

Text and Localization

Exploring Palm OS

®

Written by Jean Ostrem
Edited by Christopher Bey
Technical assistance from Chris Schneider, Ken Krugler, Jason Parks, Scott Fisher, and JB Parrett

Copyright © 2004, PalmSource, Inc. and its affiliates. All rights reserved. This technical documentation contains
confidential and proprietary information of PalmSource, Inc. (“PalmSource”), and is provided to the licensee (“you”)
under the terms of a Nondisclosure Agreement, Product Development Kit license, Software Development Kit license
or similar agreement between you and PalmSource. You must use commercially reasonable efforts to maintain the
confidentiality of this technical documentation. You may print and copy this technical documentation solely for the
permitted uses specified in your agreement with PalmSource. In addition, you may make up to two (2) copies of this
technical documentation for archival and backup purposes. All copies of this technical documentation remain the
property of PalmSource, and you agree to return or destroy them at PalmSource’s written request. Except for the
foregoing or as authorized in your agreement with PalmSource, you may not copy or distribute any part of this
technical documentation in any form or by any means without express written consent from PalmSource, Inc., and
you may not modify this technical documentation or make any derivative work of it (such as a translation,
localization, transformation or adaptation) without express written consent from PalmSource.

PalmSource, Inc. reserves the right to revise this technical documentation from time to time, and is not obligated to
notify you of any revisions.

THIS TECHNICAL DOCUMENTATION IS PROVIDED ON AN “AS IS” BASIS. NEITHER PALMSOURCE NOR ITS
SUPPLIERS MAKES, AND EACH OF THEM EXPRESSLY EXCLUDES AND DISCLAIMS TO THE FULL EXTENT
ALLOWED BY APPLICABLE LAW, ANY REPRESENTATIONS OR WARRANTIES REGARDING THIS TECHNICAL
DOCUMENTATION, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION
ANY WARRANTIES IMPLIED BY ANY COURSE OF DEALING OR COURSE OF PERFORMANCE AND ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT,
ACCURACY, AND SATISFACTORY QUALITY. PALMSOURCE AND ITS SUPPLIERS MAKE NO
REPRESENTATIONS OR WARRANTIES THAT THIS TECHNICAL DOCUMENTATION IS FREE OF ERRORS OR IS
SUITABLE FOR YOUR USE. TO THE FULL EXTENT ALLOWED BY APPLICABLE LAW, PALMSOURCE, INC. ALSO
EXCLUDES FOR ITSELF AND ITS SUPPLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR TORT
(INCLUDING NEGLIGENCE), FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL,
EXEMPLARY OR PUNITIVE DAMAGES OF ANY KIND ARISING OUT OF OR IN ANY WAY RELATED TO THIS
TECHNICAL DOCUMENTATION, INCLUDING WITHOUT LIMITATION DAMAGES FOR LOST REVENUE OR
PROFITS, LOST BUSINESS, LOST GOODWILL, LOST INFORMATION OR DATA, BUSINESS INTERRUPTION,
SERVICES STOPPAGE, IMPAIRMENT OF OTHER GOODS, COSTS OF PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES, OR OTHER FINANCIAL LOSS, EVEN IF PALMSOURCE, INC. OR ITS SUPPLIERS HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR IF SUCH DAMAGES COULD HAVE BEEN
REASONABLY FORESEEN.

PalmSource, Palm OS, Palm Powered, Graffiti, and certain other trademarks and logos are trademarks or registered
trademarks of PalmSource, Inc. or its affiliates in the United States, France, Germany, Japan, the United Kingdom, and
other countries. These marks may not be used in connection with any product or service that does not belong to
PalmSource, Inc. (except as expressly permitted by a license with PalmSource, Inc.), in any manner that is likely to
cause confusion among customers, or in any manner that disparages or discredits PalmSource, Inc., its licensor, its
subsidiaries, or affiliates. All other product and brand names may be trademarks or registered trademarks of their
respective owners.

IF THIS TECHNICAL DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE SOFTWARE AND OTHER
DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT TO THE LICENSE AGREEMENTS
ACCOMPANYING THE SOFTWARE AND OTHER DOCUMENTATION.

Exploring Palm OS: Text and Localization
Document Number 3111-003
November 9, 2004
For the latest version of this document, visit
http://www.palmos.com/dev/support/docs/.

PalmSource, Inc.
1240 Crossman Avenue
Sunnyvale, CA 94089
USA
www.palmsource.com

http://www.palmos.com/dev/support/docs/
http://www.palmsource.com

Exploring Palm OS: Text and Localization

iii

Table of Contents

About This Document ix

Who Should Read This Book ix
What This Book Contains x
Changes to This Book xi
The

Exploring Palm OS

 Series xi
Additional Resources xii

Part I: Concepts

1 Text 3

Character Encodings . 3
Characters . . 4

Declaring Character Variables 5
Using Character Constants 5
Missing and Invalid Characters 6
Retrieving a Character’s Attributes 7
Virtual Characters . 7
Retrieving the Character Encoding 8

Strings . 9
Manipulating Strings 10
Performing String Pointer Manipulation. 11
Truncating Displayed Text 12
Comparing Strings 14
Dynamically Creating String Content 15

Summary of Text API 17

2 Implementing Global Find 19

Implementing sysAppLaunchCmdFind 19
Implementing sysAppLaunchCmdGoTo 23
Implementing sysAppLaunchCmdSaveData 24
Summary of Find Manager API. 25

iv

 Exploring Palm OS: Text and Localization

3 Localized Applications 27

Localization Guidelines 27
Locales . 28
Overlays. 30
Dates and Times . 32
Numbers . 33
Obtaining Locale Information 33
Summary of Localization API 36

Part II: Reference

4 Find 39

Find Structures and Types 39
FindMatchType . 39
FindParamsType . 41

Find Constants . 43
Size Constants . 43

Find Launch Codes . 44
sysAppLaunchCmdFind 44

Find Functions and Macros 45
Find . 45
FindDrawHeader 45
FindGetLineBounds 46
FindSaveMatch . 47
FindSaveMatchV40 48
FindStrInStrV50 . 49

5 Locale Manager Types 51

Locale Manager Structures and Types 51
CountryType . 51
LanguageType . 51
LmCountryType . 52
LmLanguageType 52
LmLocaleType . 53

Exploring Palm OS: Text and Localization

v

NumberFormatType 53
Locale Manager Constants 54

LmLocaleSettingChoice 54
Locale Manager Errors 56
Locale Manager Size Constants 57
Locale Wildcard Constants 57

6 Locale Manager 59

Locale Manager Functions and Macros 59
LmBestLocaleToIndex. 59
LmCountryToISOName 60
LmGetFormatsLocale 61
LmGetLocaleSetting 61
LmGetNumberSeparators 63
LmGetNumLocales 63
LmGetROMLocale 64
LmGetSystemLocale 65
LmISONameToCountry 65
LmISONameToLanguage 66
LmLanguageToISOName 66
LmLocaleToIndex 67
LmSetFormatsLocale 67

7 String Manager 69

String Manager Constants 69
String Manager Constants 69

String Manager Functions and Macros. 70
StrAToI . 70
StrCaselessCompare 70
StrCat. 71
StrChr . 71
StrCompare . 72
StrCompareAscii . 72
StrCopy . 73
StrDelocalizeNumber 73
StrIToA . 74

vi

 Exploring Palm OS: Text and Localization

StrIToH . 75
StrLCat . 75
StrLCopy . 76
StrLen . 76
StrLocalizeNumber 77
StrNCaselessCompare 77
StrNCat . 78
StrNCompare . 79
StrNCompareAscii 80
StrNCopy . 81
StrPrintFV50. 82
StrStr . 82
StrToLower . 83
StrVPrintFV50 . 83

8 Text Manager 85

Text Manager Structures and Types 85
CharEncodingType 85
TxtConvertStateType 87

Text Manager Constants 87
Byte Attribute Flags 87
Character Attributes 88
Character Encoding Attributes 90
Encoding Conversion Constant Modifiers 90
Encoding Conversion Substitution Constants 91
Size Constants . 91
Text Manager Error Constants 92
Text Manager Feature Settings 93
TranslitOpType . 93

Text Manager Functions and Macros 94
CHAR_ENCODING_VALUE 94
sizeOf7BitChar . 94
TxtByteAttr . 95
TxtCaselessCompare 95
TxtCharAttr . 97

Exploring Palm OS: Text and Localization

vii

TxtCharBounds . 97
TxtCharEncoding 98
TxtCharIsAlNum 99
TxtCharIsAlpha . 99
TxtCharIsCntrl . 100
TxtCharIsDelim . 100
TxtCharIsDigit . 100
TxtCharIsGraph . 101
TxtCharIsHardKey 101
TxtCharIsHex . 102
TxtCharIsLower . 102
TxtCharIsPrint . 102
TxtCharIsPunct . 103
TxtCharIsSpace . 103
TxtCharIsUpper . 103
TxtCharIsValid. . 104
TxtCharIsVirtual 104
TxtCharSize . 105
TxtCharXAttr . 105
TxtCompare . . 106
TxtConvertEncoding 107
TxtEncodingName 115
TxtFindString . 115
TxtGetChar . 116
TxtGetEncodingFlags 117
TxtGetNextChar . 117
TxtGetPreviousChar 118
TxtGetTruncationOffset 119
TxtGetWordWrapOffset 120
TxtMaxEncoding 121
TxtNameToEncoding 121
TxtNextCharSize 122
TxtParamString . 123
TxtPrepFindString 124
TxtPreviousCharSize 125

viii

 Exploring Palm OS: Text and Localization

TxtReplaceStr . 126
TxtSetNextChar . 127
TxtStrEncoding . 127
TxtTransliterate . 128
TxtTruncateString 130
TxtWordBounds . 131

Part III: Appendixes

A Language-specific Information 135

Notes on the Japanese Implementation 135
Japanese Character Encoding 135
Japanese Character Input 135
Displaying Japanese Strings on UI Objects 136
Displaying Error Messages 137

Index 139

Exploring Palm OS: Text and Localization

ix

About This

Document

This book describes how to write easily localizable code for Palm
OS

®

. Different countries represent characters, strings, numbers, and
dates in different ways. This book describes how to write code that
does not make assumptions about the representations of these items
and runs properly for all languages that Palm OS supports.

This book does

not

 cover the following:

• How to work with text fields or display text on the screen.
See the “Displaying Text” chapter of

Exploring Palm OS: User
Interface

 for that information.

• The tools used to localize an application. Consult the
documentation specific to your toolset for that information.

• How to work with or write a front-end processor (FEP) for
text entry. Such material is described in

Exploring Palm OS:
Creating a FEP

.

IMPORTANT:

The

Exploring Palm OS

 series is intended for
developers creating native applications for Palm OS Cobalt. If you
are interested in developing applications that work through PACE
and that also run on earlier Palm OS releases, read the latest
versions of the

Palm OS Programmer’s API Reference

 and

Palm

OS Programmer’s Companion

 instead.

Who Should Read This Book

You should read this book if you are a Palm OS software developer
who writes applications, libraries, pinlets, or any other type of
program that manipulates text strings. Even if you do not plan to
localize your application, it is still a good idea to follow the
recommendations in this book. It will save you time if your plans
change later.

Because virtually all Palm OS developers require some knowledge
of how to work with text strings, this book is intended for
developers with all levels of familiarity with Palm OS, from novice

About This Document

What This Book Contains

x

 Exploring Palm OS: Text and Localization

to expert. Novice programmers should first read

Exploring Palm OS:
Programming Basics

 to gain an understanding of the basic structure
of a Palm OS application.

Expert Palm OS programmers will find that much of the material in
this book is familiar and may want to just skim it. Differences
between the Palm OS Garnet API set and the Palm OS Cobalt API
set are outlined in

Exploring Palm OS: Porting Applications to Palm OS
Cobalt

.

What This Book Contains

This book contains the following information:

• Part I contains conceptual information and how-to
information.

– Chapter 1, “Text,” on page 3 describes how to use the
Palm OS managers that help you work with text strings:
the Text Manager and the String Manager.

– Chapter 2, “Implementing Global Find,” on page 19
describes how to integrate your application into the Palm
OS Global Find facility.

– Chapter 3, “Localized Applications,” on page 27 describes
how to use other managers, such as the Locale Manager,
that help you write a locale-independent application.

• Part II contains reference information organized into the
following chapters:

– Chapter 4, “Find,” on page 39 describes structures, types,
and functions used when implementing the Global Find
facility.

– Chapter 5, “Locale Manager Types,” on page 51 describes
structures and types used in the Locale Manager.

– Chapter 6, “Locale Manager,” on page 59 describes Locale
Manager functions.

– Chapter 7, “String Manager,” on page 69 describes the
String Manager.

– Chapter 8, “Text Manager,” on page 85 describes the Text
Manager.

About This Document

The Exploring Palm OS Series

Exploring Palm OS: Text and Localization

xi

• Appendix A, “Language-specific Information,” on page 135
contains implementation-specific details for some of the
languages to which Palm OS is localized. Read it if you are
translating your application to one of those languages.

Changes to This Book

3111-003

• Updated list of supported source and destination encodings
in

TxtConvertEncoding()

.

3111-002

• Clarified text throughout the document and corrected code
samples in Listing 1.2, Listing 1.5, Listing 1.8, Listing 2.2, and
in the

TxtGetNextChar()

 function description.

• Corrected time zone information.

• The

charEncodingDstBestFitFlag

 for

TxtConvertEncoding()

 is always supported in Palm OS
Cobalt. The

textMgrStrictFlag

 in the Text Manager
feature constant is no longer used.

• Corrected description of

TxtNameToEncoding()

parameter.

3111-001

• Initial version

The

Exploring Palm OS

 Series

This book is a part of the

Exploring Palm OS

 series. Together, the
books in this series document and explain how to use the APIs
exposed to third-party developers by the fully ARM-native versions
of Palm OS, beginning with Palm OS Cobalt. Each of the books in
the

Exploring Palm OS

 series explains one aspect of the Palm
operating system and contains both conceptual and reference
documentation for the pertinent technology.

As of this writing, the complete

Exploring Palm OS

 series consists of
the following titles:

•

Exploring Palm OS: Programming Basics

About This Document

Additional Resources

xii

 Exploring Palm OS: Text and Localization

•

Exploring Palm OS: Memory, Databases, and Files

•

Exploring Palm OS: User Interface

•

Exploring Palm OS: User Interface Guidelines

 (coming soon)

•

Exploring Palm OS: System Management

•

Exploring Palm OS: Text and Localization

•

Exploring Palm OS: Input Services

•

Exploring Palm OS: High-Level Communications

•

Exploring Palm OS: Low-Level Communications

•

Exploring Palm OS: Telephony and SMS

•

Exploring Palm OS: Multimedia

•

Exploring Palm OS: Security and Cryptography

•

Exploring Palm OS: Creating a FEP

 (coming soon)

•

Exploring Palm OS: Porting Applications to Palm OS Cobalt

Additional Resources

• Documentation

PalmSource publishes its latest versions of documents for
Palm OS developers at

http://www.palmos.com/dev/support/docs/

• Training

PalmSource and its partners host training classes for Palm OS
developers. For topics and schedules, check

http://www.palmos.com/dev/training

• Knowledge Base

The Knowledge Base is a fast, web-based database of
technical information. Search for frequently asked questions
(FAQs), sample code, white papers, and the development
documentation at

http://www.palmos.com/dev/support/kb/

http://www.palmos.com/dev/support/docs/
http://www.palmos.com/dev/training
http://www.palmos.com/dev/support/kb/

Part I
Concepts

This part contains conceptual information for the text and
localization managers. It covers:

Text . 3

Implementing Global Find 19

Localized Applications 27

Exploring Palm OS: Text and Localization 3

1
Text
This chapter describes how to work with text in the user interface—
whether it’s text the user has entered or text that your application
has created to display on the screen. When you work with text, you
must take special care to do so in a way that makes your application
easily localizable. This chapter describes how to write code that
manipulates characters and strings in such a way that it works
properly for any language that is supported by Palm OS®. It covers:

Character Encodings 3

Characters . 4

Strings . 9

Character Encodings
Computers represent the characters in an alphabet with a numeric
code. The set of numeric codes for a given alphabet is called a
character encoding. Of course, a character encoding contains more
than codes for the letters of an alphabet. It also encodes
punctuation, numbers, control characters, and any other characters
deemed necessary. The set of characters that a character encoding
represents is called a character set.

Different languages use different alphabets. Most European
languages use the Latin alphabet. The Latin alphabet is relatively
small, so its characters can be represented using a single-byte
encoding ranging from 32 to 255. On the other hand, Asian
languages such as Chinese, Korean, and Japanese require their own
alphabets, which are much larger. These larger character sets are
represented by a combination of single-byte and double-byte
numeric codes ranging from 32 to 65,535.

Although Palm OS supports multiple character encodings, only one
of these encodings is active at a time. For example, a French device
uses the Palm OS Latin encoding, which is identical to the Microsoft
Windows code page 1252 character encoding (an extension of ISO

Text
Characters

4 Exploring Palm OS: Text and Localization

Latin 1) but includes Palm-specific characters in the control range. A
Japanese device, on the other hand would use the Palm OS Shift JIS
character encoding, which is identical to Microsoft Windows code
page 932 (an extension of Shift JIS) but includes Palm-specific
characters in the control range. These two devices use different
character encodings even though they both use the same version of
Palm OS.

No matter what the encoding is on a device, PalmSource guarantees
that the low ASCII characters (0 to 0x7F) are the same. The exception
to this rule is 0x5C, which is a yen symbol on Japanese devices and a
backslash on most others.

The Palm OS Text Manager allows you to work with text, strings,
and characters independent of the character encoding. If you use
Text Manager functions and don’t work directly with string data,
your code should work on any system, regardless of which
language and character encoding the device supports.

Characters
Depending on the device’s supported languages, Palm OS may
encode characters using either a single-byte encoding or a multi-
byte encoding. Because you do not know which character encoding
is used until runtime, you should never make an assumption about the
number of bytes a character occupies in a string.

For the most part, your application does not need to know which
character encoding is used, and in fact, it should make no
assumptions about the encoding or about the size of characters.
Instead, your code should use Text Manager functions to
manipulate characters. This section describes how to work with
characters correctly. It covers:

Declaring Character Variables 5

Using Character Constants 5

Missing and Invalid Characters 6

Retrieving a Character’s Attributes. 7

Virtual Characters 7

Retrieving the Character Encoding 8

Text
Characters

Exploring Palm OS: Text and Localization 5

Declaring Character Variables
Declare all character variables to be of type wchar32_t.
wchar32_t is a 32-bit unsigned type that can accommodate
characters of any encoding. Don’t use char. char is an 8-bit
variable that cannot accommodate larger character encodings.

wchar32_t ch; // Right. 32-bit character.
char ch; // Wrong. 8-bit character.

When you receive input characters through the keyDownEvent,
you’ll receive a wchar32_t value. (That is, the
data.keyDown.chr field is a wchar32_t.)

While character variables are declared as wchar32_t, string
variables are still declared as char *, even though they may
contain multi-byte characters. See the section “Strings” for more
information on strings.

Using Character Constants
Character constants are defined in several header files. The header
file Chars.h contains characters that are guaranteed to be
supported on all systems regardless of the encoding. Other header
files exist for each supported character encoding and contain
characters specific to that encoding. The character encoding-specific
header files are not included in the PalmOS.h header by default
because they define characters that are not available on every
system.

To make it easier for the compiler to find character encoding
problems with your project, make a practice of using the character
constants defined in these header files rather than directly assigning
a character variable to a value. For example, suppose your code
contained this statement:

wchar32_t ch = 'å'; // WRONG! Don’t use.

This statement may work on a Latin system, but it would cause
problems on an Asian-language system because the å character does
not exist. If you instead assign the value this way:

Text
Characters

6 Exploring Palm OS: Text and Localization

wchar32_t ch = chrSmall_A_RingAbove;

you’ll find the problem at compile time because the
chrSmall_A_RingAbove constant is defined in CharLatin.h,
which is not included by default.

Missing and Invalid Characters
If during application testing, you see an open rectangle displayed
on the screen, you have a missing character.

