Reference
Character Encoding Constants

188 Exploring Palm OS: Low-Level Communications

Character Encoding Constants
Purpose Define character encodings for Bluetooth.

Declared In BtLibTypes.h

Constants

btLibCharSet_Adobe_Standard_Encoding btLibCharSet_Adobe_Symbol_Encoding

btLibCharSet_ANSI_X3_110_1983 btLibCharSet_ASMO_449

btLibCharSet_Big5 btLibCharSet_Big5_HKSCS

btLibCharSet_BS_4730 btLibCharSet_BS_viewdata

btLibCharSet_CSA_Z243_4_1985_1 btLibCharSet_CSA_Z243_4_1985_2

btLibCharSet_CSA_Z243_4_1985_gr btLibCharSet_CSN_369103

btLibCharSet_DEC_MCS btLibCharSet_DIN_66003

btLibCharSet_dk_us btLibCharSet_DS_2089

btLibCharSet_EBCDIC_AT_DE btLibCharSet_EBCDIC_AT_DE_A

btLibCharSet_EBCDIC_CA_FR btLibCharSet_EBCDIC_DK_NO

btLibCharSet_EBCDIC_DK_NO_A btLibCharSet_EBCDIC_ES

btLibCharSet_EBCDIC_ES_A btLibCharSet_EBCDIC_ES_S

btLibCharSet_EBCDIC_FI_SE btLibCharSet_EBCDIC_FI_SE_A

btLibCharSet_EBCDIC_FR btLibCharSet_EBCDIC_IT

btLibCharSet_EBCDIC_PT btLibCharSet_EBCDIC_UK

btLibCharSet_EBCDIC_US btLibCharSet_ECMA_cyrillic

btLibCharSet_ES btLibCharSet_ES2

btLibCharSet_EUC_JP btLibCharSet_EUC_KR

btLibCharSet_Extended_UNIX_Code_
Fixed_Width_for_Japanese

btLibCharSet_GB2312

btLibCharSet_GB_1988_80 btLibCharSet_GB_2312_80

btLibCharSet_GOST_19768_74 btLibCharSet_greek7

Bluetooth Reference
Character Encoding Constants

Exploring Palm OS: Low-Level Communications 189

btLibCharSet_greek7_old btLibCharSet_greek_ccitt

btLibCharSet_HP_DeskTop btLibCharSet_HP_Legal

btLibCharSet_HP_Math8 btLibCharSet_HP_Pi_font

btLibCharSet_hp_roman8 btLibCharSet_HZ_GB_2312

btLibCharSet_IBM00858 btLibCharSet_IBM00924

btLibCharSet_IBM01140 btLibCharSet_IBM01141

btLibCharSet_IBM01142 btLibCharSet_IBM01143

btLibCharSet_IBM01144 btLibCharSet_IBM01145

btLibCharSet_IBM01146 btLibCharSet_IBM01147

btLibCharSet_IBM01148 btLibCharSet_IBM01149

btLibCharSet_IBM037 btLibCharSet_IBM038

btLibCharSet_IBM1026 btLibCharSet_IBM273

btLibCharSet_IBM274 btLibCharSet_IBM275

btLibCharSet_IBM277 btLibCharSet_IBM278

btLibCharSet_IBM280 btLibCharSet_IBM281

btLibCharSet_IBM284 btLibCharSet_IBM285

btLibCharSet_IBM290 btLibCharSet_IBM297

btLibCharSet_IBM420 btLibCharSet_IBM423

btLibCharSet_IBM424 btLibCharSet_IBM437

btLibCharSet_IBM500 btLibCharSet_IBM775

btLibCharSet_IBM850 btLibCharSet_IBM851

btLibCharSet_IBM852 btLibCharSet_IBM855

btLibCharSet_IBM857 btLibCharSet_IBM860

btLibCharSet_IBM861 btLibCharSet_IBM862

btLibCharSet_IBM863 btLibCharSet_IBM864

Bluetooth Reference
Character Encoding Constants

190 Exploring Palm OS: Low-Level Communications

btLibCharSet_IBM865 btLibCharSet_IBM866

btLibCharSet_IBM868 btLibCharSet_IBM869

btLibCharSet_IBM870 btLibCharSet_IBM871

btLibCharSet_IBM880 btLibCharSet_IBM891

btLibCharSet_IBM903 btLibCharSet_IBM904

btLibCharSet_IBM905 btLibCharSet_IBM918

btLibCharSet_IBM_Symbols btLibCharSet_IBM_Thai

btLibCharSet_IEC_P27_1 btLibCharSet_INIS

btLibCharSet_INIS_8 btLibCharSet_INIS_cyrillic

btLibCharSet_INVARIANT btLibCharSet_ISO_10367_box

btLibCharSet_ISO_10646_UCS_2 btLibCharSet_ISO_10646_UCS_4

btLibCharSet_ISO_10646_UCS_Basic btLibCharSet_ISO_10646_Unicode_Latin1

btLibCharSet_ISO_10646_UTF_1 btLibCharSet_ISO_2022_CN

btLibCharSet_ISO_2022_CN_EXT btLibCharSet_ISO_2022_JP

btLibCharSet_ISO_2022_JP_2 btLibCharSet_ISO_2022_KR

btLibCharSet_ISO_2033_1983 btLibCharSet_ISO_5427

btLibCharSet_ISO_5427_1981 btLibCharSet_ISO_5428_1980

btLibCharSet_ISO_646_basic_198
3

btLibCharSet_ISO_646_irv_1983

btLibCharSet_ISO_6937_2_25 btLibCharSet_ISO_6937_2_add

btLibCharSet_ISO_8859_1 btLibCharSet_ISO_8859_10

btLibCharSet_iso_8859_13 btLibCharSet_iso_8859_14

btLibCharSet_ISO_8859_15 btLibCharSet_ISO_8859_1_Windows_
3_0_Latin_1

btLibCharSet_ISO_8859_1_Windows_
3_1_Latin_1

btLibCharSet_ISO_8859_2

Bluetooth Reference
Character Encoding Constants

Exploring Palm OS: Low-Level Communications 191

btLibCharSet_ISO_8859_2_Windows_
Latin_2

btLibCharSet_ISO_8859_3

btLibCharSet_ISO_8859_4 btLibCharSet_ISO_8859_5

btLibCharSet_ISO_8859_6 btLibCharSet_ISO_8859_6_E

btLibCharSet_ISO_8859_6_I btLibCharSet_ISO_8859_7

btLibCharSet_ISO_8859_8 btLibCharSet_ISO_8859_8_E

btLibCharSet_ISO_8859_8_I btLibCharSet_ISO_8859_9

btLibCharSet_ISO_8859_9_Windows_
Latin_5

btLibCharSet_ISO_8859_supp

btLibCharSet_iso_ir_90 btLibCharSet_ISO_Unicode_IBM_1261

btLibCharSet_ISO_Unicode_IBM_1264 btLibCharSet_ISO_Unicode_IBM_1265

btLibCharSet_ISO_Unicode_IBM_1268 btLibCharSet_ISO_Unicode_IBM_1276

btLibCharSet_IT btLibCharSet_JIS_C6220_1969_jp

btLibCharSet_JIS_C6220_1969_ro btLibCharSet_JIS_C6226_1978

btLibCharSet_JIS_C6226_1983 btLibCharSet_JIS_C6229_1984_a

btLibCharSet_JIS_C6229_1984_b btLibCharSet_JIS_C6229_1984_b_add

btLibCharSet_JIS_C6229_1984_hand btLibCharSet_JIS_C6229_1984_hand_add

btLibCharSet_JIS_C6229_1984_kana btLibCharSet_JIS_Encoding

btLibCharSet_JIS_X0201 btLibCharSet_JIS_X0212_1990

btLibCharSet_JUS_I_B1_002 btLibCharSet_JUS_I_B1_003_mac

btLibCharSet_JUS_I_B1_003_serb btLibCharSet_KOI8_R

btLibCharSet_KOI8_U btLibCharSet_KSC5636

btLibCharSet_KS_C_5601_1987 btLibCharSet_latin_greek

btLibCharSet_Latin_greek_1 btLibCharSet_latin_lap

btLibCharSet_macintosh btLibCharSet_Microsoft_Publishing

btLibCharSet_MNEM btLibCharSet_MNEMONIC

Bluetooth Reference
Character Encoding Constants

192 Exploring Palm OS: Low-Level Communications

btLibCharSet_MSZ_7795_3 btLibCharSet_NATS_DANO

btLibCharSet_NATS_DANO_ADD btLibCharSet_NATS_SEFI

btLibCharSet_NATS_SEFI_ADD btLibCharSet_NC_NC00_10_81

btLibCharSet_NF_Z_62_010 btLibCharSet_NF_Z_62_010__1973_

btLibCharSet_NS_4551_1 btLibCharSet_NS_4551_2

btLibCharSet_PC8_Danish_Norwegian btLibCharSet_PC8_Turkish

btLibCharSet_PT btLibCharSet_PT2

btLibCharSet_SCSU btLibCharSet_SEN_850200_B

btLibCharSet_SEN_850200_C btLibCharSet_Shift_JIS

btLibCharSet_TIS_620 btLibCharSet_T_101_G2

btLibCharSet_T_61_7bit btLibCharSet_T_61_8bit

btLibCharSet_UNICODE_1_1 btLibCharSet_UNICODE_1_1_UTF_7

btLibCharSet_UNKNOWN_8BIT btLibCharSet_US_ASCII

btLibCharSet_us_dk btLibCharSet_UTF_16

btLibCharSet_UTF_16BE btLibCharSet_UTF_16LE

btLibCharSet_UTF_7 btLibCharSet_UTF_8

btLibCharSet_Ventura_International btLibCharSet_Ventura_Math

btLibCharSet_Ventura_US btLibCharSet_videotex_suppl

btLibCharSet_VIQR btLibCharSet_VISCII

btLibCharSet_windows_1250 btLibCharSet_windows_1251

btLibCharSet_windows_1252 btLibCharSet_windows_1253

btLibCharSet_windows_1254 btLibCharSet_windows_1255

btLibCharSet_windows_1256 btLibCharSet_windows_1257

btLibCharSet_windows_1258 btLibCharSet_Windows_31J

Bluetooth Reference
Language ID Constants

Exploring Palm OS: Low-Level Communications 193

L2Cap Constants
Purpose Constants for the L2Cap protocol.

Declared In BtLibTypes.h

Constants

Comments The BT_L2CAP_RANDOM_PSM constant lets you ask the system to
select an available Protocol Service Multiplexor (PSM) for you when
creating an L2Cap listener socket, as seen in Listing 13.1.

Listing 13.1 Creating an L2Cap listener socket

listenInfo.data.L2Cap.localPsm = BT_L2CAP_RANDOM_PSM;
listenInfo.data.L2Cap.localMtu = MAX_FRAME_SIZE_L2CAP;
listenInfo.data.L2Cap.minRemoteMtu = MAX_FRAME_SIZE_L2CAP;
err = BtLibSocketListen(socket, &listenInfo);

Language ID Constants
Purpose Define languages supported by the Bluetooth system.

Declared In BtLibTypes.h

Constants

Constant Meaning

BT_L2CAP_MTU The maximum size for L2Cap
frames.

BT_L2CAP_RANDOM_PSM Used when creating a listener
socket; instructs the system to
select a random, unused PSM.

btLibLangAbkihazian btLibLangAfar

btLibLangAfrikaans btLibLangAlbanian

btLibLangAmharic btLibLangArabic

btLibLangArmenian btLibLangAssamese

Bluetooth Reference
Language ID Constants

194 Exploring Palm OS: Low-Level Communications

btLibLangAymara btLibLangAzerbaijani

btLibLangBashkir btLibLangBasque

btLibLangBengali btLibLangBhutani

btLibLangBihari btLibLangBislama

btLibLangBreton btLibLangBulgarian

btLibLangBurmese btLibLangByelorussian

btLibLangCambodian btLibLangCatalan

btLibLangChinese btLibLangCorsican

btLibLangCroation btLibLangCzech

btLibLangDanish btLibLangDutch

btLibLangEnglish btLibLangEsperanto

btLibLangEstonian btLibLangFaroese

btLibLangFiji btLibLangFinnish

btLibLangFrench btLibLangFrisian

btLibLangGalician btLibLangGeorgian

btLibLangGerman btLibLangGreek

btLibLangGreenlandic btLibLangGuarani

btLibLangGujarati btLibLangHausa

btLibLangHebrew btLibLangHindi

btLibLangHungarian btLibLangIcelandic

btLibLangIndonesian btLibLangInterlingua

btLibLangInterlingue btLibLangInupiak

btLibLangIrish btLibLangItalian

btLibLangJapanese btLibLangJavanese

btLibLangKannada btLibLangKashmiri

Bluetooth Reference
Language ID Constants

Exploring Palm OS: Low-Level Communications 195

btLibLangKazakh btLibLangKinyarwanda

btLibLangKirghiz btLibLangKirundi

btLibLangKorean btLibLangKurdish

btLibLangLaothian btLibLangLatin

btLibLangLatvian btLibLangLingala

btLibLangLithuanian btLibLangMacedonian

btLibLangMalagasy btLibLangMalay

btLibLangMalayalam btLibLangMaltese

btLibLangMaori btLibLangMarathi

btLibLangMoldavian btLibLangMongolian

btLibLangNaura btLibLangNepali

btLibLangNorwegian btLibLangOccitan

btLibLangOriya btLibLangOromo

btLibLangPashto btLibLangPersian

btLibLangPolish btLibLangPortuguese

btLibLangPunjabi btLibLangQuechua

btLibLangRhaeto_Romance btLibLangRomanian

btLibLangRussian btLibLangSamoan

btLibLangSangho btLibLangSanskrit

btLibLangScotsGaelic btLibLangSerbian

btLibLangSerbo_Croation btLibLangSesotho

btLibLangSetswanna btLibLangShona

btLibLangSindhi btLibLangSinghalese

btLibLangSiswati btLibLangSlovak

btLibLangSlovenian btLibLangSomali

Bluetooth Reference
Management Event Status Codes

196 Exploring Palm OS: Low-Level Communications

Management Event Status Codes
Purpose When a management event is generated, the status field of the

associated BtLibStringType provides information about why the
event occurred. The following status codes can occur with a
management event.

Declared In BtLibTypes.h

Constants

btLibLangSpanish btLibLangSundanese

btLibLangSwahili btLibLangSwedish

btLibLangTagalog btLibLangTajik

btLibLangTamil btLibLangTatar

btLibLangTelugu btLibLangThai

btLibLangTibetan btLibLangTigrinya

btLibLangTonga btLibLangTsonga

btLibLangTurkish btLibLangTurkmen

btLibLangTwi btLibLangUkranian

btLibLangUrdu btLibLangUzbek

btLibLangVietnamese btLibLangVolapuk

btLibLangWelsh btLibLangWolof

btLibLangXhosa btLibLangYiddish

btLibLangYoruba btLibLangZulu

Constant Meaning

btLibErrNoError Success.

btLibMeStatusAuthenticateFailure Authentication failure.

btLibMeStatusCommandDisallowed Command disallowed.

Bluetooth Reference
Management Event Status Codes

Exploring Palm OS: Low-Level Communications 197

btLibMeStatusConnnectionTimeout Connection timed out.

btLibMeStatusHardwareFailure Hardware failure.

btLibMeStatusHostTimeout Host timeout.

btLibMeStatusInvalidHciParam Invalid HCI command parameters.

btLibMeStatusInvalidLmpParam Invalid LMP parameters.

btLibMeStatusLimitedResources Host rejected due to limited resources.

btLibMeStatusLmpPduNotAllowed LMP PDU not allowed.

btLibMeStatusLmpResponseTimeout Timeout waiting for LMP response.

btLibMeStatusLmpTransdCollision LMP error transaction collission.

btLibMeStatusLocalTerminated Connection terminated by local host.

btLibMeStatusLowResources Connection terminated by remote
device due to low resources.

btLibMeStatusMaxAclConnections Reached maximum number of ACL
connections.

btLibMeStatusMaxConnections Reached maximum number of
connections.

btLibMeStatusMaxScoConnections Reached maximum number of SCO
connections.

btLibMeStatusMemoryFull Not enough memory.

btLibMeStatusMissingKey Missing key.

btLibMeStatusNoConnection No connection.

btLibMeStatusPageTimeout Page timeout.

btLibMeStatusPairingNotAllowed Pairing not allowed.

btLibMeStatusPersonalDevice Host rejected; remote is a personal
device.

Constant Meaning

Bluetooth Reference
Management Event Status Codes

198 Exploring Palm OS: Low-Level Communications

btLibMeStatusPowerOff Connection terminated due to remote
device powering off.

btLibMeStatusRepeatedAttempts Repeated attempts.

btLibMeStatusRoleChangeNotAllowed Can’t perform master/slave role
switch.

btLibMeStatusScoAirModeRejected SCO air mode rejected.

btLibMeStatusScoIntervalRejected SCO interval rejected.

btLibMeStatusScoOffsetRejected SCO offset rejected.

btLibMeStatusSecurityError Host rejected for security reasons.

btLibMeStatusUnknownHciCommand Unknown HCI command.Unknown
HCI command.

btLibMeStatusUnknownLmpPDU Unknown LMP PDU.

btLibMeStatusUnspecifiedError Unspecified error.

btLibMeStatusUnsupportedFeature Unsupported feature or parameter
value.

btLibMeStatusUnsupportedLmpParam Unsupported LMP parameter value.

btLibMeStatusUnsupportedRemote Unsupported remote feature.

btLibMeStatusUserTerminated Remote user terminated the
connection.

Constant Meaning

Bluetooth Reference
Miscellaneous Bluetooth Constants

Exploring Palm OS: Low-Level Communications 199

Miscellaneous Bluetooth Constants
Purpose These constants don’t fit into other categories, but are important

nonetheless.

Declared In BtLibTypes.h

Constants

Constant Meaning

btLibDeviceAddressSize The size, in bytes, of a
Bluetooth address.

btLibFeatureCreator The Bluetooth Library’s creator
ID, for use when calling the
Feature Manager.

btLibFeatureVersion The feature ID of the Bluetooth
Library’s version number.

btLibMaxDeviceNameLength The maximum length of a
Bluetooth device’s user-
friendly name.

btLibMaxSrvRecListLen The maximum number of
entries in a service record list.

Bluetooth Reference
Attribute Identifier Constants

200 Exploring Palm OS: Low-Level Communications

Attribute Identifier Constants
Purpose Define offsets for human-readable attributes that can be provided in

multiple languages.

Declared In BtLibTypes.h

Constants

Comments In order to support multiple natural languages for human-readable
attributes, a service record can contain a
btLibLanguageBaseAttributeIdList attribute. This attribute is
a list of triplets indicating the language ID, character encoding ID,
and base attribute ID for each language for which a language is
available.

Then these language support offsets are used in tandem with the
language base attribute ID list to locate the actual string for the
attribute in the desired language. For example, to locate the French
version of the service’s name, you would search the service record’s
btLibLanguageBaseAttributeIdList attribute for a triplet
whose language ID is btLibLangFrench, get the base attribute ID
from that triplet, and add btLibServiceNameOffset to that.

The resulting value is the ID of the attribute containing the service
name in French. Your application can then display the string using
the character encoding from the triplet.

Constant Meaning

btLibServiceNameOffset Offset to the human-
readable service name
attribute.

btLibServiceDescriptionOffset Offset to the human-
readable service
description attribute

btLibProviderNameOffset Offset to the human-
readable provider name
attribute.

Bluetooth Reference
Protocol UUIDs

Exploring Palm OS: Low-Level Communications 201

Protocol UUIDs
Purpose Raw values for protocol UUIDs that are predefined by the Bluetooth

specification.

Declared In BtLibTypes.h

Constants

Constant

btLibSdpUUID_PROT_AVCTP

btLibSdpUUID_PROT_AVDTP

btLibSdpUUID_PROT_BNEP

btLibSdpUUID_PROT_CMTP

btLibSdpUUID_PROT_FTP

btLibSdpUUID_PROT_HARDCOPY_CONTROL_CHANNEL

btLibSdpUUID_PROT_HARDCOPY_DATA_CHANNEL

btLibSdpUUID_PROT_HARDCOPY_NOTIFICATION

btLibSdpUUID_PROT_HIDP

btLibSdpUUID_PROT_HTTP

btLibSdpUUID_PROT_IP

btLibSdpUUID_PROT_L2CAP

btLibSdpUUID_PROT_OBEX

btLibSdpUUID_PROT_RFCOMM

btLibSdpUUID_PROT_SDP

btLibSdpUUID_PROT_TCP

btLibSdpUUID_PROT_TCS_AT

btLibSdpUUID_PROT_TCS_BIN

btLibSdpUUID_PROT_UDI_C_PLANE

btLibSdpUUID_PROT_UDP

Bluetooth Reference
RfComm Constants

202 Exploring Palm OS: Low-Level Communications

RfComm Constants
Purpose Constants for the RfCommprotocol.

Declared In BtLibTypes.h

Constants

Service Class UUIDs
Purpose Raw values for service class UUIDs predefined by the Bluetooth

specification.

Declared In BtLibTypes.h

Constants

btLibSdpUUID_PROT_UPNP

btLibSdpUUID_PROT_WSP

Constant

Constant Meaning

BT_RF_DEFAULT_FRAMESIZE The default size of an
RFCOMM frame.

BT_RF_MAX_FRAMESIZE The maximum size of an
RFCOMM frame.

BT_RF_MIN_FRAMESIZE The minimum size of an
RFCOMM frame.

Constant

btLibSdpUUID_SC_ADVANCED_AUDIO_DISTRIBUTION

btLibSdpUUID_SC_AUDIO_SINK

btLibSdpUUID_SC_AUDIO_SOURCE

btLibSdpUUID_SC_AUDIO_VIDEO

Bluetooth Reference
Service Class UUIDs

Exploring Palm OS: Low-Level Communications 203

btLibSdpUUID_SC_AV_REMOTE_CONTROL

btLibSdpUUID_SC_AV_REMOTE_CONTROL_TARGET

btLibSdpUUID_SC_BASIC_PRINTING

btLibSdpUUID_SC_BROWSE_GROUP_DESC

btLibSdpUUID_SC_COMMON_ISDN_ACCESS

btLibSdpUUID_SC_CORDLESS_TELEPHONY

btLibSdpUUID_SC_DIALUP_NETWORKING

btLibSdpUUID_SC_DIRECT_PRINTING

btLibSdpUUID_SC_DIRECT_PRINTING_REF_OBJ

btLibSdpUUID_SC_ESDP_UPNP_IP_LAP

btLibSdpUUID_SC_ESDP_UPNP_IP_PAN

btLibSdpUUID_SC_ESDP_UPNP_L2CAP

btLibSdpUUID_SC_FAX

btLibSdpUUID_SC_GENERIC_AUDIO

btLibSdpUUID_SC_GENERIC_FILE_TRANSFER

btLibSdpUUID_SC_GENERIC_NETWORKING

btLibSdpUUID_SC_GENERIC_TELEPHONY

btLibSdpUUID_SC_GN

btLibSdpUUID_SC_HANDSFREE

btLibSdpUUID_SC_HANDSFREE_AUDIO_GATEWAY

btLibSdpUUID_SC_HARDCOPY_CABLE_REPLACEMENT

btLibSdpUUID_SC_HCR_PRINT

btLibSdpUUID_SC_HCR_SCAN

btLibSdpUUID_SC_HEADSET

Constant

Bluetooth Reference
Service Class UUIDs

204 Exploring Palm OS: Low-Level Communications

btLibSdpUUID_SC_HEADSET_AUDIO_GATEWAY

btLibSdpUUID_SC_HUMAN_INTERFACE_DEVICE

btLibSdpUUID_SC_IMAGING

btLibSdpUUID_SC_IMAGING_AUTOMATIC_ARCHIVE

btLibSdpUUID_SC_IMAGING_REFERENCED_OBJECTS

btLibSdpUUID_SC_IMAGING_RESPONDER

btLibSdpUUID_SC_INTERCOM

btLibSdpUUID_SC_IRMC_SYNC

btLibSdpUUID_SC_IRMC_SYNC_COMMAND

btLibSdpUUID_SC_IRMC_SYNC_COMMAND

btLibSdpUUID_SC_LAN_ACCESS_PPP

btLibSdpUUID_SC_NAP

btLibSdpUUID_SC_OBEX_FILE_TRANSFER

btLibSdpUUID_SC_OBEX_OBJECT_PUSH

btLibSdpUUID_SC_PANU

btLibSdpUUID_SC_PNP_INFORMATION

btLibSdpUUID_SC_PRINTING_STATUS

btLibSdpUUID_SC_PUBLIC_BROWSE_GROUP

btLibSdpUUID_SC_REFERENCE_PRINTING

btLibSdpUUID_SC_REFLECTED_UI

btLibSdpUUID_SC_SERIAL_PORT

btLibSdpUUID_SC_SERVICE_DISCOVERY_SERVER

btLibSdpUUID_SC_SIM_ACCESS

btLibSdpUUID_SC_UDI_MT

Constant

Bluetooth Reference
BtLibAccessibleModeEnum

Exploring Palm OS: Low-Level Communications 205

Service Description Flags
Purpose Flags used by the sysBtLaunchCmdDescribeLaunchService launch

code.

Declared In BtLibTypes.h

Constants btLibServDescFlag_CAN_DO_UI
If set, indicates that the service application is capable of
responding to the sysBtLaunchCmdDoServiceUI launch
code. When the service is selected in the services view of the
Bluetooth panel, an “Advanced” button will appear, and
tapping that button will cause the launch code to be sent to
the service, which should do some sort of user interface
specific to the service.

BtLibAccessibleModeEnum Enum
Purpose The BtLibAccessibleModeEnum enum specifies a device’s

accessibility modes. See the “Generic Access Profile” chapter of the
Specification of the Bluetooth System for more information about
accessibility.

Declared In BtLibTypes.h

Constants btLibNotAccessible = 0x00
The device does not respond to a page or an inquiry.

btLibSdpUUID_SC_UDI_TA

btLibSdpUUID_SC_UPNP_IP_SERVICE

btLibSdpUUID_SC_UPNP_SERVICE

btLibSdpUUID_SC_VIDEO_CONFERENCING

btLibSdpUUID_SC_VIDEO_CONFERENCING_GW

btLibSdpUUID_SC_WAP

btLibSdpUUID_SC_WAP_CLIENT

Constant

Bluetooth Reference
BtLibConnectionRoleEnum

206 Exploring Palm OS: Low-Level Communications

btLibConnectableOnly = 0x02
The device responds to a page but not an inquiry.

btLibDiscoverableAndConnectable = 0x03
The device responds to both a page and an inquiry.

BtLibConnectionRoleEnum Enum
Purpose The BtLibConnectionRoleEnum enum specifies all the

connection roles a device can have. A device can either be a master
or a slave.

Declared In BtLibTypes.h

Constants btLibMasterRole
The device is a master.

btLibSlaveRole
The device is a slave.

BtLibGeneralPrefEnum Enum
Purpose The BtLibGeneralPreferenceEnum enum specifies the general

preferences that can be accessed using the
BtLibSetGeneralPreference() and
BtLibGetGeneralPreference() functions.

Declared In BtLibTypes.h

Constants btLibPref_Name
This preference is a BtLibFriendlyNameType containing
the user-friendly name of the local device.

btLibPref_UnconnectedAccessible
preference is a BtLibAccessibleModeEnum indicating the
accessibility mode of the local device when it is unconnected.

btLibPref_CurrentAccessible
This preference is a BtLibAccessibleModeEnum
indicating the current accessibility mode of the local device.
You cannot set this preference.

btLibPref_LocalClassOfDevice
This preference is a BtLibClassOfDeviceType indicating
the class of the local device.

Bluetooth Reference
BtLibLinkModeEnum

Exploring Palm OS: Low-Level Communications 207

btLibPref_LocalDeviceAddress
This preference is a BtLibDeviceAddressType indicating
the address of the local device. You cannot set this preference.

See Also BtLibGetGeneralPreference(),
BtLibSetGeneralPreference()

BtLibGetNameEnum Enum
Purpose The BtLibGetNameEnum enum specifies whether to retrieve a

device name from the cache, the remote device, or both.

Declared In BtLibTypes.h

Constants btLibCachedThenRemote
Look for a name in the cache. If the name is not in the cache,
ask the remote device.

btLibCachedOnly
Look for a name in the cache. If the name is not in the cache,
fail.

btLibRemoteOnly
Ignore any cached names and ask the remote device for its
name.

See Also BtLibGetRemoteDeviceName(),
BtLibGetRemoteDeviceNameSynchronous()

BtLibLinkModeEnum Enum
Purpose The BtLibLinkModeEnum enum specifies the modes a slave can

have. According to the Specification of the Bluetooth System, a slave
can be in active, sniff, hold, or park mode. However, the Bluetooth
library only supports the hold and active modes.

Declared In BtLibTypes.h

Constants btLibSniffMode
The slave is in sniff mode. This mode is not currently
supported.

btLibHoldMode
The slave is in hold mode.

Bluetooth Reference
BtLibLinkPrefsEnum

208 Exploring Palm OS: Low-Level Communications

btLibParkMode
The slave is in park mode. This mode is not currently
supported.

btLibActiveMode
The slave is active.

Comments btLibManagementEventModeChange

BtLibLinkPrefsEnum Enum
Purpose The BtLibLinkPrefsEnum enum specifies the link state

preferences that can be accessed with the BtLibLinkGetState()
and BtLibLinkSetState() functions.

Declared In BtLibTypes.h

Constants btLibLinkPref_Authenticated
This preference is a Boolean and indicates whether the link
has been authenticated or not.

btLibLinkPref_Encrypted
This preference is a Boolean and indicates whether the link
is encrypted or not.

btLibLinkPref_LinkRole
This preference is a BtLibConnectionRoleEnum and
indicates whether the remote device is a master or a slave.
You cannot set this preference but you can get its value.

See Also BtLibLinkGetState(), BtLibLinkSetState()

BtLibManagementEventEnum Enum
Purpose These event codes are posted on the Management Entity’s file

descriptor. Your application can poll the file descriptor to receive
notification that they have occurred.

Declared In BtLibTypes.h

Constants btLibManagementEventRadioState
This event is generated when the Bluetooth radio changes
state. The radio changes state when the radio is disconnected,
the power is turned on or off, the radio resets, or the radio

Bluetooth Reference
BtLibManagementEventEnum

Exploring Palm OS: Low-Level Communications 209

fails to initialize. The status code for this event explains why
the event gets generated.

btLibManagementEventInquiryResult
A remote device has responded to an inquiry that was started
with the BtLibStartInquiry() function.

btLibManagementEventInquiryComplete
The device inquiry started with the
BtLibStartInquiry() function has completed.

btLibManagementEventInquiryCanceled
The device inquiry has been canceled because the application
called BtLibCancelInquiry().

btLibManagementEventACLDisconnect
An ACL link has been disconnected. The status field
indicates the reason the link was disconnected.

btLibManagementEventACLConnectInbound
A remote device has established an ACL link to the local
device.

btLibManagementEventACLConnectOutbound
An attempt to establish an ACL link to a remote device has
completed; the status field indicates whether or not the
attempt was successful.

btLibManagementEventPiconetCreated
The piconet has been created. This event can result from
calling BtLibPiconetCreate().

btLibManagementEventPiconetDestroyed
The piconet has been destroyed. This event can result from
calling BtLibPiconetDestroy().

btLibManagementEventModeChange
A slave has changed its mode. A slave can be in active, sniff,
hold, or park mode.

btLibManagementEventAccessibilityChange
The accessibility mode of the local device has changed.

btLibManagementEventEncryptionChange
Encryption for a link has been enabled or disabled.

btLibManagementEventRoleChange
The master and slave devices for a link have switched roles.

Bluetooth Reference
BtLibProtocolEnum

210 Exploring Palm OS: Low-Level Communications

btLibManagementEventNameResult
A remote device name request has completed.

btLibManagementEventLocalNameChange
The user-friendly name of the local device has changed.

btLibManagementEventAuthenticationComplete
The authentication of a remote device has completed.

btLibManagementEventPasskeyRequest
A remote device has requested a passkey. Your application
does not have to respond to this request—the Bluetooth
library automatically handles it.

Because a passkey can be requested during or after a link is
established, consider disabling any failure timers while the
passkey dialog is up. The
btLibManagementEventPasskeyRequestComplete event
signals the completion of the passkey entry.

btLibManagementEventPasskeyRequestComplete
A passkey request has been processed. The status code for
this event is set to btLibErrNoError if the passkey was
entered or btLibErrCanceled if passkey entry was
cancelled. Note that this event does not tell you that the
authentication completed.

btLibManagementEventPairingComplete
Pairing has successfully completed and the link is
authenticated.

btLibManagementEventRSSI
A radio strength indication event has occurred.

BtLibProtocolEnum Enum
Purpose Define protocols supported by the Bluetooth system.

Declared In BtLibTypes.h

Constants btLibL2CapProtocol
L2CAP.

btLibRfCommProtocol
RFCOMM.

Bluetooth Reference
BtLibSocketEventEnum

Exploring Palm OS: Low-Level Communications 211

btLibSdpProtocol
SDP.

btLibBNEPProtocol
BNEP.

btLibSCOProtocol
SCO.

BtLibSdpUuidSizeEnum Enum
Purpose The BtLibSdpUuidSizeEnum enum specifies the sizes that a

UUID can have. See BtLibSdpUuidType for more information.

Declared In BtLibTypes.h

Constants btLibUuidSize16 = 2
16-bit UUID.

btLibUuidSize32 = 4
32-bit UUID.

btLibUuidSize128 = 16
Full-size 128-bit UUID.

BtLibSocketEventEnum Enum
Purpose Specify events that can occur in response to socket operations; these

are used by the event field in the BtLibSocketEventType

Bluetooth Reference
BtLibSocketEventEnum

212 Exploring Palm OS: Low-Level Communications

structure; see that structure’s description for details on the data
specific to each event.

Declared In BtLibTypes.h

Constants btLibSocketEventConnectRequest
A remote device has requested a connection.

You must respond to this event with a call to
BtLibSocketRespondToConnection().

If the remote device requests a L2Cap connection, this event
is sent to the L2Cap listener socket with a PSM that matches
the PSM of the request.

If the remote device requests an RfComm connection, this
event is sent to the RfComm listener socket with a server
channel that matches the server channel of the request.

To convert a socket into a listener socket use the
BtLibSocketListen() function.

btLibSocketEventConnectedOutbound
An outbound connection initiated by a call to
BtLibSocketConnect() has completed. The status field
is btLibErrNoError if the connection has completed
successfully. Otherwise, the status field indicates why the
connection failed.

btLibSocketEventConnectedInbound
A remote connection has been accepted because the
application has called
BtLibSocketRespondToConnection().

If the remote device requests a L2Cap connection, this event
is sent to the L2Cap listener socket with a PSM that matches
the PSM of the requested connection. The Bluetooth library
creates a new socket that exchanges data with the remote
device.

If the remote device requests an RfComm connection, this
event is sent to the RfComm listener socket with a server
channel that matches the server channel of the requested
connection. The Bluetooth library creates a new socket that
exchanges data with the remote device.

Bluetooth Reference
BtLibSocketEventEnum

Exploring Palm OS: Low-Level Communications 213

btLibSocketEventDisconnected
If this event arrives on a data socket, then it means that the
data socket has been disconnected, and the status field
indicates the reson for hte disconnection.

If this event arrives on a listener socket, then it means that an
inbound connection couldn’t be established following a call
to BtLibSocketRespondToConnection(), and the
status field indicates the reason why the inbound
connection failed.

IMPORTANT: In the case of failure of an inbound connection
attempt, a new data socket is still returned in the
eventData.newSocket field of the event. You must call
BtLibSocketClose() to close it.

btLibSocketEventSendComplete
A previous send operation has completed. The application
initiated this request by calling BtLibSocketSend().

NOTE: This event is only provided to maintain compatibility with
previous versions of Palm OS. Applications do not have to wait for
this event before reusing the data buffer passed to
BtLibSocketSend(), which they had to do in versions of Palm
OS prior to Palm OS Cobalt, version 6.0.

btLibSocketEventSdpServiceRecordHandle
A request for remote service records matching a list of service
classes has completed. The application initiated this request
by calling the
BtLibSdpServiceRecordsGetByServiceClass()
function.

btLibSocketEventSdpGetAttribute
An attribute request has completed. The application initiated
this request by calling the
BtLibSdpServiceRecordGetAttribute() function.

btLibSocketEventSdpGetStringLen
A string or URL length request has completed. The
application initiated this request by calling
BtLibSdpServiceRecordGetStringOrUrlLength().

Bluetooth Reference
BtLibSocketInfoEnum

214 Exploring Palm OS: Low-Level Communications

btLibSocketEventSdpGetNumListEntries
A number of list entries request has completed. The
application initiated this request by calling
BtLibSdpServiceRecordGetNumListEntries().

btLibSocketEventSdpGetNumLists
A number of lists request has completed. The application
initiated this request by calling
BtLibSdpServiceRecordGetNumLists().

btLibSocketEventSdpGetRawAttribute
A get raw attribute request has completed. The application
initiated the request by calling
BtLibSdpServiceRecordGetRawAttribute().

btLibSocketEventSdpGetRawAttributeSize
A get raw attribute size request has completed. The
application initiated this request by calling
BtLibSdpServiceRecordGetSizeOfRawAttribute().

btLibSocketEventSdpGetServerChannelByUuid
A get server channel request has completed. The application
initiated this request by calling
BtLibSdpGetServerChannelByUuid().

btLibSocketEventSdpGetPsmByUuid
A get PSM request has completed. The application initiated
this request by calling BtLibSdpGetPsmByUuid().

BtLibSocketInfoEnum Enum
Purpose The BtLibSocketInfoEnum enum allows you to specify which

information you want to retrieve using the BtLibSocketGetInfo
function.

Declared In BtLibTypes.h

Constants btLibSocketInfo_Protocol = 0
BtLibSocketGetInfo() returns a BtLibProtocolEnum
representing the socket’s protocol.

btLibSocketInfo_RemoteDeviceAddress
BtLibSocketGetInfo() returns a
BtLibDeviceAddressType representing the address of the
device at the other end of this socket.

Bluetooth Reference
BtLibSocketInfoEnum

Exploring Palm OS: Low-Level Communications 215

btLibSocketInfo_SendPending = 100
BtLibSocketGetInfo() returns a Boolean indicating
whether a send is currently in progress.

btLibSocketInfo_MaxTxSize
BtLibSocketGetInfo() returns a uint32_t representing
the maximum packet size the local device can transmit.

btLibSocketInfo_MaxRxSize
BtLibSocketGetInfo() returns a uint32_t representing
the maximum packet size the local device can receive.

btLibSocketInfo_L2CapPsm = 200
BtLibSocketGetInfo() returns a BtLibL2CapPsmType
that represents the Protocol and Service Multiplexer (PSM)
this socket is using to route packets. This information is only
valid for L2Cap sockets.

btLibSocketInfo_L2CapChannel
BtLibSocketGetInfo() returns a
BtLibL2CapChannelIdType that represents the channel
identifier for this socket. This information is valid for L2Cap
sockets only. See the “Logical Link Control and Adaptation
Protocol Specification” chapter of the Specification of the
Bluetooth System for more information about channel
identifiers.

btLibSocketInfo_RfCommServerId = 300
BtLibSocketGetInfo() returns a
BtLibRfCommServerIdType that represents the socket’s
RfComm server channel. This information is valid for
RfComm sockets only.

btLibSocketInfo_RfCommOutstandingCredits
BtLibSocketGetInfo() returns a uint16_t containing
the number of remaining credits on this socket. This
information is valid for RfComm sockets only.

btLibSocketInfo_SdpServiceRecordHandle = 400
BtLibSocketGetInfo() returns the
BtLibSdpRemoteServiceRecordHandle for the service
record associated with this socket. This information is valid
for SDP sockets only.

btLibSocketInfo_DeviceNum = 1000
Used to get the minor device number of the STREAMS
L2Cap or RfComm device instance.