A missing character is one that is valid within the character
encoding but the current font is not able to display it. In this case,
nothing is wrong with your code other than you have chosen the
wrong font. The system displays an open rectangle in place of a
missing single-byte character (see Figure 1.1).

Figure 1.1 Missing characters

In multi-byte character encodings, a character may be missing as
described above, or it may be invalid. In single-byte character
encodings, there’s a one-to-one correspondence between numeric
values and characters to represent. This is not the case with multi-
byte character encodings. In multi-byte character encodings, there
are more possible values than there are characters to represent.
Thus, a character variable could end up containing an invalid
character—a value that doesn’t actually represent a character.

If the system is asked to display an invalid character, it prints an
open rectangle for the first invalid byte. Then it starts over at the
next byte. Thus, the next character displayed and possibly even the
remaining text displayed is probably not what you want. Check
your code for the following:

• Truncating strings. You might have truncated a string in the
middle of a multi-byte character.

• Appending characters from one encoding set to a string in a
different encoding.

Text
Characters

Exploring Palm OS: Text and Localization 7

• Arithmetic on character variables that could result in an
invalid character value.

• Arithmetic on a string pointer that could result in pointing to
an intra-character boundary. See “Performing String Pointer
Manipulation” for more information.

• Use of standard C string functions. Many of these functions
are not multi-byte aware and can return invalid results for
strings that contain multi-byte characters.

• Assumptions that a character always occupies only one byte
in a string.

Use the Text Manager function TxtCharIsValid() to determine
whether a character is valid or not.

Retrieving a Character’s Attributes
The Text Manager defines certain functions that retrieve a
character’s attributes, such as whether the character is
alphanumeric, and so on. You can use these functions on any
character, regardless of its size and encoding.

A character also has attributes unique to its encoding. Functions to
retrieve those attributes are defined in the header files specific to the
encoding.

Virtual Characters
Virtual characters are nondisplayable characters that trigger special
events in the operating system, such as displaying low battery
warnings or displaying the keyboard dialog. Virtual characters
should never occur in any data and should never appear on the
screen.

The Palm OS uses character codes 256 decimal and greater for
virtual characters. The range for these characters may actually
overlap the range for “real” characters (characters that should
appear on the screen). The keyDownEvent distinguishes a virtual
character from a displayable character by setting the
commandKeyMask bit in the structure’s modifiers field.

Text
Characters

8 Exploring Palm OS: Text and Localization

The best way to check for virtual characters, including virtual
characters that represent the hard keys, is to use the
TxtCharIsVirtual() function. See Listing 1.1.

Listing 1.1 Checking for virtual characters

if (TxtCharIsVirtual (eventP->data.keyDown.modifiers,
 eventP->data.keyDown.chr)) {
 if (TxtCharIsHardKey (event->data.keyDown.modifiers,
 event->data.keyDown.chr)) {
 // Handle hard key virtual character.
 } else {
 // Handle standard virtual character.
 }
} else {
 // Handle regular character.
}

Retrieving the Character Encoding
Occasionally, you may need to determine which character encoding
is being used. For example, your application might use specifically
optimized code when it’s being run on a device that uses the Palm
OS Latin character encoding. You can retrieve the character
encoding using the LmGetSystemLocale() function as shown in
Listing 1.2.

Listing 1.2 Retrieving the character encoding

CharEncodingType encoding;
char* encodingName;

encoding = LmGetSystemLocale(NULL);
if (encoding == charEncodingPalmSJIS) {
 // encoding for Palm Shift JIS
} else if (encoding == charEncodingPalmLatin) {
 // extension of ISO Latin 1
} else {
 // Note: Palm OS licensees may add support for other
 // character encodings.
}

Text
Strings

Exploring Palm OS: Text and Localization 9

// The following Text Manager function returns the
// official name of the encoding as required by
// Internet applications.
encodingName = TxtEncodingName(encoding);

Strings
Strings are made up of characters that occupy from one to four bytes
each. As stated previously, the standard character variable,
wchar32_t, is four bytes long. However, when you add a character
to a string, the operating system may shrink it down to a single byte
if it’s a low ASCII character. Thus, any string that you work with
may contain a mix of single-byte and multi-byte characters.

When working with text as strings, you can use any of the
following:

• Standard C Library string functions

Palm OS Cobalt supports the standard C library including
the standard C string functions. These functions only
manipulate strings containing single-byte characters. Do not
use these functions on strings that may contain multi-byte
characters.

For example, if your application displays a numeric text field
in which the user may enter some sort of application setting,
it’s acceptable to manipulate the string that you receive from
the numeric text field using the standard C library calls. If a
string may contain letters, you should use String Manager or
Text Manager calls to make your application easily
localizable.

• The String Manager

The String Manager is closely modeled after the standard C
library functions like strcpy(), strcat(), and so on. In
some cases, the String Manager functions call through to
their standard C library counterparts. In other cases, the
String Manager function has been modified to become multi-
byte aware.

• The Text Manager

The Text Manager specifically provides support for multi-
byte strings. Use the Text Manager functions when:

Text
Strings

10 Exploring Palm OS: Text and Localization

– A String Manager equivalent is not available.

– The length of the matching strings are important. For
example, to compare two strings, you can use either
StrCompare() or TxtCompare(). The difference
between the two is that StrCompare() does not return
the length of the characters that matched.
TxtCompare() does.

This section discusses the following topics:

Manipulating Strings. 10

Performing String Pointer Manipulation 11

Truncating Displayed Text 12

Comparing Strings. 14

Dynamically Creating String Content. 15

TIP: All Palm OS functions that return the length of a string,
such as FldGetTextLength() and StrLen(), always return
the size of the string in bytes, not the number of characters in the
string. Similarly, functions that work with string offsets always use
the offset in bytes, not characters.

Manipulating Strings
Any time that you want to work with character pointers, you need
to be careful not to point to an intra-character boundary (a middle
or end byte of a multi-byte character). For example, any time that
you want to set the insertion point position in a text field or set the
text field’s selection, you must make sure that you use byte offsets
that point to inter-character boundaries. (The inter-character
boundary is both the start of one character and the end of the
previous character, except when the offset points to the very
beginning or very end of a string.)

Suppose you want to iterate through a string character by character.
Traditionally, C code uses a character pointer or byte counter to
iterate through a string a character at a time. Such code will not
work properly on systems with multi-byte characters. Instead, if
you want to iterate through a string a character at a time, use Text
Manager functions:

Text
Strings

Exploring Palm OS: Text and Localization 11

• TxtGetNextChar() retrieves the next character in a string.

• TxtGetPreviousChar() retrieves the previous character
in a string.

• TxtSetNextChar() changes the next character in a string
and can be used to fill a string buffer.

Each of these three functions returns the size of the character in
question, so you can use it to determine the offset to use for the next
character. For example, Listing 1.3 shows how to iterate through a
string character by character until a particular character is found.

Listing 1.3 Iterating through a string or text

char* buffer; // assume this exists
size_t bufLen = StrLen(buffer);
// Length of the input text.
wchar32_t ch = 0;
size_t i = 0;
while ((i < bufLen) && (ch != chrAsterisk))
 i+= TxtGetNextChar(buffer, i, &ch));

The Text Manager also contains functions that let you determine the
size of a character in bytes without iterating through the string:

• TxtCharSize() returns how much space a given character
will take up inside of a string.

• TxtCharBounds() determines the boundaries of a given
character within a given string.

Listing 1.4 Working with arbitrary limits

size_t charStart, charEnd;
char *fldTextP = FldGetTextPtr(fld);
TxtCharBounds(fldTextP,
 min(kMaxBytesToProcess, FldGetTextLength(fld)),
 &charStart, &charEnd);
// process only the first charStart bytes of text.

Performing String Pointer Manipulation
Never perform any pointer manipulation on strings you pass to the
Text Manager unless you use Text Manager calls to do the

Text
Strings

12 Exploring Palm OS: Text and Localization

manipulation. For Text Manager functions to work properly, the
string pointer must point to the first byte of a character. If you use
Text Manager functions when manipulating a string pointer, you
can be certain that your pointer always points to the beginning of a
character. Otherwise, you run the risk of pointing to an inter-
character boundary.

Listing 1.5 String pointer manipulation

// WRONG! buffer + kMaxStrLength is not
// guaranteed to point to start of character.
buffer[kMaxStrLength] = '\0';

// Right. Truncate at a character boundary.
size_t offset = TxtGetTruncationOffset(buffer,
 kMaxStrLength);
buffer[offset] = chrNull;

Truncating Displayed Text
If you’re performing drawing operations, you often have to
determine where to truncate a string if it’s too long to fit in the
available space. Several functions help you perform this task on
strings with multi-byte characters:

• WinDrawTruncChars() — This function draws a string
within a specified width, determining automatically where
to truncate the string. If it can, it draws the entire string. If the
string doesn’t fit in the space, it draws one less than the
number of characters that fit and then ends the string with an
ellipsis (...).

Note, however, that the Window Manager drawing functions
are deprecated for many uses and should not be mixed with
the Palm OS Cobalt graphics context functions.

• FntTruncateString() — This function performs the
same task as WinDrawTruncChars() except that it does not
draw the text to the screen. You might use this if you are
using a bitmapped font to display the text drawn using the
Palm OS Cobalt graphics context functions. See Listing 1.6.

Text
Strings

Exploring Palm OS: Text and Localization 13

Listing 1.6 Drawing multiple lines of text in a bitmapped font

fcoord_t y;
char *msg, *dstMsg;
size_t pixelWidth = 160;
GcHandle gc = GcGetCurrentContext();
Boolean truncated = false;

FntSetFont(stdFont);
GcSetFont(gc, GcCreateFontFromID(stdFont));
dstMsg = (char *)malloc(StrLen(msg)+1);
truncated = FntTruncateString(dstMsg, msg, FntGetFont(),
 pixelWidth, true);
GcDrawTextAt(gc, 0.0, y, dstMsg, StrLen(dstMsg));
GcReleaseContext(gc);

• GcFontStringBytesInWidth() — This function works
with scalable fonts. It returns the size in bytes of the
substring that can be displayed in a specified width.

Listing 1.7 shows how to use
GcFontStringBytesInWidth() to determine how many
lines are necessary to write a string to the screen (without
considering word wrapping). This example passes the width
of the screen as the pixel position so that upon return,
widthToOffset contains the byte offset of the last character
in the string that can be displayed on a single line. The
characters up to and including the one at widthToOffset
are drawn, then the msg pointer is advanced in the string by
widthToOffset characters, and
GcFontStringBytesInWidth() is again called to find out
how many characters fit on the next line of text. The process
is repeated until all of the characters in the string have been
drawn.

Listing 1.7 Drawing multiple lines of text in scalable font

fcoord_t y;
char *msg;
size_t widthToOffset = 0;
size_t pixelWidth;
size_t msgLength = StrLen(msg);
GcHandle gc = GcGetCurrentContext();
GcFontHandle standardFont = GcCreateFont("palmos-plain");
FontHeightType fontHeight;

Text
Strings

14 Exploring Palm OS: Text and Localization

RectangleType winBounds;

// Set the pixel offset to the width of the screen.
// The scalable font functions expect native coordinates.
WinSetCoordinateSystem(kCoordinatesNative);
GcSetCoordinateSystem(gc, kCoordinatesNative);
WinGetWindowBounds(&winBounds);
pixelWidth = winBounds.extent.x;

GcGetFontHeight(standardFont, &fontHeight);
GcSetFont(gc, standardFont);

// Begin drawing the string to the screen.
while (msg && *msg) {
 widthToOffset = GcFontStringBytesInWidth(standardFont,
 msg, pixelWidth);
 GcDrawTextAt(gc, 0.0, y, msg, widthToOffset);
 y = y + fontHeight.ascent + fontHeight.descent +
 fontHeight.leading;
 msg += widthToOffset;
 msgLength = StrLen(msg);
}
GcReleaseContext(gc);

Comparing Strings
Use the Text Manager functions TxtCompare() and
TxtCaselessCompare() to perform comparisons of localizable
strings.

In character encodings that use multi-byte characters, some
characters have both single-byte and double-byte representations.
One string might use the single-byte representation and another
might use the multi-byte representation. Users expect the characters
to match regardless of how many bytes a string uses to store that
character. TxtCompare() and TxtCaselessCompare() can
accurately match single-byte characters with their multi-byte
equivalents.

Because a single-byte character might be matched with a multi-byte
character, two strings might be considered equal even though they
have different lengths. For this reason, TxtCompare() and
TxtCaselessCompare() take two parameters in which they pass

Text
Strings

Exploring Palm OS: Text and Localization 15

back the length of matching text in each of the two strings. See their
function descriptions for more information.

The String Manager functions StrCompare() and
StrCaselessCompare() are equivalent to TxtCompare() and
TxtCaselessCompare(), but they do not pass back the length of
the matching text.

These Text Manager and String Manager comparison routines use
text tables for comparisons, and they are potentially slow. If you
want to compare strings that you know contain only 7-bit ASCII
characters (for example, the strings are completely internal to the
program and never appear in the user interface), use the standard C
library functions such as strcmp() instead.

A special case of performing string comparison is implementing the
Global Find facility. For more information on implementing this
feature in your application, see Chapter 2, “Implementing Global
Find,” on page 19.

Dynamically Creating String Content
When working with strings in a localized application, you never
hard code them. Instead, you store strings in a resource and use the
resource to display the text. If you need to create the contents of the
string at runtime, store a template for the string as a resource and
then substitute values as needed.

For example, consider the Edit view of the Memo application. Its
title bar contains a string such as “Memo 3 of 10.” The number of the
memo being displayed and the total number of memos cannot be
determined until runtime.

To create such a string, use a template resource and the Text
Manager function TxtParamString(). TxtParamString()
allows you to search for the sequence ^0, ^1, up to ^3 and replace
each of these with a different string. If you need more parameters,
you can use TxtReplaceStr(), which allows you to replace up to
^9; however, TxtReplaceStr() only allows you to replace one of
these sequences at a time.

Text
Strings

16 Exploring Palm OS: Text and Localization

In the Memo title bar example, you’d create a string resource that
looks like this:

Memo ^0 of ^1

And your code might look like this:

Listing 1.8 Using string templates

static void EditViewSetTitle (void)
{
 char* titleTemplateP;
 FormPtr frm;
 char posStr[maxStrIToALen+1];
 char totalStr[maxStrIToALen+1];
 uint16_t pos;
 uint16_t length;

 // Format as strings, the memo's postion within
 // its category, and the total number of memos
 // in the category.
 pos = DmGetPositionInCategory(MemoPadDB, CurrentRecord,
 RecordCategory);
 StrIToA (posStr, pos+1);

 if (MemosInCategory == memosInCategoryUnknown)
 MemosInCategory = DmNumRecordsInCategory
 (MemoPadDB, RecordCategory);
 StrIToA (totalStr, MemosInCategory);

 // Get the title template string. It contains ^0 and ^1
 // chars which we replace with the position of
 // CurrentRecord within CurrentCategory and with the total
 // count of records in CurrentCategory ().
 titleTemplateP = MemHandleLock (gAppDbP, DmGetResource
 (gAppDbP, strRsc, EditViewTitleTemplateStringString));

 EditViewTitlePtr = TxtParamString(titleTemplateP, posStr,
 totalStr, NULL, NULL);

 // Now set the title to use the new title string.
 frm = FrmGetFormPtr(MemoPadEditForm);
 FrmSetTitle (frm, EditViewTitlePtr);
 MemPtrUnlock(titleTemplateP);
}

Text
Summary of Text API

Exploring Palm OS: Text and Localization 17

Summary of Text API
Text Manager

Accessing Text

TxtPreviousCharSize()
TxtGetNextChar()
TxtGetChar()

TxtGetPreviousChar()
TxtCharSize()
TxtNextCharSize()

Changing Text

TxtReplaceStr()
TxtConvertEncoding()
TxtParamString()

TxtSetNextChar()
TxtTransliterate()
TxtTruncateString()

Segmenting Text

TxtGetTruncationOffset()
TxtGetWordWrapOffset()

TxtCharBounds()
TxtWordBounds()

Searching/Comparing Text

TxtCaselessCompare()
TxtFindString()

TxtCompare()
TxtPrepFindString()

Obtaining a Character’s Attributes

TxtCharIsAlNum()
TxtCharIsDelim()
TxtCharIsDigit()
TxtCharIsLower()
TxtCharIsSpace()
TxtCharIsValid()
TxtCharIsCntrl()
TxtCharIsPunct()
TxtCharIsVirtual()

TxtCharIsAlpha()
TxtCharIsGraph()
TxtCharIsPrint()
TxtCharIsUpper()
TxtCharXAttr()
TxtCharIsHex()
TxtCharIsHardKey()
TxtCharAttr()

Obtaining Character Encoding Information

TxtStrEncoding()
TxtMaxEncoding()
TxtNameToEncoding()

TxtEncodingName()
TxtCharEncoding()
TxtGetEncodingFlags(
)

Text
Summary of Text API

18 Exploring Palm OS: Text and Localization

Working with Multi-byte Characters

TxtByteAttr()

Working with Single-byte Characters

sizeOf7BitChar()

String Manager

Length of a String

StrLen()

Comparing Strings

StrCompare()
StrCaselessCompare()
StrCompareAscii()

StrNCompare()
StrNCaselessCompare()
StrNCompareAscii()

Changing Strings

StrCat()
StrCopy()
StrToLower()
StrLCopy()

StrNCat()
StrNCopy()
StrLCat()

Searching Strings

StrStr() StrChr()

Converting

StrAToI()
StrIToH()

StrIToA()

Localized Numbers

StrDelocalizeNumber() StrLocalizeNumber()

Text Manager

Exploring Palm OS: Text and Localization 19

2
Implementing Global
Find
The Global Find facility allows a user to search all databases on the
device for a particular string and then jump to the application that
supports the database containing the matching record he or she
wants to see.

Find is launched when the user taps the Find icon in the status bar.
To integrate your application with the Global Find facility, you must
do the following:

1. Create an APP_LAUNCH_PREFS_RESOURCE with ID 0 in your
application’s resource file. See the book Resource File Formats
for more information on this resource.

TIP: Be sure you use a resource ID of 0.

2. In the resource, set the ALPF_FLAG_NOTIFY_FIND attribute
to true.

3. In your application’s PilotMain() function, implement
responses to these launch codes:

– sysAppLaunchCmdFind

– sysAppLaunchCmdGoTo

– sysAppLaunchCmdSaveData

Implementing sysAppLaunchCmdFind
The Find Manager sends each application registered to receive it the
sysAppLaunchCmdFind launch code. This launch code is a signal
that you should search your application’s databases for the string
passed to you in the launch code’s parameter block. To implement

Implementing Global Find
Implementing sysAppLaunchCmdFind

20 Exploring Palm OS: Text and Localization

the sysAppLaunchCmdFind launch code, you should do the
following:

1. Open your application’s record database using the open
mode parameter that is passed to your application in the
launch code’s parameter block.

2. Use FindDrawHeader() to pass back to the Find Manager a
string that is used to delineate your application’s search
results from those of all other applications in the Find Results
dialog. This string is only used if your application has
matching results.

3. Search each record using TxtFindString().
TxtFindString() accurately matches single-byte
characters with their corresponding multi-byte characters,
and it passes back the length of the matched text. You’ll need
to know the length of the matching text to highlight it when
the system requests that you display the matching record.

4. If a match is found, do the following:

a. Send information about the matching result back to the
Find Manager using FindSaveMatch(). The parameters
you pass to FindSaveMatch() are used in the
sysAppLaunchCmdGoTo parameter block if the user
selects your record in the Find Results dialog.

b. If FindSaveMatch() returns false, it means that there
is room to display the matching record. Call
WinDrawChars() to send the text to the Find Results
dialog. Use FindGetLineBounds() to determine where
to draw, and use WinDrawChars() to do the drawing.

When a Find is in progress, WinDrawChars() does not
draw directly to the screen. The Find Manager traps all
WinDrawChars() calls and copies the string into a buffer
that it later draws to the screen.

IMPORTANT: Do not use GcDrawTextAt() in conjunction with
Global Find. If you do, your string is not displayed.

5. If your database is potentially large, you should occasionally
check the event queue to see if there is another event
pending. For example, the user might start a find but then
press one of the device’s hard keys, which would generate a

Implementing Global Find
Implementing sysAppLaunchCmdFind

Exploring Palm OS: Text and Localization 21

keyDownEvent. Listing 2.1 shows an example of a search
that checks the event queue every 16 records.

Listing 2.1 shows an example of a function that should be called in
response to the sysAppLaunchCmdFind launch code.

Listing 2.1 Implementing Global Find

static void Search (FindParamsType *findParams)
{
 uint16_t pos;
 char * header;
 uint16_t recordNum;
 MemHandle recordH;
 MemHandle headerStringH;
 RectangleType r;
 Boolean done;
 Boolean match;
 DmOpenRef dbP;
 status_t err;
 DatabaseID dbID;
 MemoDBRecordPtr memoRecP;
 size_t longPos;
 size_t matchLength;

 // Locate the Memo database.
 dbID = DmFindDatabaseByTypeCreator(ty, cr, dmFindAllDB,
 NULL);
 if (!dbID) {
 findParams->more = false;
 return;
 }
 dbP = DmOpenDatabase(dbID,
 (DmOpenModeType)findParams->dbAccesMode);
 if (!dbP) {
 findParams->more = false;
 return;
 }

 // Display the heading line.
 headerStringH = DmGetResource(gAppResDBRef, strRsc,
 FindMemoHeaderStr);
 header = MemHandleLock(headerStringH);
 done = FindDrawHeader(findParams, header);
 MemHandleUnlock(headerStringH);
 DmReleaseResource(headerStringH);
 if (done)

Implementing Global Find
Implementing sysAppLaunchCmdFind

22 Exploring Palm OS: Text and Localization

 goto Exit;

 // Search the memos for the "find" string.
 recordNum = findParams->recordNum;
 while (true) {
 if ((recordNum & 0x000f) == 0 && // every 16th record
 EvtSysEventAvail(true)) {
 // Stop the search process.
 findParams->more = true;
 break;
 }

 recordH = DmQueryNextInCategory (dbP, &recordNum,
 dmAllCategories);

 // Have we run out of records?
 if (!recordH) {
 findParams->more = false;
 break;
 }

 memoRecP = MemHandleLock (recordH);

 // Search for the string passed, if it's found display
 // the title of the memo.
 match = TxtFindString (&(memoRecP->note),
 findParams->strToFind, &longPos, &matchLength);

 pos = longPos;

 if (match) {
 // Add the match to the find paramter block, if
 // there is no room to display the match the
 // following function will return true.
 done = FindSaveMatch (findParams, recordNum, pos, 0,
 matchLength, cardNo, dbID);

 if (!done) {
 // Get the bounds of the region where we will
 // draw the results.
 FindGetLineBounds (findParams, &r);

 // Display the title of the description.
 DrawMemoTitle (&(memoRecP->note), r.topLeft.x+1,
 r.topLeft.y, r.extent.x-2);

 findParams->lineNumber++;
 }

Implementing Global Find
Implementing sysAppLaunchCmdGoTo

Exploring Palm OS: Text and Localization 23

 }

 MemHandleUnlock(recordH);
 if (done) break;

 recordNum++;
 }

Exit:
 DmCloseDatabase (dbP);
}

Implementing sysAppLaunchCmdGoTo
When the user taps one of the results displayed in the Find Results
dialog, the system sends a sysAppLaunchCmdGoTo launch code to
the application containing the matching record. In most cases, your
application should use the information in the launch code’s
parameter block to locate the matching record and display it, with
the matching text highlighted.

Listing 2.2 shows how the Memo sample application responds to
the sysAppLaunchCmdGoto launch code. It enqueues a
frmGotoEvent for its Edit form, passing to this event information
about which record to display. See the Memo sample application in
the SDK for full source code.

Listing 2.2 Displaying the matching record

static void GoToRecord (GoToParamsPtr goToParams,
 Boolean launchingApp)
{
 uint16_t recordNum;
 EventType event;

 recordNum = goToParams->recordNum;
 ...

 // Send an event to goto a form and select the
 // matching text.
 MemSet (&event, sizeof(EventType), 0);

 event.eType = frmLoadEvent;
 event.data.frmLoad.formID = EditView;

Implementing Global Find
Implementing sysAppLaunchCmdSaveData

24 Exploring Palm OS: Text and Localization

 EvtAddEventToQueue (&event);

 MemSet (&event, sizeof(EventType), 0);
 event.eType = frmGotoEvent;
 event.data.frmGoto.recordNum = recordNum;
 event.data.frmGoto.matchPos = goToParams->matchPos;
 event.data.formGoto.matchLen = goToParams->matchLen;
 event.data.frmGoto.matchFieldNum =
 goToParams->matchFieldNum;
 event.data.frmGoto.formID = EditView;
 EvtAddEventToQueue (&event);
 ...
}

Implementing sysAppLaunchCmdSaveData
Your application receives the sysAppLaunchCmdSaveData launch
code only if it is the current application when the user taps the Find
icon. This launch code gives your application a chance to save any
data that the user is in the process of entering before the Find is
launched so that the search results are what the user expects.

For example, suppose that the user is editing a contact in the
Address Book to change the first name from “Ted” to “Theodore.”
Before tapping the Done button, the user decides to do a search for
any other records that contain “Ted.” The user expects that the
current record will not appear in the Find Results dialog.

For this reason, Palm OS® sends the Address Book the
sysAppLaunchCmdSaveData launch code to give the application a
chance to clean up any activity before the Find begins. Address
Book responds to this launch code by calling FrmSaveAllForms().
FrmSaveAllForms() enqueues a frmSaveEvent for each open
form. The event handler for the Edit form responds to the
frmSaveEvent by saving the field that is currently being edited to
the database. This way, its response to the sysAppLaunchCmdFind
launch code will successfully pass over this record.

Implementing Global Find
Summary of Find Manager API

Exploring Palm OS: Text and Localization 25

Summary of Find Manager API
Find Manager

FindDrawHeader()
FindGetLineBounds()
FindSaveMatch()

TxtFindString()
TxtPrepFindString()

Implementing Global Find
Summary of Find Manager API

26 Exploring Palm OS: Text and Localization

Exploring Palm OS: Text and Localization 27

3
Localized
Applications
This chapter discusses these localization topics:

Localization Guidelines. 27

Locales . . 28

Overlays . 30

Dates and Times 32

Numbers . . 33

Obtaining Locale Information 33

In addition to this chapter, also see Chapter 1, “Text,” on page 3,
which describes how to work with text and characters in a way that
makes your application easily localizable.

This chapter does not cover how to actually perform localization of
resources. For more information on this subject, see the
documentation for your toolset.

Localization Guidelines
If there is a possibility that your application is going to be localized,
you should follow these guidelines when you start planning the
application. It’s a good idea to follow these guidelines even if you
don’t think your application is going to be localized.

• If you use the English language version of the software as a
guide when designing the layout of the screen, try to allow:

– extra space for strings

– larger dialogs than the English version requires

• Don’t put language-dependent strings in code. If you have to
display text directly on the screen, remember that a one-line
warning or message in one language may need more than

Localized Applications
Locales

28 Exploring Palm OS: Text and Localization

one line in another language. See the section “Strings” on
page 9 in Chapter 1, “Text,” for further discussion.

• Don’t depend on the physical characteristics of a string, such
as the number of characters, the fact that it contains a
particular substring, or any other attribute that might
disappear in translation.

• Internal database names must use only 7-bit ASCII characters
(0x20 through 0x7E). Store the user-visible name of your
application in an APP_ICON_NAME_RESOURCE so that it can
be translated to other languages.

• Use the functions described in this book when working with
characters, strings, numbers, and dates.

• Consider using string templates as described in the section
“Dynamically Creating String Content” on page 15 in
Chapter 1. Use as many parameters as possible to give
localizers greater flexibility. Avoid building sentences by
concatenating substrings together, as this often causes
translation problems.

In general, avoid using sprintf() for localizable strings.

• Abbreviations may be the best way to accommodate the
particularly scarce screen real estate on the Palm Powered™
device.

• Remember that user interface elements such as lists, fields,
and tips scroll if you need more space.

The book Exploring Palm OS: User Interface Guidelines provides
further user interface guidelines.

Locales
A locale specifies a place and is used to determine which formats,
languages, and encodings to use for locale-specific items such as
dates, numbers, and strings. In Palm OS®, a locale is identified by
both a language and a country. In general, the language determines
which character encoding is used on the device. The country
specifies a dialect. For example, the language “English” uses
different dialects for “USA” and for “Britain.”

Localized Applications
Locales

Exploring Palm OS: Text and Localization 29

The system maintains several locale variables, allowing it to tailor
system resources and functionality to fit the locale in which the
device is being used. Most of the time, these variables all point to
the same locale.

• The ROM locale is the locale stored in ROM on the device.
The ROM locale is used to initialize the other locale variables
after a hard reset. Use LmGetROMLocale() if you need to
determine the ROM locale.

• The system locale is the locale that Palm OS code uses to
obtain various locale settings. The system locale is initially
set to the ROM locale, but it can be different. For example, on
an EFIGS ROM (which is a ROM for English, French, Italian,
German, and Spanish), the user chooses from among several
languages when Palm OS starts up, and doing so changes the
system locale but not the ROM locale. Use
LmGetSystemLocale() to determine which is the system
locale. This function also returns the character encoding used
on the device.

• The formats locale is the locale that most applications should
use to obtain locale-specific settings. The formats locale is
initially the same as the system locale, but the user can
change it in the Formats Preference panel. Use
LmGetFormatsLocale() to obtain this locale. You can also
use LmSetFormatsLocale() to change it, but do not do so
without the user’s permission.

In most cases, the user is able to override the locale-specific
settings using individual preferences on the Formats
Preference panel. Therefore, you should check for a
preference setting where one is available. See “Obtaining
Locale Information” on page 33 for more information.

• The overlay locale is the locale that the Database Manager
uses to decide which overlay to load. Thus, the overlay locale
controls the target language of system and application user
interface elements. It is initially set to the system locale. Use
DmGetOverlayLocale() to obtain the value of this locale,
and use DmSetOverlayLocale() if you need to change it.

• The fallback overlay locale is the locale that the Database
Manager uses if an overlay for the overlay locale does not
exist. By default, it uses the ROM locale. Use
DmGetFallbackOverlayLocale() to obtain the value of

Localized Applications
Overlays

30 Exploring Palm OS: Text and Localization

this locale and use DmSetFallbackOverlayLocale() if
you need to change it.

Overlays
You localize Palm OS resource databases using overlays.
Localization overlays provide a way of localizing a software module
without requiring a recompile or modification of the software. Each
overlay database is a separate resource database that provides an
appropriately localized set of resources for a single software module
(the PRC file, or base database) and a single target locale (language
and country).

No requirements are placed on the base database, so for example,
third parties can construct localization overlays for existing
applications without forcing any modifications by the original
application developer. In rare cases, you might want to disable the
use of overlays to prevent third parties from creating overlays for
your application. To do so, you should include an
APP_LAUNCH_PREFS_RESOURCE with ID 0 in the database and set
its ALPF_FLAG_NO_OVERLAY flag to true.

An overlay database has the same creator as the base database, but
its type is 'ovly', and a suffix identifying the target locale is
appended to its name. For example, Datebook.prc might be
overlaid with a database named Datebook_jaJP, which indicates
that this overlay is for Japan. Each overlay database has an
OVERLAY_RESOURCE with ID 1000.

When a resource file is opened, the Database Manager looks for an
overlay matching the base database and the overlay locale. The
overlay database’s name must match the base database’s name, its
suffix must match the locale’s suffix, and it must have an
OVERLAY_RESOURCE with ID 1000. If the name, suffix, and overlay
resource are all correct and the overlay passes various checks to
ensure it’s appropriate for use with the base database, the overlay is
opened in addition to the base database. When the base database is
closed, its overlay is closed as well.

The overlay is opened in read-only mode and is hidden from the
programmer. When you open a database, you’ll receive a reference
to the base database, not the overlay. You can simply make Database

Localized Applications
Overlays

Exploring Palm OS: Text and Localization 31

Manager calls like you normally would, and the Database Manager
accesses the overlay where appropriate.

When accessing a localizable resource, do not use functions that
search for a resource only in the database you specify. For example,
see Listing 3.1.

Listing 3.1 Wrong way to access resources

// WRONG! searches only one database.
DmOpenRef dbP = DmNextOpenResDatabase(NULL);
uint16_t resIndex = DmFindResource(dpP, strRsc, strRscID,
 NULL);
MemHandle resH = DmGetResourceByIndex(dbP, resIndex);

In Listing 3.1, dbP is a reference to the most recently opened
database, which is typically the overlay version of the database.
Passing this reference to DmFindResource() means that you are
searching only the overlay database for the resource. If you’re
searching for a non-localized resource, DmFindResource() won’t
be able to locate it. Instead, you should use DmGetResource(),
which searches a database and its overlay for a resource

Listing 3.2 Correct way to access resources

// Right. DmGetResource searches both databases.
MemHandle resH = DmGetResource(dbRef, strRsc, strRscID);

The Database Manager opens an overlay only if the base database is
opened in read-only mode. If you open a resource database in read-
write mode, the associated overlay is not opened. What’s more, if
you modify an overlaid resource in the base database, the overlay
database may no longer be valid. Thus if you change the base
database, you must also change the overlay database.

For more information on overlays and resource databases, see
Exploring Palm OS: Memory, Databases, and Files.

Localized Applications
Dates and Times

32 Exploring Palm OS: Text and Localization

Dates and Times
If your application deals with dates and times, it should abide by
the values the user has set in the system preference for date and
time display. The default preferences at startup vary among locales,
and the default values can be overridden by the user.

To check the system preferences call PrefGetPreference() with
one of the values listed in the second column of Table 3.1. The third
column lists an enumerated type that helps you interpret the value.

To work with dates and times in your code, use the Date and Time
Manager API. It contains functions such as DateToAscii(),
TimeToAscii(), DayOfMonth(), DayOfWeek(),
DaysInMonth(), TimeToInt(), TimeIs24HourFormat(), and
DateTemplateToAscii(), which allow you to work with dates
and times independent of the user’s preference settings.

Table 3.1 Date and time preferences

Preference Name Returns a value of type

Date formats
(i.e., month first
or day first)

prefDateFormat,
prefLongDateFormat

DateFormatType

Time formats
(i.e., use a 12-
hour clock or
use a 24-hour
clock)

prefTimeFormat TimeFormatType

Start day of
week (i.e.,
Sunday or
Monday)

prefWeekStartDay 0 (Sunday) or 1 (Monday)

Local time zone Use the gettimezone() function. Minutes east of Greenwich
Mean Time (GMT), also
known as Universal
Coordinated Time (UTC).

Localized Applications
Obtaining Locale Information

Exploring Palm OS: Text and Localization 33

Numbers
If your application displays large numbers or floating-point
numbers, you must check and make sure you are using the
appropriate thousands separator and decimal separator for the
device’s country by doing the following (see Listing 3.3):

1. Store number strings using US conventions, which means
using a comma (,) as the thousands separator and a decimal
point (.) as the decimal separator.

2. Use PrefGetPreference() and
LmGetNumberSeparators() to retrieve information about
how the number should be displayed.

3. Use StrLocalizeNumber() to perform the localization.

4. If a user enters a number that you need to manipulate in
some way, convert it to the US conventions using
StrDelocalizeNumber().

Listing 3.3 Working with numbers

// store numbers using US conventions.
char *jackpot = "20,000,000.00";
char thou; // thousand separator
char dp; // decimal separator

// Retrieve user’s preferred number format.
LmGetNumberSeparators((NumberFormatType)
 PrefGetPreference(prefNumberFormat), &thou, &dp);
// Localize jackpot number. Converts "," to thou
// and "." to dp.
StrLocalizeNumber(jackpot, thou, dp);
// Display string.
// Assume inputNumber is a number user entered,
// convert it to US conventions this way. Converts
// thou to "," and dp to "."
StrDelocalizeNumber(inputNumber, thou, dp);

Obtaining Locale Information
Some applications may require information about a specific locale.
For example, an application might need to know the country name
for a locale.

Localized Applications
Obtaining Locale Information

34 Exploring Palm OS: Text and Localization

The information that most applications require is stored in the
system preferences structure and can be obtained using
PrefGetPreference(). This is the recommended way of
obtaining locale-specific settings because the user can override
many of these settings. Applications should always honor the user’s
preferences rather than the locale defaults.

Other locale-specific settings can not be set by the user and are not
stored in the system preferences. Instead, these settings are stored in
a private resource that contains information about several possible
locales, including the locale currently used by the system. For
example, the user cannot change the symbol used for the local
currency. If your application needs this information, it must use the
Locale Manager function LmGetLocaleSetting() to retrieve it.
Listing 3.4 shows how to use LmGetLocaleSetting().

Listing 3.4 Retrieving a locale setting using Locale Manager

LmLocaleType locale;
char currencySymbol[kMaxCurrencySymbolLen+1];
uint16_t index;

// Find out what the formats locale is.
LmGetFormatsLocale(&locale);

// Find out which index in the locale resource
// contains info about that locale.
index = LmBestLocaleToIndex(&locale);

// Get the currency symbol stored in the locale at
// that index.
LmGetLocaleSetting(index, lmChoiceCurrencySymbol,
 currencySymbol, sizeof(currencySymbol));

Table 3.2 shows which types of information about the formats locale
should be retrieved from the system preferences and which types
should be retrieved from the locale resource. Of course, if you want
to retrieve information about a different locale or if you want to look
up the default used for the formats locale, you would always use
the Locale Manager instead of the Preferences Manager.

Localized Applications
Obtaining Locale Information

Exploring Palm OS: Text and Localization 35

Table 3.2 Obtaining locale information

Value Function used to retrieve value

Language code LmGetLocaleSetting(..., lmChoiceLocale, ...)

Locale
description

LmGetFormatsLocale()

Country code LmGetLocaleSetting(..., lmChoiceLocale, ...)

Country name LmGetLocaleSetting(..., lmChoiceCountryName,
...)

Currency name LmGetLocaleSetting(..., lmChoiceCurrencyName,
...)

Currency symbol LmGetLocaleSetting(..., lmChoiceCurrencySymbol,
...)

Unique currency
symbol

LmGetLocaleSetting(...,
lmChoiceUniqueCurrencySymbol, ...)

Measurement
system (metric or
English)

PrefGetPreference(prefMeasurementSystem)

Number formats PrefGetPreference(prefNumberFormat)

Number of
decimal places
for monetary
values

LmGetLocaleSetting(...,
lmChoiceCurrencyDecimalPlaces, ...)

Starting day of
the week

PrefGetPreference(prefWeekStartDay)

Date formats PrefGetPreference(prefDateFormat)

PrefGetPreference(prefLongDateFormat)

Time format PrefGetPreference(prefTimeFormat)

Time zone Use the function gettimezone().

Localized Applications
Summary of Localization API

36 Exploring Palm OS: Text and Localization

Summary of Localization API
Numbers

LmGetNumberSeparators()
StrDelocalizeNumber()

StrLocalizeNumber()

Locale Manager

LmBestLocaleToIndex()
LmCountryToISOName()
LmGetFormatsLocale()
LmGetLocaleSetting()
LmGetNumLocales()
LmGetROMLocale()

LmGetSystemLocale()
LmISONameToCountry()
LmISONameToLanguage()
LmLanguageToISOName()
LmLocaleToIndex()
LmSetFormatsLocale()

Date and Time Manager

DateAdjust()
DateDaysToDate()
DateTemplateToAscii()
DateToAscii()
DateToDays()
DateToDOWDMFormat()
DateToInt()
DayOfMonth()
DayOfWeek()
DaysInMonth()

TimAdjust()
TimDateTimeToSeconds()
TimeGetFormatSeparator()
TimeGetFormatSuffix()
TimeIs24HourFormat()
TimeToAscii()
TimeToInt()
TimeZoneToAscii()
TimSecondsToDateTime()
TimTimeZoneToUTC()
TimUTCToTimeZone()

Database Manager

DmGetOverlayLocale()
DmSetOverlayLocale()
DmGetFallbackOverlayLocale()
DmSetFallbackOverlayLocale()

Part II
Reference

This part contains reference material for the text and localization
managers. It covers:

Find . 39

Locale Manager Types 51

Locale Manager 59

String Manager 69

Text Manager . 85

Exploring Palm OS: Text and Localization 39

4
Find
This chapter describes the Global Find facility API declared in the
header file Find.h. It covers the following topics:

Find Structures and Types 39

Find Constants 43

Find Launch Codes 44

Find Functions and Macros 45

For more information on the Find Manager, see Chapter 2,
“Implementing Global Find,” on page 19.