Bluetooth Reference
Universal Service Attribute IDs

216 Exploring Palm OS: Low-Level Communications

Universal Service Attribute IDs
Purpose Service attributes whose definitions are common to all service

records.

Declared In BtLibTypes.h

Constants

Comments Universal attributes aren’t necessarily all used in every service
record; they’re simply standard attributes that may be used. If a
service record has an attribute with an attribute ID assigned to a
universal attribute, the attribute value must conform to the
universal attribute’s definition.

Only two attributes are required to exist in every service record
instance: btLibServiceRecordHandle and
btLibServiceClassIdList.

Constant Definition

btLibServiceRecordHandle An SDP service record handle.

btLibServiceClassIdList A list of class IDs.

btLibServiceRecordState A service record state.

btLibServiceId A service ID.

btLibProtocolDescriptorList A protocol descriptor list.

btLibBrowseGroupList A browse group list.

btLibLanguageBaseAttributeIdList A language attribute ID list. See
“Attribute Identifier Constants” on
page 200.

btLibTimeToLive A time-to-live value.

btLibAvailability Availability information.

btLibProfileDescriptorList A profile descriptor list.

btLibDocumentationUrl An URL to documentation.

btLibClientExecutableUrl The URL to a client executable.

btLibIconUrl The URL to an icon.

Bluetooth Reference
sysBtLaunchCmdDescribeService

Exploring Palm OS: Low-Level Communications 217

Bluetooth Application Launch Codes

sysBtLaunchCmdDoServiceUI
Purpose Sent to Bluetooth service applications when the user taps the

“Advanced” button in the services view of the Bluetooth panel. This
gives the service the opportunity to display and manage custom UI
to let the user configure the service.

Declared In CmnLaunchCodes.h

Prototype #define sysBtLaunchCmdDoServiceUI 89

Parameters None.

Comments NOTE: This launch code is only set if the
btLibServDescFlag_CAN_DO_UI flag is set in the response
when sysBtLaunchCmdDescribeService is called.

sysBtLaunchCmdDescribeService
Purpose Sent to Bluetooth service applications to obtain information it needs

in order to display its services view.

Declared In CmnLaunchCodes.h

Prototype #define sysBtLaunchCmdDescribeService 86

Parameters The launch code’s parameter block pointer references a
BtLibServiceDescriptionType structure, in which the service
application should return information about the service offered by
the application.

Bluetooth Reference
sysBtLaunchCmdExecuteService

218 Exploring Palm OS: Low-Level Communications

sysBtLaunchCmdExecuteService
Purpose Sent to Bluetooth service applications to let them know that there is

an inbound-connected data socket.

Declared In CmnLaunchCodes.h

Prototype #define sysBtLaunchCmdExecuteService 77

Parameters The launch code’s parameter block pointer references a
BtLibServiceExecutionParamsType structure. This structure
identifies the connected L2Cap or RFComm socket.

Comments Applications register themselves as Bluetooth services by calling
BtLibRegisterService(). The service application receives this
launch code each time a remote client connects. It receives the
launch code in the context of the System process or the Application
process, according to the execAsNormalApp registration flag.
Bluetooth service applications must respond to this launch code.

The BtLibServiceExecutionParamsType structure contains a
file descriptor opened to a connected L2Cap or RFComm device
instance, with a serial interface module optionally pushed onto that
(depending upon the pushSerialModule registration flag). Upon
entry, it is connected to its remote peer and ready for data transfer.
Upon exit, it must be closed.

See Also sysBtLaunchCmdPrepareService

sysBtLaunchCmdPrepareService
Purpose Sent to Bluetooth service applications to let them know that a

listener socket has been created and to request an SDP service
record.
CmnLaunchCodes.h

Prototype #define sysBtLaunchCmdPrepareService 76

Parameters The launch code’s parameter block pointer references a
BtLibServicePreparationParamsType structure. This
structure identifies both a L2Cap or RFComm listener socket and an
SDP service record that the Bluetooth service application fills in to
describe the service that it is offering.

Bluetooth Reference
sysBtLaunchCmdPrepareService

Exploring Palm OS: Low-Level Communications 219

Comments Applications register themselves as Bluetooth services by calling
BtLibRegisterService(). The service application receives this
launch code once after it registers itself, and then after each service
execution session, in the context of the System Process. All
Bluetooth service applications must respond to this launch code.

The BtLibServicePreparationParamsType structure contains
a file descriptor opened to an L2Cap or RFComm device instance.
Upon entry it has already been marked as a listener. Upon return it
must be left unchanged; the Bluetooth system will take care of
calling BtLibSdpServiceRecordStartAdvertising() to
advertise the service, and BtLibSocketClose() after an inbound
connection has been made.

The BtLibServicePreparationParamsType structure also
contains a handle on a local SDP service record that, upon entry, is
empty. Upon exit, it must be set up to describe the service that the
application has to offer.

In most cases, the application can respond to this launch code by
simply calling
BtLibSdpServiceRecordSetAttributesForSocket(),
passing the BtLibServicePreparationParamsType structure’s
fields along with a service class UUID and a service name. In more
complex cases, the application will need to use other
BtLibSdpxxx() functions to construct the service record. In such
cases it is the application’s responsibility to open a Management
Entity device instance to pass to those functions, and to close it
before returning.

See Also sysBtLaunchCmdExecuteService

Bluetooth Reference
Bluetooth Functions and Macros

220 Exploring Palm OS: Low-Level Communications

Bluetooth Functions and Macros

BtLibAddrAToBtd Function
Purpose Convert an ASCII string a Bluetooth device address in colon-

separated form to a 48-bit BtLibDeviceAddressType.

Declared In BtLib.h

Prototype status_t BtLibAddrAToBtd (const char *strBuf,
BtLibDeviceAddressType *devAddrP)

Parameters → strBuf
String containing ASCII colon-separated Bluetooth device
address.

← devAddrP

Returns Pointer to a BtLibDeviceAddressType to store the converted
device address.

Returns Returns btLibErrNoError to indicate that the conversion was
successful.

See Also BtLibAddrBtdToA()

BtLibAddrBtdToA Function
Purpose Convert 48-bit BtLibDeviceAddressType to an ASCII string in

colon-separated form.

Declared In BtLib.h

Prototype status_t BtLibAddrBtdToA
(BtLibDeviceAddressType *devAddrP,
char *strBuf, uint16_t strBufSize)

Parameters → devAddrP
Address of a Bluetooth device. This parameter must not be
NULL.

← strBuf
Pointer to a buffer to store the ASCII formatted Bluetooth
devices address upon return. This parameter must not be
NULL.

Bluetooth Reference
BtLibCancelInquiry

Exploring Palm OS: Low-Level Communications 221

→ strBufSize
Size of the strBuf buffer, in bytes. Must be at least 18.

Returns Returns btLibErrNoError if successful. Returns
btLibErrParamErr if

• devAddrP is NULL

• strBuf is NULL

• strBufSize is less than 18, the number of bytes required to
store the ASCII formatted address

BtLibCancelInquiry Function
Purpose Cancel a Bluetooth inquiry in process.

Declared In BtLib.h

Prototype status_t BtLibCancelInquiry (int32_t fdME)

Parameters → fdME
The ME’s file descriptor.

Returns Returns one of the following values:

btLibErrNoError
The inquiry process was canceled before it started.

btLibErrPending
The cancellation is pending. When it succeeds, notification
will be provided through a management event.

btLibErrInProgress
The inquiry is already being canceled.

btLibErrNotInProgress
No inquiry is in progress to be canceled.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Comments The function cancels inquiries initiated by
BtLibStartInquiry(). The
btLibManagementEventInquiryCanceled event indicates that
the cancellation has completed.

Bluetooth Reference
BtLibClose

222 Exploring Palm OS: Low-Level Communications

A Bluetooth discovery initiated using BtLibDiscoverDevices()
cannot be canceled with this function. Only the user can cancel these
inquiries by tapping the Cancel button.

See Also BtLibStartInquiry()

BtLibClose Function
Purpose Close the Bluetooth Management Entity.

Declared In BtLib.h

Prototype status_t BtLibClose (int32_t fdME)

Parameters → fdME
The Management Entity’s file descriptor.

Returns btLibErrNoError
Success.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Comments Applications must call this function when they’re done using the
Management Entity file descriptor they obtained by calling
BtLibOpen().

If this function closes the last Management Entity file descriptor,
and there are no connected L2CAP, RFCOMM, SCO, or BNEP file
descriptors open, then the following steps are taken:

• If there are any remaining ACL links, they are destroyed.

• If the radio hardware has been used since the last
reinitialization, the stack and radio are shut down and
reinitialized.

See Also BtLibOpen()

Bluetooth Reference
BtLibDiscoverDevices

Exploring Palm OS: Low-Level Communications 223

BtLibDiscoverDevices Function
Purpose Perform remote device discovery, presenting a user interface to let

the user select remote devices or cancel the operation.

Declared In BtLib.h

Prototype status_t BtLibDiscoverDevices (int32_t fdME,
char *instructionTxt, char *buttonTxt,
Boolean addressAsName,
BtLibClassOfDeviceType *filterTable,
uint8_t filterTableLen, Boolean hideFavorites,
BtLibDeviceAddressType *deviceTable,
uint8_t deviceTableLen,
uint8_t *numSelectedPtr)

Parameters → fdME
The ME’s file descriptor.

→ instructionTxt
Text to appear at the top of the selection box. Specify NULL to
use the default text, which is “Select a device:” or “Select one
or more devices:” depending on whether the
deviceTableLen parameter is 1 or greater than one.

→ buttonTxt
Text to appear in the “done” button. Specify NULL to use the
default text.

→ addressAsName
If true, devices’ addresses will be displayed instead of their
names.

→ filterTable
Pointer to a list of devices classes that should appear in the
list. Specify NULL to list all devices.

→ filterTableLen
The number of entries in the filterTable list.

→ hideFavorites
If true, devices that are in the user’s favorite devices list are
not shown.

← deviceTable
Pointer to a table to receive the addresses of the devices the
user selects. Must not be NULL.

Bluetooth Reference
BtLibDiscoverDevices

224 Exploring Palm OS: Low-Level Communications

→ deviceTableLen
The number of slots in the deviceTable array.

← numSelectedPtr
Receives the number of devices returned in the
deviceTable list.

Returns Returns one of the following values:

btLibErrNoError
Success.

btLibErrCanceled
The user canceled the discovery process.

iosErrBadFD
The specified file descriptor is invalid.

iosErrNotOpened
The file descriptor specified is not for an opened
Management Entity.

Comments If the addressAsName parameter is true, the user will be
presented with the discovered devices’ Bluetooth addresses. If it’s
false, the Bluetooth system will attempt to obtain each device’s
user-friendly name, either from the cache or by connecting to the
remote device and requesting it. If this is successful, the name will
be displayed.

The filterTable can be used to restrict the devices that are
presented to the user based on class of device; for example, if the
application needs to locate a Bluetooth headset, it can specify
btLibCOD_Minor_Audio_Headset in the filterTable.

The user will be prevented from selecting more than
deviceTableLen devices.

Bluetooth Reference
BtLibGetGeneralPreference

Exploring Palm OS: Low-Level Communications 225

BtLibGetGeneralPreference Function
Purpose Get one of the general management preferences.

Declared In BtLib.h

Prototype status_t BtLibGetGeneralPreference (int32_t fdME,
BtLibGeneralPrefEnum pref, void *prefValueP,
uint16_t prefValueSize)

Parameters → fdME
The ME’s file descriptor.

→ pref
The general preference to get.

← prefValueP
Pointer to a buffer to receive the preference’s value. You must
allocate this buffer, and this pointer must not be NULL.

→ prefValueSize
The size, in bytes, of the prefValueP buffer. You must set
this size to match the size of the requested preference.

Returns Returns one of the following values:

btLibErrNoError
Success.

btLibErrParamError
One or more parameters is invalid. Be sure that the
prefValueSize parameter matches the size of the
preference value.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Comments Specify the preference with a member of the
BtLibGeneralPrefEnum.

Bluetooth Reference
BtLibGetRemoteDeviceName

226 Exploring Palm OS: Low-Level Communications

IMPORTANT: The 68K compatibility version of the Bluetooth
library does not include the null terminator in the length of string
preferences when you call this function; this is to maintain
compatiblity with a bug in previous versions of Palm OS. The
ARM-native version of this function, however, correctly includes
the null terminator in the length of strings.

See Also BtLibSetGeneralPreference()

BtLibGetRemoteDeviceName Function
Purpose Get the name of the remote device with the specified address.

Declared In BtLib.h

Prototype status_t BtLibGetRemoteDeviceName (int32_t fdME,
BtLibDeviceAddressType *remoteDeviceP,
BtLibGetNameEnum retrievalMethod)

Parameters → fdME
The ME’s file descriptor.

→ remoteDeviceP
Pointer to a BtLibDeviceAddressType containing the
address of the device whose name you wish to retrieve.

→ retrievalMethod
Method used to retrieve the user-friendly remote device
name. See BtLibGetNameEnum.

Returns Returns one of the following values:

btLibErrBusy
There is already a name request pending.

btLibErrPending
The results will be returned through a notification.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Bluetooth Reference
BtLibGetRemoteDeviceNameSynchronous

Exploring Palm OS: Low-Level Communications 227

Comments This function returns btLibErrPending and generates a
btLibManagementEventNameResult event when the name is
available.

The Bluetooth library maintains a cache of 50 device names. If the
retrievalMethod parameter is btLibCachedThenRemote, this
function first checks the cache for a name. If the name is not in the
cache, the function queries the remote device for its name, forming a
temporary ACL connection if one is not already in place. In this
case,

Other values of the retrievalMethod parameter can instruct this
function to look for the name only in the cache or only on the remote
device. See BtLibGetNameEnum for more information.

BtLibGetRemoteDeviceNameSynchronous
Function

Purpose Return the user-friendly name of the given remote device, blocking
until the name is determined.

Declared In BtLib.h

Prototype status_t BtLibGetRemoteDeviceNameSynchronous
(int32_t fdME,
BtLibDeviceAddressType *remoteDeviceP,
BtLibGetNameEnum retrievalMethod,
char *buffer, size_t bufferLen)

Parameters → fdME
The ME’s file descriptor.

→ remoteDeviceP
The address of the remote Bluetooth device.

→ retrievalMethod
A BtLibGetNameEnum indicating the method to use when
obtaining the name.

← buffer
A buffer to receive the name of the remote device. This buffer
must be at least btLibMaxDeviceNameLength bytes long.

→ bufferLen
Size, in bytes, of the buffer.

Bluetooth Reference
BtLibL2CapHToNL

228 Exploring Palm OS: Low-Level Communications

Returns Returns one of the following values:

btLibErrNoError
The name structure was successfully retrieved from the
cache. No event will be generated.

btLibErrBusy
There is already a name request pending.

iosErrBadFD
The file descriptor is not valid.

iosErrNotOpened
The specified file descriptor isn’t open.

Comments This function blocks until the name retrieval attempt is completed.
The resulting name is a null-terminated string. If the name is not
found, an empty string is returned.

BtLibL2CapHToNL Macro
Purpose Macro that converts a 32-bit value from host to L2Cap byte order.

L2Cap byte order is little endian.

Declared In BtLib.h

Prototype #define BtLibL2CapHToNL (x)

Parameters → x
32-bit value to convert.

Returns Returns x in L2Cap byte order.

See Also BtLibL2CapHToNS(), BtLibL2CapNToHL(),
BtLibL2CapNToHS()

BtLibL2CapHToNS Macro
Purpose Macro that converts a 16-bit value from host to L2Cap byte order.

L2Cap byte order is little endian.

Declared In BtLib.h

Prototype #define BtLibL2CapHToNS (x)

Parameters → x
16-bit value to convert.

Bluetooth Reference
BtLibL2CapNToHS

Exploring Palm OS: Low-Level Communications 229

Returns Returns x in L2Cap byte order.

See Also BtLibL2CapHToNL(), BtLibL2CapNToHS(),
BtLibL2CapNToHL()

BtLibL2CapNToHL Macro
Purpose Macro that converts a 32-bit value from L2Cap to host byte order.

L2Cap byte order is little endian.

Declared In BtLib.h

Prototype #define BtLibL2CapNToHL (x)

Parameters → x
32-bit value to convert.

Returns Returns x in host byte order.

See Also BtLibL2CapNToHS(), BtLibL2CapHToNL(),
BtLibL2CapHToNS()

BtLibL2CapNToHS Macro
Purpose Macro that converts a 16-bit value from L2Cap to host byte order.

L2Cap byte order is little endian.

Declared In BtLib.h

Prototype #define BtLibL2CapNToHS (x)

Parameters → x
16-bit value to convert.

Returns Returns x in host byte order.

See Also BtLibL2CapNToHL(), BtLibL2CapHToNS(),
BtLibL2CapNToHL()

Bluetooth Reference
BtLibLinkConnect

230 Exploring Palm OS: Low-Level Communications

BtLibLinkConnect Function
Purpose Create a Bluetooth Asynchronous Connectionless (ACL) link.

Declared In BtLib.h

Prototype status_t BtLibLinkConnect (int32_t fdME,
BtLibDeviceAddressType *remoteDeviceP)

Parameters → fdME
The ME’s file descriptor.

→ remoteDeviceP
Pointer to a BtLibDeviceAddressType containing the
address of the remote device.

Returns Returns one of the following values:

btLibErrPending
The results will be returned through an event.

btLibErrAlreadyConnected
An ACL link already exists between the local device and the
specified remote device.

btLibErrBluetoothOff
The Bluetooth radio is off. The user can turn the radio on and
off with a setting in the preferences panel.

btLibErrBusy
A piconet is currently being created or destroyed.

btLibErrTooMany
Cannot create another ACL link because the maximum
allowed number has already been reached.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Comments An ACL link is a packet-switched physical level connection between
two devices that is needed before the devices can form a RfComm or
L2Cap connection.

Bluetooth Reference
BtLibLinkDisconnect

Exploring Palm OS: Low-Level Communications 231

When the connection is established or if it fails to be established, the
btLibManagementEventACLConnectOutbound event is
generated.

See Also BtLibLinkDisconnect()

BtLibLinkDisconnect Function
Purpose Disconnect an existing ACL Link.

Declared In BtLib.h

Prototype status_t BtLibLinkDisconnect (int32_t fdME,
BtLibDeviceAddressType *remoteDeviceP)

Parameters → fdME
The ME’s file descriptor.

→ remoteDeviceP
Pointer to a BtLibDeviceAddressType containing the
address of the remote device.

Returns Returns one of the following values:

btLibErrNoError
The connection attempt was canceled before it started. No
event is generated.

btLibErrPending
When the link actually disconnects, a
btLibManagementEventACLDisconnect event is
generated.

btLibErrBusy
Can’t disconnect the link because the piconet is being
destroyed.

btLibErrNoConnection
No link to the specified device exists.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Bluetooth Reference
BtLibLinkGetState

232 Exploring Palm OS: Low-Level Communications

Comments When the link disconnects, a
btLibManagementEventACLDisconnect event is generated.

See Also BtLibLinkDisconnect()

BtLibLinkGetState Function
Purpose Get the state of an ACL link.

Declared In BtLib.h

Prototype status_t BtLibLinkGetState (int32_t fdME,
BtLibDeviceAddressType *remoteDeviceP,
BtLibLinkPrefsEnum pref, void *linkStateP,
uint16_t linkStateSize)

Parameters → fdME
The ME’s file descriptor.

→ remoteDeviceP
Pointer to a BtLibDeviceAddressType containing the
address of the remote device.

→ pref
The link preference to retrieve. See BtLibLinkPrefsEnum.

← linkStateP
Pointer to a buffer to receive the value of the preference. You
must allocate this buffer, and this pointer must not be NULL.
See BtLibLinkPrefsEnum for more information.

→ linkStateSize
The size, in bytes, of the linkStateP buffer.

Returns Returns one of the following values:

btLibErrNoError
Success. The linkState variable has been filled in.

btLibErrNoAclLink
No link to the specified remote device exists.

btLibErrParamError
The linkStateSize parameter is not same as the size of
the preference value.

iosErrBadFd
The specified file descriptor is invalid.

Bluetooth Reference
BtLibLinkSetState

Exploring Palm OS: Low-Level Communications 233

iosErrNotOpened
The specified file descriptor is not open.

See Also BtLibLinkPrefsEnum

BtLibLinkSetState Function
Purpose Set the state of an ACL link.

Declared In BtLib.h

Prototype status_t BtLibLinkSetState (int32_t fdME,
BtLibDeviceAddressType *remoteDeviceP,
BtLibLinkPrefsEnum pref, void *linkStateP,
uint16_t linkStateSize)

Parameters → fdME
The ME’s file descriptor.

→ remoteDeviceP
Pointer to a BtLibDeviceAddressType containing the
address of the remote device.

→ pref
The link preference to set. See BtLibLinkPrefsEnum.

→ linkStateP
Pointer to the preference’s new value. If this is NULL, the call
is ignored and no error occurs. See BtLibLinkPrefsEnum.

→ linkStateSize
Size, in bytes, of the linkStateP buffer.

Returns Returns one of the following values:

btLibErrPending
The results will be returned through an event.

btLibErrFailed
An attempt was made to encrypt a link before authenticating
it.

btLibErrNoAclLink
No link to the specified remote device exists.

btLibErrParamError
The preference cannot be set or linkStateSize is invalid.

Bluetooth Reference
BtLibMEEventName

234 Exploring Palm OS: Low-Level Communications

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Comments Applications use this function to set the state of an ACL link. This
function may generate events depending on the preference you
change. The
btLibManagementEventAuthenticationComplete event
indicates the link authentication has completed. The
btLibManagementEventEncryptionChange event indicates
that the encryption has been enabled or disabled.

See Also BtLibLinkGetState()

BtLibMEEventName Function
Purpose Return the name of the specified Management Entity event code.

Declared In BtLib.h

Prototype const char *BtLibMEEventName
(BtLibManagementEventEnum event)

Parameters → event
The event whose name should be returned.

Returns Returns a pointer to a null-terminated string indicating the name of
the ME event code.

Comments This function is provided primarily for debugging purposes.

BtLibOpen Function
Purpose Open a file descriptor to the Management Entity device, and wait

for reinitialization of the stack and radio hardware if necessary.

Declared In BtLib.h

Prototype status_t BtLibOpen (int32_t *fdME)

Parameters ← fdME
Receives the ME’s file descriptor.

Returns Returns one of the following values:

Bluetooth Reference
BtLibPiconetCreate

Exploring Palm OS: Low-Level Communications 235

btLibErrNoError
Success.

btLibErrOutOfMemory
Not enough memory available to open the library.

btLibErrRadioInitFailed
The Bluetooth stack or radio could not be initialized.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Comments Applications must call this function before using the Bluetooth
library. If this function is called just after a call to BtLibClose() or
BtLibSocketClose() that caused stack and radio reinitialization,
then this function will block until reinitialization is complete. If it
does block, and it is being executed on the main UI thread, then a
progress dialog is displayed.

NOTE: Previous versions of Palm OS would return from this
function before actually initializing the radio hardware, and would
inform you of success or failure through a series of events
including btLibManagementEventRadioState,
btLibManagementEventLocalNameChange, and
btLibManagementEventAccessibilityChange. Under
Palm OS Cobalt, this call simply fails with an error if the
hardware cannot be initialized.

See Also BtLibClose()

BtLibPiconetCreate Function
Purpose Set up the local device to be the master of a piconet.

Declared In BtLib.h

Prototype status_t BtLibPiconetCreate (int32_t fdME,
Boolean unlockInbound, Boolean discoverable)

Parameters → fdME
The ME’s file descriptor.

Bluetooth Reference
BtLibPiconetCreate

236 Exploring Palm OS: Low-Level Communications

→ unlockInbound
If true, the piconet accepts inbound connections. Otherwise,
the piconet only allows outbound connections.

→ discoverable
If true, configures the radio to be discoverable. In other
words, the radio responds to inquiries. If false, configures
the radio to be only connectable. In other words, only devices
that know the radio’s Bluetooth device address can connect
to it. This parameter is ignored if unlockInbound is false.

Returns Returns one of the following values:

btLibErrNoError
Successfully created the piconet with the local device as the
master. No event is generated.

btLibErrPending
An ACL link exists, and a role change and/or accessibility
change is necessary. The result will be returned in a
btLibManagementEventPiconetCreated event.

btLibErrInProgress
A previous call to this function returned
btLibErrPending, and the result is still pending.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Comments Despite its name, this function doesn’t really create a piconet; it
simply sets the local device’s link management policy such that the
local device can be the master of a piconet. It’s still necessary to
create ACL links with other devices to actually form the piconet.

This function may be called when there are no ACL links, or when
there is already one ACL link. In the latter case, if the local device
isn’t already master, a master-slave switch will be initiated. Once the
local device has been set up to be piconet master, more ACL links
may be established.

If this function returns btLibErrPending, then a
btLibManagementEventInquiryResult event is generated,
and the status field of that event indicates whether the local device
can be set up to be piconet master.

Bluetooth Reference
BtLibPiconetDestroy

Exploring Palm OS: Low-Level Communications 237

If the accessibility of the radio changes due to this operation, a
btLibManagementEventAccessibilityChange event is
generated.

See Also BtLibPiconetDestroy(), BtLibPiconetLockInbound(),
BtLibPiconetUnlockInbound()

BtLibPiconetDestroy Function
Purpose Destroy the piconet by disconnecting links to all devices and

removing all restrictions on whether the local device is a master or a
slave.

Declared In BtLib.h

Prototype status_t BtLibPiconetDestroy (int32_t fdME)

Parameters → fdME
The ME’s file descriptor.

Returns Returns one of the following values:

btLibErrNoError
Successfully destroyed the piconet. A
btLibManagementEventPiconetDestroyed event is not
generated.

btLibErrPending
The piconet is being destroyed, and a
btLibManagementEventPiconetDestroyed event will
be generated when the operation succeeds or fails.

btLibErrBusy
The piconet is already in the process of being destroyed.

btLibErrNoPiconet
No piconet exists to be destroyed.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Comments A btLibManagementEventACLDisconnect event is generated
for each ACL link that is disconnected. When the piconet is
successfully destroyed or fails to be destroyed, a

Bluetooth Reference
BtLibPiconetLockInbound

238 Exploring Palm OS: Low-Level Communications

btLibManagementEventPiconetDestroyed is generated. The
status field of the BtLibStringType structure accompanying
the event indicates whether the piconet was destroyed or not.

See Also BtLibPiconetCreate()

BtLibPiconetLockInbound Function
Purpose Prevent remote devices from creating ACL links into the piconet.

Declared In BtLib.h

Prototype status_t BtLibPiconetLockInbound (int32_t fdME)

Parameters → fdME
The ME’s file descriptor.

Returns Returns one of the following values:

btLibErrNoError
Success.

btLibErrBusy
The piconet is in the process of being destroyed.

btLibErrNoPiconet
No piconet exists.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Comments After locking inbound connections, outbound connections are still
allowed. Locking inbound connections maximizes the bandwidth
for members of the piconet to transmit data to each other.

See Also BtLibPiconetUnlockInbound()

Bluetooth Reference
BtLibPiconetUnlockInbound

Exploring Palm OS: Low-Level Communications 239

BtLibPiconetUnlockInbound Function
Purpose Allow remote devices to create ACL links into the piconet.

Declared In BtLib.h

Prototype status_t BtLibPiconetUnlockInbound (int32_t fdME,
Boolean discoverable)

Parameters → fdME
The ME’s file descriptor.

→ discoverable
If true, configures the radio to be discoverable. In other
words, the radio responds to inquiries. If false, configures
the radio to be only connectable. In other words, only devices
that know the radio’s Bluetooth device address can connect
to it.

Returns Returns one of the following values:

btLibErrNoError
Success.

btLibErrBusy
The piconet is in the process of being destroyed.

btLibErrNoPiconet
No piconet exists.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Comments Allowing inbound connections lowers the bandwidth available to
transmit data between members of the piconet because the radio
must periodically scan for incoming links.

See Also BtLibPiconetLockInbound()

Bluetooth Reference
BtLibRegisterService

240 Exploring Palm OS: Low-Level Communications

BtLibRegisterService Function
Purpose Register a persistent Bluetooth service application.

Declared In BtLib.h

Prototype status_t BtLibRegisterService
(BtLibServiceRegistrationParamsType *params)

Parameters → params
A BtLibServiceRegistrationParamsType structure
describing the service the application wishes to register.

Returns Returns one of the following:

btLibErrNoError
Success.

btLibErrTooMany
The maximum number of services is already registered.

Comments An application only needs to register a service once after a system
boot; subsequent registrations are ignored.

Service applications must respond to the
sysBtLaunchCmdPrepareService and
sysBtLaunchCmdExecuteService launch codes.

BtLibRfCommHToNL Macro
Purpose Macro that converts a 32-bit value from host to RfComm byte order.

RfComm byte order is big endian.

Declared In BtLib.h

Prototype #define BtLibRfCommHToNL (x)

Parameters → x
32-bit integer to convert.

Returns Returns x in RfComm byte order.

See Also BtLibRfCommHToNS(), BtLibRfCommNToHL(),
BtLibRfCommNToHS()

Bluetooth Reference
BtLibRfCommNToHS

Exploring Palm OS: Low-Level Communications 241

BtLibRfCommHToNS Macro
Purpose Macro that converts a 16-bit value from host to RfComm byte order.

RfComm byte order is big endian.

Declared In BtLib.h

Prototype #define BtLibRfCommHToNS (x)

Parameters → x
16-bit integer to convert.

Returns Returns x in RfComm byte order.

See Also BtLibRfCommHToNL(), BtLibRfCommNToHL(),
BtLibRfCommNToHS()

BtLibRfCommNToHL Macro
Purpose Macro that converts a 32-bit value from RfComm to host byte order.

RfComm byte order is big endian.

Declared In BtLib.h

Prototype #define BtLibRfCommNToHL (x)

Parameters → x
32-bit integer to convert.

Returns Returns x in host byte order.

See Also BtLibRfCommNToHS(), BtLibRfCommHToNL(),
BtLibRfCommHToNS()

BtLibRfCommNToHS Macro
Purpose Macro that converts a 16-bit value from RfComm to host byte order.

RfComm byte order is big endian.

Declared In BtLib.h

Prototype #define BtLibRfCommNToHS (x)

Parameters → x
16-bit integer to convert.

Bluetooth Reference
BtLibSdpCompareUuids

242 Exploring Palm OS: Low-Level Communications

Returns Returns x in host byte order.

See Also BtLibRfCommNToHL(), BtLibRfCommHToNL(),
BtLibRfCommHToNS()

BtLibSdpCompareUuids Function
Purpose Compare two UUIDs.

Declared In BtLib.h

Prototype status_t BtLibSdpCompareUuids (int32_t fdME,
BtLibSdpUuidType *uuid1,
BtLibSdpUuidType *uuid2)

Parameters → fdME
The ME’s file descriptor.

→ uuid1
The first UUID to compare.

→ uuid2
The second UUID to compare.

Returns Returns one of the following values:

btLibErrNoError
UUIDs are the same

btLibErrError
UUIDs are different.

btLibErrParamError
One or both UUIDs are invalid.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Bluetooth Reference
BtLibSdpGetPsmByUuid

Exploring Palm OS: Low-Level Communications 243

BtLibSdpGetPsmByUuid Function
Purpose Get an available L2Cap PSM using SDP.

Declared In BtLib.h

Prototype status_t BtLibSdpGetPsmByUuid
(BtLibSocketRef socketRef,
BtLibDeviceAddressType *rDev,
BtLibSdpUuidType *serviceUUIDList,
uint8_t uuidListLen)

Parameters → socketRef
An SDP socket.

→ rDev
Device address of a remote device to query. This parameter
must not be NULL.

→ serviceUUIDList
Array of UUIDs that must match those of the service record.
This parameter must not be NULL.

→ uuidListLen
Length of serviceUuidList. A maximum of 12 entries is
allowed.

Returns Returns one of the following values:

btLibErrPending
The PSM value will be returned through an event.

btLibErrOutOfMemory
Not enough memory to complete request.

btLibErrParamError
One or more parameters is invalid.

btLibErrSocket
The specified socket is invalid or not in use.

btLibErrSocketRole
The specified socket is not connected.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Bluetooth Reference
BtLibSdpGetRawDataElementSize

244 Exploring Palm OS: Low-Level Communications

Comments This function returns the L2Cap PSM of the first SDP record on the
remote device that contains all the specified UUIDs.

This function generates a btLibSocketEventSdpGetPsmByUuid
event when the query completes or fails.

See Also BtLibSdpGetServerChannelByUuid()

BtLibSdpGetRawDataElementSize Macro
Purpose Macro that returns a constant representing the data element’s size.

Declared In BtLib.h

Prototype BtLibSdpGetRawDataElementSize (header)

Parameters → header
First byte of a data element.

Returns A constant representing the size of the data element.

Comments The first byte of a SDP data element contains the type and size of the
data element.

See Also BtLibSdpGetRawElementType(),
BtLibSdpParseRawDataElement(),
BtLibSdpVerifyRawDataElement(), “Bluetooth Data Element
Sizes”

BtLibSdpGetRawElementType Macro
Purpose Macro that returns an SDP data element's type.

Declared In BtLib.h

Prototype BtLibSdpGetRawElementType (header)

Parameters → header
The first byte of a data element.

Returns The type of the data element.

Bluetooth Reference
BtLibSdpGetServerChannelByUuid

Exploring Palm OS: Low-Level Communications 245

Comments The first byte of a SDP data element contains the type and size of the
data element.

See Also BtLibSdpGetRawDataElementSize(),
BtLibSdpParseRawDataElement(),
BtLibSdpVerifyRawDataElement(), “Bluetooth Data Element
Types”

BtLibSdpGetServerChannelByUuid Function
Purpose Get an available RfComm server channel using SDP.

Declared In BtLib.h

Prototype status_t BtLibSdpGetServerChannelByUuid
(BtLibSocketRef socketRef,
BtLibDeviceAddressType *rDev,
BtLibSdpUuidType *serviceUUIDList,
uint8_t uuidListLen)

Parameters → socketRef
An SDP socket.

→ rDev
Device address of a remote device to query. This parameter
must not be NULL.

→ serviceUUIDList
Array of UUIDs that must match those of the service record.
This parameter must not be NULL.

→ uuidListLen
Length of serviceUuidList. A maximum of 12 entries is
allowed.

Returns Returns one of the following values:

btLibErrPending
The server channel will be returned through an event.

btLibErrOutOfMemory
Not enough memory to complete request.

btLibErrParamError
One or more parameters is invalid.

Bluetooth Reference
BtLibSdpHToNL

246 Exploring Palm OS: Low-Level Communications

btLibErrSocket
The specified socket is invalid or not in use.

btLibErrSocketRole
The specified socket is not connected.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Comments This function returns the RfComm server channel number of the
first SDP record on the remote device that contains all the specified
UUIDs.

This function generates a
btLibSocketEventSdpGetServerChannelByUuid event when
the query completes or fails.

See Also BtLibSdpGetPsmByUuid()

BtLibSdpHToNL Macro
Purpose Macro that converts a 32-bit value from host to Service Discovery

Protocol (SDP) byte order. SDP byte order is big endian.

Declared In BtLib.h

Prototype #define BtLibSdpHToNL (x)

Parameters → x
32-bit value to convert.

Returns Returns x in SDP byte order.

See Also BtLibSdpHToNS(), BtLibSdpNToHL(), BtLibSdpNToHS()

Bluetooth Reference
BtLibSdpNToHS

Exploring Palm OS: Low-Level Communications 247

BtLibSdpHToNS Macro
Purpose Macro that converts a 16-bit value from host to Service Discovery

Protocol (SDP) byte order. SDP byte order is big endian.

Declared In BtLib.h

Prototype #define BtLibSdpHToNS (x)

Parameters → x
16-bit value to convert.

Returns Returns x in SDP byte order.

See Also BtLibSdpHToNL(), BtLibSdpNToHL(), BtLibSdpNToHS()

BtLibSdpNToHL Macro
Purpose Macro that converts a 32-bit value from Service Discovery Protocol

(SDP) to host byte order. SDP byte order is big endian.

Declared In BtLib.h

Prototype #define BtLibSdpNToHL (x)

Parameters → x
32-bit value to convert.

Returns Returns x in host byte order.

See Also BtLibSdpNToHS(), BtLibSdpHToNL(), BtLibSdpHToNS()

BtLibSdpNToHS Macro
Purpose Macro that converts a 16-bit value from Service Discovery Protocol

(SDP) to host byte order. SDP byte order is big endian.

Declared In BtLib.h

Prototype #define BtLibSdpNToHS (x)

Parameters → x
16-bit value to convert.

Returns Returns x in host byte order.

See Also BtLibSdpNToHL(), BtLibSdpHToNL(), BtLibSdpHToNS()

Bluetooth Reference
BtLibSdpParseRawDataElement

248 Exploring Palm OS: Low-Level Communications

BtLibSdpParseRawDataElement Function
Purpose Parse a raw SDP data element to determine where the data field

begins and the size of the data field.

Declared In BtLib.h

Prototype status_t BtLibSdpParseRawDataElement
(int32_t fdME, const uint8_t *value,
uint16_t *offset, uint32_t *length)

Parameters → fdME
The ME’s file descriptor.

→ value
Pointer to a raw SDP data element.

← offset
Offset, in bytes, between value and the start of the data
field.

← length
Length, in bytes, of the data field.

Returns Returns one of the following values:

btLibErrNoError
Successfully parsed the attribute.

btLibErrNotOpen
The reference Bluetooth Management Entity is not open.

btLibErrParamError
dataElementP, offset, or length is NULL.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Comments A data element has three fields. The first field, called the header
field, identifies the type of value stored in the data element and the
size of the element. The second field, called the size field, contains
more information about the size of the data if it’s not completely
specified by the header. Otherwise the size field is omitted. The
third field, called the data field, contains the data element’s actual
value.

Bluetooth Reference
BtLibSdpServiceRecordCreate

Exploring Palm OS: Low-Level Communications 249

The offset this function returns is the offset between the start of the
data element and the data field. The size this function returns is the
the size of the data field. Note that the sum of the offset and the size
is the size of the data element.

This function is especially useful for iterating through entries in a
list attribute.

The Specification of the Bluetooth System has more information about
the structure of a data element.

See Also BtLibSdpVerifyRawDataElement(),
BtLibSdpGetRawElementType(),
BtLibSdpGetRawDataElementSize()

BtLibSdpServiceRecordCreate Function
Purpose Allocate a memory chunk that represents an SDP service record.

Declared In BtLib.h

Prototype status_t BtLibSdpServiceRecordCreate
(int32_t fdME, BtLibSdpRecordHandle *recordH)

Parameters → fdME
The ME’s file descriptor.

← recordH
SDP memory handle for the new SDP memory record.

Returns Returns one of the following values:

btLibErrNoError
Success.

btLibErrOutOfMemory
Not enough memory to allocate the memory chunk.

btLibErrParamError
recordH is NULL.

iosErrBadFd
The specified file descriptor is invalid.

Bluetooth Reference
BtLibSdpServiceRecordDestroy

250 Exploring Palm OS: Low-Level Communications

iosErrNotOpened
The specified file descriptor is not open.

See Also BtLibSdpServiceRecordDestroy(),
BtLibSdpServiceRecordStartAdvertising(),
BtLibSdpServiceRecordStopAdvertising()

BtLibSdpServiceRecordDestroy Function
Purpose Free the memory associated with a SDP memory record.