Find Structures and Types

FindMatchType Struct
Purpose A structure that the Find Manager uses to save information about

each matching record.

Declared In Find.h

Prototype typedef struct {
 DatabaseID appDbID;
 DatabaseID dbID;
 Boolean foundInCaller;
 uint8_t reserved;
 uint16_t reserved2;
 uint32_t recordNum;
 uint32_t recordID;
 uint32_t matchFieldNum;
 size_t matchPos;
 size_t matchLen;
 uint32_t matchCustom;
} FindMatchType;
typedef FindMatchType *FindMatchPtr

Find
FindMatchType

40 Exploring Palm OS: Text and Localization

Fields appDbID
Database ID of the application with the matching record.

dbID
Database ID of the record database in which the match was
found.

foundInCaller
If true, the matching record was found in the application
that was active when the user launched Find.

reserved
Reserved for future use.

reserved2
Reserved for future use.

recordNum
The index of the record containing the matching text.

recordID
The unique ID of the record containing the matching text.

matchFieldNum
The index of the text field that should display the matching
text.

matchPos
Byte offset of the start of the matching text within the record.

matchLen
The number of bytes of matching text.

matchCustom
Application-specific information.

See Also GoToParamsType, FindSaveMatch()

Find
FindParamsType

Exploring Palm OS: Text and Localization 41

FindParamsType Struct
Purpose Parameter block for sysAppLaunchCmdFind.

Declared In Find.h

Prototype typedef struct {
 uint32_t dbAccesMode;
 uint32_t recordNum;
 uint32_t recordID;
 Boolean more;
 char strAsTyped[maxFindStrLen+1];
 char strToFind[maxFindStrPrepLen+1];
 Boolean continuation;
 uint16_t lineNumber;
 RectangleType bounds;
 uint16_t numMatches;
 Boolean searchedCaller;
 uint8_t reserved1;
 uint8_t reserved2;
 uint8_t reserved3;
 DatabaseID callerAppDbID;
 DatabaseID appDbID;
 DmSearchStateType searchState;
} FindParamsType
typedef FindParamsType *FindParamsPtr

Fields dbAccesMode
Mode in which to open the application’s database. Pass this
directly to DmOpenDatabase() as the mode parameter. Its
value is either dmModeReadOnly or dmModeReadOnly |
dmModeShowSecret. (See DmOpenModeType for more
information.)

recordNum
Index of last record that contained a match. Start the search
from this location. Do not set this value directly. Instead, call
FindSaveMatch() when you have a matching record.

recordID
Unique ID of the last record that contained a match. Do not
set this value directly. Instead, call FindSaveMatch() when
you have a matching record.

more
No longer used.

Find
FindParamsType

42 Exploring Palm OS: Text and Localization

strAsTyped
Search string as the user entered it.

strToFind
Normalized version of the search string. The method by
which a search string is normalized varies depending on the
version of Palm OS® and the character encoding supported
by the device. You pass strToFind directly to the
TxtFindString() search function.

continuation
No longer used.

lineNumber
Line number of the next line that displays the results. Do not
set this field directly. It is incremented by a call to
FindDrawHeader().

bounds
The current size of the form that the Find Manager is
displaying. This field is used internally by the Find Manager.

numMatches
The current number of matches. Do not set this field directly.
Instead, call FindSaveMatch(), which increments it for
you.

searchedCaller
If true, the application that was active at the time the user
tapped the Find icon has responded to this launch code. This
application is always searched before any others.

NOTE: In Palm OS Cobalt version 6.0, the current application is
always searched regardless of its
APP_LAUNCH_PREFS_RESOURCE settings.

reserved1
Reserved for future use.

reserved2
Reserved for future use.

reserved3
Reserved for future use.

Find
Size Constants

Exploring Palm OS: Text and Localization 43

callerAppDbID
Database ID of the application that was active when the user
tapped the Find button. Do not change the value of this field;
the system sets it and uses it when searching for application
databases.

appDbID
The ID of your application’s resource database. Do not set
this field directly; the system sets it and uses it when
searching for application databases.

searchState
System use only.

Find Constants

Size Constants
Purpose Specify the maximum sizes of search strings.

Declared In Find.h

Constants #define maxFindStrLen 48
The maximum length in bytes of the string the user can enter
in the Find dialog. This is the maximum length of the
strAsTyped field in FindParamsType.

#define maxFindStrPrepLen 64
The maximum length of a normalized string to be searched
for using the Find facility. A normalized string has already
had TxtPrepFindString() called on it.

Find
Find Launch Codes

44 Exploring Palm OS: Text and Localization

Find Launch Codes

sysAppLaunchCmdFind
Purpose Sent when the user has entered text in the Find dialog. The

application should search for the string that the user entered and
return any records matching the find request.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdFind 1

Parameters The launch code’s parameter block pointer references a
FindParamsType structure.

Comments The system only send this launch code to applications that have an
APP_LAUNCH_PREFS_RESOURCE of ID 0 with the flag
ALPF_FLAG_NOTIFY_FIND set to true.

NOTE: In Palm OS Cobalt version 6.0, the current application is
always searched regardless of its
APP_LAUNCH_PREFS_RESOURCE settings.

Most applications that store text in a database should support this
launch code. When they receive it, they should search all records for
matches to the find string and return all matches. Chapter 2
describes how to respond to this launch code.

The system displays the results of the query in the Find Results
dialog. The system continues the search with each application until
all of the applications on the device have had a chance to respond.

An application can also integrate the find operation in its own user
interface and send the launch code to a particular application.

Applications that support this launch code should also support
sysAppLaunchCmdSaveData and sysAppLaunchCmdGoTo.

Find
FindDrawHeader

Exploring Palm OS: Text and Localization 45

Find Functions and Macros

Find Function
Purpose System use only function that handles the Global Find feature.

Applications should not call this function.

Declared In Find.h

Prototype void Find (GoToParamsPtr goToP)

Parameters ↔ goToP
A pointer to a GoToParamsType structure. Usually NULL.

Returns Nothing.

Comments The system calls this function when it receives a keyDownEvent
with the vchrFind virtual character. If you want to implement your
own Find, the correct thing to do is to intercept this event before the
call to SysHandleEvent() in your event loop.

FindDrawHeader Function
Purpose Draws the header line that separates, by application, the list of

found items.

Declared In Find.h

Prototype Boolean FindDrawHeader (FindParamsPtr findParams,
char const *title)

Parameters → findParams
Pointer to the sysAppLaunchCmdFind launch code’s
parameter block. See FindParamsType.

→ title
String to display as the title for the current application.

Returns Always returns false.

Comments Call this function once at the beginning of your application’s
response to the sysAppLaunchCmdFind launch code. This function
draws a header for your application’s find results. The header
separates the search results from your application with the search
results from another application.

Find
FindGetLineBounds

46 Exploring Palm OS: Text and Localization

The header is only drawn if your application successfully locates a
matching result.

If your application searches multiple databases, you may also use
FindDrawHeader() as a separator between databases.

FindGetLineBounds Function
Purpose Returns the bounds of the next available line for displaying a match

in the Find Results dialog.

Declared In Find.h

Prototype void FindGetLineBounds
(const FindParamsType *findParams,
RectanglePtr r)

Parameters → findParams
Pointer to the sysAppLaunchCmdFind launch code’s
parameter block. See FindParamsType.

← r
The bounds of the area that should contain the next line of
results.

Returns Nothing.

Comments Call this function when you’ve found a match that should be
displayed in the Find Results dialog, and then call
WinDrawChars(), passing it the location returned in r.
WinDrawChars() does not draw directly to the Find Results dialog.
The Find Manager traps all WinDrawChars() calls while a Find is
in progress and copies the string to a buffer. The Find Manager
displays the string at the appropriate location when it has a screen
full of data to display.

Find
FindSaveMatch

Exploring Palm OS: Text and Localization 47

FindSaveMatch Function
Purpose Saves the record and position within the record of a Find match.

This information is saved so that it’s possible to later navigate to the
match.

Declared In Find.h

Prototype Boolean FindSaveMatch (FindParamsPtr findParams,
uint32_t recordNum, uint32_t recordID,
size_t matchPos, size_t matchLen,
uint32_t fieldNum, uint32_t appCustom,
DatabaseID dbID)

Parameters → findParams
Pointer to the sysAppLaunchCmdFind launch code’s
parameter block (FindParamsType).

→ recordNum
Record index. This parameter sets the recordNum field in
the sysAppLaunchCmdGoTo parameter block
(GoToParamsType).

→ recordID
Unique ID of the record containing a match. This parameter
sets the recordID field in the sysAppLaunchCmdGoTo
parameter block.

→ matchPos
Byte offset of the start of the matching string in the record.
This parameter sets the matchPos field in the
sysAppLaunchCmdGoTo parameter block.

→ matchLen
The number of bytes of matched text found in the record.
This parameter sets the matchLen field in the
sysAppLaunchCmdGoTo parameter block.

→ fieldNum
Index of the text field in which the matching string should be
displayed. This parameter sets the matchFieldNum field in
the sysAppLaunchCmdGoTo parameter block.

If your application’s database is a schema database, use this
field to set the column ID in which the matching text was
found.

Find
FindSaveMatchV40

48 Exploring Palm OS: Text and Localization

→ appCustom
Extra data the application can save with a match. This
parameter sets the matchCustom field in the
sysAppLaunchCmdGoTo parameter block.

→ dbID
Database ID of the database that contains the match. This
parameter sets the dbID field in the sysAppLaunchCmdGoTo
parameter block.

Returns true if the application should exit from the search.

Comments Call this function when your application finds a record with a
matching string (TxtFindString() returns true). This function
saves the information you pass. If the user taps this selection in the
Find Results dialog, the information is retrieved and used to set up
the sysAppLaunchCmdGoTo launch code’s parameter block.

FindSaveMatchV40 Function
Purpose Saves the record and position within the record of a text search

match. This information is saved so that it’s possible to later
navigate to the match.

Declared In Find.h

Prototype Boolean FindSaveMatchV40 (FindParamsPtr findParams,
uint16_t recordNum, uint16_t pos,
uint16_t fieldNum, uint32_t appCustom,
uint16_t cardNo, LocalID dbID)

Parameters → findParams
Pointer to the sysAppLaunchCmdFind launch code’s
parameter block. See FindParamsType.

→ recordNum
Record index. This parameter sets the recordNum field in the
sysAppLaunchCmdGoTo parameter block.

→ pos
Offset of the match string from start of record. This
parameter sets the matchPos field in the
sysAppLaunchCmdGoTo parameter block.

Find
FindStrInStrV50

Exploring Palm OS: Text and Localization 49

→ fieldNum
Field number that the string was found in. This parameter
sets the matchFieldNum field in the
sysAppLaunchCmdGoTo parameter block.

→ appCustom
Extra data the application can save with a match. This
parameter sets the matchCustom field in the
sysAppLaunchCmdGoTo parameter block.

→ cardNo
Card number of the database that contains the match. This
parameter sets the dbCardNo field in the
sysAppLaunchCmdGoTo parameter block.

→ dbID
Local ID of the database that contains the match. This
parameter sets the dbID field in the sysAppLaunchCmdGoTo
parameter block.

Returns true if the application should exit from the search.

Compatibility This function differs from FindSaveMatch() in that it does not
have recordID or matchLen parameters and its matchNum,
fieldNum, and matchPos parameters are all smaller. In earlier
Palm OS releases, applications used the appCustom parameter to
store the length of the matching string. These applications should
now call FindSaveMatch() and pass the length of the matching
string in matchLen.

FindStrInStrV50 Function
Purpose Performs a case-blind prefix search for a string in another string.

This function assumes that the string to find has already been
normalized for searching.

Declared In Find.h

Prototype Boolean FindStrInStrV50 (char const *strToSearch,
char const *strToFind, uint16_t *posP)

Parameters → strToSearch
String to search.

→ strToFind
Normalized version of the text string to be found.

Find
FindStrInStrV50

50 Exploring Palm OS: Text and Localization

← posP
If a match is found, contains the offset of the match within
strToSearch.

Returns true if the string was found.

Compatibility Do not use this function. Instead use TxtFindString(), which can
successfully search strings that containing multi-byte characters and
can return the length of the matching text.

Exploring Palm OS: Text and Localization 51

5
Locale Manager
Types
This chapter describes the types and constants declared in
LocaleMgrTypes.h. It covers:

Locale Manager Structures and Types 51

Locale Manager Constants 54

For more information on the Locale Manager, see the chapter
“Localized Applications” on page 27.

Locale Manager Structures and Types

CountryType Typedef
Purpose Legacy type that defines an old style of country code constants. Use

LmCountryType instead.

Declared In LocaleMgrTypes.h

Prototype typedef uint8_t CountryType

LanguageType Typedef
Purpose Legacy type that defines an old style of language code constants.

Use LmLanguageType instead.

Declared In LocaleMgrTypes.h

Prototype typedef uint8_t LanguageType

Locale Manager Types
LmCountryType

52 Exploring Palm OS: Text and Localization

LmCountryType Typedef
Purpose Identifies a country in the ISO 3166 standard.

Declared In LocaleMgrTypes.h

Prototype typedef uint16_t LmCountryType

Comments The country type constants have the following format:

cCountryName

where CountryName is the name of the country. There is one
constant for each country identified in the ISO 3166 standard, which
currently defines 239 countries.

The following table shows examples of the country type constants.
For a complete list, see the LocaleMgrTypes.h file.

LmLanguageType Typedef
Purpose Identifies a language in the ISO 639 standard.

Declared In LocaleMgrTypes.h

Prototype typedef uint16_t LmLanguageType

Comments The language type constants have the following format:

lLanguageName

where LanguageName is the name of the language. There is one
constant for each language specified in the ISO 639 standard, which
currently defines 137 languages.

The following table shows examples of the language type constants.
For a complete list, see the LocaleMgrTypes.h file.

Constant Value Description

cAustralia 'AU' Australia

cAustria 'AT' Austria

cBelgium 'BE' Belgium

Locale Manager Types
NumberFormatType

Exploring Palm OS: Text and Localization 53

LmLocaleType Struct
Purpose Defines the country and language used in a locale.

Declared In LocaleMgrTypes.h

Prototype struct _LmLocaleType {
 LmLanguageType language;
 LmCountryType country;
}
typedef struct _LmLocaleType LmLocaleType

Fields language
An LmLanguageType constant that identifies the language
spoken in the current locale.

country
An LmCountryType constant that identifies the locale’s
country, which helps to identify the language dialect. For
example, a language of lEnglish specifies a different dialect
if the country is cUnitedKingdom than if it is
cUnitedStates.

NumberFormatType Typedef
Purpose Specifies how numbers are formatted.

Declared In LocaleMgrTypes.h

Prototype typedef Enum8 NumberFormatType

Comments The NumberFormatType constants values are not public because
you should never have to check them directly. Retrieve the
NumberFormatType from the preference or the locale and pass it

Constant Value Description

lEnglish 'en' English

lFrench 'fr' French

lGerman 'de' German

Locale Manager Types
Locale Manager Constants

54 Exploring Palm OS: Text and Localization

directly to LmGetNumberSeparators() to retrieve the appropriate
separator characters for thousands and decimals.

See Also “Numbers”

Locale Manager Constants

LmLocaleSettingChoice Typedef
Purpose Defines constants that you can pass to the

LmGetLocaleSetting() function to specify which locale setting
to retrieve.

Declared In LocaleMgrTypes.h

Prototype typedef uint16_t LmLocaleSettingChoice

Constants #define lmChoiceCountryName
((LmLocaleSettingChoice)5)

A string buffer of size kMaxCountryNameLen+1 containing
the name of the locale’s country.

#define lmChoiceCurrencyDecimalPlaces
((LmLocaleSettingChoice)15)

A uint16_t containing the number of decimal places that
monetary values are typically given.

#define lmChoiceCurrencyName
((LmLocaleSettingChoice)12)

A string buffer of size kMaxCurrencyNameLen+1 bytes
containing the name of the currency used in this locale.

#define lmChoiceCurrencySymbol
((LmLocaleSettingChoice)13)

A string buffer of size kMaxCurrencySymbolLen+1 bytes
containing the symbol used to denote monetary values in this
locale.

#define lmChoiceDateFormat
((LmLocaleSettingChoice)6)

A DateFormatType containing the short date format used in
this locale. For example:

95/12/31

Locale Manager Types
LmLocaleSettingChoice

Exploring Palm OS: Text and Localization 55

#define lmChoiceInboundDefaultVObjectEncoding
((LmLocaleSettingChoice)23)

A CharEncodingType containing the inbound encoding for
vObjects with no CHARSET property.

#define lmChoiceLocale ((LmLocaleSettingChoice)1)
An LmLocaleType structure containing the locale’s
language and country codes.

#define lmChoiceLongDateFormat
((LmLocaleSettingChoice)7)

A DateFormatType containing the long date format used in
this locale. For example:

31 Dec 1995

#define lmChoiceMeasurementSystem
((LmLocaleSettingChoice)16)

A MeasurementSystemType containing the measurement
system (metric system or English system) used in this locale.

#define lmChoiceNumberFormat
((LmLocaleSettingChoice)11)

A NumberFormatType containing the format used for
numbers, with regards to the thousands separator and the
decimal point, in this locale.

#define lmChoiceOutboundVObjectEncoding
((LmLocaleSettingChoice)22)

A CharEncodingType containing the outbound encoding
for vObjects.

#define lmChoicePrimaryEmailEncoding
((LmLocaleSettingChoice)20)

A CharEncodingType containing the first attempt at email
encoding.

#define lmChoicePrimarySMSEncoding
((LmLocaleSettingChoice)18)

A CharEncodingType containing the first attempt at SMS
encoding.

#define lmChoiceSecondaryEmailEncoding
((LmLocaleSettingChoice)21)

A CharEncodingType containing the second attempt at
email encoding.

Locale Manager Types
Locale Manager Errors

56 Exploring Palm OS: Text and Localization

#define lmChoiceSecondarySMSEncoding
((LmLocaleSettingChoice)19)

A CharEncodingType containing the second attempt at
SMS encoding.

#define lmChoiceSupportsLunarCalendar
((LmLocaleSettingChoice)17)

A Boolean that specifies if the locale uses the Chinese Lunar
Calendar. If true, the locale uses the calendar.

#define lmChoiceTimeFormat
((LmLocaleSettingChoice)8)

A TimeFormatType containing the format used for time
values in this locale.

#define lmChoiceTimeZone
((LmLocaleSettingChoice)10)

An int16_t containing the locale’s default time zone given
as the number of minutes east of Greenwich Mean Time
(GMT).

#define lmChoiceUniqueCurrencySymbol
((LmLocaleSettingChoice)14)

A string buffer of size kMaxCurrencySymbolLen+1 bytes
containing the unique symbol for monetary values.

For example, the symbol $ is used both for US dollars and
Portuguese escudos. The unique currency symbol for US
dollars is US$.

#define lmChoiceWeekStartDay
((LmLocaleSettingChoice)9)

A uint16_t containing the first day of the week (Sunday or
Monday) in this locale. Days of the week are numbered from
0 to 6 starting with Sunday = 0.

Locale Manager Errors
Purpose Error constants used by the Locale Manager.

Declared In LocaleMgrTypes.h

#define lmErrBadLocaleIndex (lmErrorClass | 2)
A locale index is out of range.

Locale Manager Types
Locale Wildcard Constants

Exploring Palm OS: Text and Localization 57

#define lmErrBadLocaleSettingChoice (lmErrorClass |
3)

An unrecognized value was used for a
LmLocaleSettingChoice constant.

#define lmErrSettingDataOverflow (lmErrorClass | 4)
The buffer passed to LmGetLocaleSetting() is too small
for the specified value.

#define lmErrUnknownLocale (lmErrorClass | 1)
An unrecognized value was passed for a LmLocaleType
structure. Note that Palm OS® does not provide locales for all
valid country and language combinations. For example, there
currently is no locale defined for cIsrael and lHebrew.

Locale Manager Size Constants
Purpose Specify the size of strings to allocate for some of the locale settings.

Declared In LocaleMgrTypes.h

Constants #define kMaxCountryNameLen 31
The maximum length of a country name string.

#define kMaxCurrencyNameLen 31
The maximum length of a currency name string.

#define kMaxCurrencySymbolLen 10
The maximum length of a currency symbol string.

Comments These constants do not count the terminating null character.
Therefore, you need to allocate a string of size
kMaxCountryNameLen+1 to hold a country name, for example.

Locale Wildcard Constants
Purpose Constants that can be used as wildcard values when searching for a

locale using LmLocaleToIndex() or LmBestLocaleToIndex().

Declared In LocaleMgrTypes.h

Constants #define lmAnyCountry ((LmCountryType)'\?\?')
Specifies any country.

Locale Manager Types
Locale Wildcard Constants

58 Exploring Palm OS: Text and Localization

#define lmAnyLanguage ((LmLanguageType)'\?\?')
Specifies any language.

See Also LmLanguageType, LmBestLocaleToIndex(),
LmLocaleToIndex()

Exploring Palm OS: Text and Localization 59

6
Locale Manager
This chapter describes the Locale Manager API as described in the
header file LocaleMgr.h. It discusses the following topics:

Locale Manager Functions and Macros 59

For more information on the Locale Manager, see the chapter
“Localized Applications” on page 27.

Locale Manager Functions and Macros

LmBestLocaleToIndex Function
Purpose Converts an LmLocaleType to an index.

Declared In LocaleMgr.h

Prototype uint16_t LmBestLocaleToIndex
(const LmLocaleType *iLocale)

Parameters → iLocale
The locale to convert. This locale can use the constants
lmAnyCountry or lmAnyLanguage as wildcards.

Returns The index of the known locale that most closely matches iLocale.

Comments This function first tries to find a locale that matches both the
language and country of iLocale. If it does not exist, it then tries to
match only the country and only the language. If it cannot find a
match for either the country or the language, it returns the index of
the first locale (in other words, it returns an index of 0).

Example The following example shows using LmGetFormatsLocale() to
return the locale used to set the display preferences for such things
as dates and numbers, and then passing that to
LmBestLocaleToIndex() to obtain a valid index to pass to
LmGetLocaleSetting().

Locale Manager
LmCountryToISOName

60 Exploring Palm OS: Text and Localization

LmLocaleType locale;
char oValue[kMaxCurrencySymbolLen+1];
uint16_t index;

LmGetFormatsLocale(&locale);
index = LmBestLocaleToIndex(&locale);
LmGetLocaleSetting(index, lmChoiceCurrencySymbol, oValue,
 sizeof(oValue));

See Also LmLocaleToIndex()

LmCountryToISOName Function
Purpose Converts an LmCountryType to a string.

Declared In LocaleMgr.h

Prototype status_t LmCountryToISOName
(LmCountryType iCountry, char *oISONameStr)

Parameters → iCountry
An LmCountryType variable specifying the country code as
it is stored in a locale.

← oISONameStr
A string that is at least three bytes long. Upon return, this
string contains the country code converted to a string.

Returns errNone upon success or lmErrUnknownLocale if iCountry is
not a valid country code.

Comments The Database Manager uses this function to convert the overlay
locale’s country code into a string so that it can construct an overlay
database name.

See Also LmISONameToCountry(), LmISONameToLanguage(),
LmLanguageToISOName()

Locale Manager
LmGetLocaleSetting

Exploring Palm OS: Text and Localization 61

LmGetFormatsLocale Function
Purpose Returns the formats locale.

Declared In LocaleMgr.h

Prototype void LmGetFormatsLocale
(LmLocaleType *oFormatsLocale)

Parameters ← oFormatsLocale
An LmLocaleType that identifies the formats locale.

Returns Nothing.

Comments The formats locale is initially set to the system locale; however, the
users can change the formats locale in the Formats Preference panel
if they prefer a different locale.

See Also LmSetFormatsLocale(), LmGetSystemLocale()

LmGetLocaleSetting Function
Purpose Returns the requested setting for a given locale.

Declared In LocaleMgr.h

Prototype status_t LmGetLocaleSetting (uint16_t iLocaleIndex,
LmLocaleSettingChoice iChoice, void *oValue,
uint16_t iValueSize)

Parameters → iLocaleIndex
Index of the locale whose settings you want to retrieve. Use
LmLocaleToIndex() or LmBestLocaleToIndex() to
obtain this value.

→ iChoice
The LmLocaleSettingChoice constant for the setting you
want to retrieve.

← oValue
The value of the iChoice setting.

→ iValueSize
The size of the oValue buffer. The size of this buffer depends
on the value of iChoice.

Returns One of the following values:

Locale Manager
LmGetLocaleSetting

62 Exploring Palm OS: Text and Localization

errNone
Success.

lmErrBadLocaleIndex
iLocaleIndex is out of range.

lmErrSettingDataOverflow
The oValue buffer is too small to hold the setting’s value.

lmErrBadLocaleSettingChoice
The iChoice parameter contains an unknown or
unsupported value.

Comments This function accesses the private locale system resource and
returns the requested information in the oValue parameter. The
size and type of the oValue parameter depends on which setting
you want to retrieve. The LmLocaleSettingChoice
documentation describes the type of data returned in oValue for
each setting. For fixed-size values, make sure that the size of the
oValue buffer is exactly the size of the returned value. It should be
neither larger than nor smaller than the size of the returned value.

This function returns the default settings for the locale. Users can
override many of the locale settings using the Preferences
application. Applications should always honor the user’s
preferences rather than the locale defaults. For this reason, it’s
recommended that if a corresponding system preference is
available, you should check it instead (using
PrefGetPreference()). Use LmGetLocaleSetting() only if
you want to retrieve values that the user cannot override (such as
the country name or currency symbol) or if you want to retrieve
information about a locale other than the current locale.

See Also LmGetNumLocales(), LmLocaleToIndex()

Locale Manager
LmGetNumLocales

Exploring Palm OS: Text and Localization 63

LmGetNumberSeparators Function
Purpose Gets localized number separators.

Declared In LocaleMgr.h

Prototype void LmGetNumberSeparators
(NumberFormatType iNumberFormat,
char *oThousandSeparatorChar,
char *oDecimalSeparatorChar)

Parameters → iNumberFormat
The format to use (see NumberFormatType).

← oThousandSeparatorChar
A pointer to the character used for the thousands separator.
This is not a string. It does not have the terminating null
character.

← oDecimalSeparatorChar
A pointer to the character used for the decimal separator.
This is not a string. It does not have the terminating null
character.

Returns Nothing.

Comments The format to use is stored in the system preferences. You can obtain
it by passing prefNumberFormat to PrefGetPreference().

See Also StrLocalizeNumber(), StrDelocalizeNumber(), “Numbers”

LmGetNumLocales Function
Purpose Returns the number of known locales.

Declared In LocaleMgr.h

Prototype uint16_t LmGetNumLocales (void)

Parameters None.

Returns The number of locales that the locale system resource defines.

Comments Use this function to obtain the range of possible values that you can
pass as an index to LmGetLocaleSetting(). If
LmGetNumLocales() returns 3, then LmGetLocaleSetting()
accepts indexes in the range of 0 to 2.

Locale Manager
LmGetROMLocale

64 Exploring Palm OS: Text and Localization

This function returns only the number of locales for which the ROM
has locale information. It does not return the number of locales that
could possibly be defined. For example, the system resource
currently contains no locale whose language is lHebrew and
country is cIsrael, even though that is a valid locale.

LmGetROMLocale Function
Purpose Returns the ROM locale.

Declared In LocaleMgr.h

Prototype CharEncodingType LmGetROMLocale
(LmLocaleType *oROMLocale)

Parameters ← oROMLocale
Points to an LmLocaleType that identifies the ROM locale.
Pass NULL if you don’t want to retrieve this value.

Returns A CharEncodingType constant that specifies the character
encoding used in the ROM locale. Note that this character encoding
is not necessarily the encoding in use.

Comments The ROM locale is the default locale stored in the ROM. On certain
ROMs, such as an EFIGS ROM, the system locale differs from the
ROM locale after the user chooses a language. The ROM locale is
used as the fallback overlay locale (used when the Database
Manager cannot find a database for the overlay locale) unless that
has been explicitly changed with the function
DmSetFallbackOverlayLocale(). If the device is hard reset, the
system locale is reset to the ROM locale.

See Also LmGetSystemLocale()

Locale Manager
LmISONameToCountry

Exploring Palm OS: Text and Localization 65

LmGetSystemLocale Function
Purpose Returns the system locale.

Declared In LocaleMgr.h

Prototype CharEncodingType LmGetSystemLocale
(LmLocaleType *oSystemLocale)

Parameters ← oSystemLocale
Points to an LmLocaleType struct that identifies the system
locale. Pass NULL if you don’t want to retrieve this value.

Returns A CharEncodingType constant that specifies the character
encoding used in the system locale.

Comments You typically use this function only to obtain the character encoding
used on the device. The system locale is used for various system
settings. Applications should instead use the values stored in the
user’s preferences or those in the formats locale
(LmGetFormatsLocale()), which the user can change in the
Formats Preference panel.

See Also LmGetFormatsLocale(), LmGetSystemLocale()

LmISONameToCountry Function
Purpose Converts a country code string into an LmCountryType constant.

Declared In LocaleMgr.h

Prototype status_t LmISONameToCountry
(const char *iISONameStr,
LmCountryType *oCountry)

Parameters → iISONameStr
A string containing a two-character ASCII ISO 3166 country
code.

← oCountry
The corresponding LmCountryType constant.

Returns errNone upon success or lmErrUnknownLocale if iISONameStr
does not contain a valid country code.

See Also LmCountryToISOName(), LmISONameToLanguage(),
LmLanguageToISOName()

Locale Manager
LmISONameToLanguage

66 Exploring Palm OS: Text and Localization

LmISONameToLanguage Function
Purpose Converts a language code string into an LmLanguageType

constant.

Declared In LocaleMgr.h

Prototype status_t LmISONameToLanguage
(const char *iISONameStr,
LmLanguageType *oLanguage)

Parameters → iISONameStr
A string containing a two-character ASCII ISO 639 language
code.

← oLanguage
The corresponding LmLanguageType constant.

Returns errNone upon success or lmErrUnknownLocale if iISONameStr
does not contain a valid language code.

See Also LmISONameToCountry(), LmISONameToCountry(),
LmLanguageToISOName()

LmLanguageToISOName Function
Purpose Converts an LmLanguageType to a string.

Declared In LocaleMgr.h

Prototype status_t LmLanguageToISOName
(LmLanguageType iLanguage, char *oISONameStr)

Parameters → iLanguage
An LmLanguageType variable specifying the language code
as it is stored in a locale.

← oISONameStr
A string that is at least three bytes long. Upon return, this
string contains the language code converted to a string.

Returns errNone upon success or lmErrUnknownLocale if iLanguage is
not a valid language code.

Locale Manager
LmSetFormatsLocale

Exploring Palm OS: Text and Localization 67

Comments The Database Manager uses this function to convert the overlay
locale’s language code into a string so that it can construct an
overlay database name.

See Also LmISONameToCountry(), LmISONameToCountry(),
LmCountryToISOName()

LmLocaleToIndex Function
Purpose Converts an LmLocaleType to an index suitable for passing to

LmGetLocaleSetting().

Declared In LocaleMgr.h

Prototype status_t LmLocaleToIndex
(const LmLocaleType *iLocale,
uint16_t *oLocaleIndex)

Parameters → iLocale
The locale to convert. This locale can use the constants
lmAnyCountry or lmAnyLanguage as wildcards.

← oLocaleIndex
The index of iLocale upon return.

Returns errNone upon success or lmErrUnknownLocale if the locale could
not be found.

See Also LmBestLocaleToIndex()

LmSetFormatsLocale Function
Purpose Sets the formats locale and changes the preference settings for

locale-specific items to the default values from this locale.

Declared In LocaleMgr.h

Prototype status_t LmSetFormatsLocale
(const LmLocaleType *iFormatsLocale)

Parameters → iFormatsLocale
An LmLocaleType to use for the formats locale.

Returns errNone upon success or memErrNotEnoughSpace if the Locale
Manager fails to allocate memory for an internal structure
identifying the preferences.

Locale Manager
LmSetFormatsLocale

68 Exploring Palm OS: Text and Localization

Comments The Formats Preference panel uses this function when the user
selects a new country from the country pop-up list. It then changes
the formats locale and all locale-dependent preferences to the
settings in the first locale that it finds matching the country.

Applications should not call this function without first confirming
with the user that the formats locale should be changed.

See Also LmGetFormatsLocale()

Exploring Palm OS: Text and Localization 69

7
String Manager
This chapter provides reference material for the String Manager. The
String Manager API is declared in the header file StringMgr.h.
This chapter covers:

String Manager Constants 69

String Manager Functions and Macros 70

For more information, see Chapter 1, “Text,” on page 3.

String Manager Constants

String Manager Constants
Purpose Constants defined in StringMgr.h.

Declared In StringMgr.h

Constants #define maxStrIToALen 12
Maximum length of a string to pass to StrIToA() not
including the terminating null character.

#define StrPrintF sprintf
Convenience macro that maps calls to the old StrPrintF()
function to the standard C library function sprintf(). If
you need to ensure the old functionality, use
StrPrintFV50().

#define StrVPrintF vsprintf
Convenience macro that maps calls to the old
StrVPrintF() function to the standard C library function
vsprintf(). If you need to ensure the old functionality, use
StrVPrintFV50().

String Manager
String Manager Functions and Macros

70 Exploring Palm OS: Text and Localization

String Manager Functions and Macros

StrAToI Function
Purpose Converts a string to an integer.

Declared In StringMgr.h

Prototype int32_t StrAToI (const char *str)

Parameters → str
A string to convert.

Returns The integer.

StrCaselessCompare Function
Purpose Compares two strings with case, size, and accent insensitivity.

Declared In StringMgr.h

Prototype int16_t StrCaselessCompare (const char *s1,
const char *s2)

Parameters → s1
A string.

→ s2
A string.

Returns 0 if the strings match.

A positive number if s1 > s2.

A negative number if s1 < s2.

Comments StrCaselessCompare() correctly performs locale-specific sorting
and handles strings with multi-byte characters, whereas the
standard C library function stricmp() does not. If the string to be
compared will not be visible to the user and does not contain any
locale-sensitive data, it is more efficient to use stricmp().

This function differs from TxtCaselessCompare() in that it
always compares the two strings in their entirety and does not
return the length of the matching text.

See Also StrNCaselessCompare(), StrCompare(), StrNCompare()

String Manager
StrChr

Exploring Palm OS: Text and Localization 71

StrCat Function
Purpose Concatenates one null-terminated string to another.

Declared In StringMgr.h

Prototype char *StrCat (char *dst, const char *src)

Parameters → dst
The null-terminated destination string.

→ src
The null-terminated source string.

Returns The destination string.

Comments This function calls through to the standard strcat() function.

StrChr Function
Purpose Looks for a character within a string.

Declared In StringMgr.h

Prototype char *StrChr (const char *str, wchar32_t chr)

Parameters → str
The string to be searched.

→ chr
The character to search for.

Returns A pointer to the first occurrence of chr in str. Returns NULL if the
character is not found.

Comments Use this function instead of the standard strchr() function.

This function can handle both single-byte characters and multi-byte
characters correctly. However, you should make sure that you pass a
wchar32_t variable to StrChr() instead of a char. If you pass a
char variable, the function sign-extends the variable to a
wchar32_t, which causes problems if the value is 0x80 or higher.

See Also StrStr()

String Manager
StrCompare

72 Exploring Palm OS: Text and Localization

StrCompare Function
Purpose Case-sensitive comparison of two strings.

Declared In StringMgr.h

Prototype int16_t StrCompare (const char *s1, const char *s2)

Parameters → s1
A string.

→ s2
Another string.

Returns 0 if the strings match.

A positive number if s1 sorts after s2 alphabetically.

A negative number if s1 sorts before s2 alphabetically.

Comments StrCompare() correctly performs locale-specific sorting and
handles strings with multi-byte characters, whereas the standard C
library function strcmp() does not. If the string to be compared
will not be visible to the user and does not contain any locale-
sensitive data, it is more efficient to use strcmp().

This function differs form TxtCompare() in that it always
compares the two strings in their entirety and does not return the
length of the matching text.

See Also StrNCompare(), StrNCaselessCompare(),
TxtCaselessCompare()

StrCompareAscii Function
Purpose Compares two ASCII strings.

Declared In StringMgr.h

Prototype int16_t StrCompareAscii (const char *s1,
const char *s2)

Parameters → s1
A string.

→ s2
Another string.

Returns 0 if the strings match.

String Manager
StrDelocalizeNumber

Exploring Palm OS: Text and Localization 73

A positive number if s1 sorts after s2 alphabetically.

A negative number if s1 sorts before s2 alphabetically.

Comments This function calls through to the standard strcmp() function.

See Also StrCompare(), StrNCompare(), TxtCompare(),
StrCaselessCompare(), StrNCaselessCompare(),
TxtCaselessCompare(), StrNCompareAscii()

StrCopy Function
Purpose Copies one string to another.

Declared In StringMgr.h

Prototype char *StrCopy (char *dst, const char *src)

Parameters → dst
The destination string.

→ src
The source string.

Returns The destination string.

Comments This function calls through to the standard strcpy() function. It
does not work properly with overlapping strings.

StrDelocalizeNumber Function
Purpose Delocalizes a number passed in as a string. Converts the number

from any localized notation to US notation (decimal point and
thousandth comma).

Declared In StringMgr.h

Prototype char *StrDelocalizeNumber (char *s,
char thousandSeparator, char decimalSeparator)

Parameters → s
The number as an ASCII string.

→ thousandSeparator
Current thousand separator.

String Manager
StrIToA

74 Exploring Palm OS: Text and Localization

→ decimalSeparator
Current decimal separator.

Returns A pointer to the changed number and modifies the string in s.

Comments The current thousandSeparator and decimalSeparator can be
determined by obtaining the value of the prefNumberFormat
preference using PrefGetPreference() and then passing the
returned NumberFormatType to LmGetNumberSeparators().

Example The following code shows how to use StrDelocalizeNumber().

char *localizedNum;
NumberFormatType numFormat;
char thousandsSeparator, decimalSeparator;

numFormat = (NumberFormatType)
 PrefGetPreference(prefNumberFormat);
LmGetNumberSeparators(numFormat, &thousandsSeparator,
 &decimalSeparator);
StrDelocalizeNumber(localizedNum, thousandsSeparator,
decimalSeparator);

See Also StrLocalizeNumber(), LmGetNumberSeparators()

StrIToA Function
Purpose Converts an integer to ASCII.

Declared In StringMgr.h

Prototype char *StrIToA (char *s, int32_t i)

Parameters ← s
A string of length maxStrIToALen+1 in which to store the
results.

→ i
Integer to convert.

Returns The result string.

See Also StrAToI(), StrIToH()

String Manager
StrLCat

Exploring Palm OS: Text and Localization 75

StrIToH Function
Purpose Converts an integer to hexadecimal ASCII.

Declared In StringMgr.h

Prototype char *StrIToH (char *s, uint32_t i)

Parameters ← s
A string in which to store the results.

→ i
Integer to convert.

Returns The string s.

See Also StrIToA()

StrLCat Function
Purpose Concatenates one string to another, clipping the destination string to

a maximum of siz bytes (including the null character at the end).

Declared In StringMgr.h

Prototype size_t StrLCat (char *dst, const char *src,
size_t siz)

Parameters → dst
The null-terminated destination string.

→ src
The null-terminated source string.

→ siz
Maximum length in bytes for dst, including the terminating
null character.

Returns The length in bytes of dst if the entire string src were appended to
it. If siz is less than the return value of this function, then you know
that the src string is truncated in dst.