Declared In BtLib.h

Prototype status_t BtLibSdpServiceRecordDestroy
(int32_t fdME, BtLibSdpRecordHandle recordH)

Parameters → fdME
The ME’s file descriptor.

→ recordH
SDP memory handle associated with the memory chunk to
be freed.

Returns Returns one of the following values:

btLibErrNoError
Success.

btLibErrParamError
recordH does not refer to an valid SDP memory record.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Comments This function stops advertising the record before it frees it.

See Also BtLibSdpServiceRecordCreate(),
BtLibSdpServiceRecordStartAdvertising(),
BtLibSdpServiceRecordStopAdvertising()

Bluetooth Reference
BtLibSdpServiceRecordGetAttribute

Exploring Palm OS: Low-Level Communications 251

BtLibSdpServiceRecordGetAttribute Function
Purpose Retrieve the value of a specific attribute in a SDP memory record. If

the attribute is a list or a protocol descriptor list (a list of lists), this
function retrieves the value of a specific list entry.

Declared In BtLib.h

Prototype status_t BtLibSdpServiceRecordGetAttribute
(int32_t fdME, BtLibSdpRecordHandle recordH,
BtLibSdpAttributeIdType attributeID,
BtLibSdpAttributeDataType *attributeValue,
uint16_t listNumber, uint16_t listEntry)

Parameters → fdME
The ME’s file descriptor.

→ recordH
Handle identifying the SDP memory record.

→ attributeID
Attribute identifier of the attribute to retrieve.

← attributeValue
Buffer into which this function stores the attribute’s value.
You must allocate this buffer. This pointer must not be NULL.

→ listNumber
List to query if the attribute is a protocol descriptor list.
Otherwise this parameter is ignored.

→ listEntry
Item to get in the list if the attribute is a list attribute.
Otherwise this parameter is ignored.

Returns Returns one of the following values:

btLibErrNoError
Success.

btLibErrPending
The specified SDP memory record refers to a service record
on a remote device. The result will be returned through an
event.

btLibErrBusy
The connection is parked. This error can occur only if the
SDP memory record refers to a service record on a remote
device.

Bluetooth Reference
BtLibSdpServiceRecordGetAttribute

252 Exploring Palm OS: Low-Level Communications

btLibErrInProgress
A query is already pending on this socket. This error can
occur only if the SDP memory record refers to a service
record on a remote device.

btLibErrNoAclLink
An ACL link to the remote device does not exist.

btLibErrOutOfMemory
Not enough memory to perform the query.

btLibErrParamError
recordH is an invalid handle or attributeValues is
NULL.

btLibErrSdpAttributeNotSet
The specified attribute does not exist in the specified service
record.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Comments If the specified SDP memory record refers to a service record on a
remote device, this function generates a
btLibSocketEventSdpGetAttribute event when the result is
available or the query fails. In this case, the attribute value is
contained within the control and data parts of the event when it is
received by a call to IOSGetmsg(). The main part of the event is in
the control part, and the string or URL associated with it, if there is
one, is in the data part.

If you are retrieving a string or a URL, you need to allocate
additional space. See the documentation for
BtLibSdpAttributeDataType for more information.

This function supports the universal attributes defined in “Service
Discovery Protocol” chapter of the Specification of the Bluetooth
System.

See Also BtLibSdpServiceRecordSetAttribute(),
BtLibSdpServiceRecordMapRemote(),
BtLibSdpServiceRecordGetNumListEntries(),
BtLibSdpServiceRecordGetNumLists(),
BtLibSdpServiceRecordGetStringOrUrlLength()

Bluetooth Reference
BtLibSdpServiceRecordGetNumListEntries

Exploring Palm OS: Low-Level Communications 253

BtLibSdpServiceRecordGetNumListEntries
Function

Purpose Get the number of entries in a list attribute.

Declared In BtLib.h

Prototype status_t BtLibSdpServiceRecordGetNumListEntries
(int32_t fdME, BtLibSdpRecordHandle recordH,
BtLibSdpAttributeIdType attributeID,
uint16_t listNumber, uint16_t *numEntries)

Parameters → fdME
The ME’s file descriptor.

→ recordH
Handle identifying the SDP memory record.

→ attributeID
Attribute identifier of the attribute whose number of list
entries is retrieved.

→ listNumber
List to query if the attribute is a
ProfileDescriptorListEntry. Otherwise this
parameter is ignored.

← numEntries
On return, indicates the number of entries in the list.

Returns Returns one of the following values:

btLibErrNoError
Success

btLibErrPending
The specified SDP memory record refers to a service record
on a remote device. The result will be returned through an
event.

btLibErrBusy
The connection is parked. This error can occur only if the
SDP memory record refers to a service record on a remote
device.

btLibErrInProgress
Another query is pending on this socket. This error can occur
only if the SDP memory record refers to a service record on a
remote device.

Bluetooth Reference
BtLibSdpServiceRecordGetNumListEntries

254 Exploring Palm OS: Low-Level Communications

btLibErrNoAclLink
An ACL link to the remote device does not exist.

btLibErrOutOfMemory
Not enough memory to perform this query.

btLibErrParamError
recordH is an invalid handle or numEntries is NULL.

btLibErrSdpAttributeNotSet
The specified attribute does not exist in the specified service
record.

btLibErrStackNotOpen
The Bluetooth stack failed to open when the library was
opened.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Comments This function supports the universal attributes defined in “Service
Discovery Protocol” chapter of the Specification of the Bluetooth
System. Specifically, this function gives valid results for
ServiceClassIdList, ProtocolDescriptorList, BrowseGroupList,
LanguageBaseAttributeIDList, and ProfileDescriptorList attributes.

If the specified SDP memory record refers to a service record on a
remote device, this function generates a
btLibSocketEventSdpGetNumListEntries event when the
result is available or the query fails.

See Also BtLibSdpServiceRecordGetNumLists(),
BtLibSdpServiceRecordGetAttribute(),
BtLibSdpServiceRecordGetStringOrUrlLength(),
BtLibSdpServiceRecordMapRemote()

Bluetooth Reference
BtLibSdpServiceRecordGetNumLists

Exploring Palm OS: Low-Level Communications 255

BtLibSdpServiceRecordGetNumLists Function
Purpose Get the number of lists in a protocol descriptor list SDP attribute.

Declared In BtLib.h

Prototype status_t BtLibSdpServiceRecordGetNumLists
(int32_t fdME, BtLibSdpRecordHandle recordH,
BtLibSdpAttributeIdType attributeID,
uint16_t *numLists)

Parameters → fdME
The ME’s file descriptor.

→ recordH
Handle identifying the SDP memory record.

→ attributeID
Attribute identifier of the attribute whose number of lists is
retrieved.

← numLists
On return, indicates the number of lists.

Returns Returns one of the following values:

btLibErrNoError
Success.

btLibErrPending
The specified SDP memory record refers to a service record
on a remote device. The result will be returned through an
event.

btLibErrBusy
The connection is parked. This error can occur only if the
SDP memory record refers to a service record on a remote
device.

btLibErrInProgress
Another query is pending on this socket. This error can occur
only if the SDP memory record refers to a service record on a
remote device.

btLibErrNoAclLink
An ACL link to the remote device does not exist.

btLibErrOutOfMemory
Not enough memory to perform this query.

Bluetooth Reference
BtLibSdpServiceRecordGetRawAttribute

256 Exploring Palm OS: Low-Level Communications

btLibErrParamError
recordH is an invalid handle or numLists is NULL.

btLibErrSdpAttributeNotSet
The specified attribute does not exist in the specified service
record.

btLibErrStackNotOpen
The Bluetooth stack failed to open when the library was
opened.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Comments If the specified SDP memory record refers to a service record on a
remote device, this function generates a
btLibSocketEventSdpGetNumListEntries event when the
result is available or the query fails.

See Also BtLibSdpServiceRecordGetNumListEntries(),
BtLibSdpServiceRecordGetAttribute(),
BtLibSdpServiceRecordGetStringOrUrlLength(),
BtLibSdpServiceRecordMapRemote()

BtLibSdpServiceRecordGetRawAttribute
Function

Purpose Retrieve the value of an attribute of an SDP memory record. The
retrieved attribute is in the format defined in the “Service Discovery
Protocol” chapter of the Specification of the Bluetooth System.

Declared In BtLib.h

Prototype status_t BtLibSdpServiceRecordGetRawAttribute
(int32_t fdME, BtLibSdpRecordHandle recordH,
BtLibSdpAttributeIdType attributeID,
uint8_t *value, uint16_t *valSize)

Parameters → fdME
The ME’s file descriptor.

→ recordH
Handle identifying the SDP memory record.

Bluetooth Reference
BtLibSdpServiceRecordGetRawAttribute

Exploring Palm OS: Low-Level Communications 257

→ attributeID
Attribute identifier of the attribute to retrieve.

← value
Buffer into which this function stores the retrieved SDP
attribute data. You must allocate this buffer. This pointer
must not be NULL.

← valSize
Size of the value buffer upon entry. This parameter must not
be zero. Upon return, contains the number of bytes retrieved.

Returns Returns one of the following values:

btLibErrNoError
Success.

btLibErrPending
The specified SDP memory record refers to a service record
on a remote device. The result will be returned through an
event.

btLibErrBusy
The connection is parked. This error can occur only if the
SDP memory record refers to a service record on a remote
device.

btLibErrInProgress
A query is already pending on this socket. This error can
occur only if the SDP memory record refers to a service
record on a remote device.

btLibErrNoAclLink
An ACL link to the remote device does not exist.

btLibErrOutOfMemory
Not enough memory to perform the query.

btLibErrParamError
recordH is an invalid handle, value is NULL, valSize is 0,
or the size of the attribute value is larger than valSize.

btLibErrSdpAttributeNotSet
The specified attribute does not exist in the specified service
record.

iosErrBadFd
The specified file descriptor is invalid.

Bluetooth Reference
BtLibSdpServiceRecordGetSizeOfRawAttribute

258 Exploring Palm OS: Low-Level Communications

iosErrNotOpened
The specified file descriptor is not open.

Comments If the specified SDP memory record refers to a service record on a
remote device, this function generates a
btLibSocketEventSdpGetRawAttribute event when the
result is available or the query fails.

See Also BtLibSdpServiceRecordSetRawAttribute(),
BtLibSdpServiceRecordGetSizeOfRawAttribute(),
BtLibSdpServiceRecordMapRemote()

BtLibSdpServiceRecordGetSizeOfRawAttribute
Function

Purpose Return the size, in bytes, of any attribute of an SDP memory record.

Declared In BtLib.h

Prototype status_t BtLibSdpServiceRecordGetSizeOfRawAttribute
(int32_t fdME, BtLibSdpRecordHandle recordH,
BtLibSdpAttributeIdType attributeID,
uint16_t *size)

Parameters → fdME
The ME’s file descriptor.

→ recordH
Handle identifying the SDP memory record.

→ attributeID
Attribute identifier of the attribute whose size is retrieved.

← size
Pointer to a uint16_t into which the size of the attribute
will be stored by this function. Must not be NULL.

Returns Returns one of the following values:

btLibErrNoError
Success.

btLibErrPending
The specified SDP memory record refers to a service record
on a remote device. The result will be returned through an
event.

Bluetooth Reference
BtLibSdpServiceRecordGetSizeOfRawAttribute

Exploring Palm OS: Low-Level Communications 259

btLibErrBusy
The connection is parked. This error can occur only if the
SDP memory record refers to a service record on a remote
device.

btLibErrInProgress
A query is already pending on this socket. This error can
occur only if the SDP memory record refers to a service
record on a remote device.

btLibErrNoAclLink
An ACL link to the remote device does not exist.

btLibErrOutOfMemory
Not enough memory to perform the query.

btLibErrParamError
recordH is an invalid handle or size is NULL.

btLibErrSdpAttributeNotSet
The specified attribute does not exist in the specified service
record.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Comments If the specified SDP memory record refers to a service record on a
remote device, this function generates a
btLibSocketEventSdpGetRawAttributeSize event when the
result is available or the query fails.

See Also BtLibSdpServiceRecordGetRawAttribute(),
BtLibSdpServiceRecordMapRemote(),
BtLibSdpServiceRecordSetRawAttribute()

Bluetooth Reference
BtLibSdpServiceRecordGetStringOrUrlLength

260 Exploring Palm OS: Low-Level Communications

BtLibSdpServiceRecordGetStringOrUrlLength
Function

Purpose Get the length of a string or URL attribute in a SDP memory record.

Declared In BtLib.h

Prototype status_t BtLibSdpServiceRecordGetStringOrUrlLengt
h (int32_t fdME, BtLibSdpRecordHandle recordH,
BtLibSdpAttributeIdType attributeID,
uint16_t *size)

Parameters → fdME
The ME’s file descriptor.

→ recordH
Handle identifying the SDP memory record.

→ attributeID
Attribute identifier of the attribute whose length is retrieved.

← size
Pointer to a uint16_t into which the length of the string or
URL will be stored. This parameter cannot be NULL.

Returns Returns one of the following values:

btLibErrNoError
Success.

btLibErrPending
The specified SDP memory record refers to a service record
on a remote device. The result will be returned through an
event.

btLibErrBusy
The connection is parked. This error can occur only if the
SDP memory record refers to a service record on a remote
device.

btLibErrInProgress
A query is already pending on this socket. This error can
occur only if the SDP memory record refers to a service
record on a remote device.

btLibErrNoAclLink
An ACL link to the remote device does not exist.

Bluetooth Reference
BtLibSdpServiceRecordMapRemote

Exploring Palm OS: Low-Level Communications 261

btLibErrOutOfMemory
Not enough memory to perform the query.

btLibErrParamError
The recordH does not refer to a valid handle, length is
NULL, or the attribute is not a string or a URL.

btLibErrSdpAttributeNotSet
The specified attribute does not exist in the specified SDP
record.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Comments Bluetooth strings do not include a null terminator.

If the SDP memory record refers to a service record on a remote
device, this function generates a
btLibSocketEventSdpGetStringLen event when the result is
available or the query fails.

See Also BtLibSdpServiceRecordGetAttribute(),
BtLibSdpServiceRecordGetNumListEntries(),
BtLibSdpServiceRecordGetNumLists(),
BtLibSdpServiceRecordMapRemote()

BtLibSdpServiceRecordMapRemote Function
Purpose Configure an SDP memory record so it refers to a service record on a

remote device.

Declared In BtLib.h

Prototype status_t BtLibSdpServiceRecordMapRemote
(BtLibSocketRef socketRef,
BtLibDeviceAddressType *rDev,
BtLibSdpRemoteServiceRecordHandle remoteHandle
, BtLibSdpRecordHandle recordH)

Parameters → socketRef
The SDP socket.

→ rDev
The device to query.

Bluetooth Reference
BtLibSdpServiceRecordSetAttribute

262 Exploring Palm OS: Low-Level Communications

→ remoteHandle
Remote service record handle.

→ recordH
SDP memory handle of an empty SDP record.

Returns Returns one of the following values:

btLibErrNoError
The mapping was successful.

btLibErrOutOfMemory
Not enough memory to perform mapping.

btLibErrParamError
recordH is invalid or refers to an invalid memory chunk.

btLibErrSdpMapped
The SDP memory record is already mapped to a remote
service record.

btLibErrSocket
The specified socket is invalid or not in use.

btLibErrSocketProtocol
The specified socket is not an SDP socket.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Comments You must create an SDP memory record using
BtLibSdpServiceRecordCreate() before using this function.

Note that this function does not copy the contents of the remote
service record to the SDP memory record in local memory.

BtLibSdpServiceRecordSetAttribute Function
Purpose Set the value of an attribute in an SDP memory record. If the

attribute is a list or a protocol descriptor list (a list of lists), this

Bluetooth Reference
BtLibSdpServiceRecordSetAttribute

Exploring Palm OS: Low-Level Communications 263

function sets the value of a specific list entry. The SDP memory
record must represent a local unadvertised service record.

Declared In BtLib.h

Prototype status_t BtLibSdpServiceRecordSetAttribute
(int32_t fdME, BtLibSdpRecordHandle recordH,
BtLibSdpAttributeIdType attributeID,
BtLibSdpAttributeDataType *attributeValue,
uint16_t listNumber, uint16_t listEntry)

Parameters → fdME
The ME’s file descriptor.

→ recordH
Handle of the service record to modify.

→ attributeID
Attribute identifier of the attribute to set.

→ attributeValue
Pointer to the new value for the attribute. This pointer must
not be NULL.

→ listNumber
to modify if the attribute is a protocol descriptor list.
Otherwise this parameter is ignored.

→ listEntry
Item to set in the list if the attribute is a list attribute.
Otherwise this parameter is ignored.

Returns Returns one of the following values:

btLibErrNoError
Success.

btLibErrAdvertised
An advertised record was passed in recordH. The record
must not be advertised.

btLibErrOutOfMemory
Not enough memory to set the attribute.

btLibErrParamError
recordH is invalid or attributeValue is NULL.

btLibErrRemoteRecord
A remote record was passed in recordH. The record must be
local.

Bluetooth Reference
BtLibSdpServiceRecordSetAttributesForSocket

264 Exploring Palm OS: Low-Level Communications

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Comments This function only works on SDP memory records that are local and
not advertised. You can advertise the record after you finish
modifying it.

This function supports the universal attributes defined in the
Specification of the Bluetooth System.

See Also BtLibSdpServiceRecordGetAttribute(),
BtLibSdpServiceRecordStartAdvertising(),
BtLibSdpServiceRecordStopAdvertising()

BtLibSdpServiceRecordSetAttributesForSocket
Function

Purpose Initialize an SDP memory record so it can represent an existing
L2Cap or RfComm listener socket as a service.

Declared In BtLib.h

Prototype status_t BtLibSdpServiceRecordSetAttributesForSocket(
BtLibSocketRef socketRef,
BtLibSdpUuidType *serviceUuidList,
uint8_t uuidListLen, const char *serviceName,
uint16_t serviceNameLen,
BtLibSdpRecordHandle recordH)

Parameters → socketRef
Reference number for an RfComm or L2Cap socket in
listening mode.

→ serviceUuidList
List of UUIDs for the service record.

→ uuidListLen
Number of entries in serviceUUIDList. A maximum of 12
entries is allowed.

Bluetooth Reference
BtLibSdpServiceRecordSetAttributesForSocket

Exploring Palm OS: Low-Level Communications 265

→ serviceName
User-friendly name for the service in English; if you want to
use another language, you should use the lower-level
functions and a language base attribute ID list.

→ serviceNameLen
Size, in bytes, of serviceName.

→ recordH
Handle of the service record to be initialized.

Returns Returns one of the following values:

btLibErrNoError
Success.

btLibErrAdvertised
The record specified by recordH is being advertised. You
must stop advertising the record before you can change it.

btLibErrNotOpen
The Bluetooth library Entity is not open.

btLibErrOutOfMemory
Not enough memory to store the contents of the SDP record.

btLibErrParamError
recordH is not a valid record handle.

btLibErrRemoteRecord
A remote record was passed in recordH. Because the service
is local, the record must be local.

btLibErrSocket
The specified socket is invalid or not in use.

btLibErrSocketRole
The specified socket is not a listener socket.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Comments You must first create an SDP record using
BtLibSdpServiceRecordCreate(). However, the record must
not be advertised. In other words, don’t call

Bluetooth Reference
BtLibSdpServiceRecordSetRawAttribute

266 Exploring Palm OS: Low-Level Communications

BtLibSdpServiceRecordStartAdvertising() until after
calling this function.

See Also BtLibSdpServiceRecordCreate(), BtLibSocketListen()

BtLibSdpServiceRecordSetRawAttribute
Function

Purpose Set the value for an attribute of a SDP memory record. This function
allows you to specify the attribute as an array of bytes in the format
defined in the “Service Discovery Protocol” chapter of the
Specification of the Bluetooth System. The SDP memory record must
represent a local unadvertised service record.

Declared In BtLib.h

Prototype status_t BtLibSdpServiceRecordSetRawAttribute
(int32_t fdME, BtLibSdpRecordHandle recordH,
BtLibSdpAttributeIdType attributeID,
const uint8_t *value, uint16_t valSize)

Parameters → fdME
The ME’s file descriptor.

→ recordH
Handle identifying the SDP memory record.

→ attributeID
Attribute identifier of the attribute to set.

→ value
Array of bytes containing SDP attribute data in the format
defined in the SDP protocol. This parameter must not be
NULL.

→ valSize
Size, in bytes, of value. This parameter must not be 0.

Returns Returns one of the following values:

btLibErrNoError
Success.

btLibErrAdvertised
recordH is being advertised. The record must not be
advertised.

Bluetooth Reference
BtLibSdpServiceRecordsGetByServiceClass

Exploring Palm OS: Low-Level Communications 267

btLibErrOutOfMemory
Not enough memory to set the attribute.

btLibErrParamError
recordH is invalid, value is NULL, or valSize is 0.

btLibErrRemoteRecord
recordH refers to a service record on a remote device. The
service record must be local.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Comments If the service record is being advertised, you must stop advertising
it before you modify it.

See Also BtLibSdpServiceRecordGetRawAttribute(),
BtLibSdpServiceRecordSetAttribute(),
BtLibSdpServiceRecordStartAdvertising(),
BtLibSdpServiceRecordStopAdvertising()

BtLibSdpServiceRecordsGetByServiceClass
Function

Purpose Get the service record handles corresponding to the service classes
advertised on a remote device.

Declared In BtLib.h

Prototype status_t BtLibSdpServiceRecordsGetByServiceClass
(BtLibSocketRef socketRef,
BtLibDeviceAddressType *rDev,
BtLibSdpUuidType *uuidList,
uint16_t uuidListLen)

Parameters → socketRef
The SDP socket.

→ rDev
Remote device to query.

→ uuidList
Array of UUIDs identifying the service classes. This
parameter must not be NULL.

Bluetooth Reference
BtLibSdpServiceRecordsGetByServiceClass

268 Exploring Palm OS: Low-Level Communications

→ uuidListLen
Number of elements in the uuidList. You can specify a
maximum of 12 UUIDs.

Returns Returns one of the following values:

btLibErrPending
The results will be returned through an event.

btLibErrBusy
The connection to the remote device is parked.

btLibErrInProgress
A SDP query is already in progress on this socket.

btLibErrNoAclLink
An ACL link to the remote device does not exist.

btLibErrOutOfMemory
Not enough memory to perform the query.

btLibErrParamError
One or more parameters are invalid.

btLibErrSocket
The specified socket is invalid or not in use.

btLibErrSocketProtocol
The specified socket is not an SDP socket.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Comments This function generates a
btLibSocketEventSdpServiceRecordHandle event when the
matching service records are available or the query fails.

Bluetooth Reference
BtLibSdpServiceRecordStartAdvertising

Exploring Palm OS: Low-Level Communications 269

BtLibSdpServiceRecordStartAdvertising
Function

Purpose Make visible an SDP memory record representing a local SDP
service record. Remote devices can access visible service records
through SDP.

Declared In BtLib.h

Prototype status_t BtLibSdpServiceRecordStartAdvertising
(int32_t fdME, BtLibSdpRecordHandle recordH)

Parameters → fdME
The ME’s file descriptor.

→ recordH
Handle of the service record to make available to remote
devices.

Returns Returns one of the following values:

btLibErrNoError
Success

btLibErrParamError
recordH is not a valid record handle.

btLibErrRemoteRecord
recordH refers to a remote record. The record must be local.

btLibErrSdpAdvertised
The service record is already accessible by remote devices.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Comments You cannot modify an SDP memory record while it is available to
remote devices.

See Also BtLibSdpServiceRecordStopAdvertising()

Bluetooth Reference
BtLibSdpServiceRecordStopAdvertising

270 Exploring Palm OS: Low-Level Communications

BtLibSdpServiceRecordStopAdvertising
Function

Purpose Hide an SDP memory record representing a local SDP service
record. Remote devices cannot access hidden service records
through SDP.

Declared In BtLib.h

Prototype status_t BtLibSdpServiceRecordStopAdvertising
(int32_t fdME, BtLibSdpRecordHandle recordH)

Parameters → fdME
The ME’s file descriptor.

→ recordH
Handle of the service record to hide.

Returns Returns one of the following values:

btLibErrNoError
Success. The SDP record is no longer available to remote
devices.

btLibErrParamError
recordH is not a valid record handle.

btLibErrRemoteRecord
recordH refers to a remote record. The record must be local.

btLibErrSdpNotAdvertised
The service record is already hidden from remote devices.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

See Also BtLibSdpServiceRecordStartAdvertising()

Bluetooth Reference
BtLibSdpVerifyRawDataElement

Exploring Palm OS: Low-Level Communications 271

BtLibSdpUuidInitialize Macro
Purpose Macro that sets the value of a UUID.

Declared In BtLibTypes.h

Prototype #define BtLibSdpUuidInitialize (uuidVar,
rawValue, uuidSize)

Parameters → uuidVar
BtLibSdpUuidType to initialize.

→ rawValue
Array of bytes representing the UUID. The size of this array
depends on uuidSize.

→ uuidSize
BtLibSdpUuidType member specifying the size of the
rawValue array.

Returns Nothing.

BtLibSdpVerifyRawDataElement Function
Purpose Verify that a raw SDP data element is properly formed.

Declared In BtLib.h

Prototype status_t BtLibSdpVerifyRawDataElement
(int32_t fdME, const uint8_t *value,
uint16_t valSize, uint8_t maxLevel)

Parameters → fdME
The ME’s file descriptor.

→ value
Raw SDP attribute data.

→ valSize
Size of value, in bytes. The size of the data element must be
less than or equal to this parameter, otherwise this function
fails.

→ maxLevel
Maximum level of recursion over which this function verifies
the data element. Must be at least one.

Returns Returns one of the following values:

Bluetooth Reference
BtLibSdpVerifyRawDataElement

272 Exploring Palm OS: Low-Level Communications

btLibErrNoError
SDP data element is properly formatted.

btLibErrError
SDP data element is not properly formatted.

btLibErrNotOpen
The reference Bluetooth library is not open.

btLibErrParamError
value is NULL.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Comments This function checks all size descriptors in the element to ensure
that the data element fits into the indicated length. In the case of
data element sequences or alternates, this function calls itself
recursively.

The maxLevel parameter specifies the maximum number of times
this function calls itself. Limiting the recursion level prevents an
infinite loop if the data is bad. maxLevel must be large enough to
handle the complete data element. For example, to verify a simple
data element such as an unsigned integer, maxLevel must be at
least 1. To verify a data element sequence of UUIDs, maxLevel
must be at least 2.

See Also BtLibSdpParseRawDataElement(),
BtLibSdpGetRawDataElementSize(),
BtLibSdpGetRawElementType()

Bluetooth Reference
BtLibSecurityFindTrustedDeviceRecord

Exploring Palm OS: Low-Level Communications 273

BtLibSecurityFindTrustedDeviceRecord
Function

Purpose Search the device database for the device with the specified
Bluetooth address. Return the index of the corresponding device
record in the database.

Declared In BtLib.h

Prototype status_t BtLibSecurityFindTrustedDeviceRecord
(int32_t fdME, BtLibDeviceAddressType *addrP,
uint16_t *indexP)

Parameters → fdME
File descriptor of the Management Entity.

→ addrP
Bluetooth address of remote device.

← indexP
Index of the found record.

Returns Returns one of the following values:

btLibErrNoError
Success.

btLibErrNotFound
No record with the specified remote device address was
found.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

See Also BtLibSecurityGetTrustedDeviceRecordInfo(),
BtLibSecurityRemoveTrustedDeviceRecord()

Bluetooth Reference
BtLibSecurityGetTrustedDeviceRecordInfo

274 Exploring Palm OS: Low-Level Communications

BtLibSecurityGetTrustedDeviceRecordInfo
Function

Purpose Get information from a device record in the device database.

Declared In BtLib.h

Prototype status_t BtLibSecurityGetTrustedDeviceRecordInfo
(int32_t fdME, uint16_t index,
BtLibDeviceAddressType *addrP,
char *nameBuffer, uint8_t nameBufferSize,
BtLibClassOfDeviceType *codP,
uint32_t *lastConnectedP, Boolean *trustedP)

Parameters → fdME
File descriptor of the Management Entity.

→ index
Index of the record.

← addrP
Bluetooth address of remote device.

← nameBuffer
Pointer to buffer to store user-friendly name of remote
device. You must allocate this buffer. Provide a NULL pointer
if the user-friendly name is not needed.

→ nameBufferSize
Size of the nameBuffer buffer on entry. On exit, the size of
the name.

↔ codP
Pointer to a BtLibClassOfDeviceType representing the
class of the device. You must allocate this structure. Provide a
NULL pointer if the device class is not needed.

← lastConnectedP
The date since the device last connected. This date is
measured in seconds since midnight January 1, 1904. Provide
a NULL pointer if the date of last connection is not needed.

← trustedP
If true, the device is bonded and can connect to the local
device without authentication. If false, the device is paired
but not bonded—it will need to reauthenticate if it connects
again. Provide a NULL pointer if this information is not
needed.

Bluetooth Reference
BtLibSecurityNumTrustedDeviceRecords

Exploring Palm OS: Low-Level Communications 275

Returns Returns one of the following values:

btLibErrNoError
Success.

dmErrIndexOutOfRange
A record with the specified index could not be found.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

See Also BtLibSecurityFindTrustedDeviceRecord()

BtLibSecurityNumTrustedDeviceRecords
Function

Purpose Return the number of bonded devices in the device database or
return the total number of devices in the device database.

Declared In BtLib.h

Prototype status_t BtLibSecurityNumTrustedDeviceRecords
(int32_t fdME, Boolean trustedOnly,
uint16_t *numP)

Parameters → fdME
File descriptor of the Management Entity.

→ trustedOnly
true to only obtain the total number of trusted devices in the
database. false will obtain the total number of devices in the
devices database, including both bonded and paired but not
bonded devices.

← numP
On return, contains the number of trusted devices.

Returns Returns one of the following values:

btLibErrNoError
Success.

iosErrBadFD
The Management Entity file descriptor is bad.

Bluetooth Reference
BtLibSecurityRemoveTrustedDeviceRecord

276 Exploring Palm OS: Low-Level Communications

iosErrNotOpened
The Management Entity file descriptor isn’t open.

See Also BtLibSecurityFindTrustedDeviceRecord(),
BtLibSecurityGetTrustedDeviceRecordInfo()

BtLibSecurityRemoveTrustedDeviceRecord
Function

Purpose Removes a device from the device database.

Declared In BtLib.h

Prototype status_t BtLibSecurityRemoveTrustedDeviceRecord
(int32_t fdME, uint16_t index)

Parameters → fdME
The file descriptor of the Management Entity.

→ index
Index of the record to remove.

Returns Returns one of the following values:

btLibErrNoError
Success.

dmErrIndexOutOfRange
A record with the specified index could not be found.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

See Also BtLibSecurityFindTrustedDeviceRecord()

Bluetooth Reference
BtLibSetGeneralPreference

Exploring Palm OS: Low-Level Communications 277

BtLibSetGeneralPreference Function
Purpose Set one of the general management preferences.

Declared In BtLib.h

Prototype status_t BtLibSetGeneralPreference (int32_t fdME,
BtLibGeneralPrefEnum pref, void *prefValueP,
uint16_t prefValueSize)

Parameters → fdME
The ME’s file descriptor.

→ pref
General preference to set. See BtLibGeneralPrefEnum.

→ prefValueP
Pointer to the value of the preference. This parameter must
not be NULL. See BtLibGeneralPrefEnum.

→ prefValueSize
The size, in bytes, of prevValueP.

Returns Returns one of the following values:

btLibErrNoError
Success.

btLibErrPending
The results will be returned through an event.

btLibErrParamError
One or more parameters is invalid. Be sure that
prefValueSize matches the size of the preference value.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Comments See the BtLibGeneralPrefEnum description for a list of the
preferences.

This function may generate events depending on the preference you
change. The btLibManagementEventAccessibilityChange
event indicates that the accessibility of the local device has changed.

See Also BtLibGetGeneralPreference()

Bluetooth Reference
BtLibSocketAdvanceCredit

278 Exploring Palm OS: Low-Level Communications

BtLibSocketAdvanceCredit Function
Purpose Advance credit to a given RfComm connection socket.

Declared In BtLib.h

Prototype status_t BtLibSocketAdvanceCredit
(BtLibSocketRef socketRef, uint8_t credit)

Parameters → socketRef
The BtLibSocketRef indicating the socket.

→ credit
Number credits to add to the total number of credits for this
socket. The total number of credits represents the number of
packets the remote device can send before data flow stops.

Returns Returns one of the following values:

btLibErrNoError
Success

btLibErrFailed
Too many credits advanced.

btLibErrSocket
The specified socket is invalid.

btLibErrSocketProtocol
The specified socket is not an RfComm socket.

btLibErrSocketRole
The specified socket is not connected.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Comments RfComm uses a credit based flow control mechanism. For each
credit the connection has, one packet of data can be sent. When the
credits are spent, data flow stops until you advance more credits
using this function.

Multiple calls to this function have a cumulative effect.

Bluetooth Reference
BtLibSocketClose

Exploring Palm OS: Low-Level Communications 279

BtLibSocketClose Function
Purpose Close a socket, free associated resources, and kill all associated

socket connections.

Declared In BtLib.h

Prototype status_t BtLibSocketClose
(BtLibSocketRef socketRef)

Parameters → socketRef
The BtLibSocketRef indicating the socket.

Returns Returns one of the following values:

btLibErrNoError
Success.

btLibErrSocket
The specified socket is invalid.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Comments No events are generated when closing a socket.

If there are no Management Entity file descriptors open, and this
function closes the last connected L2CAP, RFCOMM, SCO, or BNEP
file descriptor, then the following steps are taken:

• If there are any remaining ACL links, they are destroyed.

• If the radio has been used since the last reinitialization, the
stack and radio are shut down and reinitialized.

See Also BtLibSocketCreate(), BtLibSocketListen(),
BtLibSocketConnect(),
BtLibSocketRespondToConnection()

Bluetooth Reference
BtLibSocketConnect

280 Exploring Palm OS: Low-Level Communications

BtLibSocketConnect Function
Purpose Create an outbound L2Cap, RfComm, SCO, or BNEP connection.

Declared In BtLib.h

Prototype status_t BtLibSocketConnect
(BtLibSocketRef socketRef,
BtLibSocketConnectInfoType *connectInfo)

Parameters → socketRef
The socket to connect.

→ connectInfo
BtLibSocketConnectInfoType containing Bluetooth
device address and protocol-specific connection information.

Returns Returns one of the following values:

btLibErrPending
The results will be returned through an event.

btLibErrNoAclLink
An ACL link for the remote device does not exist

btLibErrSocket
The specified socket is invalid.

btLibErrSocketProtocol
The protocol of the specified socket is not supported. This
function only supports the L2Cap and RfComm protocols.

btLibErrSocketRole
The specified socket is already connected or listening.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Comments If the connection succeeds, the
btLibSocketEventConnectedOutbound event is generated and
its status field is set to btLibErrNoError. If connection fails, the
same event is generated with a non-zero status field, or a
btLibSocketEventDisconnected is generated. In both cases,
the status field indicates the reason for the failure.

If the connection succeeds, when inbound data arrives,
IOSGetmsg() will return a message with an empty control part

Bluetooth Reference
BtLibSocketCreate

Exploring Palm OS: Low-Level Communications 281

and a data part containing the received data. When the channel
disconnects, a btLibSocketEventDisconnected event is
generated.

See Also BtLibSocketSend(), BtLibSocketClose()

BtLibSocketCreate Function
Purpose Create a socket (by opening a file descriptor) to an L2CAP,

RFCOMM, SDP, SCO, or BNEP device.

Declared In BtLib.h

Prototype status_t BtLibSocketCreate
(BtLibSocketRef *socketRefP,
BtLibProtocolEnum socketProtocol)

Parameters ← socketRefP
Pointer to an allocated BtLibSocketRef that will receive
the socket value on return. This pointer must not be NULL.

→ socketProtocol
The protocol (L2Cap, RFComm, or SDP) to use on the socket.

Returns Returns one of the following values:

btLibErrNoError
Success.

btLibErrParamError
socketRefP is NULL.

btLibErrTooMany
The maximum number of sockets allocated for the system
has already been reached. The Bluetooth library supports a
maximum of 16 socket connections.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Comments No events are generated when creating a socket.

Before terminating, applications should close all of the sockets that
they have created.

Bluetooth Reference
BtLibSocketEventName

282 Exploring Palm OS: Low-Level Communications

NOTE: A socket reference is the same thing as an IOS file
descriptor.

See Also BtLibSocketConnect(), BtLibSocketListen(),
BtLibSocketClose()

BtLibSocketEventName Function
Purpose Return the name of the given socket event code.

Declared In BtLib.h

Prototype const char *BtLibSocketEventName
(BtLibSocketEventEnum event)

Parameters → event
The socket event code whose name should be returned.

Returns Returns a pointer to a null-terminated string with the human-
readable name of the event.

Comments This function is primarily provided for debugging purposes.

BtLibSocketGetInfo Function
Purpose Retrieve information for a currently open socket.

Declared In BtLib.h

Prototype status_t BtLibSocketGetInfo
(BtLibSocketRef socketRef,
BtLibSocketInfoEnum infoType, void *valueP,
uint32_t valueSize)

Parameters → socketRef
The socket to query.

→ infoType
Type of information to retrieve. See
BtLibSocketInfoEnum.

← valueP
Buffer into which this function stores the result. You must
allocate the buffer.

Bluetooth Reference
BtLibSocketGetInfo

Exploring Palm OS: Low-Level Communications 283

→ valueSize
Size, in bytes, of the valueP buffer. This size must match
that of the requested information.

Returns Returns one of the following values:

btLibErrNoError
Success.

btLibErrParamError
One or more parameters is invalid. Be sure that the
valueSize parameter matches the size of the information
you’re retrieving.

btLibErrSdpNotMapped
The SDP socket has not been mapped to a remote SDP service
record. This error occurs when you try to obtain the SDP
service record handle before you map socket to a remote
service record using
BtLibSdpServiceRecordMapRemote.

btLibErrSocket
The specified socket is invalid or not in use.

btLibErrSocketRole
The specified socket is not connected or has the wrong role
for the request.

btlibErrSocketProtocol
The specified socket has the wrong protocol for the request.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Bluetooth Reference
BtLibSocketListen

284 Exploring Palm OS: Low-Level Communications

BtLibSocketListen Function
Purpose Set up an L2Cap, RFComm, SCO, or BNEP socket as a listener.

Declared In BtLib.h

Prototype status_t BtLibSocketListen
(BtLibSocketRef socketRef,
BtLibSocketListenInfoType *listenInfoP)

Parameters → socketRef
The socket to listen on.

↔ listenInfoP
Protocol-specific listening information. For more information
see BtLibSocketListenInfoType. This parameter must
be NULL if the socket is an SCO socket, otherwise it must not
be NULL.

Returns Returns one of the following values:

btLibErrNoError
Success. The socket is listening for incoming connections.

btLibErrBusy
The given PSM is in use (L2Cap only)

btLibErrParamError
listenInfoP is NULL.

btLibErrSocket
The specified socket is invalid.

btLibErrSocketProtocol
The protocol of the specified socket is not supported. This
function only supports the L2Cap and RfComm protocols.

btLibErrSocketRole
The specified socket is already listening or connected.

btLibErrTooMany
There are no resources to create a listener socket of this type.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Comments A listener socket waits for a remote device to initiate a connection to
the local device and then generates a

Bluetooth Reference
BtLibSocketRespondToConnection

Exploring Palm OS: Low-Level Communications 285

btLibSocketEventConnectRequest event to notify the
application that it needs to handle the connection attempt.

You need to respond to this event with a call to
BtLibSocketConnect() on the listener socket to accept or reject
the connection.

Under certain circumstances, the listenInfo parameter acts as an
output as well as an input. See the discussion of
BtLibSocketListenInfoType.

See Also BtLibSocketClose()

BtLibSocketRespondToConnection Function
Purpose Accept or reject an in-bound connection on a given listener socket.

Declared In BtLib.h

Prototype status_t BtLibSocketRespondToConnection
(BtLibSocketRef socketRef, Boolean accept)

Parameters → socketRef
The listener socket that needs to respond to a connection
attempt.

→ accept
true to accept the connection; false to reject the
connection.

Returns Returns one of the following values:

btLibErrNoError
Success. This status is returned when accept is false.

btLibErrFailed
One or more parameters is invalid.

btLibErrPending
The results will be returned through an event.

btLibErrSocket
The specified socket is invalid or not in use.

btLibErrSocketProtocol
The protocol of the specified socket is not supported. This
function only supports the L2Cap and RfComm protocols.

Bluetooth Reference
BtLibSocketRespondToConnection

286 Exploring Palm OS: Low-Level Communications

btLibErrSocketRole
The specified socket is not a listener socket.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Comments You should call this function when you respond to a
btLibSocketEventConnectRequest event delivered to a
listener socket.

If the connection succeeds, the
btLibSocketEventConnectedInbound event is generated and
its status field is set to btLibErrNoError. If connection fails, the
same event is generated with a non-zero status field, or a
btLibSocketEventDisconnected is generated. In both cases,
the status field indicates the reason for the failure.

Once the connection succeeds, future calls to IOSPoll() will
receive data messages whenever data is received from the remote
device. If the channel disconnects, a
btLibSocketEventDisconnected event is generated.

RfComm listener sockets and L2Cap listener sockets behave
differently when you call this function. When you respond to an
inbound L2Cap connection, a new L2Cap socket is created to
exchange data with the remote device, and the L2Cap listener socket
continues to listen for more connections. In other words, a single
L2Cap listener socket can “spawn” several L2Cap sockets. This
mechanism allows you to create a piconet.

When you respond to an RfComm connection, a new data socket is
created through which you can exchange data with the remote
device. However, unlike L2Cap, the listener socket remains intact
but may not be reused; it also cannot be closed until the data socket
is closed. You may, however, create a new listener socket to detect
more inbound connections.

See Also BtLibSocketListen(), BtLibSocketSend(),
BtLibSocketClose()

Bluetooth Reference
BtLibSocketSend

Exploring Palm OS: Low-Level Communications 287

BtLibSocketSend Function
Purpose Send data over a connected L2Cap, RfComm, BNEP socket.

Declared In BtLib.h

Prototype status_t BtLibSocketSend
(BtLibSocketRef socketRef, uint8_t *data,
uint32_t dataLen)

Parameters → socketRef
The transmitting socket.

→ data
Pointer to data to send.

→ dataLen
Length of data to send. This value must be less than the
Maximum Transmission Unit (MTU) for the socket. The MTU
indicates the size of the largest packet that the remote device
can receive and is determined when the socket is connected.

Returns Returns one of the following values:

btLibErrPending
The results will be returned through an event.

btLibErrBusy
A send is already in process.

btLibErrNoAclLink
An ACL link for the remote device does not exist

btLibErrSocket
The specified socket is invalid.

btLibErrSocketProtocol
The protocol of the specified socket is not supported by this
function. You can only send using the L2Cap and
RfCommprotocols.

btLibErrSocketRole
The specified socket is not connected.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Bluetooth Reference
BtLibStartInquiry

288 Exploring Palm OS: Low-Level Communications

Comments If the socket is not L2Cap, RfComm, or BNEP, or the socket is not
connected, the data is silently discarded.

When the data has been sent successfully, a
btLibSocketEventSendComplete event is generated and its
status field is set to btLibErrNoError. If the data is not sent
successfully, the same event is generated with a non-zero status
field.

NOTE: Unlike previous versions of Palm OS, you can
immediately reuse or dispose of the memory containing the data.

See Also BtLibSocketClose()

BtLibStartInquiry Function
Purpose Start a Bluetooth inquiry.

Declared In BtLib.h

Prototype status_t BtLibStartInquiry (int32_t fdME,
uint8_t timeOut, uint8_t maxResp)

Parameters → fdME
The ME’s file descriptor.

→ timeOut
Time, in seconds, this inquiry is allowed to take. If the
inquiry does not complete within this time, it is canceled. The
actual time is rounded to the nearest multiple of 1.28 seconds.
If you specify a timeout period larger than 60 seconds, this
function acts as if you specified a timeout period of 60
seconds. If this parameter is 0, the timeout period defaults to
10.24 seconds as specified in the Generic Access Profile.

→ maxResp
Maximum number of responses the inquiry accepts.
Responses are not guaranteed to be unique.

Returns Returns one of the following values:

btLibErrPending
The results will be returned through events.

Bluetooth Reference
BtLibStartInquiry

Exploring Palm OS: Low-Level Communications 289

btLibErrBluetoothOff
The Bluetooth radio is off. The user can turn the radio on and
off with a setting in the preferences panel.

btLibErrInProgress
Another inquiry is already in progress.

iosErrBadFd
The specified file descriptor is invalid.

iosErrNotOpened
The specified file descriptor is not open.

Comments The function performs a low-level Bluetooth inquiry, as opposed to
a full device discovery. Specifically, inquiries started with this
function only return the Bluetooth address and the class of the
discovered device. This function does not have a user interface.

Every time a device is discovered, a
btLibManagementEventInquiryResult event is generated.
When the inquiry is complete, a
btLibManagementEventInquiryComplete event is generated.
If the application calls BtLibCancelInquiry(), a
btLibManagementEventInquiryCanceled event is generated.

See Also BtLibCancelInquiry()

Bluetooth Reference
BtLibStartInquiry

290 Exploring Palm OS: Low-Level Communications

Part IV
Networking and
Sockets

Palm OS® supports the standard 4.3BSD Sockets API for
networking. This Part of Exploring Palm OS: Low-Level
Communications serves as an overview of the Sockets API; for more
detailed coverage, you should refer to any of the numerous books
that cover this common API. The Sockets API deprecates the Netlib
API provided by previous versions of Palm OS.

Introduction to Sockets on Palm OS 293

Sockets & Network Support Reference 297

Exploring Palm OS: Low-Level Communications 293

14
Introduction to
Sockets on Palm OS

Overview
Whereas previous versions of Palm OS® used a proprietary API for
handling network connectivity, Palm OS Cobalt introduces the
standard 4.3BSD Sockets API. Applications that use the old Netlib
API will continue to work, but it is not possible to use the Palm OS
Cobalt SDK to compile software to use the Netlib API. Applications
designed to run on Palm OS Cobalt must be modified to use the
Sockets API.

This API is provided as two elements:

• A socket shared library that exports BSD socket functions for
system services and applications.

• A STREAMS module that performs TPI messaging
adaptation and contains socket states.

NOTE: If you need to develop a 68K application using the Netlib
API, your application should be built against the Palm OS Garnet
SDK.

Unsupported Sockets Features
While the Palm OS Sockets API is almost totally compatible with the
4.3BSD Sockets API, there are three key differences:

AF_UNIX and PF_UNIX Unsupported
Palm OS does not support the AF_UNIX address family and the
PF_UNIX protocol family, since it’s not UNIX.

Introduction to Sockets on Palm OS
Architecture of the Sockets Support System

294 Exploring Palm OS: Low-Level Communications

No socketpair() Function
The socketpair() function is not provided by Palm OS.

No UNIX-Style Asynchronous Features
Palm OS does not support UNIX-style asynchronous signals,
options, or flags.

Architecture of the Sockets Support System
The Sockets API for Palm OS is implemented as an I/O Subsystem
(IOS) module. It‘s implemented in a shared library that translates
4.3 BSD Sockets API calls into IOS STDIO function calls. This
architecture is shown in easily-digestible diagram form in Figure
14.1.

Introduction to Sockets on Palm OS
Protocol Mapping

Exploring Palm OS: Low-Level Communications 295

Figure 14.1 Architecture of sockets on Palm OS

Protocol Mapping
The Sockets API determines the name of the device to open when
request to open a particular socket is processed. The device that gets
opened must build a TPI-compliant stream. Its name is derived
from the family/domain, type, and protocol given in the socket()
call. The device name is constructed using the following C code:

sprintf(device_name, "SX%02x%02x%02x", domain,
type, protocol);

STREAMS Framework

Socket.prc

Socket user
(System services and

applications)

Socket shared library

"sockmod" socket
module

TPI provider module and
driver

BSD API

STDIO API

Introduction to Sockets on Palm OS
Protocol Mapping

296 Exploring Palm OS: Low-Level Communications

Exploring Palm OS: Low-Level Communications 297

15
Sockets & Network
Support Reference

Overview
The structures, types, and functions described in this chapter are
provided in several header files, including:

sys/socket.h
Defines functions and types for sending and receiving data
using sockets, as well as for listening for and opening
connections to remote devices.

posix/arpa/inet.h
Defines functions used for manipulating Internet addresses.

posix/netinet/in.h
Defines structures and functions used for converting
between host and network addresses.

posix/netdb.h
Defines structures and functions used for performing
network database operations, particularly Domain Name
Resolution operations.

posix/sys/select.h
Provides the select() function, which provides a means of
detecting the readiness state of file desriptors.

Each structure, type, or function indicates the header file in which it
is defined.

Structures and Types

Sockets & Network Support Reference
addrinfo

298 Exploring Palm OS: Low-Level Communications

addrinfo Struct
Purpose This structure contains the information obtained from the address.

Declared In posix/netdb.h

Prototype struct addrinfo {
 int ai_flags;
 int ai_family;
 int ai_socktype;
 int ai_protocol;
 size_t ai_addrlen;
 char *ai_canonname;
 struct sockaddr *ai_addr;
 struct addrinfo *ai_next;
}

Fields ai_flags
AI_PASSIVE, AI_CANONNAME, AI_NUMERICHOST.

ai_family
PF_xxx.

ai_socktype
SOCK_xxx.

ai_protocol
0 or IPPROTO_xxx for IPv4 and IPv6.

ai_addrlen
The length of ai_addr.

ai_canonname
Canonical name for hostname.

ai_addr
Binary address.

ai_next
Next structure in linked list.

Comments All addresses are supplied in host order and returned in network
order (suitable for use in system calls).

Sockets & Network Support Reference
netent

Exploring Palm OS: Low-Level Communications 299

hostent Struct
Purpose This structure contains either the information obtained from the

name server or database entries supplied by the system.

Declared In posix/netdb.h

Prototype struct hostent {
 char *h_name;
 char **h_aliases;
 int h_addrtype;
 int h_length;
 char **h_addr_list;
}

Fields h_name
Official name of the host.

h_aliases
A list of alternative names for the host.

h_addrtype
Host address type.

h_length
The length, in bytes, of the address.

h_addr_list
List of addresses from name server.

Comments All addresses are supplied in host order and returned in network
order (suitable for use in system calls).

netent Struct
Purpose This structure contains the information obtained from the network.

Declared In posix/netdb.h

Prototype struct netent {
 char *n_name;
 char **n_aliases;
 int n_addrtype;
 unsigned long n_net;
}

Sockets & Network Support Reference
protoent

300 Exploring Palm OS: Low-Level Communications

Fields n_name
Official name of the network.

n_aliases
A list of alternative names for the network.

n_addrtype
Network address type.

n_net
The network number.

Comments All addresses are supplied in host order and returned in network
order (suitable for use in system calls).

protoent Struct
Purpose This structure contains the information obtained from the protocol.

Declared In posix/netdb.h

Prototype struct protoent {
 char *p_name;
 char **p_aliases;
 int p_proto;
}

Fields p_name
Official name of the protocol.

p_aliases
A list of alternative names for the protocol.

p_proto
The protocol number.

Comments All addresses are supplied in host order and returned in network
order (suitable for use in system calls).

servent Struct
Purpose This structure contains the information obtained from the service.

Declared In posix/netdb.h

Sockets & Network Support Reference
sockaddr_in

Exploring Palm OS: Low-Level Communications 301

Prototype struct servent {
 char *s_name;
 char **s_aliases;
 int s_port;
 char *s_proto;
}

Fields s_name
Official name of the service.

s_aliases
A list of alternative names for the service.

s_port
The port number.

s_proto
The protocol to use.

Comments All addresses are supplied in host order and returned in network
order (suitable for use in system calls).

sockaddr Struct
Purpose Defines a structure used by the kernel to store most addresses.

Declared In posix/sys/socket.h

Prototype struct sockaddr {
 sa_family_t sa_family;
 char sa_data[14];
}

Fields sa_family
The address family.

sa_data
The address value.

sockaddr_in Struct
Purpose Defines a structure used to store Internet addresses.

Declared In posix/netinet/in.h

Prototype struct sockaddr_in {

Sockets & Network Support Reference
socklen_t

302 Exploring Palm OS: Low-Level Communications

 sa_family_t sin_family;
 in_port_t sin_port;
 struct in_addr sin_addr;
 uint8_t sin_zero[8];
}

Fields sin_family
AF_INET.

sin_port
The port number.

sin_addr
The IP address.

sin_zero
The address value; must be initialized to zero.

socklen_t Typedef
Purpose A data type used to represent the size in bytes of socket related data.

Declared In posix/sys/socket.h

Prototype typedef unsigned int socklen_t

Functions and Macros

accept Function
Purpose Accepts a connection on a socket by extracting the first connection

request on the queue of pending connections, creating a new socket
with the same properties of sock and allocating a new file
descriptor for the socket.

Declared In posix/sys/socket.h

Prototype int accept (int sock, struct sockaddr *addr,
socklen_t *addrlen)

Parameters → sock
A socket that has been created with socket(), bound to an
address with bind(), and listening for connections after a
listen().

Sockets & Network Support Reference
bind

Exploring Palm OS: Low-Level Communications 303

← addr
A result parameter that is filled in with the source address of
the connecting entity, as known to the communications layer.

↔ addrlen
Initially contains the amount of space pointed to by addr; on
return, it contains the actual length (in bytes) of the address
returned.

Returns Returns a non-negative integer that is a descriptor for the accepted
socket. Otherwise, -1 is returned and the global variable errno is
set to indicate the error.

Comments This function is used to accept a connection when a remote system
attempts to connect to a socket on which you have previously called
listen().

See Also bind(), connect(), listen(), select(), socket()

bind Function
Purpose Assigns a name to an unnamed socket.

Declared In posix/sys/socket.h

Prototype int bind (int sock, const struct sockaddr *addr,
socklen_t addrlen)

Parameters → sock
A socket that has been created with socket() that exists in a
namespace but has no name defined.

← addr
A result parameter that is filled in with the source address of
the connecting entity, as known to the communications layer.

↔ addrlen
Initially contains the amount of space pointed to by addr; on
return, it contains the actual length (in bytes) of the address
returned.

Returns Returns zero (0) if the bind is successful. Otherwise, -1 is returned
and the global variable errno is set to indicate the error.

See Also connect(), getsockname(), listen(), socket()

Sockets & Network Support Reference
connect

304 Exploring Palm OS: Low-Level Communications

connect Function
Purpose Initiates a connection on a socket.

Declared In posix/sys/socket.h

Prototype int connect (int sock,
const struct sockaddr *addr,
socklen_t addrlen)

Parameters → sock
A socket.

← addr
A result parameter that is filled in with the source address of
the connecting entity, as known to the communications layer.

↔ addrlen
Initially contains the amount of space pointed to by addr; on
return, it contains the actual length (in bytes) of the address
returned.

Returns Returns zero (0) if the connection or binding is successful.
Otherwise, -1 is returned and the global variable errno is set to
indicate the error.

See Also accept(), getsockname(), getsockopt(), select(),
socket()

endhostent Function
Purpose Closes the TCP connection.

Declared In posix/netdb.h

Prototype void endhostent (void)

Parameters None.

Returns Nothing.

endnetent Function
Purpose Closes the connection to the database, releasing any open file

descriptor.

Declared In posix/netdb.h

Sockets & Network Support Reference
freeaddrinfo

Exploring Palm OS: Low-Level Communications 305

Prototype void endnetent (void)

Parameters None.

Returns Nothing.

endprotoent Function
Purpose Closes the connection to the database, releasing any open file

descriptor.

Declared In posix/netdb.h

Prototype void endprotoent (void)

Parameters None.

Returns Nothing.

endservent Function
Purpose Closes the connection to the database, releasing any open file

descriptor.

Declared In posix/netdb.h

Prototype void endservent (void)

Parameters None.

Returns Nothing.

freeaddrinfo Function
Purpose Returns the socket address structures and canonical node name

strings pointed to by the addrinfo structures.

Declared In posix/netdb.h

Prototype void freeaddrinfo (struct addrinfo *ai)

Parameters → ai
The addrinfo structure pointed to by the ai argument is
freed, along with any dynamic storage pointed to by the
structure. This operation is repeated until a NULL ai_next
pointer is encountered.

Sockets & Network Support Reference
freehostent

306 Exploring Palm OS: Low-Level Communications

Returns Nothing.

freehostent Function
Purpose Releases the dynamically allocated memory of the hostent

structure.

Declared In posix/netdb.h

Prototype void freehostent (struct hostent *ip)

Parameters → ip
A pointer to an object of the hostent structure.

Returns Returns a pointer to an object of the hostent structure.

Compatibility This function is a Palm OS extension (not present in C99 or Unix).

gai_strerror Function
Purpose Aids applications in printing error messages based on the EAI_xxx

codes.

Declared In posix/netdb.h

Prototype const char *gai_strerror (int ecode)

Parameters → ecode
An EAI_xxx code, such as EAI_ADDRFAMILY.

Returns Returns a pointer to a string whose contents indicate an unknown
error.

getaddrinfo Function
Purpose Protocol-independent nodename-to-address translation.

Declared In posix/netdb.h

Prototype int getaddrinfo (const char *nodename,
const char *servname,
const struct addrinfo *hints,
struct addrinfo **res)

Sockets & Network Support Reference
gethostbyaddr

Exploring Palm OS: Low-Level Communications 307

Parameters → nodename
A pointer to null-terminated strings or NULL.

→ servname
A pointer to null-terminated strings or NULL.

→ hints
Hints concerning the type of socket that the caller supports.

← res
A pointer to a linked list of one or more addrinfo
structures.

Returns Returns a set of socket addresses and associated information to be
used in creating a socket with which to address the specified
service.

Comments One or both of the nodename and servname parameters must be a
non-NULL pointer.

If nodename is not NULL, the requested service location is named by
nodename; otherwise, the requested service location is local to the
caller. If servname is NULL, the call returns network-level
addresses for the specified nodename. If servname is not NULL, it
is a null-terminated character string identifying the requested
service.

See Also gethostbyname(), getservbyname()

gethostbyaddr Function
Purpose Searches for the specified host in the current domain and its parents

unless the name ends in a dot.

Declared In posix/netdb.h

Prototype struct hostent *gethostbyaddr (const char *addr,
int len, int type)

Parameters → addr
Host address type.

→ len
The length, in bytes, of the address.

Sockets & Network Support Reference
gethostbyname

308 Exploring Palm OS: Low-Level Communications

→ type
A named constant that indicates the naming scheme under
which the lookup is performed. Must be specified as
AF_INET.

Returns Returns a pointer to an object of the hostent structure, describing
an Internet host referenced by address.

gethostbyname Function
Purpose Searches for the specified host in the current domain and its parents

unless the name ends in a dot.

Declared In posix/netdb.h

Prototype struct hostent *gethostbyname (const char *name)

Parameters → name
Official name of the host.

Returns Returns a pointer to an object of the hostent structure, describing
an Internet host referenced by name.

gethostbyname2 Function
Purpose An evolution of gethostbyname() that allows lookups in address

families other than AF_INET.

Declared In posix/netdb.h

Prototype struct hostent *gethostbyname2 (const char *name,
int af)

Parameters → name
Official name of the host.

→ af
Must be specified as AF_INET or AF_INET6.

Returns Returns a pointer to an object of the hostent structure, describing
an Internet host referenced by name.

Compatibility This function is a Palm OS extension (not present in C99 or Unix).

Sockets & Network Support Reference
getipnodebyname

Exploring Palm OS: Low-Level Communications 309

gethostent Function
Purpose Reads the next entry in the database, opening and closing a

connection to the database as necessary.

Declared In posix/netdb.h

Prototype struct hostent *gethostent (void)

Parameters None.

Returns Returns a pointer to an object of the hostent structure.

getipnodebyaddr Function
Purpose Returns the address of a network host.

Declared In posix/netdb.h

Prototype struct hostent *getipnodebyaddr (const void *src,
size_t len, int af, int *error_num)

Parameters → src
The name of the host whose network address to look up.

→ len
The length, in bytes, of the address.

→ af
Must be specified as AF_INET or AF_INET6.

← error_num
A NULL pointer is returned if an error occurred, and
error_num contains an error code from the following list:
HOST_NOT_FOUND, NO_ADDRESS, NO_RECOVERY, or
TRY_AGAIN.

Returns Returns a pointer to an object of the hostent structure, describing
an Internet host referenced by address.

Compatibility This function is a Palm OS extension (not present in C99 or Unix).

getipnodebyname Function
Purpose Returns the name of a network host.

Declared In posix/netdb.h

Sockets & Network Support Reference
getnameinfo

310 Exploring Palm OS: Low-Level Communications

Prototype struct hostent *getipnodebyname
(const char *name, int af, int flags,
int *error_num)

Parameters → name
Official name of the host.

→ af
Must be specified as AF_INET or AF_INET6.

→ flags
Specifies additional options: AI_V4MAPPED, AI_ALL, or
AI_ADDRCONFIG. More than one option can be specified by
logically ORing them together. flags should be set to zero
(0) if no options are desired.

← error_num
A NULL pointer is returned if an error occurred, and
error_num contains an error code from the following list:
HOST_NOT_FOUND, NO_ADDRESS, NO_RECOVERY, or
TRY_AGAIN.

Returns Returns a pointer to an object of the hostent structure, describing
an Internet host referenced by name.

Compatibility This function is a Palm OS extension (not present in C99 or Unix).

getnameinfo Function
Purpose Translates address-to-nodename in a protocol-independent manner.

Declared In posix/netdb.h

Prototype int getnameinfo (const struct sockaddr *sa,
size_t salen, char *host, size_t hostlen,
char *serv, size_t servlen, int flags)

Parameters → sa
A sockaddr structure.

→ salen
The length, in bytes, of the sockaddr structure.

→ host
The buffer that holds the IP address.

→ hostlen
The length, in bytes, of the IP address buffer.

Sockets & Network Support Reference
getnetbyname

Exploring Palm OS: Low-Level Communications 311

→ serv
The buffer that holds the port number.

→ servlen
The length, in bytes, of the port number buffer.

→ flags
Changes the default actions of this function.

Returns Returns text strings for the IP address and port number in user-
provided buffers.

getnetbyaddr Function
Purpose Searches from the beginning of the file until a matching network

address is found, or until EOF is encountered.

Declared In posix/netdb.h

Prototype struct netent *getnetbyaddr (unsigned long net,
int type)

Parameters → net
The network number.

→ type
Network address type.

Returns Returns a pointer to an object of the netent structure, describing
the network database.

getnetbyname Function
Purpose Searches from the beginning of the file until a matching network

name is found, or until EOF is encountered.

Declared In posix/netdb.h

Prototype struct netent *getnetbyname (const char *name)

Parameters → name
Official name of the network.

Returns Returns a pointer to an object of the netent structure, describing
the network database.

Sockets & Network Support Reference
getnetent

312 Exploring Palm OS: Low-Level Communications

getnetent Function
Purpose Reads the next line of the file, opening the file if necessary.

Declared In posix/netdb.h

Prototype struct netent *getnetent (void)

Parameters None.

Returns Returns a pointer to an object of the netent structure, describing
the network database.

getpeername Function
Purpose Gets the name of the connected peer.

Declared In posix/sys/socket.h

Prototype int getpeername (int sock, struct sockaddr *addr,
socklen_t addrlen)

Parameters → sock
A socket.

← addr
A result parameter that is filled in with the source address of
the connecting entity, as known to the communications layer.

↔ addrlen
Initially contains the amount of space pointed to by addr; on
return, it contains the actual length (in bytes) of the address
returned.

Returns Returns the name of the peer connected to the specified socket.

See Also accept(), bind(), getsockname(), socket()

getsockname Function
Purpose Gets the socket name.

Declared In posix/sys/socket.h

Prototype int getsockname (int sock, struct sockaddr *addr,
socklen_t addrlen)

Sockets & Network Support Reference
getprotobynumber

Exploring Palm OS: Low-Level Communications 313

Parameters → sock
A socket.

← addr
A result parameter that is filled in with the source address of
the connecting entity, as known to the communications layer.

↔ addrlen
Initially contains the amount of space pointed to by addr; on
return, it contains the actual length (in bytes) of the address
returned.

Returns Returns the current name for the specified socket.

See Also bind(), socket()

getprotobyname Function
Purpose Sequentially searches from the beginning of the file until a matching

protocol name is found, or until EOF is encountered.

Declared In posix/netdb.h

Prototype struct protoent *getprotobyname
(const char *name)

Parameters → name
Official name of the protocol.

Returns Returns a pointer to an object of the protoent structure, describing
the network database.

getprotobynumber Function
Purpose Sequentially searches from the beginning of the file until a matching

protocol number is found, or until EOF is encountered.

Declared In posix/netdb.h

Prototype struct protoent *getprotobynumber (int proto)

Parameters → proto
Official name of the protocol.

Returns Returns a pointer to an object of the protoent structure, describing
the network database.

Sockets & Network Support Reference
getprotoent

314 Exploring Palm OS: Low-Level Communications

getprotoent Function
Purpose Reads the next line of the file, opening the file if necessary.

Declared In posix/netdb.h

Prototype struct protoent *getprotoent (void)

Parameters None.

Returns Returns a pointer to an object of the protoent structure, describing
the network database.

getservbyname Function
Purpose Searches from the beginning of the file until a matching protocol

name is found, or until EOF is encountered.

Declared In posix/netdb.h

Prototype struct servent *getservbyname (const char *name,
const char *proto)

Parameters → name
Official name of the network.

→ proto
The protocol.

Returns Returns a pointer to an object of the servent structure, describing
the network services database.

getservbyport Function
Purpose Searches from the beginning of the file until a matching port

number is found, or until EOF is encountered.

Declared In posix/netdb.h

Prototype struct servent *getservbyport (int port,
const char *proto)

Parameters → port
The port number.

→ proto
The protocol to use

Sockets & Network Support Reference
getsockopt

Exploring Palm OS: Low-Level Communications 315

Returns Returns a pointer to an object of the servent structure, describing
the network services database.

getservent Function
Purpose Reads the next line of the file, opening the file if necessary.

Declared In posix/netdb.h

Prototype struct servent *getservent (void)

Parameters None.

Returns Returns a pointer to an object of the servent structure, describing
the network services database.

getsockopt Function
Purpose Gets the options on sockets.

Declared In posix/sys/socket.h

Prototype int getsockopt (int sock, int level, int option,
void *optval, socklen_t *optlen)

Parameters → sock
A socket.

→ level
To manipulate options at the socket level, level is specified
as SOL_SOCKET.

→ option
option and any specified options are passed uninterpreted
to the appropriate protocol module for interpretation.

Returns Returns zero (0) if the connection or binding is successful.
Otherwise, -1 is returned and the global variable errno is set to
indicate the error.

See Also getprotoent(), select(), socket(), setsockopt()

Sockets & Network Support Reference
hstrerror

316 Exploring Palm OS: Low-Level Communications

hstrerror Function
Purpose Returns a string that is the message text corresponding to the value

of the err parameter.

Declared In posix/netdb.h

Prototype const char *hstrerror (int err)

Parameters → err
The error.

Returns Returns a string that is the message text corresponding to the value
of the err parameter.

Compatibility This function is a Palm OS extension (not present in C99 or Unix).

htonl Function
Purpose Converts 32-bit values between host byte order and network byte

order.

Declared In posix/netinet/in.h

Prototype uint32_t htonl (uint32_t host32)

Parameters → host32
The value being converted.

Returns Returns an unsigned integer.

See Also gethostbyname(), getservent()

htons Function
Purpose Converts 16-bit values between host byte order and network byte

order.

Declared In posix/netinet/in.h

Prototype uint16_t htons (uint16_t host16)

Parameters → host16
The value being converted.

Returns Returns an unsigned short integer.

See Also gethostbyname(), getservent()

Sockets & Network Support Reference
inet_aton

Exploring Palm OS: Low-Level Communications 317

inet_addr Function
Purpose Interprets the specified character string (the name of a computer on

the Internet) and returns a number suitable for use as an Internet
address.

Declared In posix/arpa/inet.h

Prototype in_addr_t inet_addr (const char *cp)

Parameters → cp
A character string indicating the name of a computer on the
Internet.

Returns Returns a number suitable for use as an Internet address.

Comments The string cp should be a name such as “palmsource.com” or
“foo.bar.com”.

See Also inet_network()

inet_aton Function
Purpose Interprets the specified character string as an Internet address,

placing the address into the structure provided.

Declared In posix/arpa/inet.h

Prototype int inet_aton (const char *cp,
struct in_addr *addr)

Parameters → cp
A character string. In order for this function to work
successfully, the string must be a standard dotted-quad
format IP address, such as “127.0.0.1”.

→ addr
An Internet address.

Returns Returns 1 if the string was successfully interpreted, or zero (0) if the
string is invalid.

Compatibility This function is a Palm OS extension (not present in C99 or Unix).

Sockets & Network Support Reference
inet_lnaof

318 Exploring Palm OS: Low-Level Communications

inet_lnaof Function
Purpose Breaks apart the specified Internet host address and returns the local

network address part (in host order).

Declared In posix/arpa/inet.h

Prototype in_addr_t inet_lnaof (struct in_addr in)

Parameters → in
An Internet address.

Returns Returns the local network address (in host order).

Compatibility This function is a Palm OS extension (not present in C99 or Unix).

See Also inet_netof()

inet_makeaddr Function
Purpose Takes an Internet network number and a local network address

(both in host order) and constructs an Internet address from it.

Declared In posix/arpa/inet.h

Prototype struct in_addr inet_makeaddr (int net, int lna)

Parameters → net
An Internet network number.

→ lna
A local network address.

Returns Returns an Internet address.

Compatibility This function is a Palm OS extension (not present in C99 or Unix).

inet_netof Function
Purpose Breaks apart the specified Internet host address and returns the

network number part (in host order).

Declared In posix/arpa/inet.h

Prototype in_addr_t inet_netof (struct in_addr in)

Parameters → in
An Internet address.

Sockets & Network Support Reference
inet_ntop

Exploring Palm OS: Low-Level Communications 319

Returns Returns the network number (in host order).

Compatibility This function is a Palm OS extension (not present in C99 or Unix).

See Also inet_lnaof()

inet_network Function
Purpose Interprets the specified character string and returns a number

suitable for use as an Internet network number.

Declared In posix/arpa/inet.h

Prototype in_addr_t inet_network (const char *cp)

Parameters → cp
A character string.

Returns Returns a number suitable for use as an Internet network number.

Compatibility This function is a Palm OS extension (not present in C99 or Unix).

See Also inet_addr()

inet_ntoa Function
Purpose Takes an Internet address and returns an ASCII string representing

the address.

Declared In posix/arpa/inet.h

Prototype const char *inet_ntoa (struct in_addr in)

Parameters → in
An Internet address.

Returns Returns a pointer to an ASCII string representing the address.

inet_ntop Function
Purpose Converts a network format address to presentation format.

Declared In posix/arpa/inet.h

Prototype const char *inet_ntop (int af, const void *src,
char *dst, size_t size)

Sockets & Network Support Reference
inet_pton

320 Exploring Palm OS: Low-Level Communications

Parameters → af
The address family.

→ src
The source buffer.

→ dst
The destination buffer.

→ size
The size of the destination buffer.

Returns Returns a pointer to the destination buffer. Otherwise, NULL is
returned if a system error occurs and the global variable errno is
set to indicate the error.

inet_pton Function
Purpose Converts a presentation format address to network format.

Declared In posix/arpa/inet.h

Prototype int inet_pton (int af, const char *src,
void *dst)

Parameters → af
The address family.

→ src
The printable form as specified in a character string.

→ dst
The destination string.

Returns Returns 1 if the address was valid for the specified address family,
or zero (0) if the address was not parseable in the specified address
family, or -1 if some system error occurred (in which case the global
variable errno is set to indicate the error).

listen Function
Purpose Listens for connections on a socket.

Declared In posix/sys/socket.h

Prototype int listen (int sock, int backlog)

Sockets & Network Support Reference
listen

Exploring Palm OS: Low-Level Communications 321

Parameters → sock
The socket on which to listen for incoming connection
attempts.

→ backlog
The maximum length the queue of pending connections may
grow to.

Returns Returns zero (0) if the connection or binding is successful.
Otherwise, -1 is returned and the global variable errno is set to
indicate the error.

See Also accept(), connect(), socket()

Sockets & Network Support Reference
ntohl

322 Exploring Palm OS: Low-Level Communications

ntohl Function
Purpose Converts 32-bit values between network byte order and host byte

order.

Declared In posix/netinet/in.h

Prototype uint32_t ntohl (uint32_t net32)

Parameters → net32
The value being converted.

Returns Returns an unsigned integer.

See Also gethostbyname(), getservent()

ntohs Function
Purpose Converts 16-bit values between network byte order and host byte

order.

Declared In posix/netinet/in.h

Prototype uint16_t ntohs (uint16_t net16)

Parameters → net16
The value being converted.

Returns Returns an unsigned short integer.

See Also gethostbyname(), getservent()

recv Function
Purpose Normally used only on a connected socket and is identical to

recvfrom() with a NULL addr parameter.

Declared In posix/sys/socket.h

Prototype ssize_t recv (int sock, void *data,
size_t datalen, int flags)

Parameters → sock
A socket.

→ data
The message.

Sockets & Network Support Reference
recvfrom

Exploring Palm OS: Low-Level Communications 323

→ datalen
The length of the message.

→ flags
ORs together one or more of the values: MSG_OOB,
MSG_PEEK, MSG_WAITALL.

Returns Returns the length of the message upon successful completion.
Otherwise, -1 is returned and the global variable errno is set to
indicate the error. If a message is too long to fit in the supplied
buffer, excess bytes may be discarded depending on the type of
socket the message is received from.

See Also connect(), recvfrom(), recvmsg()

recvfrom Function
Purpose Receives messages from a socket, and may be used to receive data

on a socket whether or not it is connection-oriented.

Declared In posix/sys/socket.h

Prototype ssize_t recvfrom (int sock, void *data,
size_t datalen, int flags,
struct sockaddr *addr, socklen_t *addrlen)

Parameters → sock
A socket.

→ data
The message.

→ datalen
The length of the message.

→ flags
ORs together one or more of the values: MSG_OOB,
MSG_PEEK, MSG_WAITALL.

→ addr
If addr is non-NULL, and the socket is not connection-
oriented, the source address of the message is filled in.

← addrlen
Initially contains the amount of space pointed to by addr; on
return, it contains the actual length (in bytes) of the address
stored there.

Sockets & Network Support Reference
recvmsg

324 Exploring Palm OS: Low-Level Communications

Returns Returns the length of the message upon successful completion.
Otherwise, -1 is returned and the global variable errno is set to
indicate the error. If a message is too long to fit in the supplied
buffer, excess bytes may be discarded depending on the type of
socket the message is received from.

See Also connect(), recv(), recvmsg()

recvmsg Function
Purpose Receives messages from a socket, and may be used to receive data

on a socket whether or not it is connection-oriented.

Declared In posix/sys/socket.h

Prototype ssize_t recvmsg (int sd, struct msghdr *msg,
int flags)

Parameters → sd
A socket.

→ msg
The message.

→ flags
ORs together one or more of the values: MSG_OOB,
MSG_PEEK, MSG_WAITALL.

Returns Returns the length of the message upon successful completion.
Otherwise, -1 is returned and the global variable errno is set to
indicate the error. If a message is too long to fit in the supplied
buffer, excess bytes may be discarded depending on the type of
socket the message is received from.

See Also connect(), recv(), recvfrom()

select Function
Purpose Examines the I/O descriptor sets whose addresses are passed in to

see if some of their descriptors are ready.

Declared In posix/sys/select.h

Prototype int select (int fd, fd_set *rfds, fd_set *wfds,
fd_set *efds, struct timeval *timeout)

Sockets & Network Support Reference
send

Exploring Palm OS: Low-Level Communications 325

Parameters → fd
The descriptors are checked in each set; that is, the
descriptors from zero (0) through fd - 1 in the descriptor sets
are examined.

→ rfds
The descriptors are checked to see if some of them are ready
for reading.

→ wfds
The descriptors are checked to see if some of them are ready
for writing.

→ efds
The descriptors are checked to see if some of them have an
exceptional condition pending.

→ timeout
If timeout is a non-NULL pointer, it specifies a maximum
interval to wait for the selection to complete. If timeout is a
NULL pointer, then select() blocks indefinitely. To affect a
poll, the timeout argument should be non-NULL, pointing
to a zero-valued timeval structure.

Returns Returns the number of ready descriptors that are contained in the
descriptor sets. Otherwise, -1 is returned and the global variable
errno is set to indicate the error. If the time limit expires,
select() returns zero (0). If select() returns with an error,
including one due to an interrupted call, the descriptor sets are
unmodified.

See Also accept(), connect(), recv(), send()

send Function
Purpose Sends a message from a socket.

Declared In posix/sys/socket.h

Prototype ssize_t send (int sock, const void *data,
size_t datalen, int flags)

Parameters → sock
A socket.

Sockets & Network Support Reference
sendmsg

326 Exploring Palm OS: Low-Level Communications

→ data
The message.

→ datalen
The length of the message.

→ flags
ORs together one or more of the values: MSG_OOB,
MSG_DONTROUTE.

Returns Returns the number of characters sent. Otherwise, -1 is returned and
the global variable errno is set to indicate the error.

Comments May be used only when the socket is in a connected state.

See Also select(), sendmsg(), sendto()

sendmsg Function
Purpose Sends a message from a socket.

Declared In posix/sys/socket.h

Prototype ssize_t sendmsg (int sd,
const struct msghdr *msg, int flags)

Parameters → sd
A socket.

→ msg
The message.

→ flags
ORs together one or more of the values: MSG_OOB,
MSG_DONTROUTE.

Returns Returns the number of characters sent. Otherwise, -1 is returned and
the global variable errno is set to indicate the error.

See Also select(), send(), sendto()

sendto Function
Purpose Sends a message from a socket.

Declared In posix/sys/socket.h

Sockets & Network Support Reference
sethostent

Exploring Palm OS: Low-Level Communications 327

Prototype ssize_t sendto (int sock, const void *data,
size_t datalen, int flags,
const struct sockaddr *addr,
socklen_t addrlen)

Parameters → sock
A socket.

→ data
The message.

→ datalen
The length of the message.

→ flags
ORs together one or more of the values: MSG_OOB,
MSG_DONTROUTE.

→ addr
If addr is non-NULL, and the socket is not connection-
oriented, the source address of the message is filled in.

← addrlen
Initially contains the amount of space pointed to by addr; on
return, it contains the actual length (in bytes) of the address
stored there.

Returns Returns the number of characters sent. Otherwise, -1 is returned and
the global variable errno is set to indicate the error.

See Also select(), send(), sendmsg()

sethostent Function
Purpose Requests the use of a connected TCP socket for queries.