Comments Use this function instead of the standard C library function
strlcat(). It correctly handles multi-byte character strings.
Specifically, it truncates any partial characters that appear at the end
of the string and replaces them with null characters.

See Also StrNCat(), StrCat()

String Manager
StrLCopy

76 Exploring Palm OS: Text and Localization

StrLCopy Function
Purpose Multi-byte version of the standard C library function strlcpy().

Declared In StringMgr.h

Prototype size_t StrLCopy (char *dst, const char *src,
size_t siz)

Parameters → dst
The null-terminated destination string.

→ src
The null-terminated source string.

→ siz
Maximum length in bytes for dst, including the terminating
null character.

Returns The number of bytes in the src string, not including the null
terminator. If this value is greater than or equal to siz, then
truncation occurred.

Comments Use this function instead of the standard C library function
strlcpy(). It correctly handles multi-byte character strings.
Specifically, it truncates any partial characters that appear at the end
of the string and replaces them with null characters.

See Also StrCopy(), StrNCopy()

StrLen Function
Purpose Computes the length of a string.

Declared In StringMgr.h

Prototype size_t StrLen (const char *src)

Parameters → src
A string.

Returns The length of the string in bytes.

Comments This function calls through to the standard strlen() function. It
always correctly returns the number of bytes used to store the
string. Remember that on systems that support multi-byte
characters, the number returned does not always equal the number
of characters.

String Manager
StrNCaselessCompare

Exploring Palm OS: Text and Localization 77

StrLocalizeNumber Function
Purpose Converts a number (passed in as a string) to localized format, using

a specified thousands separator and decimal separator.

Declared In StringMgr.h

Prototype char *StrLocalizeNumber (char *s,
char thousandSeparator, char decimalSeparator)

Parameters ↔ s
Numeric ASCII string to localize. Upon return, contains the
same string with all occurrences of “,” replaced by
thousandSeparator and all occurrences of “.” with
decimalSeparator.

→ thousandSeparator
Localized thousand separator.

→ decimalSeparator
Localized decimal separator.

Returns The changed string.

Comments The current thousandSeparator and decimalSeparator can be
determined by obtaining the value of the prefNumberFormat
preference using PrefGetPreference() and then passing the
returned NumberFormatType to LmGetNumberSeparators().

See Also StrDelocalizeNumber()

StrNCaselessCompare Function
Purpose Compares two strings out to n characters with case, size, and accent

insensitivity.

Declared In StringMgr.h

Prototype int16_t StrNCaselessCompare (const char *s1,
const char *s2, size_t n)

Parameters → s1
The first string.

→ s2
The second string.

String Manager
StrNCat

78 Exploring Palm OS: Text and Localization

→ n
Length in bytes of the text to compare.

Returns 0 if the strings match.

A positive number if s1 > s2.

A negative number if s1 < s2.

Comments StrNCaselessCompare() correctly performs locale-specific
sorting and handles strings with multi-byte characters.

This function differs from TxtCaselessCompare() only in that it
does not return the length of the matching strings.

See Also StrNCompare(), StrCaselessCompare(),
TxtCaselessCompare(), StrCompare()

StrNCat Function
Purpose Concatenates one string to another clipping the destination string to

a maximum of n bytes (including the null character at the end).

IMPORTANT: The Palm OS® implementation of StrNCat()
differs from the implementation in the standard C library. See the
Comments section for details.

Declared In StringMgr.h

Prototype char *StrNCat (char *dst, const char *src,
size_t n)

Parameters → dst
The null-terminated destination string.

→ src
The source string.

→ n
Maximum length in bytes for dst, including the terminating
null character.

Returns The destination string.

Comment This function differs from the standard C strncat() function in
these ways:

String Manager
StrNCompare

Exploring Palm OS: Text and Localization 79

• StrNCat() treats the parameter n as the maximum length in
bytes for dst. That means it will copy at most n –
StrLen(dst) – 1 bytes from src. The standard C function
always copies n bytes from src into dst. (It copies the entire
src into dst if the length of src is less than n).

• If the length of the destination string reaches n – 1,
StrNCat() stops copying bytes from src and appends the
terminating null character to dst. If the length of the
destination string is already greater than or equal to n – 1
before the copying begins, StrNCat() does not copy any
data from src.

• In the standard C function, if src is less than n, the entire
src string is copied into dst and then the remaining space is
filled with null characters. StrNCat() does not fill the
remaining space with null characters in released ROMs. In
debug ROMs, StrNCat() fills the remaining bytes with the
value 0xFE.

On systems with multi-byte character encodings, this function
makes sure that it does not copy part of a multi-byte character. If the
last byte copied from src contains the high-order or middle byte of
a multi-byte character, StrNCat() backs up in dst until the byte
after the end of the previous character, and replaces that byte with a
null character.

StrNCompare Function
Purpose Compares two strings out to n bytes. This function is case and

accent sensitive.

Declared In StringMgr.h

Prototype int16_t StrNCompare (const char *s1,
const char *s2, size_t n)

Parameters → s1
A string.

→ s2
A string.

→ n
Length in bytes of text to compare.

String Manager
StrNCompareAscii

80 Exploring Palm OS: Text and Localization

Returns 0 if the strings match.

A positive number if s1 > s2.

A negative number if s1 < s2.

Comments StrNCompare() correctly performs locale-specific sorting and
handles strings with multi-byte characters, whereas the standard C
library function strncmp() does not. If the string to be compared
will not be visible to the user and does not contain any locale-
sensitive data, it is more efficient to use strncmp().

This function differs form TxtCompare() only in that it does not
return the length of the matching text.

See Also StrCompare(), StrNCaselessCompare(),
StrCaselessCompare(), TxtCaselessCompare(),
StrNCompareAscii()

StrNCompareAscii Function
Purpose Compares two ASCII strings out to n bytes. This function calls

through to the standard strncmp() function.

Declared In StringMgr.h

Prototype int16_t StrNCompareAscii (const char *s1,
const char *s2, size_t n)

Parameters → s1
A string.

→ s2
A string.

→ n
Length in bytes of text to compare.

Returns 0 if the strings match.

A positive number if s1 sorts after s2 alphabetically.

A negative number if s1 sorts before s2 alphabetically.

String Manager
StrNCopy

Exploring Palm OS: Text and Localization 81

StrNCopy Function
Purpose Copies up to n bytes from a source string to the destination string.

Terminates dst string at index n–1 if the source string length was n–
1 or less.

Declared In StringMgr.h

Prototype char *StrNCopy (char *dst, const char *src,
size_t n)

Parameters → dst
The destination string.

→ src
The source string.

→ n
Maximum number of bytes to copy from src string.

Returns The destination string.

Comments On systems with multi-byte character encodings, this function
makes sure that it does not copy part of a multi-byte character. If the
nth byte of src contains the high-order or middle byte of a multi-
byte character, StrNCopy() backs up in dst until the byte after the
end of the previous character and replaces the remaining bytes (up
to n–1) with nulls.

Be aware that the nth byte of dst upon return may contain the last
byte of a multi-byte character. If you plan to terminate the string by
setting its last character to null, you must not pass the entire length
of the string to StrNCopy(). If you do, your code may overwrite
the final byte of the last character.

// WRONG! You may overwrite part of multi-byte
// character.
char dst[n];
StrNCopy(dst, src, n);
dst[n-1] = chrNull;

Instead, if you write to the last byte of the destination string, pass
one less than the size of the string to StrNCopy().

// RIGHT. Instead pass n-1 to StrNCopy.
char dst[n];
StrNCopy(dst, src, n-1);
dst[n-1] = chrNull;

String Manager
StrPrintFV50

82 Exploring Palm OS: Text and Localization

StrPrintFV50 Function
Purpose Implements a subset of the standard C sprintf() call, which

writes formatted output to a string.

Declared In StringMgr.h

Prototype int16_t StrPrintFV50 (char *s,
const char *formatStr, ...)

Parameters ← s
A string into which the results are written.

→ formatStr
The format specification string.

...
Zero or more arguments to be formatted as specified by
formatStr.

Returns Number of characters written to destination string. Returns a
negative number if there is an error.

Comments This function internally calls StrVPrintFV50() to do the
formatting. See that function’s description for details on which
format specifications are supported.

Compatibility This function is obsolete and provided for backward compatibility
only. Use the standard C library function sprintf() instead.

See Also StrVPrintFV50()

StrStr Function
Purpose Looks for a substring within a string.

Declared In StringMgr.h

Prototype char *StrStr (const char *str, const char *token)

Parameters → str
The string to be searched.

→ token
The string to search for.

Returns A pointer to the first occurrence of token in str or NULL if not
found.

String Manager
StrVPrintFV50

Exploring Palm OS: Text and Localization 83

Comments Use this function instead of the standard strstr() function to
handle multi-byte character strings. This function makes sure that it
does not match only part of a multi-byte character. If the matching
strings begins at an inter-character boundary, then this function
returns NULL.

NOTE: If the value of the token parameter is the empty string,
this function returns NULL. This is different than the standard
strstr() function, which returns str when token is the empty
string.

See Also StrChr()

StrToLower Function
Purpose Converts all the characters in a string to lowercase.

Declared In StringMgr.h

Prototype char *StrToLower (char *dst, const char *src)

Parameters ← dst
A string.

→ src
A null-terminated string.

Returns The destination string.

StrVPrintFV50 Function
Purpose Implements a subset of the standard C vsprintf() call, which

writes formatted output to a string.

Declared In StringMgr.h

Prototype int16_t StrVPrintFV50 (char *s,
const char *formatStr, _Palm_va_list arg)

Parameters ← s
A string into which the results are written. This string is
always terminated by a null terminator.

String Manager
StrVPrintFV50

84 Exploring Palm OS: Text and Localization

→ formatStr
The format specification string.

→ arg
Pointer to a list of zero or more parameters to be formatted as
specified by the formatStr string.

Returns Number of characters written to destination string, not including
the null terminator. Returns a negative number if there is an error.

Comments Like the C vsprintf() function, this function is designed to be
called by your own function that takes a variable number of
arguments and passes them to this function.

Currently, only the conversion specifications %d, %i, %u, %x, %s, and
%c are implemented by StrVPrintF() (and related functions).
Optional modifiers that are supported include: +, -, <space>, *,
<digits>, h and l (long). Refer to a C reference book for more details
on how these conversion specifications work.

Compatibility This function is obsolete and provided for backward compatibility
only. Use the standard C library function vsprintf() instead.

Example The following code sample shows how to use this call:

#include <unix_stdarg.h>
void MyPrintF(char *s, char *formatStr, ...)
{
 va_list args;
 char text[0x100];
 va_start(args, formatStr);
 StrVPrintFV50(text, formatStr, args);
 va_end(args);
 MyPutS(text);
}

See Also StrPrintFV50()

Exploring Palm OS: Text and Localization 85

8
Text Manager
This chapter provides information about the Text Manager API
declared in TextMgr.h by discussing these topics:

Text Manager Structures and Types 85

Text Manager Constants 87

Text Manager Functions and Macros 94

For more information on the Text Manager, see the chapter “Text”
on page 3.

Text Manager Structures and Types

CharEncodingType Typedef
Purpose Specifies possible character encodings.

Declared In TextMgr.h

Prototype typedef uint16_t CharEncodingType

Comments A given device supports a single character encoding. Palm OS®
Cobalt devices support either the Palm OS version of Windows code
page 12521 (an extension of ISO Latin 1) or the Palm OS version of
Windows code page 9321 (an extension of Shift JIS). In addition,
Palm OS licensees and some third-party developers provide
support for additional character encodings including Big-5, Hebrew,
Arabic, Thai, Korean, and Cyrillic.

The character encoding constants generally follow the format:

charEncodingName

1. This encoding is identical to its Windows counterpart with some additional
characters added in the control range.

Text Manager
CharEncodingType

86 Exploring Palm OS: Text and Localization

where Name is the name of the character encoding.

The following table shows examples of the character encoding
constants. For a complete list, see the TextMgr.h file.

Constant Description

charEncodingUnknown Unknown to this version of
Palm OS

charEncodingAscii ISO 646-1991

charEncodingISO8859_1 ISO 8859 Part 1 (also known as
ISO Latin 1). This encoding is
commonly used for the Roman
alphabet

charEncodingPalmLatin Palm OS version of Microsoft
Windows code page 1252. This
encoding is identical to code page
1252 with Palm-specific
characters added in the control
range.

charEncodingShiftJIS Encoding for 0208-1990 with
single-byte Japanese Katakana.
This encoding is commonly used
for Japanese alphabets.

charEncodingPalmSJIS Palm OS version of Microsoft
Windows code page 932. This
encoding is identical to code page
932, with Palm-specific characters
added in the control range and
with a Yen symbol instead of the
Reverse Solidus at location 0x5c.

charEncodingCP1252 Microsoft Windows extensions to
ISO 8859 Part 1

Text Manager
Byte Attribute Flags

Exploring Palm OS: Text and Localization 87

TxtConvertStateType Struct
Purpose Maintains state across calls to TxtConvertEncoding(). It is

essentially opaque; simply declare a structure of this type and pass a
pointer to your structure when making multiple calls to
TxtConvertEncoding() for a single source text buffer.

Declared In TextMgr.h

Prototype typedef struct {
 uint8_t ioSrcState[kTxtConvertStateSize];
 uint8_t ioDstState[kTxtConvertStateSize];
} TxtConvertStateType

Comments kTxtConvertStateSize is simply a constant that determines the
size of the source and destination state buffers.

Text Manager Constants

Byte Attribute Flags
Purpose Flags that identify the possible locations of a given byte within a

multi-byte character.

Declared In TextMgr.h

Constants #define byteAttrFirst 0x80
First byte of multi-byte character.

#define byteAttrHighLow (byteAttrFirst |
byteAttrLast)

Either the first byte of a multi-byte character or the last byte
of a multi-byte character.

charEncodingCP932 Microsoft Windows extensions to
Shift JIS

charEncodingUTF8 Eight-bit safe encoding for
Unicode

Constant Description

Text Manager
Character Attributes

88 Exploring Palm OS: Text and Localization

#define byteAttrLast 0x40
Last byte of multi-byte character.

#define byteAttrMiddle 0x20
Middle byte of multi-byte character.

#define byteAttrSingle 0x01
Single-byte character.

#define byteAttrSingleLow (byteAttrSingle |
byteAttrLast)

Either a single-byte character or the low-order byte of a
multi-byte character.

Comments If a byte is valid in more than one location of a character, multiple
return bits are set. For example, 0x40 in the Shift JIS character
encoding is valid as a single-byte character and as the low-order
byte of a double-byte character. Thus, the return value for
TxtByteAttr(0x40) on a Shift JIS system has both the
byteAttrSingle and byteAttrLast bits set.

Every byte in a stream of double-byte data must be either a single
byte, a high byte, a single/low byte (byteAttrSingleLow), or a
high/low byte (byteAttrHighLow).

See Also TxtByteAttr()

Character Attributes
Purpose Flags that identify various character attributes.

Declared In TextMgr.h

Constants #define charAttrAlNum (charAttr_DI | charAttr_LO |
charAttr_UP | charAttr_XA)

Alphanumeric characters

#define charAttrAlpha (charAttr_LO | charAttr_UP |
charAttr_XA)

Alphabetic characters

#define charAttrCntrl (charAttr_BB | charAttr_CN)
Control characters

#define charAttrDelim (charAttr_SP | charAttr_PU)
Delimiters

Text Manager
Character Attributes

Exploring Palm OS: Text and Localization 89

#define charAttrGraph (charAttr_DI | charAttr_LO |
charAttr_PU | charAttr_UP | charAttr_XA)

Printable, non-space characters

#define charAttrPrint (charAttr_DI | charAttr_LO |
charAttr_PU | charAttr_SP | charAttr_UP |
charAttr_XA)

Printable characters

#define charAttrSpace (charAttr_CN | charAttr_SP |
charAttr_XS)

Whitespace characters

#define charAttr_BB 0x00000080
BEL, BS, etc.

#define charAttr_CN 0x00000040
CR, FF, HT, NL, VT

#define charAttr_DI 0x00000020
'0'-'9'

#define charAttr_DO 0x00000400
Characters that appear on the display but never in user data,
such as the ellipsis character

#define charAttr_LO 0x00000010
'a'-'z' and lowercase extended characters

#define charAttr_PU 0x00000008
Punctuation

#define charAttr_SP 0x00000004
Space

#define charAttr_UP 0x00000002
'A'-'Z' and uppercase extended characters

#define charAttr_XA 0x00000200
Extra alphabetic

#define charAttr_XD 0x00000001
'0'-'9', 'A'-'F', 'a'-'f'

#define charAttr_XS 0x00000100
Extra space

Text Manager
Character Encoding Attributes

90 Exploring Palm OS: Text and Localization

Character Encoding Attributes
Purpose Constants used to interpret the return value of

TxtGetEncodingFlags().

Declared In TextMgr.h

Constants #define charEncodingOnlySingleByte 0x00000001
The character encoding consists only of single-byte
characters.

#define charEncodingHasDoubleByte 0x00000002
The character encoding contains one or more double-byte
characters.

#define charEncodingHasLigatures 0x00000004
The character encoding has ligatures.

#define charEncodingRightToLeft 0x00000008
The character encoding supports a writing system that
primarily renders text right-to-left.

Encoding Conversion Constant Modifiers
Purpose Constants to OR with the destination character encoding

(CharEncodingType) passed to TxtConvertEncoding().

Declared In TextMgr.h

Constants #define charEncodingDstBestFitFlag 0x8000
Causes TxtConvertEncoding() to make an extra effort to
convert characters in the source encoding to similar (if not
equal) characters in the destination encoding.

Comments As an example, when converting from charEncodingUCS2 to
charEncodingPalmSJIS, no mapping exists for U+00A1
(INVERTED EXCLAMATION MARK) because this character
doesn't exist in charEncodingPalmSJIS. In this case,
TxtConvertEncoding() returns txtErrNoCharMapping. If you
OR the charEncodingDstBestFitFlag with the destination
character encoding, however, TxtConvertEncoding() converts
the character to chrExclamationMark (which is close). Generally,
the operating system tries to support as many code page 1252
characters as possible in the “best fit” table.

Text Manager
Size Constants

Exploring Palm OS: Text and Localization 91

If charEncodingDstBestFitFlag is set and either the source or
destination encoding is unknown, TxtConvertEncoding() copies
anything that is 7-bit ASCII from the source to the destination. It
then returns txtErrUnknownEncodingFallbackCopy. The rules
for unknown characters apply during this 7-bit copy; if an
inconvertible character is encountered, the substitution string (if one
has been specified) is used in its place, and txtErrNoCharMapping
is returned instead.

Encoding Conversion Substitution Constants
Purpose Values used to substitute in TxtConvertEncoding().

Declared In TextMgr.h

Constants #define textSubstitutionDefaultLen 1
The length in bytes of textSubstitutionDefaultStr.

#define textSubstitutionDefaultStr "?"
Can be passed to TxtConvertEncoding() as the
substitution string parameter. The substitution string
contains a character that is used in the destination string if a
character from the source string is not recognized in the
destination encoding.

#define textSubstitutionEncoding charEncodingUTF8
The encoding used for the substitution string parameter of
TxtConvertEncoding(). The string you pass for the
substitution string parameter is always assumed to be in this
encoding.

Size Constants
Purpose Constants that specify sizes of items used in the Text Manager.

Declared In TextMgr.h

Constants #define kTxtConvertStateSize 32
Used in the TxtConvertStateType structure to specify the
maximum size of the source and destination encodings.

Text Manager
Text Manager Error Constants

92 Exploring Palm OS: Text and Localization

#define maxCharBytes 4
Maximum size a single wchar32_t character will occupy in
a text string.

#define maxEncodingNameLength 40
Maximum length in bytes of any character encoding name.

Text Manager Error Constants
Purpose Error constants.

Declared In TextMgr.h

Constants #define txtErrConvertOverflow (txtErrorClass | 4)
The destination buffer is not large enough to contain the
converted text.

#define txtErrConvertUnderflow (txtErrorClass | 5)
The end of the source buffer contains a partial character.

#define txtErrMalformedText (txtErrorClass | 9)
An error in the source text encoding has been discovered.