Declared In posix/netdb.h

Prototype void sethostent (int stayopen)

Parameters → stayopen
If the stayopen flag is non-zero, sets the option to send all
queries to the name server using TCP and to retain the
connection after each call to gethostbyname(),
gethostbyname2(), or gethostbyaddr(). Otherwise,
queries are performed using UDP datagrams.

See Also gethostbyaddr(), gethostbyname(), gethostbyname2()

Sockets & Network Support Reference
setnetent

328 Exploring Palm OS: Low-Level Communications

setnetent Function
Purpose Opens and rewinds a file.

Declared In posix/netdb.h

Prototype void setnetent (int stayopen)

Parameters → stayopen
If non-zero, the network database is not closed after each call
to getnetbyname() or getnetbyaddr().

See Also getnetbyaddr(), getnetbyname()

setprotoent Function
Purpose Opens and rewinds a file.

Declared In posix/netdb.h

Prototype void setprotoent (int stayopen)

Parameters → stayopen
If non-zero, the network database is not closed after each call
to getprotobyname() or getprotobynumber().

See Also getprotobyname(), getprotobynumber()

setservent Function
Purpose Opens and rewinds a file.

Declared In posix/netdb.h

Prototype void setservent (int stayopen)

Parameters → stayopen
If non-zero, the network database is not closed after each call
to getservbyname() or getservbyport().

See Also getservbyname(), getservbyport()

setsockopt Function
Purpose Sets options on sockets.

Sockets & Network Support Reference
shutdown

Exploring Palm OS: Low-Level Communications 329

Declared In posix/sys/socket.h

Prototype int setsockopt (int sock, int level, int option,
const void *optval, socklen_t optlen)

Parameters → sock
A socket.

→ level
To manipulate options at the socket level, level is specified
as SOL_SOCKET.

→ option
Any specified option(s) passed uninterpreted to the
appropriate protocol module for interpretation.

→ optval
Used to access option values. Identifies a buffer in which the
value for the requested option is returned.

→ optlen
Used to access option values. Identifies a buffer in which the
length for the requested option is returned.

Returns Returns zero (0) if the connection or binding is successful.
Otherwise, -1 is returned and the global variable errno is set to
indicate the error.

See Also getprotoent(), getsockopt(), select(), socket()

shutdown Function
Purpose Disables subsequent send and/or receive operations on a socket.

Declared In posix/sys/socket.h

Prototype int shutdown (int sock, int direction)

Parameters → sock
A socket.

Sockets & Network Support Reference
socket

330 Exploring Palm OS: Low-Level Communications

→ direction
Specifies the type of shutdown. The values are as follows:

SHUT_RD

Disables further receive operations.

SHUT_WR

Disables further send operations.

SHUT_RDWR

Disables further send and receive operations.

Returns Returns zero (0) upon successful completion. Otherwise, 1 is
returned and the global variable errno is set to indicate the error.

socket Function
Purpose Creates an endpoint for communication.

Declared In posix/sys/socket.h

Prototype int socket (int family, int type, int proto)

Parameters → family
A communications domain within which communication
takes place; this selects the protocol family that should be
used.

→ type
The semantics of communication.

→ proto
A particular protocol to be used with the socket.

Returns Returns a descriptor referencing the socket. Otherwise, -1 is
returned and the global variable errno is set to indicate the error.

See Also getsockopt()

Part V
WiFi

Palm OS® Cobalt, version 6.1 introduced support for 802.11 (WiFi)
wireless networking. These chapters cover the APIs that allow your
applications to manage WiFi connectivity.

Introduction to Wireless Networking. 333

WiFi Reference 347

Exploring Palm OS: Low-Level Communications 333

16
Introduction to
Wireless Networking

Overview
Palm OS® provides direct support for WiFi wireless networking
through a set of ioctl commands that allow an application to find,
connect to, and disconnect from wireless networks. Other
commands allow applications to monitor the status of a wireless
network, configure wireless security, and perform other standard
management tasks necessary when using WiFi networking.

While the operating system includes the necessary user interface to
manage WiFi connectivity, these ioctl commands are available for
developers to provide custom solutions.

WiFi Concepts
A WiFi network is identified by an SSID. The SSID is an ASCII
string of up to 32 characters.

There are two types of WiFi networks. The typical network,
operating in infrastructure mode, is formed by devices connecting
wirelessly to an access access point, which is a dedicated device.
This device is also sometimes referred to as a base station. Each
access point is a Basic Service Set (BSS). An Extended Service Set
(ESS) is a entwork of one or more access points that is referred to by
a single SSID.

The other type of network, called an ad-hoc network, is created
when one or more devices are connected together wirelessly
without a dedicated access point.

Introduction to Wireless Networking
Locating and Opening a WiFi Interface

334 Exploring Palm OS: Low-Level Communications

Locating and Opening a WiFi Interface
Before you can manage WiFi, you need to find and open the WiFi
interface. This is done using IOSGetDriverNameByIndex() and
IOSOpen(). See Listing 16.1 for an example.

Listing 16.1 Finding and opening the WiFi interface

char name[64];
uint16_t nameLen sizeof(name);
status_t err;

IOSGetDriverNameByIndex(iosDriverClassWifi, 0, (char *) name,
&nameLen);

int32 wifiDataFD = IOSOpen(name, 0, &err);

strcat(name, "_mgmt");
int32 wifiMgmtFD = IOSOpen(name, 0, &err);

To send data over WiFi, you simply open the interface using the
name returned by IOSGetDriverNameByIndex(). If, however,
you want to send ioctl commands to the WiFi interface, you need to
append the string “_mgmt” to the returned name to access the
management interface.

Getting Information About the WiFi Interface
Before using the WiFi interface, your application may need to obtain
information about the device’s capabilities or status. For example,
you may need to determine what forms of encryption it supports,
whether or not it’s already connected to a network, or what
channels and transmission rates it supports.

Determining Supported Encryption Modes
To determine which encryption modes the interface supports, use
the WIOCGETSECCAPS command, as demonstrated in Listing 16.2.

Listing 16.2 Getting supported encryption modes

WifiGetSecCapType modes;
status_t err;

Introduction to Wireless Networking
Getting Information About the WiFi Interface

Exploring Palm OS: Low-Level Communications 335

IOSIoctl(wifiFD, WIOCGETSECCAPS, (int32_t) &modes, &err);

if (modes.capabilities & WifiSecOpen) {
/* Open System is supported */

}

if (modes.capabilities & WifiSecWEP) {
/ * WEP is supported */

}

Getting the Interface Status
You can obtain information about the current status of the WiFi
interface using the WIOCGETSTATUS ioctl. This is seen in Listing
16.3.

Listing 16.3 Getting the current status of the WiFi interface

uint32_t status;
status_t err;

IOSIoctl(wifiFD, WIOCGETSTATUS, (int32_t) &status, &err);

After IOSIoctl() returns, status contains a value indicating the
current state of the WiFi interface:

• WifiStatusDisconnected indicates that the interface is
not currently connected to a network.

• WifiStatusConnectedAccessPoint indicates that the
interface is connected to an access point.

• WifiStatusConnectedAdHoc indicates that the interface
is connected to an ad-hoc network.

• WifiStatusOutOfRange indicates that the interface is
currently connected, but that the network is not currently in
range. The state will automatically return to
WifiStatusConnectedAccessPoint or
WifiStatusConnectedAdHoc when the network is in
range again.

• WifiStatusConnecting indicates that the interface is in
the process of attempting to establish a connection.

Introduction to Wireless Networking
Getting Information About the WiFi Interface

336 Exploring Palm OS: Low-Level Communications

• WifiStatusConnectionFailed indicates that the most
recent connection attempt failed.

• WifiStatusUndefined indicates that for whatever reason,
the interface’s status could not be determined.

Identifying the Currently Connected Network
If you wish to determine the SSID or BSSID of the network to which
the interface is connected, use the WIOCGETSSID or
WIOCGETBSSID command.

Listing 16.4 Getting the name and BSSID of the access point
or ad-hoc network

WifiSSIDType ssid;
WifiBSSIDType bssid;
status_t err;

IOSIoctl(wifiFD, WIOCGETSSID, (int32_t) &ssid, &err);
IOSIoctl(wifiFD, WIOCGETBSSID, (int32_t) &bssid, &err);

Determining Supported Channels and
Transmission Rates
To determine which channels the WiFi interface supports, use the
WIOCGETCHANNEL command. This also reports the channel the
interface is currently using.

Listing 16.5 Determining supported channels

status_t err;
WifiChannelType channels;

channels.current = 0;
channels.supportedMask = 0;

IOSIoctl(wifiFD, WIOCGETCHANNEL, (int32_t) &channels, &err);

After this code executes, channels.current is set to the channel
on which the interface is currently communicating, and
channels.supportedMask is a bit mask of all the channels the

Introduction to Wireless Networking
Getting Information About the WiFi Interface

Exploring Palm OS: Low-Level Communications 337

interface supports. See “Channel Constants” on page 347 for a list of
the channel number flags.

The code in Listing 16.6 determines the rates supported by the
interface, which rates are preferred, and what rate is currently in
use.

Listing 16.6 Determining supported transmission rates

WifiGetRatesType rates;
status_t err;

rates.preferred_rates = 0;
rates.supported_rates = 0;
rates.current_rate = 0;

IOSIoctl(wifiFD, WIOCGETRATES, (int32_t) &rates, &err);

On return, rates.current_rate indicates the transmission rate
currently in effect, rates.supported_rates is a bit mask of all
the transmission rates the interface supports, and
rates.preferred_rates is a bit mask of the rates the interface is
best suited for. See “Transmission Rate Flags” on page 351 for the
possible values.

NOTE: The preferred rates always default to the complete set of
supported rates. You may change them if you wish, using the
WIOCSETRATES ioctl.

Getting the Signal Strength
There are two ways to keep apprised of the current signal strength.
You can manually poll the signal strength using the
WIOCGETCURRENTRSSI command, or you can enable automatic
signal strength update notification.

Introduction to Wireless Networking
Getting Information About the WiFi Interface

338 Exploring Palm OS: Low-Level Communications

Listing 16.7 Getting the current signal strength

WifiGetRSSIType current;

IOSIoctl(wifiFD, WIOCGETCURRENTRSSI, (int32_t) ¤t,
&err);

After the code in Listing 16.7 executes, current.signal contains
the current signal strength, as a percentage between 0 and 100.

To receive periodic notification of changes to the signal strength, use
the WIOCSETRSSIUPDATE command. With this command, you can
choose to receive notification events whenever any change to signal
strength occurs, whenever the signal strength changes by a given
amount, or at a specific interval.

Listing 16.8 Enabling automatic signal strength notifications

WifiRSSIUpdateType update;
status_t err;

/* notify me when signal strength changes by +/- 2% */

update.updateMode = WifiRSSIUpdateOnDelta;
update.updateValue = 2;

/* notify me every 1000 milliseconds */

update.updateMode = WifiRSSIUpdatePeriodic;
update.updateValue = 1000;

/* notify me every time the signal strength changes */

update.updateMode = WifiRSSIUpdateAlways;
update.updateValue = 0;

/* never notify me of signal strength changes */

update.updateMode = WifiRSSIUpdateNever;
update.updateValue = 0;

IOSIoctl(wifiFD, WIOCSETRSSIUPDATE, (int32_t) &update, &err);

The example in Listing 16.8 shows how to set up the
WifiRSSIUpdateType structure for each of the four notification

Introduction to Wireless Networking
Finding an Access Point or Ad-hoc Network

Exploring Palm OS: Low-Level Communications 339

modes. Once the structure is prepared, call IOSIoctl() to issue
the request.

Finding an Access Point or Ad-hoc Network
To locate an access point or ad-hoc network to which you can
connect, you need to use the WIOCSCAN or WIOCPASSIVESCAN
command.

Active Scanning
If you want to simply perform a one-time scan of the airwaves for
available ad-hoc networks and access points, use WIOCSCAN. See
Listing 16.9.

Listing 16.9 Performing a one-shot scan for access points and
ad-hoc networks

WifiScanRequestType cmd;
status_t err;

memset(&cmd, 0, sizeof(WifiScanRequestType));

cmd.channels = WifiChannel_All;
cmd.rates = WifiRate_All;
cmd.timeout = 2000;
cmd.blockTillCompletion = 0;
IOSIoctl(wifiFD, WIOCSCAN, (int32_t) &cmd, &err);

The scan is performed asynchronously; the IOSIoctl() will return
immediately. Your application’s event loop will receive WiFi events
with the scan results. See “Obtaining Scan Results” on page 340 for
details on how to parse the results.

The blockTillCompletion flag indicates whether or not you
want the ioctl to block until the first scan result arrives. This
example sets it to 0, indicating that we want to return immediately.

Passive Scanning
If you would prefer to constantly be kept informed of the available
access points and ad-hoc networks, as they move in and out of

Introduction to Wireless Networking
Finding an Access Point or Ad-hoc Network

340 Exploring Palm OS: Low-Level Communications

range, or are turned on and off, you can enable passive scanning
mode. While in passive scanning mode, your application’s event
loop will receive scan result events when appropriate. See Listing
16.10 for an example of how to enable passive scanning.

Listing 16.10Enabling passive scanning

WifiPassiveScanType scan;
status_t err;

memset(&scan, 0, sizeof(WifiPassiveScanType));

scan.enableScanning = true;
scan.channelMask = WifiChannel_All;
scan.rateMask = WifiRate_All;
scan.interval = 1000;

IOSIoctl(wifiFD, WIOCPASSIVESCAN, (int32_t) &scan, &err);

The example above enables scanning for access points or ad-hoc
networks operating on any channel and at any transmission rate.
Scan results will be delivered to the application every 1,000
milliseconds.

To disable passive scanning, issue the WIOCPASSIVESCAN
command again, with the enableScanning field set to false.

Obtaining Scan Results
Normally, your application receives scan results as a
wifiScanResults event in its event loop. The event’s
WifiEventType structure describes the detected access point in
detail. Each time an access point or ad-hoc network is found, a
wifiScanResults event is delivered.

You can also manually fetch the scan results from the WiFi adapter
by using the WIOCGETSCANRESULTS command. This command can
be used in a loop to fetch all the scan results available, as seen in
Listing 16.11.

Introduction to Wireless Networking
Configuring Encryption

Exploring Palm OS: Low-Level Communications 341

Listing 16.11Using WIOCGETSCANRESULTS

uint16_t index = 0;
uint16_t last = 0;
WifiGetScanResultsType scan;
status_t err;

do {
memset(&scan, 0, sizeof(WifiGetScanResultsType));
scan.last = last;
scan.index = index;

IOSIoctl(m_fd, WIOCGETSCANRESULTS, (int32_t)&scan, &err);

if (err == P_OK) {
/* results received successfully in scan */

}
else {

/* error receiving scan results */
}

last = scan.last;
index = scan.index;

index++;
} while (index <= last);

Configuring Encryption
WiFi supports the concept of encryption to protect data security.
There are two security modes currently supported by Palm OS:
open system (unencrypted) and Wired Equivalent Privacy (WEP).

To use WEP encryption, an encryption key needs to be configured
prior to connecting to the network. There are three steps required to
accomplish this. First, it’s necessary to store the key in the adapter.
A WiFi adapter can store up to four encryption keys, which can then
be selected among depending on which network is being accessed.

Listing 16.12Setting an encryption key

WifiSetWEPKeyType arg;
status_t err;

Introduction to Wireless Networking
Connecting To a Network

342 Exploring Palm OS: Low-Level Communications

arg.key = 0; /* key number to set */

memset(arg.data, 0, 16);
arg.data_len = Ascii2Binary(arg.data, keyString, 16);

IOSIoctl(wifiFD, WIOCSETKEY, (int32_t) &arg, &err);

The code in Listing 16.12 sets key 0 to the string specified by
keyString. See Listing 16.17 for the code for the
Ascii2Binary() function.

Once the key has been stored on the adapter, it must be selected
using the WIOCSETDEFAULTKEY command. See Listing 16.13.

Listing 16.13Selecting the default key

status_t err;

IOSIoctl(wifiFD, WIOCSETDEFAULTKEY, (int32_t) 0, &err);

Finally, once the key has been selected, it’s possible to put the
interface into WEP mode by using the WIOCSETSECMODE
command, as seen in Listing 16.14.

Listing 16.14Enabling encryption

status_t err;
uint32_t mode = WifiSecWEP;

IOSIoctl(wifiFD, WIOCSETSECMODE, (int32_t) &mode, &err);

To disable encryption, simply set the mode to WifiSecOpen.

Connecting To a Network
Once you have found an access point or ad-hoc network to which
you wish to connect, you can connect to that network using either
the WIOCCONNECT or the WIOCJOIN ioctl.

If you have the SSID of the network or ad-hoc network, you use the
WIOCCONNECT command, as shown in Listing 16.15.

Introduction to Wireless Networking
Connecting To a Network

Exploring Palm OS: Low-Level Communications 343

Listing 16.15Connecting to a wireless network using an SSID

WifiConnectType arg;
status_t err;

strncpy(arg.ssid, theSSID, 32);
arg.timeout = 3000;
arg.blockTillCompletion = false;
IOSIoctl(wifiFD, WIOCCONNECT, (int32_t) &arg, &err);

In this example, we choose to try for three seconds (3,000
milliseconds) before timing out. In addition, since the
blockTillCompletion flag is set to false, the call will return at
once. We must then check the status of the connection periodically
to detect when the connection is actually opened (or if the
connection fails to open).

Your event loop (using either a Pollbox or IOSPoll()) will receive
notifications as the status of the connection changes:
wifiConnectAccessPoint or wifiConnectAdHoc when the
connection is established, wifiConnecting while connection is
being attempted, wifiOutOfRange if the access point is out of
range but was opened anyway under the assumption that it will be
eventually, wifiMediaUnavailable if the 802.11 hardware is
missing, or wifiConnectFailed if the connection could not be
established.

If you have the BSSID (MAC address) and channel number of a
network to which you wish to connect, you can use the WIOCJOIN
command instead, as shown in Listing 16.16.

Listing 16.16Connecting to a wireless network using a BSSID
and channel number

WifiJoinType arg;
status_t err;

Ascii2Binary(arg.bssid, “FF:FF:FF:FF:FF”, 6);
arg.channel = theChannel;
IOSIoctl(wifiFD, WIOCJOIN, (int32_t) &arg, &err);

Introduction to Wireless Networking
Connecting To a Network

344 Exploring Palm OS: Low-Level Communications

This code uses a function called Ascii2Binary() to convert the
MAC ID string into the proper format. Ascii2Binary() is shown
in Listing 16.17.

Listing 16.17Converting a hex string into packed binary format

int Ascii2Binary(uint8_t * buf, const char* p, size_t length)
{

uint8_t nibble;
size_t i = 0;
static char map[22] = {'0', '1', '2', '3', '4', '5', '6',

'7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'a', 'b', 'c',
'd', 'e', 'f'};

while (*p != NULL && i < length) {

// Skip over MAC octet separators
if (*p == ':') {

p++;
continue;

}
nibble = 0;
for(int j = 0; j < 22; j++) {

if (p[0] == map[j]) {

if (j >= 16)
nibble = j - 6;

else
nibble = j;

break;
}

}

buf[i] |= nibble << 4;
p++;

if (*p == NULL)
break;

nibble = 0;
for(int j = 0; j < 22; j++) {

if (p[0] == map[j]) {
if (j >= 16)

nibble = j - 6;
else

nibble = j;
break;

Introduction to Wireless Networking
Disconnecting From a Network

Exploring Palm OS: Low-Level Communications 345

}
}

buf[i] |= nibble;
i++;
p++;

}

return i;
}

Once a connection has been established, the wireless network can be
used just like any other network connection, using the Sockets API
or IOS STDIO calls.

Managing a Wireless Connection
Once the connection is established, your application’s event loop
will receive events on the WiFi management file descriptor,
informing you of changes in the status of the connection, as well as
results of specific requests you issue. Your event loop needs to either
poll the file descriptor, or use a Pollbox. These concepts are covered
in “Polling STREAMS File Descriptors” on page 375.

WiFi events use the WifiEventType structure to return data to
your event handler. The possible events are listed in “Event Type
Constants” on page 349.

Disconnecting From a Network
To disconnect from a WiFi network, use the WIOCDISCONNECT
command. See Listing 16.18.

Listing 16.18Disconnecting from a WiFi network

status_t err;
IOSIoctl(wifiFD, WIOCDISCONNECT, NULL, &err);

Introduction to Wireless Networking
Creating an Ad-hoc Network

346 Exploring Palm OS: Low-Level Communications

Creating an Ad-hoc Network
Palm OS devices can create an ad-hoc network using the
WIOCCREATEIBSS ioctl.

Listing 16.19Creating an ad-hoc network

WifiCreateIBSSType ibss;
status_t err;

memset(&ibss, 0, sizeof(WifiCreateIBSSType));
strncpy(ibss.ssid, "MyAdhocNet", 32);
ibss.channel = 8;

IOSIoctl(wifiFD, WIOCCREATEIBSS, (int32_t) &ibss, &err);

The example in Listing 16.19 creates a new ad-hoc network named
“MyAdhocNet” operating on channel 8. If this is successful, other
WiFi-enabled devices can then connect to the new ad-hoc network
just like any other network.

Exploring Palm OS: Low-Level Communications 347

17
WiFi Reference

Declared In wifi.h

Overview
This chapter describes the constants, data types, and ioctl command
codes used to control WiFi connectivity.

WiFi Constants

Channel Constants
Purpose Define which channels are usable or preferable when multiple

channels can be used.

Constants WifiChannel_1
Channel 1

WifiChannel_2
Channel 2

WifiChannel_3
Channel 3

WifiChannel_4
Channel 4

WifiChannel_5
Channel 5

WifiChannel_6
Channel 6

WifiChannel_7
Channel 7

WifiChannel_8
Channel 8

WiFi Reference
Connection Status Constants

348 Exploring Palm OS: Low-Level Communications

WifiChannel_9
Channel 9

WifiChannel_10
Channel 10

WifiChannel_11
Channel 11

WifiChannel_12
Channel 12

WifiChannel_13
Channel 13

WifiChannel_14
Channel 14

WifiChannel_All
All channels are allowed.

Connection Status Constants
Purpose Values that may be used when reporting the association status of the

connection.

Constants WifiStatusUndefined
The current connection state is undefined.

WifiStatusDisconnected
The interface is disconnected.

WifiStatusConnecting
The interface is in the process of attempting to connect.

WifiStatusConnectedAccessPoint
The interface is connected to an access point.

WifiStatusConnectedAdHoc
The interface is connected to an ad-hoc network.

WifiStatusOutOfRange
The interface is connected to an access point that is out of
range.

WifiStatusConnectionFailed
The connection attempt has failed.

WiFi Reference
Event Type Constants

Exploring Palm OS: Low-Level Communications 349

Event Type Constants
Purpose Define events that can be delivered to indicate changed conditions

on the 802.11 network.

Constants wifiUndefinedEvent
An event that does not fall under any of the other defined
event codes.

wifiConnecting
The station is currently attempting to connect to an access
point or ad-hoc network.

wifiConnectAccessPoint
The station has successfully connected to an access point.

wifiConnectAdHoc
The station has successfully connected to an ad-hoc network.

wifiConnectFailed
The interface could not establish a connection. If the reason
for the failure can be determined, the reason code will
indicate what it is.

wifiOutOfRange
The access point to which the station is connected is out of
range. If the station moves back into range of the access
point, the interface should return to the
wifiConnectAccessPoint or wifiConnectAdHoc state.

wifiDisconnect
The station is not connected.

wifiScanResults
The wifiScanResults event contains information about a
scanned access point or ad-hoc network that has been found.

wifiSignalStrength
The interface is reporting updated signal strength
information.

wifiMediaUnavailable
The 802.11 hardware has been removed from the device, or
has been disabled. The file descriptor for the connection, as
well as the device name, are no longer valid.

WiFi Reference
Power Mode Constants

350 Exploring Palm OS: Low-Level Communications

wifiScanFailed
The 802.11 interface did not find any access points or ad-hoc
networks. If the reason for the failure can be determined, the
reason code will specify why.

Power Mode Constants
Purpose Define the power mode for the radio hardware.

Constants WifiPowerOff
The radio hardware is off.

WifiPowerOn
The radio hardware is on.

WifiPowerOnPowerSave
The radio hardware is in a reduced-power, but still
operational, mode.

WifiPowerOffHardSwitch
The radio hardware has been switched off using an external
switch.

RSSI Update Mode Constants
Purpose Define the RSSI update modes.

Constants WifiRSSIUpdateNever
Disables asynchronous RSSI updates.

WifiRSSIUpdateOnDelta
Specifies that RSSI updates will be sent when the signal
strength changes by a given percentage.

WifiRSSIUpdatePeriodic
Specifies that RSSI updates will be generated at a regular
interval, which is specified in milliseconds.

WifiRSSIUpdateAlways
Specifies that RSSI update events will be generated every
time new signal strength information is available.

Comments Changing the RSSI update mode allows applications to control how
frequently they receive an update. For example, an application
designed to test signal strength may want updates constantly, while

WiFi Reference
Transmission Rate Flags

Exploring Palm OS: Low-Level Communications 351

a typical status bar signal strength monitor would prefer less
frequent updates to reduce processor impact.

Scan Result Capability Constants
Purpose Define bit flags indicating the capabilities of an 802.11 station that

responded to a scan. These constants correspond to values defined
in section 7.3.1.4 of the IEEE 802.11 Specification.

Constants WifiCapAccessPoint
The station is an access point.

WifiCapAdhocNetwork
The station can be connected to to form an ad-hoc network.

WifiCapPrivacy
The station supports some form of security protocol. The
security protocol may be WEP or WPA.

Comments WifiCapAccessPoint and WifiCapAdhocNetwork are
mutually exclusive.

Security Capability Constants
Purpose Define the security capabilities of the WiFi network.

Constants WifiSecOpen
The network is not secure.

WifiSecWEP
The network supports WEP.

Transmission Rate Flags
Purpose Define the data transmission rate capabilities and preferences of the

client hardware and access points.

Constants WifiRate_0Mbit
0 Mbps

WifiRate_1Mbit
1 Mbps

WiFi Reference
Transmission Rate Flags

352 Exploring Palm OS: Low-Level Communications

WifiRate_2Mbit
2 Mbps

WifiRate_5_5Mbit
5.5 Mbps

WifiRate_6Mbit
6 Mbps

WifiRate_9Mbit
9 Mbps

WifiRate_11Mbit
11 Mbps

WifiRate_12Mbit
12 Mbps

WifiRate_18Mbit
18 Mbps

WifiRate_22Mbit
22 Mbps

WifiRate_24Mbit
24 Mbps

WifiRate_33Mbit
33 Mbps

WifiRate_36Mbit
36 Mbps

WifiRate_48Mbit
48 Mbps

WifiRate_54Mbit
54 Mbps

WifiRate_All
Shorthand indicating that all rates are supported.

WiFi Reference
WifiEventType

Exploring Palm OS: Low-Level Communications 353

WEP Flag Constants
Purpose Define flags used to configure WEP. These constants are only valid

when the WiFi encryption mode is set to WifiSecWEP.

Constants WifiWEPExcludeUnencrpyted
If this flag is set, unencrypted frames are discarded
automatically.

WifiWEPIVReuseEvery
Reuse the initialization vector every frame.

WifiWEPIVReuse10
Reuse the initialization vector every 10 frames.

WifiWEPIVReuse50
Reuse the initialization vector every 50 frames.

WifiWEPIVReuse100
Reuse the initialization vector every 100 frames.

Comments The initialization vector reuse flags are mutually exclusive.

WiFi Data Structures and Types

WifiEventType Struct
Purpose Describes a single WiFi event.

Prototype typedef struct {
 uint32_t event;

 union {
 struct scan{
 uint16_t index;
 uint16_t last;
 WifiScanResultsType results;
 } scan;

 struct connectAccessPoint {
 char ssid[33];
 uint8_t padding[3];
 uint8_t bssid[6];
 } connectAccessPoint;

WiFi Reference
WifiEventType

354 Exploring Palm OS: Low-Level Communications

 struct connectAdhoc {
 char ssid[33];
 uint8_t padding[3];
 uint8_t bssid[6];
 } connectAdhoc;

 struct connectFailed {
 status_t reasonCode;
 } connectFailed;

 struct scanFailed {
 status_t reasonCode;
 } scanFailed;

 struct signalStrength {
 uint8_t signal;
 } signalStrength;
 } data;
} WifiEventType;

Fields scan
Describes a scan result. This event includes the following
additional data:

index
The index within the series of scan results that are
being reported.

last
The index of the last element in the series.

results
A description of the scanned station or access point.

connectAccessPoint
Indicates that a connection to an access point has occurred.

ssid
The ESSID of the network to which the connection has
been established.

bssid
The 6-byte MAC address of the access point to which
the connection has been established.

WiFi Reference
WifiScanResultsType

Exploring Palm OS: Low-Level Communications 355

connectAdHoc
Indicates that a connection to an ad-hoc network has
occurred.

ssid
The ESSID of the ad-hoc network to which the
connection has been established.

bssid
The 6-byte MAC address of the ad-hoc network to
which the connection has been established.

connectFailed
Indicates that a connection attempt has failed.

reasonCode
An integer indicating the reason for the failure.

scanFailed
Indicates that a scan attempt has failed.

reasonCode
An integer indicating the reason for the failure.

signalStrength
Provides updated signal strength information.

signal
A value from 0 to 100 indicating the current signal
strength as a percentage of maximum strength.

WifiScanResultsType Struct
Purpose Describes an access point or ad-hoc network discovered during a

scan.

Prototype typedef struct {
 char ssid[33];
 int8_t signal;
 int8_t noise;
 uint8_t channel;
 uint8_t bssid[6];
 uint16_t ATIMInterval;
 uint32_t supportedRates;

WiFi Reference
WifiScanResultsType

356 Exploring Palm OS: Low-Level Communications

 uint32_t responseRate;
 uint32_t capabilities;
 uint16_t beaconInterval;
 uint8_t padding[2];
} WifiScanResultsType;

Fields ssid
The network name of the scanned access point or ad-hoc
network. An SSID is a null terminated ASCII string of 1 to 32
characters in length.

signal
The signal level at which the probe response was received, in
dbm.

noise
The average noise level detected while the probe response
was being received, in dbm.

channel
The channel number on which the access point or ad-hoc
network is operating.

NOTE: The channel number is an integer, not a constant from
the “Channel Constants” list.

bssid
The MAC address that identifies the access point or station
that created the ad-hoc network.

ATIMInterval
The ATIM time window, in units of 100 microseconds. This
field is only valid for ad-hoc networks.

supportedRates
A bit mask of all the transmission rates supported by the
scanned access point or station. See “Transmission Rate
Flags” on page 351 for the possible values.

capabilities
A bit mask of the capabilities of the scanned access point or
station. See “Scan Result Capability Constants” on page 351
for the possible flag values.

WiFi Reference
WIOCCONNECT

Exploring Palm OS: Low-Level Communications 357

beaconInterval
Specifies how frequently the access point or station transmits
a beacon frame. This is an integer value in units of 100
microseconds.

IOCTL Commands

WIOCCONNECT
Purpose Initiates a connection to an access point or ad-hoc network.

Prototype struct {
 uint32_t timeout;
 char ssid[33];
 uint8_t blockTillCompletion;
 uint8_t pad[2];
} WifiConnectType

Fields → timeout
The length of time, in microseconds, for the 802.11
framework to wait before giving up on the connection
attempt.

→ ssid
A null-terminated ASCII string containing the SSID of the
network to which to connect. The string length must be
between one and 32 characters.

→ blockTillCompletion
If true, the WIOCONNECT ioctl will block until the
connection has been established or a timeout occurs.

Returns errNone
Success.

EINVAL
One of the parameters is invalid.

Other errors as appropriate.

Comments Using this command while already connected to a network causes
the existing connection to be terminated and a new one to be
opened.

See Also WIOCDISCONNECT

WiFi Reference
WIOCCREATEIBSS

358 Exploring Palm OS: Low-Level Communications

WIOCCREATEIBSS
Purpose Creates an independent BSS (ad-hoc network).

Prototype struct {
 char ssid[33];
 uint8_t channel;
 uint8_t padding[2];
} WifiCreateIBSSType

Fields ← ssid
The name to give the newly created ad-hoc network. The
name must be a null terminated ASCII string of 1 to 32
characters in length

← channel
The channel number on which to create the ad-hoc network.
This must be one of the channels supported by the radio
hardware, as reported by WIOCGETCHANNEL. The value must
be an integer, rather than one of the channel flag values.

Returns errNone
Success.

EINVAL
One of the parameters is invalid.

Other errors as appropriate.

Comments This command will terminate any existing connection.

WIOCDISCONNECT
Purpose Disconnects from the access point or ad-hoc network to which the

device is currently connected, or terminates a connection attempt in
progress.

Prototype None.

Fields None.

Returns Nothing.

Comments This call should only be used on a connected interface, or one that is
in the process of trying to connect.

See Also WIOCCONNECT

WiFi Reference
WIOCGETCHANNEL

Exploring Palm OS: Low-Level Communications 359

WIOCGETBSSID
Purpose Retrieves the the BSSID of the access point or ad-hoc network to

which the 802.11 interface is connected.

Prototype struct {
 uint8_t bssid[6];
} WifiBSSIDType

Fields ← bssid
The 48-bit MAC address representing the BSSID of the access
point or ad-hoc network.

Returns errNone
Success.

EINVAL
One of the parameters is invalid.

Other errors as appropriate.

WIOCGETCHANNEL
Purpose Returns the channel on which the interface is connected, as well as a

bit mask indicating which channels are supported by the radio
hardware.

Prototype struct {
 uint32_t current;
 uint32_t supportedMask;
} WifiChannelType

Fields ← current
The integer number of the channel on which the hardware is
currently connected.

← supportedMask
A bit mask indicating which channels the radio hardware
supports. See “Channel Constants” on page 347. for possible
values.

Returns errNone
Success.

EINVAL
One of the parameters is invalid.

WiFi Reference
WIOCGETCURRENTRSSI

360 Exploring Palm OS: Low-Level Communications

Other errors as appropriate.

WIOCGETCURRENTRSSI
Purpose Returns the current signal strength of the wireless connection.

Prototype struct {
 uint8_t signal;
 uint8_t padding[3];
} WifiGetRSSIType

Fields ← signal
The signal strength of the connection, as a percentage from 0
to 100.

Returns errNone if successful, otherwise an appropriate negative error
code.

WIOCGETMACADDR
Purpose Returns the MAC address of the WiFi interface.

Prototype struct {
 uint8_t bssid[6];
} WiFiBSSIDType

Fields ← bssid
The BSSID (MAC address) of the WiFi interface.

Returns errNone if successful, otherwise an appropriate negative error
code.

WIOCGETPOWERMODE
Purpose Returns the current power mode for the radio hardware.

Prototype uint32_t mode

Fields ← mode
The retrieved power mode setting. See “Power Mode
Constants” on page 350 for possible values.

WiFi Reference
WIOCGETRATES

Exploring Palm OS: Low-Level Communications 361

Returns errNone if successful, otherwise an appropriate negative error
code.

See Also WIOCSETPOWERMODE

WIOCGETRATES
Purpose Retrieves information about the transmission settings and

capabilities of the radio hardware.

Prototype struct {
 uint32_t supported_rates;
 uint32_t preferred_rates;
 uint32_t current_rate;
} WifiGetRatesType

Fields ← supported_rates
A mask of all the transmission rates supported by the radio
hardware.

← preferred_rates
A subset of the supported_rates, which may be used when
negotiating the transmission rate with an access point or ad-
hoc network.

← current_rate
The transmission rate currently in use, if the device is
associated with an access point or ad-hoc network.

Returns errNone
Success.

EINVAL
One of the parameters is invalid.

Other errors as appropriate.

See Also WIOCSETRATES

WiFi Reference
WIOCGETRSSIUPDATE

362 Exploring Palm OS: Low-Level Communications

WIOCGETRSSIUPDATE
Purpose Retrieves the rules governing when the 802.11 adapter sends an

RSSI update event.

Prototype struct {
 uint32_t updateMode;
 uint32_t updateValue;
} WifiRSSIUpdateType

Fields ← updateMode
The RSSI update mode currently in use. See “RSSI Update
Mode Constants” on page 350 for a list of possible values.

← updateValue
The frequency of updates. If updateMode is
WifiRSSIUpdatePeriodic, this is the time interval in
milliseconds between updates. If updateMode is
WifiRSSIUpdateOnDelta, then this value is the amount of
change in signal strength, in percentage points, that must be
exceeded before an update is sent. This value is 0 for other
modes.

Returns errNone
Success.

EINVAL
One of the parameters is invalid.

Other errors as appropriate.

See Also WIOCSETRSSIUPDATE

WiFi Reference
WIOCGETSCANRESULTS

Exploring Palm OS: Low-Level Communications 363

WIOCGETSCANRESULTS
Purpose Retrieves scan results from the results cache stored in the 802.11

adapter.

Prototype struct {
 uint16_t index;
 uint16_t last;
 WifiScanResultsType results;
} WifiGetScanResultsType

Fields → index
The index number of the scan result to retrieve. On the first
invocation of this command, the value should be zero. For
subsequent invocations, the value should be set to a value in
the range 0 to the value returned in last.

← last
The index of the last scan result. On the first invocation of
this command, set this value to zero. When the command
returns, it is set to the index of the last scan result available.

Returns errNone
Success.

EINVAL
One of the parameters is invalid.

Other errors as appropriate.

Comments Use this command to fetch the results of either a passive or active
scan.

See Also WIOCPASSIVESCAN, WIOCSCAN

WiFi Reference
WIOCGETSECCAPS

364 Exploring Palm OS: Low-Level Communications

WIOCGETSECCAPS
Purpose Retrieves information about the current security settings and

capabilities for the 802.11 interface.

Prototype struct {
 uint32_t current;
 uint32_t capabilities;
} WifiGetSecCapType

Fields ← current
The current security mode in effect on the 802.11 interface.
See “Security Capability Constants” on page 351. Only one
security mode can be in effect.

← capabilities
A bit mask of all the security modes supported by the 802.11
interface.

Returns errNone
Success.

EINVAL
One of the parameters is invalid.

Other errors as appropriate.

See Also WIOCSETSECMODE

WIOCGETSSID
Purpose Retrieves the SSID of the access point or ad-hoc network to which

the 802.11 interface is currently connected.

Prototype struct {
 char ssid[33];
 uint8_t padding[3];
} WifiSSIDType

Fields ← ssid
A null terminated ASCII string with a length between 1 and
32 characters, indicating the SSID of the access point or ad-
hoc network to which the interface is connected.

Returns errNone
Success.

WiFi Reference
WIOCGETWEPFLAGS

Exploring Palm OS: Low-Level Communications 365

EINVAL
One of the parameters is invalid.

Other errors as appropriate.

WIOCGETSTATUS
Purpose Gets the current connection status for the 802.11 interface.

Prototype uint32_t status

Fields ← status
The current connection status of the 802.11 interface. See
“Connection Status Constants” on page 348.

Returns errNone
Success.

EINVAL
The status parameter is invalid.

Other errors as appropriate.

WIOCGETWEPFLAGS
Purpose Retrieves the current WEP configuration flags.

Prototype uint32_t flags

Fields ← flags
A mask of all the flags currently set. See “WEP Flag
Constants” on page 353.

Returns errNone
Success.

EINVAL
The flags parameter is invalid.

Other errors as appropriate.

See Also WIOCSETWEPFLAGS

WiFi Reference
WIOCJOIN

366 Exploring Palm OS: Low-Level Communications

WIOCJOIN
Purpose Initiates a connection to an access point or ad-hoc network using a

BSSID instead of an SSID to specify the network.

Prototype struct {
 uint8_t bssid[6];
 uint16_t channel;
} WifiJoinType

Fields → bssid
The 48-bit MAC address of the BSS the 802.11 interface
should join.

→ channel
The channel number on which to create the ad-hoc network.
This must be one of the channels supported by the radio
hardware, as reported by WIOCGETCHANNEL. The value must
be an integer, rather than one of the channel flag values.

Returns errNone
Success.

EINVAL
One of the parameters is invalid.

Other errors as appropriate.

Comments Using this command while already connected to a network causes
the existing connection to be terminated and a new one to be
opened.

See Also WIOCDISCONNECT

WiFi Reference
WIOCPASSIVESCAN

Exploring Palm OS: Low-Level Communications 367

WIOCPASSIVESCAN
Purpose Instructs the 802.11 interface to passively scan for available access

points and ad-hoc networks at regular intervals. This command is
also used to terminate passive scanning.

Prototype struct {
 uint32_t interval;
 uint32_t channelMask;
 uint32_t rateMask;
 uint8_t ssid[33];
 uint8_t enableScanning;
 uint8_t padding[2]
} WifiPassiveScanType;

Fields → interval
The time interval between scans, in milliseconds.

→ channelMask
A bit mask of all the channels that should be checked during
the scan. See “Channel Constants” on page 347 for possible
values.

→ rateMask
A bit mask of all the transmission rates to check for while
performing the scan. See “Transmission Rate Flags” on
page 351 for possible values.

→ ssid
This parameter, which is optional, lets you specify the SSID
of a specific network to search for access points within. If you
do not wish to use this restriction, this parameter should be
set to an empty string.

→ enableScanning
If true, passive scanning is started; if false, passive
scanning is canceled and all other parameters are ignored.

Returns errNone
Success.

EINVAL
One of the parameters is invalid.

Other errors as appropriate.

WiFi Reference
WIOCSCAN

368 Exploring Palm OS: Low-Level Communications

Comments After this ioctl is issued, use the WIOCGETSCANRESULTS ioctl to
obtain the results.

See Also WIOCSCAN, WIOCGETSCANRESULTS

WIOCSCAN
Purpose Instructs the 802.11 interface to perform an active scan for available

access points and ad-hoc networks.

Prototype struct {
 uint32_t channels;
 uint32_t rates;
 uint32_t timeout;
 uint8_t ssid[33];
 uint8_t blockTillCompletion;
 uint8_t padding[2]
} WifiScanRequestType;

Fields → channels
A bit mask of all the channels that should be checked during
the scan. See “Channel Constants” on page 347 for possible
values.

→ rates
A bit mask of all the transmission rates to check for while
performing the scan. See “Transmission Rate Flags” on
page 351 for possible values.

→ timeout
The length of time, in milliseconds, that the 802.11
framework will wait before giving up on a scan. A timeout of
zero may be specified if the scan should not time out.

→ ssid
This parameter, which is optional, lets you specify the SSID
of a specific network to search for access points within. If you
do not wish to use this restriction, this parameter should put
to an empty string.

→ blockTillCompletion
If true, the WIOCSCAN ioctl will block until the first scan
result comes in.

WiFi Reference
WIOCSETKEY

Exploring Palm OS: Low-Level Communications 369

Returns errNone
Success.

EINVAL
One of the parameters is invalid.

Other errors as appropriate.

Comments After this ioctl is issued, use the WIOCGETSCANRESULTS ioctl to
obtain the results.

See Also WIOCPASSIVESCAN, WIOCGETSCANRESULTS

WIOCSETDEFAULTKEY
Purpose Sets the default WEP key for the radio hardware.

Prototype uint32_t key

Fields → key
The key number to use as the default key. Must be a value in
the range 0 to 3.

Returns errNone
Success.

EINVAL
One of the parameters is invalid.

Other errors as appropriate.

Comments If WEP encryption is disabled, the default key will be set but not
used.

WIOCSETKEY
Purpose Sets one of the four WEP keys for the radio hardware.

Prototype struct {
 uint16_t key;
 uint16_t len;
 uint8_t buffer[MAX_KEY_VALUE_LEN];
} WifiSetWEPKeyType

Fields → key
The key number to set. Must be a value in the range 0 to 3.

WiFi Reference
WIOCSETPOWERMODE

370 Exploring Palm OS: Low-Level Communications

→ len
The length of the key, in bytes. A 40-bit key requires a 5-byte
buffer, while a 104-bit key requires a 13-byte buffer.

→ buffer
The key itself.

Returns errNone
Success.

EINVAL
One of the parameters is invalid.

Other errors as appropriate.

WIOCSETPOWERMODE
Purpose Sets the current power mode for the radio hardware.

Prototype uint32_t mode

Fields ↔ mode
The power mode to use. See “Power Mode Constants” on
page 350 for possible values.

Returns errNone if successful, otherwise an appropriate negative error
code.

Comments The caller should check mode on output to verify that the requested
mode was in fact set. For example, if there is a hardware switch
locking WiFi power off, an attempt to turn WiFi on would fail.

See Also WIOCGETPOWERMODE

WiFi Reference
WIOCSETRSSIUPDATE

Exploring Palm OS: Low-Level Communications 371

WIOCSETRATES
Purpose Sets the preferred transmission rates for the radio hardware. The

actual transmission rate is selected by negotiation turing the process
of associating with an access point or ad-hoc network.

Prototype uint32_t rate_mask

Fields → rate_mask
A bit mask containing all the transmission rates that the
station should use. See “Transmission Rate Flags” on
page 351 for possible values.

Returns errNone
Success.

EINVAL
The rate_mask specified is invalid.

Other errors as appropriate.

See Also WIOCGETRATES

WIOCSETRSSIUPDATE
Purpose Configures the rules governing when the 802.11 adapter sends an

RSSI update event.

Prototype struct {
 uint32_t updateMode;
 uint32_t updateValue;
} WifiRSSIUpdateType

Fields → updateMode
The RSSI update mode to use. See “RSSI Update Mode
Constants” on page 350 for a list of possible settings.

→ updateValue
The frequency of updates. If updateMode is
WifiRSSIUpdatePeriodic, this is the time interval in
milliseconds between updates. If updateMode is
WifiRSSIUpdateOnDelta, then this value is the amount of
change in signal strength, in percentage points, that must be
exceeded before an update is sent.

Returns errNone
Success.

WiFi Reference
WIOCSETSECMODE

372 Exploring Palm OS: Low-Level Communications

EINVAL
One of the parameters is invalid.

Other errors as appropriate.

See Also WIOCGETRSSIUPDATE

WIOCSETSECMODE
Purpose Selects the security scheme for the 802.11 interface.

Prototype uint32_t mode

Fields → mode
The security mode to use on the 802.11 interface. See
“Security Capability Constants” on page 351. You may only
specify one security mode.

Returns errNone
Success.

EINVAL
The mode is invalid.

Other errors as appropriate.

See Also WIOCGETSECCAPS

WIOCSETWEPFLAGS
Purpose Sets options related to WEP.

Prototype uint32_t flags

Fields → flags
A mask of all the flags to set. See “WEP Flag Constants” on
page 353.

Returns errNone
Success.

EINVAL
The flags are invalid.

Other errors as appropriate.

See Also WIOCGETWEPFLAGS

Part VI
IOS STDIO

The Standard I/O (STDIO) interface provided by the I/O
Subsystem (IOS) in Palm OS® lets programmers use familiar Posix-
like functions to access Palm OS device drivers. This part covers this
API, as well as other IOS APIs for managing drivers.

Using IOS STDIO 375

IOS STDIO Reference 383

Driver Installation API 429

Driver Attributes API 421

Exploring Palm OS: Low-Level Communications 375

18
Using IOS STDIO

Introducing IOS STDIO
The IOS STDIO shared library provides a set of functions that are
mostly compatible with the Posix STDIO interface. These functions
forward I/O requests to the I/O Subsystem (IOS) for processing.
The STDIO function calls include calls to open and close devices,
read and write data, and perform control operations on devices.

In general, the functions in the Palm OS IOS STDIO library are used
similarly to those in the standard Posix standard I/O library; the
key difference is that the Palm OS versions have the prefix “IOS”
added to the function names.

You can learn much more about these functions by reading any
good Unix programming book.

Synchronization Issues
The I/O Process, in order to optimize performance, directly accesses
the calling process’ memory space to read from and write into
buffers. Although the calling thread is blocked, other threads in the
calling process might access that memory at the same time as the
I/O Process, which would cause synchronization problems.

Therefore, if this may be an issue for your application, be sure to use
a semaphore or other mutual exclusion device.

Polling STREAMS File Descriptors
Your application’s main event loop can reduce its overall impact on
the performance of the device by blocking until a user interface
event occurs. This can be done using the IOSPoll() function,
similar to the example in Listing 18.1.

Using IOS STDIO
Polling STREAMS File Descriptors

376 Exploring Palm OS: Low-Level Communications

Listing 18.1 An example main event loop that blocks until an
event occurs

status_t error;
EventType event;
int32_t eventFd;
int32_t fdCount;
struct pollfd fdSet[1];

eventFd = EvtGetEventDescriptor();
fdSet[0].fd = (int) eventFd;
fdSet[0].events = (short)(POLLIN | POLLHUP);
fdCount = 1;

do {
if ((error = IOSPoll(fdSet, fdCount, 10000, &fdCount)) !=

errNone) {
printf("IOSPoll() failed with error: 0x%08lx\n", error);

}

EvtGetEvent(&event, 0);

if (!SysHandleEvent(&event)) {
if (!MenuHandleEvent(0, &event, &error)) {

if (!ApplicationHandleEvent(&event)) {
FrmDispatchEvent(&event);

}
}

}
} while (event.eType != appStopEvent);

This code calls EvtGetEventDescriptor() to determine the file
descriptor for the event queue.

Once that’s done, it calls IOSPoll() to block for 10,000
milliseconds or until message occurs on the event queue’s file
descriptor. Once an event occurs, it is fetched using
EvtGetEvent() and the event is processed normally.

By blocking on IOSPoll(), this event loop avoids busy-waiting—
the practice of looping constantly, non-stop, executing code that
repeatedly checks for pending events. This saves processor time for
other tasks.

Using IOS STDIO
Polling STREAMS File Descriptors

Exploring Palm OS: Low-Level Communications 377

Using a PollBox to Monitor Multiple File
Descriptors
Applications that use multiple file descriptors can simplify their
event loops by using a PollBox. A PollBox is a mechanism that
automatically handles polling, calling a specified routine each time
an event occurs that affects a file descriptor you’re monitoring.

Once an application creates a PollBox, it can add and remove file
descriptors from the set of file descriptors to monitor right from
within its event loop. Each file descriptor has a callback routine
associated with it, which is called whenever an event affects the file
descriptor.

Creating a PollBox

Creating a PollBox is a simple matter of calling the PbxCreate()
function, as shown in Listing 18.2.

Listing 18.2 Creating a PollBox

#include <PollBox.h>

...

PollBox *pbx = PbxCreate();

Destroying a PollBox

When your application is done using the PollBox, it must return
resources to the system by calling PbxDestroy(). This will close
all the file descriptors currently in the PollBox and free all memory
used by the box. This is demonstrated in Listing 18.3.

Listing 18.3 Destroying a PollBox

PbxDestroy(pbx);

Adding File Descriptors to Monitor

To add a file descriptor to the set of file descriptors being monitored
by a PollBox, your application should call the PbxAddFd()
function, as shown in Listing 18.4.

Using IOS STDIO
Polling STREAMS File Descriptors

378 Exploring Palm OS: Low-Level Communications

Listing 18.4 Adding a file descriptor to a PollBox

status_t err = PbxAddFd(pbx, fd, eventMask, MyCallbackProc, myContextPtr);

The eventMask passed into the PbxAddFd() function is a bitwise
OR of one or more of the following values:

POLLIN: Set this if your application should be informed when a
non-priority message is available for the file descriptor.

POLLPRI: Set this if your application should be informed when a
high-priority message is available for the file descriptor.

POLLOUT: Set this bit if your application should be informed
when a message is sent on the file descriptor.

The MyCallbackProc parameter is a pointer to a callback routine,
which will be called whenever any of the desired events occur. It
will be called with the myContextPtr pointer as one of its
parameters.

NOTE: If you want to poll without receiving callbacks, you can
specify NULL for the callback procedure pointer.

You can poll for the existence of user interface events by using the
file descriptor returned by EvtGetEventDescriptor(),
although you can’t use IOS to read the events. So to handle user
interface events, your application can set up a special callback just
for handling those, which calls the appropriate Event Manager and
other functions to fetch and handle the events:

Listing 18.5 Adding the UI file descriptor to a PollBox

status_t err = PbxAddFd(pbx, EvtGetEventDescriptor(), POLLIN,
 MyUICallbackProc, NULL);

Removing a File Descriptor from the PollBox

The PbxRemoveFd() function removes a file descriptor from a
PollBox, as shown in Listing 18.6.

Using IOS STDIO
Polling STREAMS File Descriptors

Exploring Palm OS: Low-Level Communications 379

Listing 18.6 Removing a file descriptor from a PollBox

PbxRemoveFd(pbx, fd);

Polling for Events using a PollBox

Once you’ve added all the file descriptors you wish to monitor to
the PollBox, you can simply call the PbxPoll() function in a loop
to watch for events, as shown in Listing 18.7. The PbxPoll()
function automatically dispatches events to the appropriate callback
handlers, so all you have to do is watch for error conditions, and
possibly perform some idle activities.

Listing 18.7 Polling for events

for (;;) {
 err = PbxPoll(pbx, timeout, &nReady);
 if (err) {
 // Some unexpected error occurred.
 } else if (nReady == 0) {
 if (pbx->count == 0) {
 // There are no more file descriptors in the pollbox.
 } else {
 // The timer expired before any events occurred.
 }
 } else {
 // Normal case. There are pbx->count > 0 file descriptors in
 // the pollbox, and nReady of them have events. The callbacks
 // associated with the ready file descriptors have been called.
 // If you are working without callbacks, then do something here
 // using the contents of the pollbox.
 }
 }

The call to PbxPoll() blocks until at least one event is available on
at least one file descriptor, or the specified timeout period elapses.
The timeout is specified in milliseconds.

NOTE: If you wish the PbxPoll() function to return
immediately if no events are pending, specify 0 as the timeout. If
you don’t want it to time out at all, specify -1 instead.

Using IOS STDIO
Polling STREAMS File Descriptors

380 Exploring Palm OS: Low-Level Communications

When PbxPoll() returns, any callbacks that apply have already
been called; nReady contains the number of file descriptors that
have events waiting and pbx->count indicates the total number of
file descriptors in the PollBox. If your application isn’t using
callbacks, you can look at the contents of the pbx PollBox and
perform whatever actions your application needs to.

Polling the Easy Way

As you can probably see, in the typical case, all you need to do is call
PbxPoll() in a loop until your application is ready to quit. For this
case, you can use the convenient PbxRun() function, as
demonstrated in Listing 18.8.

Listing 18.8 The easy way to write an event loop

status_t err = PbxRun(pbx);
if (err) {

// Some unexpected error occurred
} else {

// There are no fds left in the PollBox; this is a normal exit
PbxDestroy(pbx);

}

This can literally be your entire event loop. If your application uses
a UI event callback on file descriptor 0, that callback can cause the
application to exit by simply removing all the file descriptors from
the PollBox, which will cause PbxRun() to exit.

Implementing a PollBox Callback

Your callback procedures must be of type PbxCallback:

void PbxCallback(PollBox *pbx, struct pollfd *pollFd, void *context);

The first parameter is a pointer to the PollBox itself. The second
parameter is a pointer to the pollfd structure associated with the
file descriptor on which the event has occurred. The fields your
callback can access within this structure are shown in Table 18.1.

Using IOS STDIO
Polling STREAMS File Descriptors

Exploring Palm OS: Low-Level Communications 381

The final parameter is a pointer to the context variable specified
when your application called PbxAddFd() to add the file
descriptor to the PollBox.

In Listing 18.9, we see an example of a callback procedure.

Listing 18.9 Sample callback procedure

void MyCallback(PollBox* pbx, struct pollfd *pollFd, void* context);
 {
 MyContext* ctx = (MyContext*)context;
 status_t err = 0;

 if (pollFd->revents & POLLIN) {
 IOSGetMsg(pollFd->fd, ctx->ctlBuf, ctx->dataBuf, 0, &err);
 }

 if (err || (pollFd->revents & (POLLERR|POLLHUP))) {
 PbxRemoveFd(pbx, pollFd->fd);
 IOSClose(pollFd->fd);
 return;
 }

 // Handle the event that has been read into the ctl and data buffers.
 ...
 }

If the message received is a POLLIN event, the callback calls the
IOSGetmsg() function to fetch the message. In this case, the
context variable is a structure into which the data gets copied.

Table 18.1 pollFd fields

Field Name Description

fd The file descriptor (read-only).

events The current event mask for
IOSPoll() (read/write).

revents The events returned from
IOSPoll() (read-only).

Using IOS STDIO
Polling STREAMS File Descriptors

382 Exploring Palm OS: Low-Level Communications

If an an error occurred on the file descriptor, or it’s been hung up,
we remove the file descriptor from the PollBox and close it, then
return to the caller.

Other processing can be handled here as needed. For example, if
your application is using IOS STDIO calls to communicate with a
Bluetooth device, you may receive events from the Bluetooth
Management Entity which need to be handled.

Exploring Palm OS: Low-Level Communications 383

19
IOS STDIO
Reference

Overview
This chapter covers the IOS STDIO API. IOS STDIO provides an
architecture for communicating directly at a low level with any kind
of communications device for which there are drivers available,
through a standard, unified API. Using IOS STDIO calls, it’s
possible to write communications applications that can use any
network or serial connection, without having to write custom code
for each type of interface.

IOS STDIO also provides the pollbox—an automated event polling
mechanism that can ease development of event-driven applications
such as communications software.

IOS STDIO Data Structures and Types

cc_t Typedef
Purpose Specifies a control character in a termios structure.

Declared In SDK/posix/termios.h

Prototype typedef unsigned char cc_t;

iovec Struct
Purpose The IOSReadv() and IOSWritev() functions pass an array of

iovec data structures that represent the scattered data array to read
from or write to. Each iovec structure contains a pointer and a byte
length.

IOS STDIO Reference
PollBox

384 Exploring Palm OS: Low-Level Communications

Declared In IOS.h

Prototype struct iovec {
 MemPtr iAddrP;
 int32_t iLen;
};

Fields iAddrP
Base address of the buffer.

iLen;
Length of the buffer.

Comments All of the pointers in the array of iovec data structures must be in
the same memory segment.

PollBox Struct
Purpose Describes a PollBox. Most of the fields in this structure are private.

Declared In PollBox.h

Prototype typedef struct PollBox {
 struct pollfd *pollTab;
 uint16_t count;
 uint16_t capacity;
 uint16_t flags;
 uint16_t nCallbacks;
 PbxInfo *infoTab;
} PollBox;

Fields pollTab
A table of pollfd structures, one per file descriptor that’s in
the PollBox.

count
The number of file descriptors in the PollBox.

capacity
The current maximum number of file descriptors the PollBox
can contain; reserved for system use.

flags
Internal flags; reserved for system use.

IOS STDIO Reference
pollfd

Exploring Palm OS: Low-Level Communications 385

nCallbacks
The number of file descriptors that have callbacks assigned;
reserved for system use.

infoTab
A table of PbxInfo structures, one per file descriptor.
Reserved for system use.

pollfd Struct
Purpose The IOSPoll() function passes an array of pollfd data structures

that represent the file descriptors and events to poll. Each pollfd
structure contains a file descriptor, a mask of events to check, and a
mask of events that are selected.

Declared In IOS.h

Prototype struct pollfd {
 int32_t fd;
 int16_t events;
 int16_t revents;
};

Fields fd
The file descriptor to poll.

events
The events in which you’re interested.

revents
On return, contains the events which have occurred.

IOS STDIO Reference
speed_t

386 Exploring Palm OS: Low-Level Communications

speed_t Typedef
Purpose Specifies the baud rate for a connection in a termios structure.

Declared In SDK/posix/termios.h

Prototype typedef unsigned long speed_t;

strbuf Struct
Purpose The IOSPutmsg(), IOSPutpmsg(), IOSGetmsg(), and

IOSGetpmsg() functions pass two strbuf structures which
represent the data and control buffers. Each strbuf contains the
maximum length of the buffer, the length of the data currently in the
buffer, and a pointer to the data buffer.

Declared In IOS.h

Prototype struct strbuf {
 int32_t iMaxLen;
 int32_t iLen;
 MemPtr iBufP;
};

Fields iMaxLen
The maximum number of bytes that the iBufP buffer can
hold. Only used by IOSGetmsg() and IOSGetpmsg().

iLen
The length of the data currently in the iBufP buffer.

iBufP
A pointer to the buffer.

IOS STDIO Reference
termios

Exploring Palm OS: Low-Level Communications 387

tcflag_t Typedef
Purpose Specifies control modes for a connection in a termios structure.

Declared In SDK/posix/termios.h

Prototype typedef unsigned long tcflag_t;

termios Struct
Purpose Contains all the settings for a communications channel.

Declared In SDK/poxis/termios.h

Prototype struct termios {
 tcflag_t c_iflag;
 tcflag_t c_oflag;
 tcflag_t c_cflag;
 tcflag_t c_lflag;
 char c_line;
 cc_t c_cc[NCC];
 speed_t c_ispeed;
 speed_t c_ospeed;
};

Fields c_iflag
Input modes.

c_oflag
Output modes.

c_cflag
Control modes.

c_lflag
Local modes.

c_line
Line discipline.

c_cc[NCC]
Control characters.

c_ispeed
Input speed.

c_ospeed
Output speed.

IOS STDIO Reference
IOS STDIO Constants

388 Exploring Palm OS: Low-Level Communications

IOS STDIO Constants

Character Control Mode Constants
Purpose Define constants that control character and flow modes for a

connection. Used in the termios structure.

Declared In SDK/posix/termios.h

Constants

Constant Definition

CSIZE Character sizes.

CS7 OR with CSIZE to specify 7-bit
characters: CSIZE|CS7.

CS8 OR with CSIZE to specify 8-bit
characters: CSIZE|CS8.

CSTOPB Send two stop bits instead of the
normal one.

CREAD Enable the receiver.

PARENB Enable transmit parity.

PARODD Select odd parity. If this flag isn’t set,
and parity is enabled, parity is even.

HUPCL If this flag is set, the line will be hung
up after the last file descriptor
accessing it is closed.

CLOCAL If set, indicates a local line.

XLOBLK Block layer output.

CTSFLOW Enables CTS flow control.

RTSFLOW Enables RTS flow control.

IOS STDIO Reference
Input Control Mode Constants

Exploring Palm OS: Low-Level Communications 389

Input Control Mode Constants
Purpose Define constants that specify input mode settings for connections.

Used in the termios structure.

Declared In SDK/posix/termios.h

Constants

CRTSCTS (RTSFLOW |
CTSFLOW)

Enables both CTS and RTS flow
control.

IRDAENB Enables IrDA encoding.

Constant Definition

Constant Definition

IGNBRK Ignore breaks.

BRKINT Break sends an interrupt.

IGNPAR Ignore characters with parity errors.

PARMRK Mark parity errors.

INPCK Enable input parity checking.

ISTRIP Strip the high bit from received characters.

INLCR Map newline to CR on input.

IGNCR Ignore carriage returns.

ICRNL Map CR to newline on input.

IUCLC Map all upper-case characters to lower-case.

IXON Enable software flow control on input.

IXANY Any character received will restart input after
flow control has disabled input.

IXOFF Enables output software flow control.

IOS STDIO Reference
Ioctl Command Constants

390 Exploring Palm OS: Low-Level Communications

Ioctl Command Constants
Purpose Define commands that can be sent to IOSIoctl(). This list is not

exhaustive; that is, some drivers will implement additional
commands, and some may not implement all of these. This is
simply a list of common constants.

Declared In SDK/posix/sys/ttycom.h
SDK/posix/termios.h

Constants

Constant Definition

TIOCMGET Returns all of the modem’s status flags. The
IOSIoctl() function’s iParam output
pointer should point to an integer variable
which will be filled with the status on return.

TIOCGETA Returns a termios structure describing the
device’s settings. The iParam parameter
should point to a termios struct, which will
be filled in with the current device settings.
This is the same as TCGETA.

TCGETA Returns a termios structure describing the
device’s settings. The iParam parameter
should point to a termios struct, which will
be filled in with the current device settings.
This is the same as TIOCGETA.

TIOCSETA Sets the device’s communication settings to
match those in the termios structure passed
in iParam. This is the same as TCSETA.

TCSETA Sets the device’s communication settings to
match those in the termios structure passed
in the iParam parameter. This is the same as
TIOCSETA.

TCSBRK Sets a break condition on the line. iParam is
unused. This is the same as TIOCSBRK.

TIOCSBRK Sets a break condition on the line. iParam is
unused. This is the same as TCSBRK.

IOS STDIO Reference
Ioctl Command Constants

Exploring Palm OS: Low-Level Communications 391

Local Mode Constants
Purpose Define local modes that can be specified in the termios structure.

Declared In SDK/posix/termios.h

Constants

TIOCCBRK Clears the break condition on the line.
iParam is unused.

TIOCSDTR Sets the DTR condition on the line. iParam is
unused.

TIOCCDTR Clears the DTR condition on the line.
iParam is unused.

TIOCDRAIN Blocks the calling thread until the transmit
queue is empty. iParam is unused.

TCSETIRDAMODE Selects read or write mode on IrDA devices.
iParam should point to an integer 0 value to
select write mode, or to a non-zero value to
select read mode.

Constant Definition

Constant Definition

ISIG Enable signals.

ICANON Canonical input.

XCASE Canonical upper/lower case.

ECHO Enable echo.

ECHOE Echo erase as backspace/space/backspace.

ECHOK Echo newline after kill.

ECHONL Echo newlines.

NOFLSH Disable flush after interrupt or quit.

IOS STDIO Reference
Ioctl Command Constants

392 Exploring Palm OS: Low-Level Communications

Modulation Speed Constants
Purpose Define the supported baud rates. Used in the termios structure.

Declared In SDK/posix/termios.h

Constants

TOSTOP Stop background processes that write to the
connection.

IEXTEN Implementation-defined extensions begin here.

Constant Definition

Constant Definition

B0 0 bps.

B50 50 bps.

B75 75 bps.

B110 110 bps.

B134 134 bps.

B150 150 bps.

B200 200 bps.

B300 300 bps.

B600 600 bps.

B1200 1200 bps.

B1800 1800 bps.

B2400 2400 bps.

B4800 4800 bps.

B7200 7200 bps.

B9600 9600 bps.

B14400 14,400 bps.

IOS STDIO Reference
Ioctl Command Constants

Exploring Palm OS: Low-Level Communications 393

NCC Constant
Purpose Defines the number of control characters that can be specified in the

termios structure.

Declared In SDK/posix/termios.h

Constants NCC
This constant specifies the size of the array of control
characters in the termios structure.

B19200 19,200 bps.

B28800 28,800 bps.

B38400 38,400 bps.

B56000 56,000 bps.

B57600 57,600 bps.

B76800 76,800 bps.

B115200 115,200 bps.

B128000 128,000 bps.

B230400 230,400 bps.

B256000 256,000 bps.

B31250 31,250 bps. Used by MIDI.

Constant Definition

IOS STDIO Reference
Ioctl Command Constants

394 Exploring Palm OS: Low-Level Communications

Output Control Mode Constants
Purpose Define output control modes. These constants are used in the

termios structure.

Declared In SDK/posix/termios.h

Constants

Constant Definition

OPOST Enable post-processing of output.

OLCUC Maps lower case to upper case on output.

ONLCR Maps newlines to CR+NL on output.

OCRNL Maps CR to newline on output.

ONOCR No CR output when in column 0.

ONLRET Newline performs a CR.

OFILL Uses fill characters for delays.

OFDEL Fills are DEL, otherwise NUL.

NLDLY Newline delays.

NL0 Add this to NLDLY to choose the NL0 delay:
NLDLY+NL0.

NL1 Add this to NLDLY to choose the NL1 delay:
NLDLY+NL1.

CRDLY Carriage return delays.

CR0 Add this to CRDLY to choose the CR0 delay:
CRDLY+CR0.

CR1 Add this to CRDLY to choose the CR1 delay:
CRDLY+CR1.

CR2 Add this to CRDLY to choose the CR2 delay:
CRDLY+CR2.

CR3 Add this to CRDLY to choose the CR3 delay:
CRDLY+CR3.

IOS STDIO Reference
Ioctl Command Constants

Exploring Palm OS: Low-Level Communications 395

Poll Mask Constants
Purpose Define the events that can be polled for by IOSPoll().

Declared In IOS.h

Constants

TABDLY Tab delays.

TAB0 Add this to TABDLY to choose the TAB0 delay.

TAB1 Add this to TABDLY to choose the TAB1 delay.

TAB2 Add this to TABDLY to choose the TAB2 delay.

TAB3 Add this to TABDLY to choose the TAB3 delay.

BSDLY Backspace delays.

BS0 Add this to BSDLY to choose the BS0 delay.

BS1 Add this to BSDLY to choose the BS1 delay.

VTDLY Vertical tab delays.

VT0 Add this to VTDLY to choose the VT0 delay.

VT1 Add this to VTDLY to choose the VT1 delay.

FFDLY Form feed delays.

FF0 Add this to FFDLY to choose the FF0 delay.

FF1 Add this to FFDLY to choose the FF1 delay.

Constant Definition

Constant Definition

POLLIN A non-priority message is available.

POLLPRI A high-priority message is available.

POLLOUT The stream is writable for non-priority
messages.

POLLERR An error message has arrived.

IOS STDIO Reference
Functions

396 Exploring Palm OS: Low-Level Communications

Functions

IOSClose Function
Purpose Closes the specified device.

Declared In IOS.h

Prototype status_t IOSClose(int32_t iFD)

Parameters → iFD
The file descriptor to close.

Returns Returns errNone if the operation was successful; otherwise the
operation failed and an appropriate error code is returned. Possible
errors are:

errNone
No Error.

iosErrCanceled
The operation was canceled.

iosErrInvalidArg
The specified file descriptor is invalid.

iosErrIOError
An I/O error occurred.

POLLHUP A hangup has occurred.

POLLNVAL The specified file descriptor isn’t valid.

POLLRDNORM A non-priority message is available.

POLLRDBAND A priority (band > 0) message is available.

POLLWRNORM Same as POLLOUT.

POLLWRBAND A priority band exists and is writable.

POLLMSG A signal message has reached the front of the
queue.

Constant Definition

IOS STDIO Reference
IOSFastIoctl

Exploring Palm OS: Low-Level Communications 397

iosErrNotOpened
The file descriptor does not reference an open device.

Comments Any thread in a process may close a file descriptor opened by that
process.

When a process terminates, all associated file descriptors are closed
automatically. However, since there is a limit on how many file
descriptors can be opened at once, it is a good idea to close them as
you’re finished using them.

IOSFastIoctl Function
Purpose Performs one of a variety of control functions on a device.

Declared In IOS.h

Prototype int32_t IOSIoctl(int32_t iFD, int32_t iRequest,
int32_t iSendLen, MemPtr iSendP,
int32_t iRecvLen, MemPtr iRecvP,
status_t *oErrno)

Parameters → iFD
The file descriptor of the device.

→ iRequest
The command to be executed on the device.

→ iSendLen
The length of the send buffer.

→ iSendP
A pointer to the send buffer.

→ iRecvLen
The length of the receive buffer.

→ iRecvP
A pointer to the receive buffer.

← oErrno
The error code.

errNone
No error.

iosErrCanceled
The operation was canceled.

IOS STDIO Reference
IOSFattach

398 Exploring Palm OS: Low-Level Communications

iosErrInvalidArg
One of the parameters is invalid.

iosErrIOError
An I/O error occurred.

iosErrNotOpened
The file descriptor does not correspond to an opened
device.

iosErrNotSupported
The device does not support this operation.

Returns Returns the number of bytes actually received. If an error occurred,
returns -1, and the actual error code in oErrno.

Comments FastIoctl() calls are only supported by certain Palm OS internal
devices.

The maximum send and receive buffer lengths are determined by
the driver.

IOSFattach Function
Purpose Attaches a STREAMS-based file descriptor to a given pathname.

Declared In IOS.h

Prototype status_t IOSFattach(int32_t iFD,
const Char *iPath)

Parameters → iFD
The file descriptor of the device.

→ iPath
The null-terminated pathname of the device.

Returns Returns errNone if the operation succeeded; otherwise returns one
of the following error codes:

errNone
No error.

iosErrCanceled
The operation was canceled.

iosErrDeviceInUse
The device is already opened and cannot be shared.

IOS STDIO Reference
IOSFdetach

Exploring Palm OS: Low-Level Communications 399

iosErrDeviceNotFound
The device pathname is not a valid IOS device.

iosErrInvalidArg
One of the parameters is invalid.

iosErrNotOpened
The file descriptor does not correspond to an opened
device.

iosErrNotSupported
The device does not support this operation.

Comments iFD must reference an open STREAMS-based file descriptor. All
subsequent operations on iPath will operate on the STREAMS file
until the STREAMS file is detached by calling IOSFdetach(). iFD
can be attached to more than one path.

IOSFdetach Function
Purpose Detaches a STREAMS-based file descriptor from the specified

pathname.

Declared In IOS.h

Prototype status_t IOSDetach(const Char *iPath)

Parameters → iPath
The null-terminated pathname of the device.

Returns Returns errNone if the operation succeeded; otherwise returns one
of the following error codes:

errNone
No error.

iosErrAccess
The caller does not have the required permissions for
this operation.

iosErrCanceled
The operation was canceled.

iosErrDeviceNotFound
The device pathname is not a valid IOS device.

IOS STDIO Reference
IOSFnctl

400 Exploring Palm OS: Low-Level Communications

iosErrInvalidArg
One of the parameters is invalid.

iosErrNotSupported
The device does not support this operation.

Comments This function detaches a STREAMS-based file descriptor from the
path to which it was associated by a prior call to IOSFattach().
The iPath parameter points to the pathname to the attached
STREAMS file.

IOSFnctl Function
Purpose Performs one of a variety of operations on an open file descriptor.

Declared In IOS.h

Prototype int32_t IOSFnctl(int32_t iFD, int32_t iRequest,
int32_t iArg, status_t *oErrno)

Parameters → iFD
The file descriptor of the device.

→ iRequest
The operation to perform on the file descriptor.

→ iArg
Any additional information required by the command.

← oErrno
The error code.

errNone
No error.

iosErrCanceled
The operation was canceled.

iosErrInvalidArg
One of the parameters is invalid.

iosErrNotOpened
The file descriptor does not correspond to an opened
device.

iosErrNotSupported
The device does not support this operation.

IOS STDIO Reference
IOSGetmsg

Exploring Palm OS: Low-Level Communications 401

Returns Returns a non-negative request-specific value if successful. Returns
-1 if an error occurred; the specific error code is returned in oErrno.

Comments The allowed commands are defined in the fcntl.h header file.
Only F_GETFL and F_SETFL are supported in the current release of
Palm OS.

IOSGetmsg Function
Purpose Receives a STREAMS message.

Declared In IOS.h

Prototype int32_t IOSGetmsg(int32_t iFD,
struct strbuf *oCtlPtrP,
struct strbuf *oDataPtrP, int32_t oFlags,
status_t *oErrno)

Parameters → iFD
The file descriptor of the device from which a STREAMS
message is to be received.

← oCtlPtrP
A pointer to a strbuf into which the control part of the
message is to be stored.

← oDataPtrP
A pointer to a strbuf into which the data part of the
message is to be stored.

← oFlags
The message’s priority:

RS_HIPRI
High priority

0
Normal, non-priority

← oErrno
The error code indicating the result of the operation.

errNone
No error.

iosErrCanceled
The operation was canceled.

IOS STDIO Reference
IOSGetpmsg

402 Exploring Palm OS: Low-Level Communications

iosErrInvalidArg
One of the parameters is invalid.

iosErrIOError
An I/O error occurred.

iosErrNotOpened
The file descriptor does not correspond to an opened
device.

iosErrNotSupported
The device does not support this operation.

Returns A return value of 0 indicates that a full message was successfully
received. A return value of MORECTL indicates that more control
information is waiting to be read. Similarly, a return value of
MOREDATA indicates that more data is waiting to be read. A return
value of MORECTL | MOREDATA indicates that more of both control
information and data are waiting to be read.

Comments NOTE: The file descriptor must reference a STREAMS device.

IOSGetpmsg Function
Purpose Receives a STREAMS message.

Declared In IOS.h

Prototype int32_t IOSGetpmsg(int32_t iFD,
struct strbuf *oCtlPtrP,
struct strbuf *oDataPtrP, int32_t *oBand,
int32_t oFlags, status_t *oErrno)

Parameters → iFD
The file descriptor of the device from which a STREAMS
message is to be received.

← oCtlPtrP
A pointer to a strbuf into which the control part of the
message is to be stored.

← oDataPtrP
A pointer to a strbuf into which the data part of the
message is to be stored.

IOS STDIO Reference
IOSGetpmsg

Exploring Palm OS: Low-Level Communications 403

↔ ioBand
The message’s priority band.

↔ ioFlags
The message’s priority:

MSG_HIPRI
High priority

MSG_BAND
Band priority

MSG_ANY
Any priority

← oErrno
The error code indicating the result of the operation.

errNone
No error.

iosErrCanceled
The operation was canceled.

iosErrInvalidArg
One of the parameters is invalid.

iosErrIOError
An I/O error occurred.

iosErrNotOpened
The file descriptor does not correspond to an opened device.

iosErrNotSupported
The device does not support this operation.

Returns A return value of 0 indicates that a full message was successfully
received. A return value of MORECTL indicates that more control
information is waiting to be read. Similarly, a return value of
MOREDATA indicates that more data is waiting to be read. A return
value of MORECTL | MOREDATA indicates that more of both control
information and data are waiting to be read.

Comments You may choose to retrieve only high-priority messages by setting
the integer pointed to by ioFlags to MSG_HIPRI and the integer
pointed to by ioBand to 0. In this case, IOSGetpmsg() will only
process the next message if it is a high-priority message.

IOS STDIO Reference
IOSIoctl

404 Exploring Palm OS: Low-Level Communications

Similarly, you can opt to only process a message from a given
priority band by setting the integer pointed to by ioFlags to
MSG_BAND and the integer pointed to by ioBand to the priority
band of interest. In this case, IOSGetpmsg() will only process the
next message if it is in a priority band equal to, or greater than, the
integer pointed to by ioBand, or if it is a high priority message.

If you just want to fetch the next message off the queue, set the
integer pointed to by ioFlags to MSG_ANY and the integer pointed
to by ioBand to 0.

On return, ioBand and ioFlags are set to indicate the priority
band and priority of the message returned.

NOTE: The file descriptor must reference a STREAMS device.

IOSIoctl Function
Purpose Performs one of a variety of control functions on a device.

Declared In IOS.h

Prototype int32_t IOSIoctl(int32_t iFD, int32_t iRequest,
int32_t iParam, status_t *oErrno)

Parameters → iFD
The file descriptor of the device.

→ iRequest
The command to be executed on the device.

→ iParam
Any additional information required by the command.

← oErrno
The error code.

errNone
No error.

iosErrCanceled
The operation was canceled.

iosErrInvalidArg
One of the parameters is invalid.

IOS STDIO Reference
IOSOpen

Exploring Palm OS: Low-Level Communications 405

iosErrIOError
An I/O error occurred.

iosErrNotOpened
The file descriptor does not correspond to an opened
device.

iosErrNotSupported
The device does not support this operation.

Returns Returns a non-negative request-specific value if successful. Returns
-1 if an error occurred; the specific error code is returned in oErrno.