#define txtErrNoCharMapping (txtErrorClass | 7)
The device does not contain a mapping between the source
and destination encodings for at least one of the characters in
the source string.

#define txtErrTranslitOverflow (txtErrorClass | 3)
The destination buffer is not large enough to contain the
converted string.

#define txtErrTranslitOverrun (txtErrorClass | 2)
The source and destination buffers point to the same memory
location and performing the requested operation would
cause the function to overwrite unprocessed data in the input
buffer.

#define txtErrTranslitUnderflow (txtErrorClass | 8)
The end of the source buffer contains a partial character.

#define txtErrUknownTranslitOp (txtErrorClass | 1)
The transliteration operation constant value is not recognized

#define txtErrUnknownEncoding (txtErrorClass | 6)
One of the specified encodings is unknown or can’t be
handled.

Text Manager
TranslitOpType

Exploring Palm OS: Text and Localization 93

#define txtErrUnknownEncodingFallbackCopy
(txtErrorClass | 10)

Either the source or destination encoding is unknown, and
the best fit flag was set in the destination encoding.

Text Manager Feature Settings
Purpose Text Manager settings that can be obtained or set in the

sysFtrNumTextMgrFlags feature.

Declared In TextMgr.h

Constants #define textMgrBestFitFlag 0x00000004
The TxtConvertEncoding() function can use the
charEncodingDstBestFitFlag. See “Encoding
Conversion Constant Modifiers” on page 90 for more
information. This flag is always set in Palm OS Cobalt.

#define textMgrExistsFlag 0x00000001
The Text Manager is installed on the device. This flag is
always set in Palm OS Cobalt.

#define textMgrStrictFlag 0x00000002
No longer used.

TranslitOpType Typedef
Purpose Specifies the transliteration operation to be performed by a given

call to TxtTransliterate(). Each character encoding contains its
own set of special transliteration operations, the values for which
begin at translitOpCustomBase.

Declared In TextMgr.h

Prototype typedef uint16_t TranslitOpType

Constants #define translitOpStandardBase 0
Base value at which character-encoding-independent
transliterations are defined.

#define translitOpUpperCase 0
Convert all characters to uppercase.

#define translitOpLowerCase 1
Convert all characters to lowercase.

Text Manager
Text Manager Functions and Macros

94 Exploring Palm OS: Text and Localization

#define translitOpReserved2 2
Reserved for future use.

#define translitOpReserved3 3
Reserved for future use.

#define translitOpPreprocess 0x8000
OR this value with another transliteration flag to have the
TxtTransliterate() function return the space
requirements for the result.

#define translitOpCustomBase 1000
Base value at which character-encoding specific
transliteration constants begin.

Text Manager Functions and Macros

CHAR_ENCODING_VALUE Macro
Purpose Macro used to set the values of the character encoding constants.

Declared In TextMgr.h

Prototype #define CHAR_ENCODING_VALUE (value)

Parameters → value
An integer value.

Returns A CharEncodingType value.

Comments Applications do not need to use this macro.

sizeOf7BitChar Macro
Purpose Returns the true size of a low-ASCII character.

Declared In TextMgr.h

Prototype #define sizeOf7BitChar (c)

Parameters → c
A character constant.

Returns The value 1.

Text Manager
TxtCaselessCompare

Exploring Palm OS: Text and Localization 95

Comments In C, checking the size of a character constant returns the size of an
integer. For example, sizeof('a') returns 2. Because of this, it’s
safest to use the sizeOf7BitChar() macro to document buffer
size and string length calculations. Note that this can only be used
with low-ASCII characters, as anything else might be the high byte
of a double-byte character.

TxtByteAttr Function
Purpose Returns the possible locations of a given byte within a multi-byte

character.

Declared In TextMgr.h

Prototype uint8_t TxtByteAttr (uint8_t iByte)

Parameters → iByte
A byte representing all or part of a valid character.

Returns A byte with one or more of the Byte Attribute Flags set.

Comments Text Manager functions that need to determine the byte positioning
of a character use TxtByteAttr() to do so. You rarely need to use
this function yourself.

TxtCaselessCompare Function
Purpose Performs a case-insensitive comparison of two text buffers.

Declared In TextMgr.h

Prototype int16_t TxtCaselessCompare (const char *s1,
size_t s1Len, size_t *s1MatchLen,
const char *s2, size_t s2Len,
size_t *s2MatchLen)

Parameters → s1
The first text buffer to compare.

→ s1Len
The length in bytes of the text pointed to by s1.

Text Manager
TxtCaselessCompare

96 Exploring Palm OS: Text and Localization

← s1MatchLen
Points to the offset of the first character in s1 that determines
the sort order. Pass NULL for this parameter if you don’t need
to know this number.

→ s2
The second text buffer to compare.

→ s2Len
The length in bytes of the text pointed to by s2.

← s2MatchLen
Points to the offset of the first character in s2 that determines
the sort order. Pass NULL for this parameter if you don’t need
to know this number.

Returns One of the following values:

Comments In certain character encodings (such as Shift JIS), one character may
be accurately represented as either a single-byte character or a
multi-byte character. TxtCaselessCompare() accurately matches
a single-byte character with its multi-byte equivalent. For this
reason, the values returned in s1MatchLen and s2MatchLen are
not always equal.

You must make sure that the parameters s1 and s2 point to the start
of a valid character. That is, they must point to the first byte of a
multi-byte character or they must point to a single-byte character; if
they don’t, results are unpredictable.

See Also StrCaselessCompare(), TxtCompare(), StrCompare()

< 0 If s1 occurs before s2 in alphabetical order.

> 0 If s1 occurs after s2 in alphabetical order.

0 If the two substrings that were compared are equal.

Text Manager
TxtCharBounds

Exploring Palm OS: Text and Localization 97

TxtCharAttr Function
Purpose Returns a character’s attributes.

Declared In TextMgr.h

Prototype uint32_t TxtCharAttr (wchar32_t iChar)

Parameters → iChar
Any valid character.

Returns An integer with any of the Character Attributes bits set.

Comments The character passed to this function must be a valid character
given the system encoding.

This function is used in the Text Manager’s character attribute
macros (TxtCharIsAlNum(), TxtCharIsCntrl(), and so on).
The macros perform operations analogous to the standard C
functions isPunct(), isPrintable(), and so on. Usually, you’d
use one of these macros instead of calling TxtCharAttr() directly.

To obtain attributes specific to a given character encoding, use
TxtCharXAttr().

See Also TxtCharIsValid()

TxtCharBounds Function
Purpose Returns the boundaries of a character containing the byte at a

specified offset in a string.

Declared In TextMgr.h

Prototype wchar32_t TxtCharBounds (const char *iTextP,
size_t iOffset, size_t *oCharStart,
size_t *oCharEnd)

Parameters → iTextP
The text buffer to search.

→ iOffset
A valid offset into the buffer iTextP. This location may
contain a byte in any position (start, middle, or end) of a
multi-byte character.

Text Manager
TxtCharEncoding

98 Exploring Palm OS: Text and Localization

← oCharStart
Points to the starting offset of the character containing the
byte at iOffset.

← oCharEnd
Points to the ending offset of the character containing the
byte at iOffset.

Returns The character located between the offsets oCharStart and
oCharEnd.

Comments Use this function to determine the boundaries of a character in a
string or text buffer.

TxtCharBounds() is often slow and should be used only where
needed. If the byte at iOffset is valid in more than one location of
a character, the function must search back toward the beginning of
the text buffer until it finds an unambiguous byte to determine the
appropriate boundaries.

You must make sure that the parameter iTextP points to the
beginning of the string. That is, if the string begins with a multi-byte
character, iTextP must point to the first byte of that character; if it
doesn’t, results are unpredictable.

TxtCharEncoding Function
Purpose Returns the minimum encoding required to represent a character.

Declared In TextMgr.h

Prototype CharEncodingType TxtCharEncoding (wchar32_t iChar)

Parameters → iChar
A valid character.

Returns A CharEncodingType value that indicates the minimum encoding
required to represent iChar. If the character isn’t recognizable,
charEncodingUnknown is returned.

Comments The minimum encoding is the encoding that represents the fewest
number of characters while still containing the character specified in
iChar. For example, if the character is a blank or a tab character, the
minimum encoding is charEncodingAscii because these
characters can be represented in single-byte ASCII. If the character is
a ü, the minimum encoding is charEncodingISO8859_1.

Text Manager
TxtCharIsAlpha

Exploring Palm OS: Text and Localization 99

This function is used by TxtStrEncoding(), which is the function
that most applications should use to determine the character
encoding for tagging text (for instance, for email).

Use TxtMaxEncoding() to determine the order of encodings.

Palm OS only supports a single character encoding at a time.
Because of this, the result of TxtCharEncoding() is always
logically equal to or less than the encoding used on the current
system. That is, you’ll only receive a return value of
charEncodingISO8859_1 if you’re running on a US or European
system and you pass a non-ASCII character.

See Also TxtStrEncoding(), TxtMaxEncoding()

TxtCharIsAlNum Macro
Purpose Indicates if the character is alphanumeric.

Declared In TextMgr.h

Prototype #define TxtCharIsAlNum (ch)

Parameters → ch
A valid character.

Returns true if the character is a letter in an alphabet or a numeric digit,
false otherwise.

See Also TxtCharIsDigit(), TxtCharIsAlpha()

TxtCharIsAlpha Macro
Purpose Indicates if a character is a letter in an alphabet.

Declared In TextMgr.h

Prototype #define TxtCharIsAlpha (ch)

Parameters → ch
A valid character.

Returns true if the character is a letter in an alphabet, false otherwise.

See Also TxtCharIsAlNum(), TxtCharIsLower(), TxtCharIsUpper()

Text Manager
TxtCharIsCntrl

100 Exploring Palm OS: Text and Localization

TxtCharIsCntrl Macro
Purpose Indicates if a character is a control character.

Declared In TextMgr.h

Prototype #define TxtCharIsCntrl (ch)

Parameters → ch
A valid character.

Returns true if the character is a non-printable character, such as the bell
character or a carriage return; false otherwise.

TxtCharIsDelim Macro
Purpose Indicates if a character is a delimiter.

Declared In TextMgr.h

Prototype #define TxtCharIsDelim (ch)

Parameters → ch
A valid character.

Returns true if the character is a word delimiter (whitespace or
punctuation), false otherwise.

TxtCharIsDigit Macro
Purpose Indicates if the character is a decimal digit.

Declared In TextMgr.h

Prototype #define TxtCharIsDigit (ch)

Parameters → ch
A valid character.

Returns true if the character is 0 through 9, false otherwise.

See Also TxtCharIsAlNum(), TxtCharIsHex()

Text Manager
TxtCharIsHardKey

Exploring Palm OS: Text and Localization 101

TxtCharIsGraph Macro
Purpose Indicates if a character is a graphic character.

Declared In TextMgr.h

Prototype #define TxtCharIsGraph (ch)

Parameters → ch
A valid character.

Returns true if the character is a graphic character, false otherwise.

Comments A graphic character is any character visible on the screen, in other
words, letters, digits, and punctuation marks. A blank space is not a
graphic character because it is not visible.

This macro differs from TxtCharIsPrint() in that it returns
false if the character is whitespace. TxtCharIsPrint() returns
true if the character is whitespace.

TxtCharIsHardKey Macro
Purpose Returns true if the character is one of the hard keys on the device.

Declared In TextMgr.h

Prototype #define TxtCharIsHardKey (m, c)

Parameters → m
The value passed in the modifiers field of the
keyDownEvent.

→ c
The character from the keyDownEvent.

Returns true if the character is one of the built-in hard keys on the device,
false otherwise.

Text Manager
TxtCharIsHex

102 Exploring Palm OS: Text and Localization

TxtCharIsHex Macro
Purpose Indicates if a character is a hexadecimal digit.

Declared In TextMgr.h

Prototype #define TxtCharIsHex (ch)

Parameters → ch
A valid character.

Returns true if the character is a hexadecimal digit from 0 to F, false
otherwise.

See Also TxtCharIsDigit()

TxtCharIsLower Macro
Purpose Indicates if a character is a lowercase letter.

Declared In TextMgr.h

Prototype #define TxtCharIsLower (ch)

Parameters → ch
A valid character.

Returns true if the character is a lowercase letter, false otherwise.

See Also TxtCharIsAlpha(), TxtCharIsUpper()

TxtCharIsPrint Macro
Purpose Indicates if a character is printable.

Declared In TextMgr.h

Prototype #define TxtCharIsPrint (ch)

Parameters → ch
A valid character.

Returns true if the character is not a control character, false otherwise.

Comments This macro differs from TxtCharIsGraph() in that it returns true
if the character is whitespace. TxtCharIsGraph() returns false if
the character is whitespace.

Text Manager
TxtCharIsUpper

Exploring Palm OS: Text and Localization 103

If you are using a debug ROM and you pass a virtual character to
this macro, a fatal alert is generated.

See Also TxtCharIsValid()

TxtCharIsPunct Macro
Purpose Indicates if a character is a punctuation mark.

Declared In TextMgr.h

Prototype #define TxtCharIsPunct (ch)

Parameters → ch
A valid character.

Returns true if the character is a punctuation mark, false otherwise.

TxtCharIsSpace Macro
Purpose Indicates if a character is a whitespace character.

Declared In TextMgr.h

Prototype #define TxtCharIsSpace (ch)

Parameters → ch
A valid character.

Returns true if the character is whitespace such as a blank space, tab, or
newline; false otherwise.

TxtCharIsUpper Macro
Purpose Indicates if a character is an uppercase letter.

Declared In TextMgr.h

Prototype #define TxtCharIsUpper (ch)

Parameters → ch
A valid character.

Returns true if the character is an uppercase letter, false otherwise.

See Also TxtCharIsAlpha(), TxtCharIsLower()

Text Manager
TxtCharIsValid

104 Exploring Palm OS: Text and Localization

TxtCharIsValid Function
Purpose Determines whether a character is valid given the Palm OS

character encoding.

Declared In TextMgr.h

Prototype Boolean TxtCharIsValid (wchar32_t iChar)

Parameters → iChar
A character.

Returns true if iChar is a valid character; false if iChar is not a valid
character.

See Also TxtCharAttr(), TxtCharIsPrint()

TxtCharIsVirtual Macro
Purpose Returns whether a character is a virtual character or not.

Declared In TextMgr.h

Prototype #define TxtCharIsVirtual (m, c)

Parameters → m
The value passed in the modifiers field of the
keyDownEvent.

→ c
The character from the keyDownEvent.

Returns true if the character c is a virtual character, false otherwise.

Comments Virtual characters are nondisplayable characters that trigger special
events in the operating system, such as displaying low battery
warnings or displaying the keyboard dialog. Virtual characters
should never occur in any data and should never appear on the
screen.

Text Manager
TxtCharXAttr

Exploring Palm OS: Text and Localization 105

TxtCharSize Function
Purpose Returns the number of bytes required to store the character in a

string.

Declared In TextMgr.h

Prototype size_t TxtCharSize (wchar32_t iChar)

Parameters → iChar
A valid character.

Returns The number of bytes required to store the character in a string.

Comments Although character variables are always multi-byte long
wchar32_t values, in some character encodings such as Shift JIS,
characters in strings are represented by a mix of one or more bytes
per character. If the character can be represented by a single byte (its
high-order bytes are 0), it is stored in a string as a single-byte
character.

See Also TxtCharBounds()

TxtCharXAttr Function
Purpose Returns the extended attribute bits for a character.

Declared In TextMgr.h

Prototype uint32_t TxtCharXAttr (wchar32_t iChar)

Parameters → iChar
A valid character.

Returns An unsigned 32-bit value with one or more extended attribute bits
set. For specific return values, look in the header files that are
specific to certain character encodings (CharLatin.h or
CharShiftJIS.h).

Comments To interpret the results, you must know the character encoding
being used. The function LmGetSystemLocale() returns the
character encoding used on the device as one of the
CharEncodingType values. You can pass NULL as the parameter to
LmGetSystemLocale() if you don’t want to retrieve any other
locale information.

See Also TxtCharAttr(), “Retrieving the Character Encoding”

Text Manager
TxtCompare

106 Exploring Palm OS: Text and Localization

TxtCompare Function
Purpose Performs a case-sensitive comparison of all or part of two text

buffers.

Declared In TextMgr.h

Prototype int16_t TxtCompare (const char *s1, size_t s1Len,
size_t *s1MatchLen, const char *s2,
size_t s2Len, size_t *s2MatchLen)

Parameters → s1
The first text buffer to compare.

→ s1Len
The length in bytes of the text pointed to by s1.

← s1MatchLen
Points to the offset of the first character in s1 that determines
the sort order. Pass NULL for this parameter if you don’t need
to know this number.

→ s2
The second text buffer to compare.

→ s2Len
The length in bytes of the text pointed to by s2.

← s2MatchLen
Points to the offset of the first character in s2 that determines
the sort order. Pass NULL for this parameter if you don’t need
to know this number.

Returns One of the following values:

Comments This function performs a case-sensitive comparison. If you want to
perform a case-insensitive comparison, use
TxtCaselessCompare().

The s1MatchLen and s2MatchLen parameters are not as useful for
the TxtCompare() function as they are for the
TxtCaselessCompare() function because TxtCompare()
implements a multi-pass sort algorithm. For example, if you use

< 0 If s1 occurs before s2 in alphabetical order.

> 0 If s1 occurs after s2 in alphabetical order.

0 If the two substrings that were compared are equal.

Text Manager
TxtConvertEncoding

Exploring Palm OS: Text and Localization 107

TxtCaselessCompare() to compare the string “celery” with the
string “Cauliflower,” it returns a positive value to indicate that
“celery” sorts after “Cauliflower,” and it returns a match length of 1
to indicate that the second letter determines the sort order (“e”
comes after “a”). However, because TxtCompare() ultimately does
a case-sensitive comparison, comparing the string “c” to the string
“C” produces a negative result and a match length of 0.

In certain character encodings (such as Shift JIS), one character may
be accurately represented as either a single-byte character or a
multi-byte character. TxtCompare() accurately matches a single-
byte character with its multi-byte equivalent. For this reason, the
values returned in s1MatchLen and s2MatchLen are not always
equal.

You must make sure that the parameters s1 and s2 point to the start
of a a valid character. That is, they must point to the first byte of a
multi-byte character or they must point to a single-byte character; if
they don’t, results are unpredictable.

See Also StrCompare(), TxtFindString()

TxtConvertEncoding Function
Purpose Converts a text buffer from one character encoding to another.

Declared In TextMgr.h

Prototype status_t TxtConvertEncoding (Boolean newConversion,
TxtConvertStateType *ioStateP,
const char *srcTextP, size_t *ioSrcBytes,
CharEncodingType srcEncoding, char *dstTextP,
size_t *ioDstBytes,
CharEncodingType dstEncoding,
const char *substitutionStr,
size_t substitutionLen)

Parameters → newConversion
Set to true if this function call is starting a new conversion,
or false if this function call is a continuation of a previous
conversion.

Text Manager
TxtConvertEncoding

108 Exploring Palm OS: Text and Localization

↔ ioStateP
If newConversion is false, this parameter must point to a
TxtConvertStateType structure containing the same data
used for the previous invocation. If newConversion is true
and no subsequent calls are planned, this parameter can be
NULL.

→ srcTextP
The source text buffer. If newConversion is true, this must
point to the start of a text buffer. If newConversion is
false, it may point to a location in the middle of a text
buffer. In either case, it must point to an inter-character
boundary.

↔ ioSrcBytes
A pointer to the size, in bytes, of the text starting at
srcTextP that needs to be converted. Upon return,
*ioSrcBytes contains the number of bytes successfully
processed.

If srcTextP is null-terminated and you want dstTextP to
be null terminated, include a byte for the null terminator in
this size.

→ srcEncoding
The character encoding that the source text uses. See
CharEncodingType.

↔ dstTextP
The destination text buffer, which must be large enough to
hold the result of converting srcTextP to the specified
encoding. You can pass NULL for the dstTextP parameter to
determine the required length of the buffer before actually
doing the conversion; the required length is returned in
ioDstBytes.

TxtConvertEncoding() does not write the terminating
null character to dstTextP unless one is present in
srcTextP and ioSrcBytes includes space for it.