IOSOpen Function
Purpose Opens a device for reading, writing, and control.

Declared In IOS.h

Prototype int32_t IOSOpen(const Char *iPath,
int32_t iFlags, status_t *oErrno)

Parameters → iPath
The null-terminated pathname of the device to open.

→ iFlags
A bitwise OR of flags specifying the access privileges
requested:

O_RDONLY
Open for read only.

O_WRONLY
Open for write only.

O_RDWR
Open for both reading and writing.

← oErrno
On return, contains the error code indicating success or
failure. Possible errors are:

errNone
No error.

IOS STDIO Reference
IOSPipe

406 Exploring Palm OS: Low-Level Communications

iosErrAuthFailed
The caller is not authorized to use the requested
device.

iosErrCanceled
The operation was canceled.

iosErrDevice
The device is already opened and cannot be shared.

iosErrDeviceNotFound
The requested device could not be found.

iosErrInvalidArg
Invalid argument.

iosErrIOError
An I/O error occurred.

iosErrNoFileDescriptors
The system is out of free file descriptors.

iosErrNoSessionEntry
The system is out of free file descriptors.

iosErrNotSupported
This operation is not supported by the specified
device.

Returns Returns a file descriptor for the opened device. Returns -1 if an error
occurred; the specific error code is stored in oErrno.

Comments The pathname must not span multiple memory segments.

IOSPipe Function
Purpose Creates an interprocess communication channel (called a “pipe”).

Declared In IOS.h

Prototype status_t IOSPipe(int32_t oFD[2])

Parameters ← oFD
Two file descriptors.

Returns Returns errNone if the operation succeeded. Otherwise returns an
appropriate error code:

IOS STDIO Reference
IOSPipe

Exploring Palm OS: Low-Level Communications 407

errNone
No error.

iosErrCanceled
The operation was canceled.

iosErrIOError
An I/O error occurred.

iosErrNoFileDescriptors
The caller has no free file descriptors left.

iosErrNoSessionEntry
The system is out of free file descriptors.

iosErrNotSupported
The device does not support this operation.

Comments The IOSPipe() function creates an I/O interprocess
communication channel called a pipe, returning two file descriptors
in oFD[0] and oFD[1]. These file descriptors are STREAMS-based
and are opened for both reading and writing.

Reading from oFD[0] returns data written to oFD[1] and vice versa.

IMPORTANT: Pipes are not supported in Palm OS Cobalt, but
will be available in a future release.

IOS STDIO Reference
IOSPoll

408 Exploring Palm OS: Low-Level Communications

IOSPoll Function
Purpose Examines a set of file descriptors to see if any of them are ready for

I/O.

Declared In IOS.h

Prototype status_t IOSPoll(struct pollfd iFDs[],
int32_t iNfds, int32_t iTimeout,
int32_t *oNfds)

Parameters → iFDs
An array of pollfd structures, each containing a file
descriptor to be polled, the events to poll for, and the events
that actually occurred.

If the value of the file descriptor field in a pollfd structure is
less than zero, then the iEvents member is ignored and the
oRevents member is set to 0 on return.

→ iNfds
The number of pollfd structures in the array.

→ iTimeout
The number of milliseconds to wait before timing out. If -1,
IOSPoll() blocks indefinitely. If the timeout is 0,
IOSPoll() does not block.

← oNfds
The number of file descriptors selected.

Returns Returns errNone if the operation is successful; otherwise returns
an error code:

errNone
No error.

iosErrCanceled
The operation was canceled.

iosErrInvalidArg
One of the parameters is invalid.

iosErrIOError
An I/O error occurred.

iosErrNotSupported
The device does not support this operation.

IOS STDIO Reference
IOSPutmsg

Exploring Palm OS: Low-Level Communications 409

Comments IOSPoll() is only supported for STREAMS devices. File
descriptor 0 is used to poll for pending user interface events.

IOSPutmsg Function
Purpose Sends a STREAMS message.

Declared In IOS.h

Prototype status_t IOSPutmsg(int32_t iFD,
const struct strbuf *iCtlPtrP,
const struct strbuf *iDataPtrP,
int32_t iFlags)

Parameters → iFD
The file descriptor of the device to which the STREAMS
message is to be sent.

→ iCtlPtrP
A pointer to a strbuf containing the control portion of the
message.

→ iDataPtrP
A pointer to a strbuf containing the data portion of the
message.

→ iFlags
The message’s priority:

RS_HIPRI
High priority

0
Normal, non-priority

Returns Returns errNone if the operation was successful. Otherwise
returns an error code:

errNone
No error.

iosErrCanceled
The operation was canceled.

iosErrInvalidArg
One of the parameters is invalid.

IOS STDIO Reference
IOSPutpmsg

410 Exploring Palm OS: Low-Level Communications

iosErrIOError
An I/O error occurred.

iosErrNotOpened
The file descriptor does not correspond to an opened device.

iosErrNotSupported
The device does not support reading data.

Comments The IOSPutmsg() function creates a message containing either the
control portion from iCtlPtrP or the data portion from
iDataPtrP (or both) and sends it to the STREAMS device specified
by the file descriptor iFD, using the priority specified by iFlags.

NOTE: The file descriptor must reference a STREAMS device.

IOSPutpmsg Function
Purpose Sends a STREAMS message.

Declared In IOS.h

Prototype status_t IOSPutpmsg(int32_t iFD,
const struct strbuf *iCtlPtrP,
const struct strbuf *iDataPtrP, int32_t iBand,
int32_t iFlags)

Parameters → iFD
The file descriptor of the device to which the STREAMS
message is to be sent.

→ iCtlPtrP
A pointer to a strbuf containing the control portion of the
message.

→ iDataPtrP
A pointer to a strbuf containing the data portion of the
message.

iBand
The priority band.

→ iFlags
The message’s priority:

IOS STDIO Reference
IOSPutpmsg

Exploring Palm OS: Low-Level Communications 411

MSG_HIPRI
High priority

MSG_BAND
Band priority

Returns Returns errNone if the operation was successful. Otherwise
returns an error code:

iosErrCanceled
The operation was canceled.

iosErrInvalidArg
One of the parameters is invalid.

iosErrIOError
An I/O error occurred.

iosErrNotOpened
The file descriptor does not correspond to an opened device.

iosErrNotSupported
The device does not support reading data.

Comments The IOSPutmsg() function creates a message containing either the
control portion from iCtlPtrP or the data portion from
iDataPtrP (or both) and sends it to the STREAMS device specified
by the file descriptor iFD, using the priority specified by iFlags.

The iFlags argument is a bit mask which must be either
MSG_HIPRI or MSG_BAND. If iFlags is 0, IOSPutpmsg() fails and
returns iosErrInvalidArg. If a control part is specified and
iFlags is set to MSG_HIPRI and iBand is 0, a high-priority
message is sent.

If iFlags is set to MSG_HIPRI and either no control part is
specified or iBand is non-zero, IOSPutpmsg() fails and returns
iosErrInvalidArg.

If iFlags is set to MSG_BAND, then a message is sent in the priority
band specified by iBand. If a control part and data part are not
specified and iFlags is set to MSG_BAND, no message is sent and
errNone is returned.

NOTE: The file descriptor must reference a STREAMS device.

IOS STDIO Reference
IOSRead

412 Exploring Palm OS: Low-Level Communications

IOSRead Function
Purpose Reads data from a device.

Declared In IOS.h

Prototype int32_t IOSRead(int32_t iFD, MemPtr iBufP,
int32_t iNbytes, status_t *oErrno)

Parameters → iFD
The file descriptor of the device from which data should be
read.

→ iBufP
A pointer to the memory buffer into which data should be
read.

→ iNbytes
The number of bytes to read from the device.

← oErrno
On output, contains the result code indicating the error
which occurred, or errNone if the data was read
successfully.

Returns Returns the number of bytes actually read, which may be lower
than the number of bytes requested (if, for example, the end of the
available data is reached). If an error occurred during the read
operation, -1 is returned, and the error code is returned in the
oErrno parameter.

errNone
No error.

iosErrCanceled
The operation was canceled.

iosErrInvalidArg
One of the parameters is invalid.

iosErrIOError
An I/O error occurred.

iosErrNotOpened
The file descriptor does not correspond to an opened device.

iosErrNotSupported
The device does not support reading data.

IOS STDIO Reference
IOSReadv

Exploring Palm OS: Low-Level Communications 413

iosErrBadFD
The file descriptor is invalid or is not opened for reading.

IOSReadv Function
Purpose Reads data from a device into a scattered data buffer.

Declared In IOS.h

Prototype int32_t IOSReadv(int32_t iFD,
const struct iovec *iIovP, int32_t iIovCnt,
status_t *oErrno)

Parameters → iFD
The file descriptor of the device from which data should be
read.

→ iIovP
A pointer to an array of iIovCnt iovec structures
indicating where the portions of the scattered data buffer are
located.

→ iIovCnt
The number of entries in the iIovP .

← oErrno
On output, contains the result code indicating the error
which occurred, or errNone if the data was read
successfully.

Returns Returns the number of bytes actually read, which may be lower
than the number of bytes requested (if, for example, the end of the
available data is reached). If an error occurred during the read
operation, -1 is returned, and the error code is returned in the
oErrno parameter.

errNone
No error.

iosErrCanceled
The operation was canceled.

iosErrInvalidArg
One of the parameters is invalid.

iosErrIOError
An I/O error occurred.

IOS STDIO Reference
IOSWrite

414 Exploring Palm OS: Low-Level Communications

iosErrNotOpened
The file descriptor does not correspond to an opened device.

iosErrNotSupported
The device does not support reading data.

iosErrBadFD
The file descriptor is invalid or is not opened for reading.

Comments NOTE: The scattered data buffer portions must all be in the
same memory segment.

This function attempts to read data from the device specified by the
iFD file descriptor into the scattered data buffer described by the
iovec structures passed in the iIovP array. Each iovec entry
specifies the base address and length of each portion of the scattered
buffer. Each buffer will be filled before moving on to the next one.

IOSWrite Function
Purpose Writes data to a device.

Declared In IOS.h

Prototype int32_t IOSWrite(int32_t iFD, MemPtr iBufP,
int32_t iNbytes, status_t *oErrno)

Parameters → iFD
The file descriptor of the device to which data should be
written.

→ iBufP
A pointer to the memory buffer from which data should be
written.

→ iNbytes
The number of bytes to write to the device.

← oErrno
On output, contains the result code indicating the error
which occurred, or errNone if the data was written
successfully.

Returns Returns the number of bytes actually written. If an error occurred
during the write operation, -1 is returned, and the error code is
returned in the oErrno parameter.

IOS STDIO Reference
IOSWritev

Exploring Palm OS: Low-Level Communications 415

errNone
No error.

iosErrCanceled
The operation was canceled.

iosErrInvalidArg
One of the parameters is invalid.

iosErrIOError
An I/O error occurred.

iosErrNotOpened
The file descriptor does not correspond to an opened device.

iosErrNotSupported
The device does not support writing data.

iosErrBadFD
The file descriptor is invalid or is not opened for writing.

IOSWritev Function
Purpose Writes data to a device from a scattered data buffer.

Declared In IOS.h

Prototype int32_t IOSWritev(int32_t iFD,
const struct iovec *iIovP, int32_t iIovCnt,
status_t *oErrno)

Parameters → iFD
The file descriptor of the device to which data should be
written.

→ iIovP
A pointer to an array of iIovCnt iovec structures
indicating where the portions of the scattered data buffer are
located.

→ iIovCnt
The number of entries in the iIovP .

← oErrno
On output, contains the result code indicating the error
which occurred, or errNone if the data was written
successfully.

IOS STDIO Reference
IOSWritev

416 Exploring Palm OS: Low-Level Communications

Returns Returns the number of bytes actually written. If an error occurred
during the write operation, -1 is returned, and the error code is
returned in the oErrno parameter.

errNone
No error.

iosErrCanceled
The operation was canceled.

iosErrInvalidArg
One of the parameters is invalid.

iosErrIOError
An I/O error occurred.

iosErrNotOpened
The file descriptor does not correspond to an opened device.

iosErrNotSupported
The device does not support writing data.

iosErrBadFD
The file descriptor is invalid or is not opened for writing.

Comments NOTE: The scattered data buffer must all be in the same
memory segment.

This function attempts to write data to the device specified by the
iFD file descriptor from the scattered data buffer described by the
iovec structures passed in the iIovP array. Each iovec entry
specifies the base address and length of each portion of the scattered
buffer. Each buffer will be completely written before moving on to
the next one.

IOS STDIO Reference
PbxCreate

Exploring Palm OS: Low-Level Communications 417

PbxAddFd Function
Purpose Adds a file descriptor to a PollBox.

Declared In PollBox.h

Prototype status_t PbxAddFd(PollBox *pbx, int32_t fd,
int16_t eventMask, PbxCallback *callback,
void *context)

Parameters → pbx
A pointer to the PollBox to which the file descriptor should
be added.

→ fd
The file descriptor to add to the PollBox.

→ eventMask
A bitwise OR mask of the events to poll for.

→ callback
A pointer to a callback handler that the PollBox will call
when an event occurs on the file descriptor. You can specify
NULL if your application does not require a callback.

→ context
A value that will be passed into the callback handler.

Returns noErr
The file descriptor was added successfully.

memErrNotEnoughSpace
Not enough memory to add the file descriptor to the PollBox.

See Also PbxRemoveFd(), “Adding File Descriptors to Monitor” on
page 377

PbxCreate Function
Purpose Creates a new PollBox.

Declared In PollBox.h

Prototype PollBox *PbxCreate(void)

Returns Returns a pointer to the newly-created PollBox object. If an error
occurred creating the PollBox, this function returns NULL.

See Also PbxDestroy(), “Creating a PollBox” on page 377

IOS STDIO Reference
PbxDestroy

418 Exploring Palm OS: Low-Level Communications

PbxDestroy Function
Purpose Destroys an existing PollBox.

Declared In PollBox.h

Prototype void PbxDestroy(PollBox *pbx)

Parameters → pbx
A pointer to the PollBox to destroy.

Comments PbxDestroy() closes all file descriptors in the PollBox and frees
any memory allocated by the PollBox.

See Also PbxCreate(), “Destroying a PollBox” on page 377

PbxPoll Function
Purpose Polls all file descriptors in a PollBox for events that need processing.

Declared In PollBox.h

Prototype status_t PbxPoll(PollBox *pbx, int32_t timeout,
int32_t *nReady)

Parameters → pbx
The PollBox to poll.

→ timeout
The number of milliseconds to wait for an event to occur.
Specify 0 to return immediately if there are no events
pending, or -1 to wait indefinitely.

← nReady
The number of file descriptors with events pending, or -1 if
an error occurred.

Returns On return, nReady indicates the number of file descriptors that
have events pending. Any of these events that have callbacks
established have already had the callbacks run. If an error occurred
during the poll operation, nReady is set to -1, and a non-zero result
is returned.

Comments If there are no file descriptors in the PollBox, PbxPoll() sets
nReady to 0 and returns zero.

Otherwise, this function blocks until one or more file descriptors in
the box have events that were flagged as being of interest when they

IOS STDIO Reference
PbxRun

Exploring Palm OS: Low-Level Communications 419

were added to the box, or until the timeout period expires. For each
file descriptor that has events, the corresponding callback procedure
(if one was specified when PbxAddFd() was called) is called, and
the number of file descriptors with events is returned in nReady.

NOTE: If this function returns zero and sets nReady to zero,
then there are either no file descriptors left in the PollBox or the
timeout period expired. You can check which of these scenarios is
the case by looking at the value of pbx->count; if this is
nonzero, then the timeout expired.

See Also PbxCreate(), PbxAddFd(), “Polling for Events using a PollBox”
on page 379

PbxRemoveFd Function
Purpose Removes a file descriptor from a PollBox.

Declared In PollBox.h

Prototype void PbxRemoveFd(PollBox *pbx, int32_t fd)

Parameters → pbx
The PollBox from which to remove the file descriptor

→ fd
The file descriptor to remove from the PollBox.

See Also PbxAddFd(), “Removing a File Descriptor from the PollBox” on
page 378

PbxRun Function
Purpose Runs an event loop using a PollBox; this automatically calls

PbxPoll() for you repeatedly until there are no more file
descriptors in the box, or until an unexpected error occurs.

Declared In PollBox.h

Prototype status_t PbxRun(PollBox *pbx)

Parameters → pbx
The PollBox to use for the event loop.

IOS STDIO Reference
Application-Defined Functions

420 Exploring Palm OS: Low-Level Communications

Returns Returns 0 if the event loop terminated because there are no file
descriptors left in the PollBox. If this value is non-zero, it is an error
code indicating that something unexpected happened while
processing the event loop.

Comments The event loop is run by calling PbxPoll() repeatedly with an
infinite timeout. Your application can watch for user interface
events by adding file descriptor 0 to the PollBox.

See Also PbxPoll(), PbxAddFd(), PbxCreate(), “Polling the Easy Way”
on page 380

Application-Defined Functions

PbxCallback Function
Purpose Called by a PollBox when an event occurs on a file descriptor.

Declared In PollBox.h

Prototype typedef void PbxCallback(struct PollBox *pbx,
struct pollfd *pollFd, void *context)

Parameters → pbx
The PollBox that is calling into your callback routine.

→ pollFd
A pollfd structure indicating which file descriptor
experienced an event, and which event or events occurred.

→ context
The context variable specified when your application called
PbxAddFd().

Comments Implement this function to handle the event or events that have
occurred, as described by the pollFd structure.

Exploring Palm OS: Low-Level Communications 421

20
Driver Attributes API
Applications can use the functions described in this section to query
IOS about drivers. These C-language functions are are not meant for
use by STREAMS drivers, but by the clients that depend upon them.

This chapter discusses the following topics:

Driver Attribute Constants 421

Driver Attribute Functions 422

Driver Attribute Constants

Driver Class Constants
Purpose Driver classes are used to classify groups of drivers. Not all drivers

need to be classified. Certain classes of drivers, such as the drivers
that need to work with the Serial Manager, should be classified. All
driver classes are reserved creator codes.

Declared In SDK/headers/IOSAttributes.h

Table 20.1 Driver Classes

Class Name Creator ID Description

iosDriverClassGeneric 'cgen' A generic class used for drivers that have an
attributes block or a description but do not
belong to a defined class.

iosDriverClassSerial 'cser' Drivers that are designed to work with Serial
Manager should use this class.

iosDriverClassEthernet 'ceth' Drivers that are designed to support the
Ethernet interface.

iosDriverClassSlot 'cslt' Drivers that support expansion card slots.

Driver Attr ibutes API
Driver Attribute Functions

422 Exploring Palm OS: Low-Level Communications

Comments At this time, you cannot add additional classes. A driver may only
belong to one class.

Driver Attribute Functions
Declared In IOSAttributes.h

IOSGetNumDrivers Function
Purpose Returns the number of drivers registered in IOS for the specified

class. The class value CLASS_ALL is reserved to indicate all drivers.

Prototype status_t IOSGetNumDrivers(uint32_t iClassID,
uint16_t *oCount)

Parameters → iClassID
The class ID for the group of drivers you want to count. For
the list of available class IDs, see “Driver Attribute
Constants” on page 421.

← oCount
The number of drivers in the specified class.

Returns If the call is unsuccessful, this function returns an error code.
Otherwise, it returns errNone.

iosDriverClassVolume 'cvol' Volumes that support a specific file system
implementation.

iosDriverClassAdmin 'cadm' Drivers that are responsible for configuration
or administration within IOS.

iosDriverClassWifi 'wifi' Drivers that are associated with wireless
(“Wi-Fi”) communication.

iosDriverClassAll 'call' Drivers can not use iosDriverClassAll as
their class ID. This class ID is used in the
Driver Attributes API to get attributes or a
description for all installed drivers.

Table 20.1 Driver Classes

Class Name Creator ID Description

Driver Attr ibutes API
IOSGetDriverAttributesByIndex

Exploring Palm OS: Low-Level Communications 423

IOSGetDriverAttributesByIndex Function
Purpose Returns the class-specific attributes block for a driver in the

specified class at the given index. The class value CLASS_ALL is
reserved to indicate all drivers.

Prototype status_t IOSGetDriverAttributesByIndex(uint32_t
iClassID, int16_t iIndex, MemPtr ioBuf,
uint16_t* ioBufLen)

Parameters → iClassID
The driver’s class ID. For the list of available class IDs, see
“Driver Attribute Constants” on page 421.

→ iIndex
The index of the driver in the set of drivers contained in the
class. Applications can get the number of drivers in the class
(using IOSGetNumDrivers()) and loop over this function
to get the attributes for each of the drivers in the class.

→ ioBuf
A buffer in the user's memory space. The attributes block will
be copied into this space.

↔ ioBuflen
When calling this function, set this parameter to the number
of bytes in the user buffer. Upon return, this parameter will
be set to the length of the attributes block.

Returns errNone
The operation completed successfully.

iosErrNotEnoughSpace
The buffer was too small to contain the attributes block. The
length of the attribute block is in the ioBuflen parameter.

iosErrDriverNotFound
A matching driver could not be found at that class and index.

Driver Attr ibutes API
IOSGetDriverAttributesByName

424 Exploring Palm OS: Low-Level Communications

IOSGetDriverAttributesByName Function
Purpose Returns the class-specific attributes block for a driver, given its

driver name.

Prototype status_t IOSGetDriverAttributesByName(Char const
* iIOSName, MemPtr ioBuf, uint16_t* ioBufLen)

Parameters → iIOSName
The name of a registered driver in IOS. A driver can be a
device driver, a STREAMS module, or STREAMS driver.

WARNING! This function does not use partial name matching.
The function will only return the attributes if iIOSName contains a
complete match.

→ ioBuf
A buffer in the user's memory space. The attributes block will
be copied into this space.

↔ ioBuflen
When calling this function, set this parameter to the number
of bytes in the user buffer. Upon return, this parameter will
be set to the length of the attributes block.

Returns errNone
The operation completed successfully.

iosErrNotEnoughSpace
The buffer was too small to contain the attributes block. The
length of the attribute block is in the ioBuflen parameter.

iosErrDriverNotFound
A matching driver could not be found for that driver name.

Driver Attr ibutes API
IOSGetDriverDescriptionByIndex

Exploring Palm OS: Low-Level Communications 425

IOSGetDriverDescriptionByIndex Function
Purpose Returns the descriptive name for a driver in the specified class at the

given index. The class value CLASS_ALL is reserved to indicate all
drivers.

Prototype status_t IOSGetDriverDescriptionByIndex(uint32_t
iClassID, int16_t iIndex, Char* ioBuf,
uint16_t* ioBufLen)

Parameters → iClassID
The driver’s class ID. For the list of available class IDs, see
“Driver Attribute Constants” on page 421.

→ iIndex
The index of the driver in the set of drivers contained in the
class. Applications can get the number of drivers in the class
(using IOSGetNumDrivers()) and loop over this function
to get the description for each of the drivers in the class.

→ ioBuf
A buffer in the user's memory space. The descriptive name
string will be copied into this space.

↔ ioBuflen
When calling this function, set this parameter to the number
of bytes in the user buffer. Upon return, this parameter will
be set to the length of the descriptive name string plus the
null character.

Returns errNone
The operation completed successfully.

iosErrNotEnoughSpace
The buffer was too small to contain the descriptive name
string. The length of the descriptive name string + 1 is in the
ioBuflen parameter.

iosErrDriverNotFound
A matching driver could not be found at that class and index.

Comments An installed driver may not have a descriptive name. In that case,
the buffer will contain a zero-length string.

Driver Attr ibutes API
IOSGetDriverDescriptionByName

426 Exploring Palm OS: Low-Level Communications

IOSGetDriverDescriptionByName Function
Purpose Returns the descriptive name string for a driver, given the driver’s

name in IOS.

Prototype status_t IOSGetDriverDescriptionByName(Char const
* iIOSName, Char* ioBuf, uint16_t* ioBufLen)

Parameters → iIOSName
The name of a registered driver in IOS. A driver can be a
device driver, a STREAMS module, or STREAMS driver.

WARNING! This function does not use partial name matching.
The function will only return the attributes if iIOSName contains a
complete match.

→ ioBuf
A buffer in the user's memory space. The descriptive name
string will be copied into this space.

↔ ioBuflen
When calling this function, set this parameter to the number
of bytes in the user buffer. Upon return, this parameter will
be set to the length of the descriptive name string plus the
null character.

Returns errNone
The operation completed successfully.

iosErrNotEnoughSpace
The buffer was too small to contain the descriptive name
string. The length of the descriptive name string + 1 is in the
ioBuflen parameter.

iosErrDriverNotFound
A matching driver could not be found at that driver name.

Driver Attr ibutes API
IOSGetDriverNameByIndex

Exploring Palm OS: Low-Level Communications 427

IOSGetDriverNameByIndex Function
Purpose Returns the driver name in IOS for a driver in the specified class,

given the index. The class value CLASS_ALL is reserved to indicate
all drivers.

Prototype status_t IOSGetDriverDescriptionByIndex(uint32_t
iClassID, int16_t iIndex, Char* ioBuf,
uint16_t* ioBufLen)

→ iClassID
The driver’s class ID. For the list of available class IDs, see
“Driver Attribute Constants” on page 421.

→ iIndex
The index of the driver in the set of drivers contained in the
class. Applications can get the number of drivers in the class
(using IOSGetNumDrivers()) and loop over this function
to get the description for each of the drivers in the class.

→ ioBuf
A buffer in the user's memory space. The driver name string
will be copied into this space.

↔ ioBuflen
When calling this function, set this parameter to the number
of bytes in the user buffer. Upon return, this parameter will
be set to the length of the driver name string plus the NULL.

Returns errNone
The operation completed successfully.

iosErrNotEnoughSpace
The buffer was too small to contain the descriptive name
string. The length of the descriptive name string + 1 is in the
ioBuflen parameter.

iosErrDriverNotFound
A matching driver could not be found at that class and index.

Driver Attr ibutes API
IOSGetDriverNameByIndex

428 Exploring Palm OS: Low-Level Communications

Exploring Palm OS: Low-Level Communications 429

21
Driver Installation
API
All drivers are installed into the I/O Process using the I/O
Subsystem’s Driver Installation API. A driver’s installation software
must make use of the installation functions provided by this API.

This chapter discusses the following topics:

IOS Installation Functions. 429

IOS Installation Functions

IOSInstallDriver Function
Purpose Installs a driver into the I/O Process.

Declared In SDK/headers/IOSInstall.h

Prototype status_t IOSInstallDriver(uint32_t typeId,
uint32_t creatorId, uint32_t resourceID)

Parameters → typeId
The type for the driver PRC. For example, 'mydr'.

NOTE: The Device Loader will automatically install drivers of
type 'drvr'. Drivers of this type will not call
IOSInstallDriver() explicitly. For drivers with a different
database type, the program that installs the driver should call this
function.

→ creatorId
The creator ID for the driver PRC. For example, 'MYDR'.

Driver Instal lat ion API
IOSRemoveDriver

430 Exploring Palm OS: Low-Level Communications

→ resourceID
The resource ID of the driver to be installed. This is the ID
that was assigned to the driver when the PRC was created.
This ID should be the same as that declared in the PRC’s SLD
file.

Returns iosErrDriverNotFound
The PRC was not found (or no driver with those attributes
was found in the PRC).

iosErrInvalidArg
The name of the driver is missing (or is not a string).

iosErrAuthFailed
The driver was not signed in the manner required by Palm
OS.

Comments If the device’s security policy requires a signature, Palm OS will
verify the signature of the driver when this function is called. For
more information about signing your drivers, see Exploring Palm
OS: Security and Cryptography.

IOSRemoveDriver Function
Purpose Requests the removal of a driver from the I/O Process. Note that a

driver with an active session cannot be removed.

Declared In SDK/headers/IOSInstall.h

Prototype Status_t IOSRemoveDriver(uint32_t type, uint32_t
creator, uint32_t resourceID)

Parameters → typeId
The type for the driver PRC. For example, 'drvr'.

→ creatorId
The creator ID for the driver PRC. For example, 'MYDR'.

→ resourceID
The resource ID of the driver to be removed. This is the ID
that was assigned to the driver when the PRC was created.
This ID should be the same as that declared in the PRC’s SLD
file.

Driver Instal lat ion API
IOSRemoveDriver

Exploring Palm OS: Low-Level Communications 431

Returns iosErrDriverNotFound
The PRC was not found (or no driver with those attributes
was found in the PRC).

iosErrInvalidArg
The name of the driver is missing (or is not a string).

iosErrDeviceInUse
The driver has an active session and cannot be removed at
this time.

Comments Calling IOSRemoveDriver() only removes the driver from the
I/O Process—it does not delete the driver’s PRC. After the driver
has been removed, the uninstallation software may delete the PRC
using DmDeleteDatabase().

WARNING! A driver that has an active session cannot be
removed. All active sessions with the driver must be closed
before you can request removal of the driver.

Driver Instal lat ion API
IOSRemoveDriver

432 Exploring Palm OS: Low-Level Communications

Exploring Palm OS: Low-Level Communications 433

Glossary

access point A WiFi station that provides access to other networks.

ad-hoc network A WiFi network consisting of multiple devices without a dedicated
access point.

ATIM Announcement Traffic Indication Message. These messages are
used to coordinate transmission times between the various stations
that comprise an ad-hoc WiFi network.

BSS Basic Service Set. The service area of a single access point in a WiFi
network.

BSSID The BSS ID is the network identifier for a single access point or ad-
hoc network.

ESS Extended Service Set. The service area of a network of access points.

ESSID The ESS ID is the text string identifying a network of access points.

IEEE 802.3 The IEEE standard for wired Ethernet

IEEE 802.11 The IEEE standard for wireless Ethernet. There are several
substandards that cover different transmission media, differences in
RF spectrum allocation, and security.

MAC address A 48-bit identifier that uniquely identifies a device on a network.

PDU See Protocol Data Unit.

PSM See Protocol Service Multiplexer.

Protocol Data
Unit

The PDU is a unit of data exchanged between two protocol peers.

Glossary
Protocol Service Multiplexer

434 Exploring Palm OS: Low-Level Communications

Protocol
Service

Multiplexer

The PSM is the L2CAP equivalent of a TCP port number; it
identifies an individual L2CAP channel.

SSID A 1-32 character string identifying an 802.11 network.

station Any node in an 802.11 network. A station can be an access point or a
client of an access point.

WEP Wired Equivalent Privacy. The most common authentication and
encryption algorithm for 802.11.

WPA WiFi Protected Access. A new authentication and encryption
framework for 802.11 that corrects the deficiencies found in WEP.

Exploring Palm OS: Low-Level Communications 435

Index

A
accept() 302
access point 433
ACL link

creating 127
disconnecting 127

addrinfo 298
ad-hoc network 433
AF_IRDA 90, 99
ATIM 433
Attributes API 421
Authentication 116

B
B0 392
B110 392
B115200 393
B1200 392
B128000 393
B134 392
B14400 392
B150 392
B1800 392
B19200 393
B200 392
B230400 393
B2400 392
B256000 393
B28800 393
B300 392
B31250 393
B38400 393
B4800 392
B50 392
B56000 393
B57600 393
B600 392
B7200 392
B75 392
B76800 393
B9600 392
baud rate 386
baud rate, parity options 11

bind() 86, 87, 99, 303
Bluetooth 5
Bluetooth Exchange Library 110

detecting 141
obtaining remote device URLs 143
unsupported functions 143
URLs 142
using 142

Bluetooth Library 109, 121, 122
opening 124

Bluetooth Stack 110
Bluetooth system

components 108
detecting 121

BRKINT 389
BS0 395
BS1 395
BSDLY 395
BSS 433
BSSID 433
BT_L2CAP_MTU 193
BT_L2CAP_RANDOM_PSM 193
BTADDR_ANY 187
btDevBNEPName 182
btDevL2cName 182
btDevMeName 182
btDevRfcName 182
btDevSCOName 182
btDevSdpName 182
BTHPROTO_RFCOMM 187
BtLibAccessibleModeEnum 205
btLibActiveMode 208
BtLibAddrAToBtd() 220
BtLibAddrBtdToA() 220
btLibAvailability 216
btLibBNEPProtocol 211
btLibBrowseGroupList 216
btLibCachedOnly 207
btLibCachedThenRemote 207
BtLibCancelInquiry 127
BtLibCancelInquiry() 221
BtLibClassOfDeviceType 145
btLibClientExecutableUrl 216
BtLibClose() 123, 222

436 Exploring Palm OS: Low-Level Communications

btLibCOD_Audio 146
btLibCOD_Capturing 146
btLibCOD_Information 146
btLibCOD_LimitedDiscoverableMode 146
btLibCOD_Major_Audio 147
btLibCOD_Major_Computer 147
btLibCOD_Major_Imaging 147
btLibCOD_Major_Lan_Access_Point 147
btLibCOD_Major_Misc 147
btLibCOD_Major_Peripheral 147
btLibCOD_Major_Phone 147
btLibCOD_Major_Unclassified 147
btLibCOD_Minor_Audio_CamCorder 149
btLibCOD_Minor_Audio_CarAudio 149
btLibCOD_Minor_Audio_GameToy 149
btLibCOD_Minor_Audio_HandFree 149
btLibCOD_Minor_Audio_HeadPhone 149
btLibCOD_Minor_Audio_Headset 149
btLibCOD_Minor_Audio_HifiAudio 149
btLibCOD_Minor_Audio_LoudSpeaker 150
btLibCOD_Minor_Audio_MicroPhone 150
btLibCOD_Minor_Audio_PortableAudio 150
btLibCOD_Minor_Audio_SetTopBox 150
btLibCOD_Minor_Audio_Unclassified 149
btLibCOD_Minor_Audio_VCR 150
btLibCOD_Minor_Audio_VideoCamera 150
btLibCOD_Minor_Audio_VideoConf 150
btLibCOD_Minor_Audio_VideoDisplayAndLoud

Speaker 150
btLibCOD_Minor_Audio_VideoMonitor 150
btLibCOD_Minor_Comp_Desktop 148
btLibCOD_Minor_Comp_Handheld 148
btLibCOD_Minor_Comp_Laptop 148
btLibCOD_Minor_Comp_Palm 148
btLibCOD_Minor_Comp_Server 148
btLibCOD_Minor_Comp_Unclassified 148
btLibCOD_Minor_Imaging_Camera 151
btLibCOD_Minor_Imaging_Display 151
btLibCOD_Minor_Imaging_Printer 151
btLibCOD_Minor_Imaging_Scanner 151
btLibCOD_Minor_Imaging_Unclassified 151
btLibCOD_Minor_Lan_0 149
btLibCOD_Minor_Lan_17 149

btLibCOD_Minor_Lan_33 149
btLibCOD_Minor_Lan_50 149
btLibCOD_Minor_Lan_67 149
btLibCOD_Minor_Lan_83 149
btLibCOD_Minor_Lan_99 149
btLibCOD_Minor_Lan_NoService 149
btLibCOD_Minor_Peripheral_CardReader 150
btLibCOD_Minor_Peripheral_Combo 150
btLibCOD_Minor_Peripheral_DigitizerTablet 150
btLibCOD_Minor_Peripheral_GamePad 150
btLibCOD_Minor_Peripheral_Joystick 150
btLibCOD_Minor_Peripheral_Keyboard 150
btLibCOD_Minor_Peripheral_Pointing 150
btLibCOD_Minor_Peripheral_RemoteControl 150
btLibCOD_Minor_Peripheral_Sensing 151
btLibCOD_Minor_Peripheral_Unclassified 151
btLibCOD_Minor_Phone_Cellular 148
btLibCOD_Minor_Phone_Cordless 148
btLibCOD_Minor_Phone_ISDN 148
btLibCOD_Minor_Phone_Modem 148
btLibCOD_Minor_Phone_Smart 148
btLibCOD_Minor_Phone_Unclassified 148
btLibCOD_Networking 146
btLibCOD_ObjectTransfer 146
btLibCOD_Rendering 147
btLibCOD_Telephony 147
btLibConnectableOnly 206
BtLibConnectionRoleEnum 206
btLibDESD 179
btLibDESD_16BYTES 179
btLibDESD_1BYTE 179
btLibDESD_2BYTES 179
btLibDESD_4BYTES 179
btLibDESD_8BYTES 179
btLibDESD_ADD_16BITS 179
btLibDESD_ADD_32BITS 179
btLibDESD_ADD_8BITS 179
btLibDESD_MASK 179
btLibDETD_ALT 180
btLibDETD_BOOL 180
btLibDETD_MASK 181
btLibDETD_NIL 180
btLibDETD_SEQ 180

Exploring Palm OS: Low-Level Communications 437

btLibDETD_SINT 180
btLibDETD_TEXT 181
btLibDETD_UINT 181
btLibDETD_URL 181
btLibDETD_UUID 181
btLibDeviceAddressSize 199
BtLibDeviceAddressType 154
BtLibDeviceAddressTypePtr 154
btLibDiscoverableAndConnectable 206
BtLibDiscoverDevices() 123, 127, 223
btLibDocumentationUrl 216
btLibErrNoError 196
btLibFeatureCreator 199
btLibFeatureVersion 199
BtLibFriendlyNameType 154
BtLibFriendlyNameTypePtr 155
BtLibGeneralPrefEnum 206
BtLibGetGeneralPreference() 123, 225
BtLibGetNameEnum 207
BtLibGetRemoteDeviceName() 226
BtLibGetRemoteDeviceNameSynchronous() 227
btLibHoldMode 207
btLibIconUrl 216
BtLibL2CapChannelIdType 155
BtLibL2CapHToNL() 228
BtLibL2CapHToNS() 228
BtLibL2CapNToHL() 229
BtLibL2CapNToHS() 229
btLibL2CapProtocol 210
BtLibL2CapPsmType 155
btLibL2DiscConfigOptions 183
btLibL2DiscConfigReject 183
btLibL2DiscConfigUnacceptable 183
btLibL2DiscConnNoResources 183
btLibL2DiscConnPsmUnsupported 183
btLibL2DiscConnSecurityBlock 183
btLibL2DiscLinkDisc 182
btLibL2DiscQosViolation 182
btLibL2DiscReasonUnknown 182
btLibL2DiscRequestTimeout 182
btLibL2DiscSecurityBlock 182
btLibL2DiscUserRequest 182
btLibLanguageBaseAttributeIdList 200, 216

BtLibLanguageBaseTripletType 155
BtLibLinkConnect 127
BtLibLinkConnect() 230
BtLibLinkDisconnect 127
BtLibLinkDisconnect() 231
BtLibLinkGetState() 232
BtLibLinkModeEnum 207
btLibLinkPref_Authenticated 208
btLibLinkPref_Encrypted 208
btLibLinkPref_LinkRole 208
BtLibLinkPrefsEnum 208
BtLibLinkSetState() 233
btLibManagementEventAccessibilityChange 209
btLibManagementEventACLConnectInbound 209
btLibManagementEventAclConnectInbound 127
btLibManagementEventACLConnectOutbound 2

09
btLibManagementEventAclConnectOutbound 12

7
btLibManagementEventACLDisconnect 209
btLibManagementEventAclDisconnect 127
btLibManagementEventAuthenticationComplete

210
btLibManagementEventEncryptionChange 209
BtLibManagementEventEnum 208
btLibManagementEventInquiryCanceled 127, 209
btLibManagementEventInquiryComplete 127, 209
btLibManagementEventInquiryResult 127
btLibManagementEventLocalNameChange 210
btLibManagementEventModeChange 209
btLibManagementEventNameResult 210
btLibManagementEventPairingComplete 210
btLibManagementEventPasskeyRequest 210
btLibManagementEventPasskeyRequestComplete

210
btLibManagementEventPiconetCreated 209
btLibManagementEventPiconetDestroyed 209
btLibManagementEventRoleChange 209
btLibManagementEventRSSI 210
BtLibManagementEventType 156
btLibMasterRole 206
btLibMaxDeviceNameLength 199
btLibMaxSrvRecListLen 199
BtLibMEEventName() 234

438 Exploring Palm OS: Low-Level Communications

btLibMeStatusAuthenticateFailure 196
btLibMeStatusCommandDisallowed 196
btLibMeStatusConnnectionTimeout 197
btLibMeStatusHardwareFailure 197
btLibMeStatusHostTimeout 197
btLibMeStatusInvalidHciParam 197
btLibMeStatusInvalidLmpParam 197
btLibMeStatusLimitedResources 197
btLibMeStatusLmpPduNotAllowed 197
btLibMeStatusLmpResponseTimeout 197
btLibMeStatusLmpTransdCollision 197
btLibMeStatusLocalTerminated 197
btLibMeStatusLowResources 197
btLibMeStatusMaxAclConnections 197
btLibMeStatusMaxConnections 197
btLibMeStatusMaxScoConnections 197
btLibMeStatusMemoryFull 197
btLibMeStatusMissingKey 197
btLibMeStatusNoConnection 197
btLibMeStatusPageTimeout 197
btLibMeStatusPairingNotAllowed 197
btLibMeStatusPersonalDevice 197
btLibMeStatusPowerOff 198
btLibMeStatusRepeatedAttempts 198
btLibMeStatusRoleChangeNotAllowed 198
btLibMeStatusScoAirModeRejected 198
btLibMeStatusScoIntervalRejected 198
btLibMeStatusScoOffsetRejected 198
btLibMeStatusSecurityError 198
btLibMeStatusUnknownHciCommand 198
btLibMeStatusUnknownLmpPDU 198
btLibMeStatusUnspecifiedError 198
btLibMeStatusUnsupportedFeature 198
btLibMeStatusUnsupportedLmpParam 198
btLibMeStatusUnsupportedRemote 198
btLibMeStatusUserTerminated 198
btLibNotAccessible 205
BtLibOpen 124
BtLibOpen() 123, 234
btLibParkMode 208
BtLibPiconetCreate 128
BtLibPiconetCreate() 235
BtLibPiconetDestroy 128

BtLibPiconetDestroy() 237
BtLibPiconetLockInbound 128
BtLibPiconetLockInbound() 238
BtLibPiconetUnlockInbound 128
BtLibPiconetUnlockInbound() 239
btLibPref_CurrentAccessible 206
btLibPref_LocalClassOfDevice 206
btLibPref_LocalDeviceAddress 207
btLibPref_Name 206
btLibPref_UnconnectedAccessible 206
btLibProfileDescriptorList 216
BtLibProfileDescriptorListEntryType 159
btLibProtocolDescriptorList 216
BtLibProtocolDescriptorListEntryType 160
BtLibProtocolEnum 161, 210
btLibProviderNameOffset 200
BtLibRegisterService() 240
btLibRemoteOnly 207
BtLibRfCommHToNL() 240
BtLibRfCommHToNS() 241
BtLibRfCommNToHL() 241
BtLibRfCommNToHS() 241
btLibRfCommProtocol 210
BtLibRfCommServerIdType 161
btLibSCOProtocol 211
BtLibSdpAttributeDataType 161
BtLibSdpAttributeIdType 164
BtLibSdpCompareUuids() 242
BtLibSdpGetPSMByUuid 130
BtLibSdpGetPsmByUuid() 243
BtLibSdpGetRawDataElementSize() 244
BtLibSdpGetRawElementType() 244
BtLibSdpGetServerChannelByUuid 132
BtLibSdpGetServerChannelByUuid() 245
BtLibSdpHToNL() 246
BtLibSdpHToNS() 247
BtLibSdpNToHL() 247
BtLibSdpNToHS() 247
BtLibSdpParseRawDataElement() 248
btLibSdpProtocol 211
BtLibSdpRecordHandle 165
BtLibSdpRemoteServiceRecordHandle 165
BtLibSdpServiceRecordCreate 130, 131

Exploring Palm OS: Low-Level Communications 439

BtLibSdpServiceRecordCreate() 249
BtLibSdpServiceRecordDestroy() 250
BtLibSdpServiceRecordGetAttribute() 251
BtLibSdpServiceRecordGetNumListEntries() 253
BtLibSdpServiceRecordGetNumLists() 255
BtLibSdpServiceRecordGetRawAttribute() 256
BtLibSdpServiceRecordGetSizeOfRawAttribute()

258
BtLibSdpServiceRecordGetStringOrUrlLength() 2

60
BtLibSdpServiceRecordMapRemote() 261
BtLibSdpServiceRecordSetAttribute() 262
BtLibSdpServiceRecordSetAttributesForSocket 13

0, 131
BtLibSdpServiceRecordSetAttributesForSocket() 2

64
BtLibSdpServiceRecordSetRawAttribute() 266
BtLibSdpServiceRecordsGetByServiceClass() 267
BtLibSdpServiceRecordStartAdvertising 130, 131
BtLibSdpServiceRecordStartAdvertising() 269
BtLibSdpServiceRecordStopAdvertising() 270
BtLibSdpUuidInitialize() 271
BtLibSdpUuidSizeEnum 165, 211
BtLibSdpUuidType 166
BtLibSdpVerifyRawDataElement() 271
BtLibSecurityFindTrustedDeviceRecord() 273
BtLibSecurityGetTrustedDeviceRecordInfo() 274
BtLibSecurityNumTrustedDeviceRecords() 275
BtLibSecurityRemoveTrustedDeviceRecord() 276
btLibServiceClassIdList 216
btLibServiceDescriptionOffset 200
BtLibServiceExecutionParamsType 168
btLibServiceId 216
btLibServiceNameOffset 200
BtLibServicePreparationParamsType 168
btLibServiceRecordHandle 216
btLibServiceRecordState 216
BtLibServiceRegistrationParamsType 169
BtLibSetGeneralPreference() 277
btLibSlaveRole 206
btLibSniffMode 207
BtLibSocketAdvanceCredit() 278
BtLibSocketClose 130
BtLibSocketClose() 123, 279

BtLibSocketConnect 130, 132
BtLibSocketConnect() 280
BtLibSocketConnectInfoType 170
BtLibSocketCreate 130, 131, 132
BtLibSocketCreate() 123, 281
btLibSocketEventConnectedInbound 130, 131, 212
btLibSocketEventConnectedOutbound 212
btLibSocketEventConnectRequest 130, 131, 212
btLibSocketEventDisconnected 213
BtLibSocketEventEnum 211
BtLibSocketEventName() 282
btLibSocketEventSdpGetAttribute 213
btLibSocketEventSdpGetNumListEntries 214
btLibSocketEventSdpGetNumLists 214
btLibSocketEventSdpGetPsmByUuid 214
btLibSocketEventSdpGetRawAttribute 214
btLibSocketEventSdpGetRawAttributeSize 214
btLibSocketEventSdpGetServerChannelByUuid 2

14
btLibSocketEventSdpGetStringLen 213
btLibSocketEventSdpServiceRecordHandle 213
btLibSocketEventSendComplete 213
BtLibSocketEventType 172
BtLibSocketGetInfo() 282
btLibSocketInfo_DeviceNum 215
btLibSocketInfo_L2CapChannel 215
btLibSocketInfo_L2CapPsm 215
btLibSocketInfo_MaxRxSize 215
btLibSocketInfo_MaxTxSize 215
btLibSocketInfo_Protocol 214
btLibSocketInfo_RemoteDeviceAddress 214
btLibSocketInfo_RfCommOutstandingCredits 215
btLibSocketInfo_RfCommServerId 215
btLibSocketInfo_SdpServiceRecordHandle 215
btLibSocketInfo_SendPending 215
BtLibSocketInfoEnum 214
BtLibSocketListen 130, 131
BtLibSocketListen() 284
BtLibSocketListenInfoType 174
BtLibSocketRef 123, 176
BtLibSocketRespondToConnection 130, 131
BtLibSocketRespondToConnection() 285
BtLibSocketSend 129, 131

440 Exploring Palm OS: Low-Level Communications

BtLibSocketSend() 287
BtLibStartInquiry 127
BtLibStartInquiry() 127, 288
BtLibStringType 177
btLibTimeToLive 216
BtLibUrlType 177
btLibUuidSize128 211
btLibUuidSize16 211
btLibUuidSize32 211
btModSerL2cName 187
btModSerRfcName 187
btModTPISerRfcName 187

C
cc_t 383
classes 421
CLOCAL 388
close

the connection to the database 304, 305
the TCP connection 304

closing serial link manager 25
connect() 86, 99, 304
Connection Manager 6
construct an Internet address 318
convert

16-bit values between host byte order and
network byte order 316

16-bit values between network byte order and
host byte order 322

32-bit values between host byte order and
network byte order 316

32-bit values between network byte order and
host byte order 322

a network format address to presentation
format 319

a presentation format address to network
format 320

CR0 394
CR1 394
CR2 394
CR3 394
CRC-16 21
CRDLY 394
CREAD 388

CRTSCTS 389
CS7 388
CS8 388
CSIZE 388
CSTOPB 388
CTS timeout 11
CTSFLOW 388

D
desktop link protocol 4
Desktop Link Server 23
Device discovery 116, 127
DeviceInfoType 44
DeviceInfoType structure 29
discovering IrDA devices 79
DLP 4
driver classes 421

E
ECHO 391
ECHOE 391
ECHOK 391
ECHONL 391
Encryption 116
endhostent() 304
endnetent() 304
endprotoent() 305
endservent() 305
errNone 56
errNone() 100
ESS 433
ESSID 433
EvtEventAvail 13
EvtGetEvent 13
EvtResetAutoOffTimer 13
EvtSetAutoOffTimer 13
EvtWakeup 62
examine the I/O descriptor sets 324
ExgLibGet() 142, 143
ExgLibRequest() 142, 143

F
F_GETFL 401

Exploring Palm OS: Low-Level Communications 441

F_SETFL 401
FF0 395
FF1 395
FFDLY 395
file

open 328
open and rewind 328
rewind 328

file descriptor 377, 378, 419
Finding devices 127
freeaddrinfo() 305
freehostent() 306

G
gai_strerror() 306
getaddrinfo() 306
gethostbyaddr() 307
gethostbyname() 308
gethostbyname2() 308
gethostent() 309
getipnodebyaddr() 309
getipnodebyname() 309
getnameinfo() 310
getnetbyaddr() 311
getnetbyname() 311
getnetent() 312
getpeername() 312
getprotobyname() 313
getprotobynumber() 313
getprotoent() 314
getservbyname() 314
getservbyport() 314
getservent() 315
getsockname() 312
getsockopt() 315

H
handshaking options 11
hostent 299
hstrerror() 316
htonl() 316
htons() 316
HUPCL 388

I
IAS 86, 87, 88
iasAttribInteger 89
iasAttribMissing 89
iasAttribOctetString 89
IASAttribTypeType 89
iasAttribUserString 89
IASAttribValueType 94
iasCharSetASCII 89
iasCharSetISO8859_1 89
iasCharSetISO8859_2 89
iasCharSetISO8859_3 89
IASCharSetType 89
IASGetValueByClass() 96, 97, 100
iasMaxAttribNameLen 91
iasMaxClassNameLen 91
iasMaxOctetStringLen 92
iasMaxUserStringLen 92
IASObjectType 95
IASQueryType 96
IASRegisterObject() 102
IASRegisterService() 101, 102
IASUnregisterObject() 102
ICANON 391
ICRNL 389
IEEE 802.11 433
IEEE 802.3 433
IEXTEN 392
IGNBRK 389
IGNCR 389
IGNPAR 389
Inbound connection

L2CAP 130
RFCOMM 131

inet_addr() 317
inet_aton() 317
inet_lnaof() 318
inet_makeaddr() 318
inet_netof() 318
inet_network() 319
inet_ntoa() 319
inet_ntop() 319
inet_pton() 320

442 Exploring Palm OS: Low-Level Communications

Information Access Service 86
Infrared Link Access Protocol 79
Infrared Link Management Protocol 79
Infrared Object Exchange Protocol 77
INLCR 389
INPCK 389
installing drivers 429
interpret the specified character string as an

Internet address 317
IOS 375, 378
IOS Driver Attributes API 421
IOS Driver Install API 429
IOS process 375
IOSClose() 396
IOSFastIoctl() 397
IOSFattach() 398
IOSFdetach() 399
IOSFnctl() 400
IOSGetDriverAttributesByIndex() 423
IOSGetDriverAttributesByName() 424
IOSGetDriverDescriptionByIndex() 425
IOSGetDriverDescriptionByName() 426
IOSGetDriverNameByIndex() 427
IOSGetmsg 381
IOSGetmsg() 129, 131, 401
IOSGetNumDrivers() 422
IOSGetpmsg() 402
IOSInstallDriver() 429
IOSIoctl() 404
IOSOpen() 405
IOSPipe() 406
IOSPoll 376, 381
IOSPoll() 376, 385, 408
IOSPutmsg() 409
IOSPutpmsg() 410
IOSRead() 412
IOSReadv() 413
IOSRemoveDriver() 430
IOSWrite() 414
IOSWritev() 415
iovec 383
IR 5
IRADDR_ANY 92, 97

IRADDR_BROADCAST 92, 97
IrComm 77
IrDA 78, 81, 82, 83, 86, 87
IrDADiscoverDevices() 82, 103
IRDAENB 389
IrDALib 78, 82
IrLAP 79, 80, 98, 103
IrLapDeviceAddrType 97
IrLMP 79, 80, 81, 83, 99, 103
irLmpActiveDiscovery 91
IrLmpDeviceInfoType 98, 103
IrLmpDiscoveryMethodType 91
irLmpPassiveDiscovery 91
IrLmpSAPType 99
irLmpSniffing 91
irLsapAny 93
irLsapIAS 93
irLsapUnitdata 93
IrOBEX 77
IRPROTO_LAP 90
IRPROTO_LMP 90, 99
IRPROTO_TTP 90
isaCharSetISO8859_5 90
isaCharSetISO8859_6 90
isaCharSetISO8859_7 90
isaCharSetISO8859_8 90
isaCharSetISO8859_9 90
isaCharSetUnicode 90
ISIG 391
ISTRIP 389
IUCLC 389
IXANY 389
IXOFF 389
IXON 389

L
L2CAP 193
listen() 320
Loop-back Test 23
LSAP 87

M
MAC address 433

Exploring Palm OS: Low-Level Communications 443

Management 124
Management function return code 124
MORECTL 402, 403
MOREDATA 402, 403
MSG_ANY 403
MSG_BAND 403
MSG_HIPRI 403

N
NCC 393
netent 299
Netlib 293
nilEvent 14
NL0 394
NL1 394
NLDLY 394
nodename-to-address translation 306
NOFLSH 391
ntohl() 322
ntohs() 322

O
OCRNL 394
OFDEL 394
OFILL 394
OLCUC 394
ONLCR 394
ONLRET 394
ONOCR 394
open

and rewind a file 328
opening serial link manager 25
opening serial port 7, 8
OPOST 394
Outbound connection

L2CAP 130
RFCOMM 132

P
packet assembly/disassembly protocol 4
packet footer, SLP 22
packet header, SLP 22
packet receive timeout 25

PADP 4, 23
PARENB 388
PARMRK 389
PARODD 388
PbxAddFd 377, 378, 381
PbxAddFd() 417
PbxCallback 380
PbxCallback() 420
PbxCreate 377
PbxCreate function 417
PbxCreate() 377, 417
PbxDestroy 377
PbxDestroy() 418
PbxPoll 379, 380, 418
PbxPoll() 418
PbxRemoveFd 378
PbxRemoveFd() 419
PbxRun 380
PbxRun() 419
PDU 433
Piconet 128
PollBox 126, 377, 378, 379, 380, 381, 382, 384, 417,

418, 419, 420
POLLERR 395
pollfd 385
POLLHUP 396
POLLIN 378, 381, 395
POLLMSG 396
POLLNVAL 396
POLLOUT 378, 395
POLLPRI 378, 395
POLLRDBAND 396
POLLRDNORM 396
POLLWRBAND 396
POLLWRNORM 396
Posix 375
Power management 119
Power mode 120, 128
Profile 111

Dial-up Networking Profile 112, 117
Generic Access Profile 111
Generic Object Exchange Profile 112
Hands-Free Profile 113, 118
Headset Profile 113, 117

444 Exploring Palm OS: Low-Level Communications

LAN Access Point Profile 112
Object Push Profile 112
Personal-Area Networking

GN role 114
PANU role 114

Personal-Area Networking Profile 114, 119
Serial Port Profile 111

Protocol Data Unit 433
Protocol Service Multiplexor 193, 434
protoent 300
PSM 193, 433

R
read

the next entry in the database 309
the next line of the file 312, 314, 315

receiving SLP packet 24
recvfrom() 323
recvmsg() 324
release

the dynamically allocated memory 306
Remote Console 23
Remote Console packets 23
Remote Debugger 23, 24
remote inter-application communication 4
Remote Procedure Call packets 23
remote procedure calls 4, 24
Remote UI 23
request the use of a connected TCP socket 327
return

a number suitable for use as an Internet
address 317

a number suitable for use as an Internet
network number 319

an ASCII string representing an Internet
address 319

the address of a network host 309
the local network address part (in host

order) 318
the name of a network host 309
the network number part (in host order) 318
the socket address structures 305

RIAC 4
RPC 4, 24
RS-232 signals 5

RTSFLOW 388

S
search

for the specified host 307, 308
until a matching network address is found 311
until a matching network name is found 311
until a matching port number is found 314
until a matching protocol name is found 313,

314
until a matching protocol number is found 313

select() 324
send() 325
sending stream of bytes 11, 12
sendmsg() 326
sendto() 326
serDev... constants 33
serDevConsolePort 33
serDevCradlePort 33
serDevHotsyncCapable 33
serDevIRDACapable 33
serDevRS232Serial 33
serDevUSBCapable 33
serErrAlreadyOpen 8
serErrBadPort 56
serErrConfigurationFailed 49, 56
serErrNotOpen 56, 57, 58
serErrNotSupported 56, 57, 58
serErrTimeOut 56
serial capabilities constants 33
Serial Link Manager 3
serial link manager 24

opening 25
serial link protocol 4, 21, 22, 24
Serial Manager 3, 5, 6, 7, 9, 14
serial port

opening 7, 8
serial settings constants 33
serial status constants 36
SerialLinkMgr.h 63
SerialMgr.h 29
serLineErrorBreak 37
serLineErrorCarrierLost 37
serLineErrorFraming 36

Exploring Palm OS: Low-Level Communications 445

serLineErrorHShake 37
serLineErrorHWOverrun 36
serLineErrorParity 36
serLineErrorSWOverrun 37
serPortConsolePort 32
serPortCradlePort 32
serPortCradleRS232Port 32
serPortCradleUSBPort 32
serPortIrPort 32
serPortLocalHotSync 32
servent 300
sethostent() 327
setnetent() 328
setprotoent() 328
setservent() 328
setsockopt() 79, 80, 328
shutdown() 329
SlkClose 25, 63
SlkCloseSocket 25, 64
slkErrAlreadyOpen 25, 65
slkErrBadParam 69
slkErrBuffer 67
slkErrChecksum 67
slkErrNotOpen 63
slkErrOutOfSockets 66
slkErrSocketNotOpen 64, 65, 67, 68, 69, 70, 71
slkErrTimeOut 67, 68
slkErrWrongDestSocket 67
SlkFlushSocket 64
SlkOpen 25, 65
SlkOpenSocket 25, 65
SlkPktHeaderType 26, 69
SlkReceivePacket 26, 28, 66
SlkSendPacket 26, 68
SlkSetSocketListener 69
SlkSocketListenType 25, 69, 70
SlkSocketPortID 70
SlkSocketSetTimeout 25, 71
SlkWriteDataType 26, 68
SLP 4, 21
SLP packet 21

footer 22
header 22
receiving 24

transmitting 24
SO_IREXCLUSIVE 79, 80, 92
SO_IRIDLE 80, 92
SO_IRMRU 92
SO_IRMTU 92
sockaddr 301
sockaddr_bth 178
sockaddr_in 301
sockaddr_irda 99
Socket 129

L2CAP 129, 130
RFCOMM 129, 131, 132

socket listener 25, 28, 67
socket listener procedure 26, 28, 67, 69
socket() 295, 330
sockets, opening serial link socket 25
socklen_t 302
speed_t 386
SrmClearErr 14
SrmClearErr() 37
SrmClose 9
SrmClose() 38
SrmControl 10, 33, 34, 43
SrmControl() 39
srmCtlEmuSetBlockingHook 35
SrmCtlEnum 34, 39
srmCtlGetBaudRate 35, 40
srmCtlGetCtsTimeout 35, 40, 41
srmCtlGetFlags 35, 40
srmCtlIrDADisable 35
srmCtlIrDAEnable 35
srmCtlRxDisable 35
srmCtlRxEnable 35
srmCtlSetBaudRate 34, 40
srmCtlSetCtsTimeout 35, 40, 41
srmCtlSetFlags 35, 40
srmCtlSystemReserved 35
srmCtlUserDef 40, 41
srmDefaultCTSTimeout 43
SrmExtOpen 8, 32
SrmExtOpen() 42
SrmGetDeviceCount() 43
SrmGetDeviceInfo 29
SrmGetDeviceInfo() 44

446 Exploring Palm OS: Low-Level Communications

SrmGetStatus 14, 36, 49, 50, 52
SrmGetStatus() 45
SrmOpen 8, 32
SrmOpen() 46
SrmOpenConfigType 8, 30, 42
SrmPrimeWakeupHandler 61
SrmPrimeWakeupHandler() 47
SrmReceive 13, 52, 55
SrmReceive() 48
SrmReceiveCheck 14, 52
SrmReceiveCheck() 49
SrmReceiveFlush 15
SrmReceiveFlush() 50
SrmReceiveWait 13, 55
SrmReceiveWait() 51
SrmReceiveWindowClose 14, 62
SrmReceiveWindowClose() 53
SrmReceiveWindowOpen 14, 62
SrmReceiveWindowOpen() 54
SrmSend 11, 58
SrmSend() 55
SrmSendCheck 12
SrmSendCheck() 56
SrmSendFlush 12
SrmSendFlush() 57
SrmSendWait() 58
SrmSetReceiveBuffer 10, 43, 52
SrmSetReceiveBuffer() 59
srmSettings... constants 33
srmSettingsFlagBitsPerChar5 34
srmSettingsFlagBitsPerChar6 34
srmSettingsFlagBitsPerChar7 34
srmSettingsFlagBitsPerChar8 34
srmSettingsFlagBitsPerCharM 34
srmSettingsFlagCTSAutoM 11, 34
srmSettingsFlagFlowControlIn 34
srmSettingsFlagParityEvenM 33
srmSettingsFlagParityOnM 33
srmSettingsFlagRTSAutoM 34
srmSettingsFlagStopBits1 33
srmSettingsFlagStopBits2 33
srmSettingsFlagStopBitsM 33
srmSettingsFlagXonXoffM 34

SrmSetWakeupHandler 47, 61
SrmSetWakeupHandler() 60
srmStatus... constants 36
srmStatusBreakSigOn 36
srmStatusCtsOn 36
srmStatusDcdOn 36
srmStatusDsrOn 36
srmStatusDtrOn 36
srmStatusRingOn 36
srmStatusRtsOn 36
SSID 434
station 434
STDIO 375
strbuf 386
STREAMS 5, 77, 293
sysBtLaunchCmdExecuteService 168, 218
sysBtLaunchCmdPrepareService 168, 218
sysFileCVirtIrComm 32, 75
sysFileCVirtRfComm 32
SystemResources.h 29

T
TAB0 395
TAB1 395
TAB2 395
TAB3 395
TABDLY 395
tcflag_t 387
TCGETA 390
TCGETA ioctl command 390
TCSBRK 390
TCSBRK ioctl command 390
TCSETA 390
TCSETA ioctl command 390
TCSETIRDAMODE 391
TCSETIRDAMODE ioctl command 391
termios 387
termios structure 389
timeout

serial link socket 25
Tiny Transport Protocol 83
TinyTP 77, 83, 84, 85, 87, 99
TIOCCBRK 391

Exploring Palm OS: Low-Level Communications 447

TIOCCBRK ioctl command 391
TIOCCDTR 391
TIOCCDTR ioctl command 391
TIOCDRAIN 391
TIOCDRAIN ioctl command 391
TIOCGETA 390
TIOCGETA ioctl command 390
TIOCMGET 390
TIOCMGET ioctl command 390
TIOCSBRK 390
TIOCSBRK ioctl command 390
TIOCSDTR 391
TIOCSDTR ioctl command 391
TIOCSETA 390
TIOCSETA ioctl command 390
TOSTOP 392
TPI 295
translate

address-to-nodename 310
transmitting SLP packet 24

U
Usage scenarios 114
USB 5

V
VT0 395
VT1 395
VTDLY 395

W
WakeupHandlerProc 61
WakeupHandlerProcPtr 60
WakeupHandlerProcPtr() 61
WEP 434
WPA 434

X
XCASE 391
XLOBLK 388

448 Exploring Palm OS: Low-Level Communications

	Low-Level Communications
	Table of Contents
	About This Document
	Intended Audience
	Additional Resources

	Serial Communication
	Introduction to Serial Communications
	Serial Communications Overview
	Serial Communications Components
	Byte Ordering

	The Serial Manager
	Steps for Using the Serial Manager
	Opening a Port
	Closing a Port
	Configuring the Port
	Sending Data
	Receiving Data
	Serial Manager Tips and Tricks

	The Serial Link Protocol
	The Serial Link Protocol
	SLP Packet Structures
	Transmitting an SLP Packet
	Receiving an SLP Packet

	The Serial Link Manager
	Using the Serial Link Manager

	Serial Manager Reference
	Serial Manager Data Structures
	DeviceInfoType
	SrmOpenConfigType
	SrmRfCommOpenParamsType

	Serial Manager Constants
	Port Constants
	Serial Capabilities Constants
	Serial Settings Constants
	SrmCtlEnum
	Status Constants
	Line Error Constants

	Serial Manager Functions
	SrmClearErr
	SrmClose
	SrmControl
	SrmExtOpen
	SrmGetDeviceCount
	SrmGetDeviceInfo
	SrmGetStatus
	SrmOpen
	SrmPrimeWakeupHandler
	SrmReceive
	SrmReceiveCheck
	SrmReceiveFlush
	SrmReceiveWait
	SrmReceiveWindowClose
	SrmReceiveWindowOpen
	SrmSend
	SrmSendCheck
	SrmSendFlush
	SrmSendWait
	SrmSetReceiveBuffer
	SrmSetWakeupHandler

	Serial Manager Application-Defined Functions
	WakeupHandlerProcPtr

	Serial Link Manager
	Serial Link Manager Functions
	SlkClose
	SlkCloseSocket
	SlkFlushSocket
	SlkOpen
	SlkOpenSocket
	SlkReceivePacket
	SlkSendPacket
	SlkSetSocketListener
	SlkSocketPortID
	SlkSocketSetTimeout

	Infrared Communication (Beaming)
	Introduction to Infrared Communication (Beaming)
	The IrDA Protocol Stack
	Using the IrDA Protocols
	The IrLAP Protocol Layer
	The IrLMP Protocol Layer
	The IrLMP Sequenced Packet Interface
	The IrLMP Datagram Interface
	Discovering IrDA Devices

	The TinyTP Protocol Layer
	The TinyTP Sequenced Packet Interface
	The TinyTP Stream Interface

	Getting and Providing Information About IrDA Services
	Structure of the IAS Database
	Getting Information about IrDA Services
	Providing Information About Offered IrDA Services

	IrDA Reference
	IrDA Constants
	IASAttribTypeType
	IASCharSetType
	IrDA Protocol Identifier Constants
	IrDA Socket Address Family Constant
	IrLmpDiscoveryMethodType
	IAS Constants
	setsockopt() commands
	Special IrDA Device Addresses
	Special IrLMP SAP Values

	IrDA Data Types and Structures
	IASAttribValueType
	IASObjectType
	IASQueryType
	IrLapDeviceAddrType
	IrLmpDeviceInfoType
	IrLmpSAPType
	sockaddr_irda

	IrDALib Functions
	IASGetValueByClass
	IASRegisterObject
	IASRegisterService
	IASUnregisterObject
	IrDADiscoverDevices

	Bluetooth
	The Palm OS Bluetooth System
	Capabilities of the Palm OS Bluetooth System
	Bluetooth System Components
	Bluetooth Library
	Bluetooth Exchange Library
	Bluetooth Stack Library
	Bluetooth Devices
	Bluetooth HCI Transport Modules
	Hardware Device Drivers

	Profiles
	Usage Scenarios

	Authentication and Encryption
	Device Discovery
	Telephony and Bluetooth
	Dial-up Networking Profile
	Headset Profile
	Hands-Free Profile

	Personal-Area Networking
	Radio Power Management

	Developing Bluetooth-enabled Applications
	Overview of the Bluetooth Library
	Compatibility

	The Management Entity
	Opening the Library
	Polling for Management Entity Events
	Finding Nearby Devices
	Creating ACL Links
	Working With Piconets
	Closing the Management Entity

	Bluetooth Sockets
	L2CAP
	RFCOMM
	SCO

	BSD Sockets
	Creating a Socket
	Restrictions

	Service Discovery
	Service Records

	Creating Persistent Services
	Dealing with Bluetooth Shutdown

	Bluetooth Exchange Library Support
	Detecting the Bluetooth Exchange Library
	Using the Exchange Manager With Bluetooth
	Bluetooth Exchange URLs
	Obtaining the URL of a Remote Device

	ExgLibGet() and ExgLibRequest()

	Bluetooth Reference
	Bluetooth Structures and Types
	BtLibClassOfDeviceType
	BtLibDeviceAddressType
	BtLibDeviceAddressTypePtr
	BtLibFriendlyNameType
	BtLibFriendlyNameTypePtr
	BtLibL2CapChannelIdType
	BtLibL2CapPsmType
	BtLibLanguageBaseTripletType
	BtLibManagementEventType
	BtLibProfileDescriptorListEntryType
	BtLibProtocolDescriptorListEntryType
	BtLibProtocolEnum
	BtLibRfCommServerIdType
	BtLibSdpAttributeDataType
	BtLibSdpAttributeIdType
	BtLibSdpRecordHandle
	BtLibSdpRemoteServiceRecordHandle
	BtLibSdpUuidSizeEnum
	BtLibSdpUuidType
	BtLibServiceDescriptionType
	BtLibServiceExecutionParamsType
	BtLibServicePreparationParamsType
	BtLibServiceRegistrationParamsType
	BtLibSocketConnectInfoType
	BtLibSocketEventType
	BtLibSocketListenInfoType
	BtLibSocketRef
	BtLibStringType
	BtLibUrlType
	sockaddr_bth

	Bluetooth Constants
	Bluetooth Data Element Sizes
	Bluetooth Data Element Types
	Bluetooth Device Names
	Bluetooth Disconnection Codes
	Bluetooth Error Codes
	Bluetooth Module Names
	BSD Sockets Constants
	Character Encoding Constants
	L2Cap Constants
	Language ID Constants
	Management Event Status Codes
	Miscellaneous Bluetooth Constants
	Attribute Identifier Constants
	Protocol UUIDs
	RfComm Constants
	Service Class UUIDs
	Service Description Flags
	BtLibAccessibleModeEnum
	BtLibConnectionRoleEnum
	BtLibGeneralPrefEnum
	BtLibGetNameEnum
	BtLibLinkModeEnum
	BtLibLinkPrefsEnum
	BtLibManagementEventEnum
	BtLibProtocolEnum
	BtLibSdpUuidSizeEnum
	BtLibSocketEventEnum
	BtLibSocketInfoEnum
	Universal Service Attribute IDs

	Bluetooth Application Launch Codes
	sysBtLaunchCmdDoServiceUI
	sysBtLaunchCmdDescribeService
	sysBtLaunchCmdExecuteService
	sysBtLaunchCmdPrepareService

	Bluetooth Functions and Macros
	BtLibAddrAToBtd
	BtLibAddrBtdToA
	BtLibCancelInquiry
	BtLibClose
	BtLibDiscoverDevices
	BtLibGetGeneralPreference
	BtLibGetRemoteDeviceName
	BtLibGetRemoteDeviceNameSynchronous
	BtLibL2CapHToNL
	BtLibL2CapHToNS
	BtLibL2CapNToHL
	BtLibL2CapNToHS
	BtLibLinkConnect
	BtLibLinkDisconnect
	BtLibLinkGetState
	BtLibLinkSetState
	BtLibMEEventName
	BtLibOpen
	BtLibPiconetCreate
	BtLibPiconetDestroy
	BtLibPiconetLockInbound
	BtLibPiconetUnlockInbound
	BtLibRegisterService
	BtLibRfCommHToNL
	BtLibRfCommHToNS
	BtLibRfCommNToHL
	BtLibRfCommNToHS
	BtLibSdpCompareUuids
	BtLibSdpGetPsmByUuid
	BtLibSdpGetRawDataElementSize
	BtLibSdpGetRawElementType
	BtLibSdpGetServerChannelByUuid
	BtLibSdpHToNL
	BtLibSdpHToNS
	BtLibSdpNToHL
	BtLibSdpNToHS
	BtLibSdpParseRawDataElement
	BtLibSdpServiceRecordCreate
	BtLibSdpServiceRecordDestroy
	BtLibSdpServiceRecordGetAttribute
	BtLibSdpServiceRecordGetNumListEntries
	BtLibSdpServiceRecordGetNumLists
	BtLibSdpServiceRecordGetRawAttribute
	BtLibSdpServiceRecordGetSizeOfRawAttribute
	BtLibSdpServiceRecordGetStringOrUrlLength
	BtLibSdpServiceRecordMapRemote
	BtLibSdpServiceRecordSetAttribute
	BtLibSdpServiceRecordSetAttributesForSocket
	BtLibSdpServiceRecordSetRawAttribute
	BtLibSdpServiceRecordsGetByServiceClass
	BtLibSdpServiceRecordStartAdvertising
	BtLibSdpServiceRecordStopAdvertising
	BtLibSdpUuidInitialize
	BtLibSdpVerifyRawDataElement
	BtLibSecurityFindTrustedDeviceRecord
	BtLibSecurityGetTrustedDeviceRecordInfo
	BtLibSecurityNumTrustedDeviceRecords
	BtLibSecurityRemoveTrustedDeviceRecord
	BtLibSetGeneralPreference
	BtLibSocketAdvanceCredit
	BtLibSocketClose
	BtLibSocketConnect
	BtLibSocketCreate
	BtLibSocketEventName
	BtLibSocketGetInfo
	BtLibSocketListen
	BtLibSocketRespondToConnection
	BtLibSocketSend
	BtLibStartInquiry

	Networking and Sockets
	Introduction to Sockets on Palm�OS
	Overview
	Unsupported Sockets Features
	AF_UNIX and PF_UNIX Unsupported
	No socketpair() Function
	No UNIX-Style Asynchronous Features

	Architecture of the Sockets Support System
	Protocol Mapping

	Sockets & Network Support Reference
	Overview
	Structures and Types
	addrinfo
	hostent
	netent
	protoent
	servent
	sockaddr
	sockaddr_in
	socklen_t

	Functions and Macros
	accept
	bind
	connect
	endhostent
	endnetent
	endprotoent
	endservent
	freeaddrinfo
	freehostent
	gai_strerror
	getaddrinfo
	gethostbyaddr
	gethostbyname
	gethostbyname2
	gethostent
	getipnodebyaddr
	getipnodebyname
	getnameinfo
	getnetbyaddr
	getnetbyname
	getnetent
	getpeername
	getsockname
	getprotobyname
	getprotobynumber
	getprotoent
	getservbyname
	getservbyport
	getservent
	getsockopt
	hstrerror
	htonl
	htons
	inet_addr
	inet_aton
	inet_lnaof
	inet_makeaddr
	inet_netof
	inet_network
	inet_ntoa
	inet_ntop
	inet_pton
	listen
	ntohl
	ntohs
	recv
	recvfrom
	recvmsg
	select
	send
	sendmsg
	sendto
	sethostent
	setnetent
	setprotoent
	setservent
	setsockopt
	shutdown
	socket

	WiFi
	Introduction to Wireless Networking
	Overview
	WiFi Concepts
	Locating and Opening a WiFi Interface
	Getting Information About the WiFi Interface
	Determining Supported Encryption Modes
	Getting the Interface Status
	Identifying the Currently Connected Network
	Determining Supported Channels and Transmission Rates
	Getting the Signal Strength

	Finding an Access Point or Ad-hoc Network
	Active Scanning
	Passive Scanning
	Obtaining Scan Results

	Configuring Encryption
	Connecting To a Network
	Managing a Wireless Connection
	Disconnecting From a Network
	Creating an Ad-hoc Network

	WiFi Reference
	Overview
	WiFi Constants
	Channel Constants
	Connection Status Constants
	Event Type Constants
	Power Mode Constants
	RSSI Update Mode Constants
	Scan Result Capability Constants
	Security Capability Constants
	Transmission Rate Flags
	WEP Flag Constants

	WiFi Data Structures and Types
	WifiEventType
	WifiScanResultsType

	IOCTL Commands
	WIOCCONNECT
	WIOCCREATEIBSS
	WIOCDISCONNECT
	WIOCGETBSSID
	WIOCGETCHANNEL
	WIOCGETCURRENTRSSI
	WIOCGETMACADDR
	WIOCGETPOWERMODE
	WIOCGETRATES
	WIOCGETRSSIUPDATE
	WIOCGETSCANRESULTS
	WIOCGETSECCAPS
	WIOCGETSSID
	WIOCGETSTATUS
	WIOCGETWEPFLAGS
	WIOCJOIN
	WIOCPASSIVESCAN
	WIOCSCAN
	WIOCSETDEFAULTKEY
	WIOCSETKEY
	WIOCSETPOWERMODE
	WIOCSETRATES
	WIOCSETRSSIUPDATE
	WIOCSETSECMODE
	WIOCSETWEPFLAGS

	IOS STDIO
	Using IOS STDIO
	Introducing IOS STDIO
	Synchronization Issues
	Polling STREAMS File Descriptors
	Using a PollBox to Monitor Multiple File Descriptors

	IOS STDIO Reference
	Overview
	IOS STDIO Data Structures and Types
	cc_t
	iovec
	PollBox
	pollfd
	speed_t
	strbuf
	tcflag_t
	termios

	IOS STDIO Constants
	Character Control Mode Constants
	Input Control Mode Constants
	Ioctl Command Constants
	Local Mode Constants
	Modulation Speed Constants
	NCC Constant
	Output Control Mode Constants
	Poll Mask Constants

	Functions
	IOSClose
	IOSFastIoctl
	IOSFattach
	IOSFdetach
	IOSFnctl
	IOSGetmsg
	IOSGetpmsg
	IOSIoctl
	IOSOpen
	IOSPipe
	IOSPoll
	IOSPutmsg
	IOSPutpmsg
	IOSRead
	IOSReadv
	IOSWrite
	IOSWritev
	PbxAddFd
	PbxCreate
	PbxDestroy
	PbxPoll
	PbxRemoveFd
	PbxRun

	Application-Defined Functions
	PbxCallback

	Driver Attributes API
	Driver Attribute Constants
	Driver Class Constants

	Driver Attribute Functions
	IOSGetNumDrivers
	IOSGetDriverAttributesByIndex
	IOSGetDriverAttributesByName
	IOSGetDriverDescriptionByIndex
	IOSGetDriverDescriptionByName
	IOSGetDriverNameByIndex

	Driver Installation API
	IOS Installation Functions
	IOSInstallDriver
	IOSRemoveDriver

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