↔ ioDstBytes
A pointer to the length, in bytes, of dstTextP. Upon return,
*ioDstBytes contains the number of bytes required to
represent the source text in the new encoding.

Text Manager
TxtConvertEncoding

Exploring Palm OS: Text and Localization 109

→ dstEncoding
The character encoding to which to convert srcTextP. See
CharEncodingType for a description of the possible values.
Note that the encoding can be modified, giving you greater
control over the conversion process; see “Encoding
Conversion Constant Modifiers” on page 90.

→ substitutionStr
A string to be substituted for any invalid or inconvertible
characters that occur in the source text. This string must be
valid in the encoding specified by the constant
textSubstitutionEncoding. If this parameter is NULL,
TxtConvertEncoding() immediately returns if it
encounters an invalid character.

You can pass the constant textSubstitutionDefaultStr
for this parameter to have a question mark used as the
substitution string.

→ substitutionLen
The number of bytes in substitutionStr, not including
the terminating null byte.

If you use textSubstitutionDefaultStr for
substitutionStr, use textSubstitutionDefaultLen
for this parameter.

Returns errNone upon success or one of the following if an error occurs:

txtErrConvertOverflow
The destination buffer is not large enough to contain the
converted text.

txtErrConvertUnderflow
The end of the source buffer contains a partial character.

txtErrMalformedText
An error in the source text encoding has been discovered.

txtErrNoCharMapping
The device does not contain a mapping between the source
and destination encodings for at least one of the characters in
srcTextP.

txtErrUnknownEncoding
One of the specified encodings is unknown or can’t be
handled.

Text Manager
TxtConvertEncoding

110 Exploring Palm OS: Text and Localization

txtErrUnknownEncodingFallbackCopy
Either the source or destination encoding is unknown, and
the best fit flag was set in the destination encoding. Before
returning this error code, TxtConvertEncoding() copies
anything that is 7-bit ASCII from the source text buffer to the
destination text buffer.

Comments This function converts ioSrcBytes of text in srcTextP from the
srcEncoding to the dstEncoding character encoding and returns
the result in dstTextP.

The supported encodings for srcEncoding and dstEncoding are
locale-dependent. See “Encodings Supported by Various Locales”
on page 112. However, this function is most commonly used to
convert between an encoding used on the Internet and the device’s
encoding; therefore, all locales support conversions between most
Unicode character sets and the device’s encoding. If you use any of
the following character encodings, the conversion should work:

• The device’s character encoding as returned by the function
LmGetSystemLocale()

• Any of the following, which can be retrieved using
LmGetLocaleSetting():

– lmChoiceInboundDefaultVObjectEncoding (as
srcEncoding only)

– lmChoicePrimarySMSEncoding (as dstEncoding
only)

– lmChoiceSecondarySMSEncoding (as dstEncoding
only)

– lmChoicePrimaryEmailEncoding (as dstEncoding
only)

– lmChoiceSecondaryEmailEncoding (as
dstEncoding only)

– lmChoiceOutboundVObjectEncoding (as
dstEncoding only)

Text Manager
TxtConvertEncoding

Exploring Palm OS: Text and Localization 111

TIP: If you’re converting text that was received from the Internet,
the encoding name is passed along with the text data. Use the
TxtNameToEncoding() function to convert the name to a
CharEncodingType value.

If the function encounters an inconvertible character in the source
text, it puts substitutionStr in the destination buffer in that
character’s place and continues the conversion. When the
conversion is complete, it returns txtErrNoCharMapping to
indicate that an error occurred (assuming that no other higher-
priority error occurred during the conversion). If
substitutionStr is NULL, the function stops the conversion and
immediately returns txtErrNoCharMapping. ioSrcBytes is set
to the offset of the inconvertible character, dstTextP contains the
converted string up to that point, and ioDstBytes contains the size
of the converted text. You can examine the character at ioSrcBytes
and choose to move past it and continue the conversion. Follow the
rules for making repeated calls to TxtConvertEncoding() as
described below.

Calling TxtConvertEncoding() in a Loop

You can make repeated calls to TxtConvertEncoding() in a loop
if you only want to convert part of the input buffer at a time. When
you make repeated calls to this function, the first call should use
true for newConversion, and srcTextP should point to the start
of the text buffer. All subsequent calls should use the following
values:

newConversion
false.

ioStateP
The same data that was returned by the previous invocation.

srcTextP
The location where this call should begin converting.
Typically, this would be the previous srcTextP plus the
number of bytes returned in ioSrcBytes.

If you are skipping over an inconvertible character,
srcTextP must point to the character after that location.

Text Manager
TxtConvertEncoding

112 Exploring Palm OS: Text and Localization

ioSrcBytes
The number of bytes that this function call should convert.

dstTextP
A pointer to a location where this function can begin writing
the converted string. You might choose to have each function
call write to a different destination buffer. To have successive
calls write to the same buffer, pass the previous dstTextP
plus the number of bytes returned in ioDstBytes each time.

ioDstBytes
The number of bytes available for output in the dstTextP
buffer. In other words, the number of bytes remaining.

Encodings Supported by Various Locales

Each device’s ROM contains a system-use only locale module that
contains tables TxtConvertEncoding() uses to convert one
encoding to another. Therefore, the encodings that
TxtConvertEncoding() supports are dependent upon the ROM’s
locale. The locale module provides support for Unicode, the device
encoding, and a set of related or locale-important encodings. The
following tables summarize the set of encodings supported in
TxtConvertEncoding() by various locales.

Table 8.1 Source encodings for Latin ROMs

charEncodingUCS2 charEncodingUCS4

charEncodingUTF16 charEncodingUTF32

charEncodingUTF16BE charEncodingUTF32BE

charEncodingUTF16LE charEncodingUTF32LE

charEncodingUTF8 charEncodingPalmLatin

charEncodingAscii charEncodingGSM

charEncodingISO8859_1 charEncodingCP1252

Text Manager
TxtConvertEncoding

Exploring Palm OS: Text and Localization 113

Table 8.2 Destination encodings for Latin ROMs

charEncodingUCS2 charEncodingUCS4

charEncodingUTF16 charEncodingUTF32

charEncodingUTF16BE charEncodingUTF32BE

charEncodingUTF16LE charEncodingUTF32LE

charEncodingUTF8 charEncodingPalmLatin

charEncodingAscii charEncodingGSM

charEncodingISO8859_1 charEncodingCP1252

Table 8.3 Source encodings for Shift JIS ROMs

charEncodingUCS2 charEncodingUCS4

charEncodingUTF16 charEncodingUTF32

charEncodingUTF16BE charEncodingUTF32BE

charEncodingUTF16LE charEncodingUTF32LE

charEncodingUTF8 charEncodingPalmSJIS

charEncodingAscii charEncodingISO8859_1

charEncodingCP1252 charEncodingGSM

charEncodingShiftJIS charEncodingCP932

charEncodingISO2022Jp

Table 8.4 Destination encodings for Shift JIS ROMs

charEncodingUCS2 charEncodingUCS4

charEncodingUTF16 charEncodingUTF32

charEncodingUTF16BE charEncodingUTF32BE

charEncodingUTF16LE charEncodingUTF32LE

Text Manager
TxtConvertEncoding

114 Exploring Palm OS: Text and Localization

charEncodingUTF8 charEncodingPalmSJIS

charEncodingShiftJIS charEncodingCP932

charEncodingGSM charEncodingISO2022Jp

charEncodingISO8859_1 charEncodingCP1252

charEncodingAscii

Table 8.5 Source encodings for GB ROMs

charEncodingUCS2 charEncodingUTF8

charEncodingUTF16 charEncodingUTF16LE

charEncodingUTF16BE charEncodingUTF32

charEncodingUTF32BE charEncodingUTF32LE

charEncodingUCS4 charEncodingPalmGB

charEncodingGB2312 charEncodingGBK

charEncodingISO2022CN charEncodingBig5

charEncodingBig5_HKSCS charEncodingAscii

charEncodingCP1252 charEncodingISO8859_1

charEncodingGSM

Table 8.6 Destination encodings for GB ROMs

charEncodingUCS2 charEncodingUTF8

charEncodingUTF16 charEncodingUTF16LE

charEncodingUTF16BE charEncodingUTF32

charEncodingUTF32BE charEncodingUTF32LE

charEncodingUCS4 charEncodingPalmGB

Table 8.4 Destination encodings for Shift JIS ROMs
 (continued)

Text Manager
TxtFindString

Exploring Palm OS: Text and Localization 115

TxtEncodingName Function
Purpose Obtains a character encoding’s name.

Declared In TextMgr.h

Prototype const char *TxtEncodingName
(CharEncodingType iEncoding)

Parameters → iEncoding
One of the CharEncodingType values, indicating a
character encoding.

Returns A constant string containing the name of the encoding.

Comments Use this function to obtain the official name of the character
encoding, suitable to pass to an Internet application or any other
application that requires the character encoding’s name to be passed
along with the data.

See Also TxtNameToEncoding()

TxtFindString Function
Purpose Performs a case-insensitive search for a string in another string.

Declared In TextMgr.h

Prototype Boolean TxtFindString (const char *iSrcStringP,
const char *iTargetStringP, size_t *oFoundPos,
size_t *oFoundLen)

Parameters → iSrcStringP
The string to be searched.

→ iTargetStringP
Prepared version of the string to be found. This string should
either be passed directly from the strToFind field in the

charEncodingGB2312 charEncodingGBK

charEncodingISO2022CN charEncodingAscii

charEncodingISO8859_1 charEncodingGSM

Table 8.6 Destination encodings for GB ROMs (continued)

Text Manager
TxtGetChar

116 Exploring Palm OS: Text and Localization

sysAppLaunchCmdFind launch code’s parameter block or
it should be prepared using the function
TxtPrepFindString().

← oFoundPos
Pointer to the offset of the match in iSrcStringP.

← oFoundLen
Pointer to the length in bytes of the matching text.

Returns true if the function finds iTargetStringP within
iSrcStringP; false otherwise.

If found, the values pointed to by the oFoundPos and oFoundLen
parameters are set to the starting offset and the length of the
matching text. If not found, the values pointed to by oFoundPos
and oFoundLen are set to 0.

The search that TxtFindString() performs is locale-dependent.
On most ROMs with Latin-based encodings, TxtFindString()
returns true only if the string is at the beginning of a word. On
Shift JIS encoded ROMs, TxtFindString() returns true if the
string is located anywhere in the word.

You must make sure that the parameters iSrcStringP and
iTargetStringP point to the start of a valid character. That is,
they must point to the first byte of a multi-byte character, or they
must point to a single-byte character; if they don’t, results are
unpredictable.

See Also TxtCaselessCompare()

TxtGetChar Function
Purpose Retrieves the character starting at the specified offset within a text

buffer.

Declared In TextMgr.h

Prototype wchar32_t TxtGetChar (const char *iTextP,
size_t iOffset)

Parameters → iTextP
Pointer to the text buffer to be searched.

Text Manager
TxtGetNextChar

Exploring Palm OS: Text and Localization 117

→ iOffset
A valid offset into the buffer iTextP. This offset must point
to an inter-character boundary.

Returns The character at iOffset in iTextP.

Comments You must make sure that the parameter iTextP points to the start
of a valid character. That is, it must point to the first byte of a multi-
byte character or it must point to a single-byte character; if it
doesn’t, results are unpredictable.

See Also TxtGetNextChar(), TxtSetNextChar()

TxtGetEncodingFlags Function
Purpose Returns the attributes of a particular character encoding.

Declared In TextMgr.h

Prototype uint32_t TxtGetEncodingFlags
(CharEncodingType iEncoding)

Parameters → iEncoding
A CharEncodingType value specifying a character
encoding.

Returns An unsigned integer with one or more of the Character Encoding
Attributes flags set.

TxtGetNextChar Function
Purpose Retrieves the character starting at the specified offset within a text

buffer.

Declared In TextMgr.h

Prototype size_t TxtGetNextChar (const char *iTextP,
size_t iOffset, wchar32_t *oChar)

Parameters → iTextP
Pointer to the text buffer to be searched.

→ iOffset
A valid offset into the buffer iTextP. This offset must point
to an inter-character boundary.

Text Manager
TxtGetPreviousChar

118 Exploring Palm OS: Text and Localization

← oChar
The character at iOffset in iTextP. Pass NULL for this
parameter if you don’t need the character returned.

Returns The size in bytes of the character at iOffset. If oChar is not NULL
upon entry, it points to the character at iOffset upon return.

Comments You must make sure that the parameter iTextP points to the start
of a valid character. That is, it must point to the first byte of a multi-
byte character or it must point to a single-byte character; if it
doesn’t, results are unpredictable.

Example You can use this function to iterate through a text buffer character-
by-character in this way:

size_t i = 0;
wchar32_t ch;
while (i < bufferLength) {
 i += TxtGetNextChar(buffer, i, &ch);
 //do something with ch.
}

See Also TxtGetChar(), TxtGetPreviousChar(), TxtSetNextChar()

TxtGetPreviousChar Function
Purpose Retrieves the character before the specified offset within a text

buffer.

Declared In TextMgr.h

Prototype size_t TxtGetPreviousChar (const char *iTextP,
size_t iOffset, wchar32_t *oChar)

Parameters → iTextP
Pointer to the text buffer to be searched.

→ iOffset
A valid offset into the buffer iTextP. This offset must point
to an inter-character boundary.

← oChar
The character immediately preceding iOffset in iTextP.
Pass NULL for this parameter if you don’t need the character
returned.

Text Manager
TxtGetTruncationOffset

Exploring Palm OS: Text and Localization 119

Returns The size in bytes of the character preceding iOffset in iTextP. If
oChar is not NULL upon entry, then it points to the character
preceding iOffset upon return. Returns 0 if iOffset is at the
start of the buffer (that is, iOffset is 0).

Comments This function is often slower to use than TxtGetNextChar()
because it must determine the appropriate character boundaries if
the byte immediately before the offset is valid in more than one
location (start, middle, or end) of a multi-byte character. To do this,
it must work backwards toward the beginning of the string until it
finds an unambiguous byte.

You must make sure that the parameter iTextP points to the start
of a valid character. That is, it must point to the first byte of a multi-
byte character or it must point to a single-byte character; if it
doesn’t, results are unpredictable.

Example You can use this function to iterate through a text buffer character-
by-character in this way:

wchar32_t ch;
// Find the start of the character containing the last byte.
TxtCharBounds (buffer, bufferLength - 1, &start, &end);
i = start;
while (i > 0) {
 i -= TxtGetPreviousChar(buffer, i, &ch);
 //do something with ch.
}

TxtGetTruncationOffset Function
Purpose Returns the appropriate byte position for truncating a text buffer

such that it is at most a specified number of bytes long.

Declared In TextMgr.h

Prototype size_t TxtGetTruncationOffset
(const char *iTextP, size_t iOffset)

Parameters → iTextP
Pointer to a text buffer.

→ iOffset
An offset into the buffer iTextP.

Text Manager
TxtGetWordWrapOffset

120 Exploring Palm OS: Text and Localization

Returns The appropriate byte offset for truncating iTextP at a valid inter-
character boundary. The return value may be less than or equal to
iOffset.

Comments You must make sure that the parameter iTextP points to the start
of a valid character. That is, it must point to the first byte of a multi-
byte character or it must point to a single-byte character; if it
doesn’t, results are unpredictable.

TxtGetWordWrapOffset Function
Purpose Locates an appropriate place for a line break in a text buffer.

Declared In TextMgr.h

Prototype size_t TxtGetWordWrapOffset (const char *iTextP,
size_t iOffset)

Parameters → iTextP
Pointer to a text buffer.

→ iOffset
A valid offset where the search should begin. The search is
performed backward starting from this offset.

Returns The offset of a character that can begin on a new line (typically, the
beginning of the word that contains iOffset or last word before
iOffset). If an appropriate break could not be found, returns
iOffset.

Comments The FntWordWrap() function calls TxtGetWordWrapOffset()
to locate an appropriate place to break the text. The returned offset
points to the character that should begin the next line.

This function starts at iOffset and works backward until it finds a
character that typically occurs between words (for example, white
space or punctuation). Then it moves forward until it locates the
character that begins a word (typically, a letter or number). Note
that this function may return an offset value that is greater than the
one passed in if the offset passed in occurs immediately before
white space or in the middle of white space.

Text Manager
TxtNameToEncoding

Exploring Palm OS: Text and Localization 121

TxtMaxEncoding Function
Purpose Returns the higher of two encodings.

Declared In TextMgr.h

Prototype CharEncodingType TxtMaxEncoding
(CharEncodingType a, CharEncodingType b)

Parameters → a
A CharEncodingType to compare.

→ b
Another CharEncodingType to compare.

Returns The higher of a or b. One character encoding is higher than another
if it is more specific. For example code page 1252 is “higher” than
ISO 8859-1 because it represents more characters than ISO 8859-1.

Comments This function is used by TxtStrEncoding() to determine the
encoding required for a string.

See Also TxtCharEncoding(), CharEncodingType

TxtNameToEncoding Function
Purpose Returns an encoding’s constant given its name.

Declared In TextMgr.h

Prototype CharEncodingType TxtNameToEncoding
(const char *iEncodingName)

Parameters → iEncodingName
One of the string constants containing the official name of an
encoding. You can find a list of official names at this URL:
http://www.iana.org/assignments/character-
sets.

Returns One of the CharEncodingType constants. Returns
charEncodingUnknown if the specified encoding could not be
found.

Comments Use this function to convert a character encoding’s name as received
from an Internet application into the character encoding constant
that some Text Manager functions require.

Text Manager
TxtNextCharSize

122 Exploring Palm OS: Text and Localization

This function properly converts aliases for a character encoding. For
example, passing the strings “us-ascii”, “ASCII”, “cp367”, and
“IBM367” all return charEncodingAscii.

All locales can access the Text Manager’s character set list, which
contains the standard set of aliases for the locales that Palm OS
supports. Each locale may add its own aliases to the list as well. For
example, a device with the Shift JIS encoding might add its own set
of aliases, which would be unknown in other locales.

See Also TxtEncodingName()

TxtNextCharSize Macro
Purpose Returns the size of the character starting at the specified offset

within a text buffer.

Declared In TextMgr.h

Prototype #define TxtNextCharSize (iTextP, iOffset)

Parameters → iTextP
Pointer to the text buffer to be searched.

→ iOffset
A valid offset into the buffer iTextP. This offset must point
to an inter-character boundary.

Returns The size in bytes of the character at iOffset.

Comments You must make sure that the parameter iTextP points to the start
of a valid character. That is, it must point to the first byte of a multi-
byte character or it must point to a single-byte character; if it
doesn’t, results are unpredictable.

See Also TxtGetNextChar()

Text Manager
TxtParamString

Exploring Palm OS: Text and Localization 123

TxtParamString Function
Purpose Replaces substrings within a string with the specified values.

Declared In TextMgr.h

Prototype char *TxtParamString (const char *inTemplate,
const char *param0, const char *param1,
const char *param2, const char *param3)

Parameters → inTemplate
The string containing the substrings to replace.

→ param0
String to replace ^0 with or NULL.

→ param1
String to replace ^1 with or NULL.

→ param2
String to replace ^2 with or NULL.

→ param3
String to replace ^3 with or NULL.

Returns A pointer to a locked relocatable chunk in the dynamic heap that
contains the appropriate substitutions.

Comments This function searches inTemplate for occurrences of the
sequences ^0, ^1, ^2, and ^3. When it finds these, it replaces them
with the corresponding string passed to this function. Multiple
instances of each sequence will be replaced.

The replacement strings can also contain the substitution strings,
provided they refer to a later parameter. That is, the param0 string
can have references to ^1, ^2, and ^3, the param1 string can have
references to ^2 and ^3, and the param2 string can have references
to ^3. Any other occurrences of the substitution strings in the
replacement strings are ignored. For example, if param3 is the
string “^0”, any occurrences of ^3 in inTemplate are replaced
with the string “^0”.

You must make sure that the parameter inTemplate points to the
start of a valid character. That is, it must point to the first byte of a
multi-byte character or it must point to a single-byte character; if it
doesn’t, results are unpredictable.

Text Manager
TxtPrepFindString

124 Exploring Palm OS: Text and Localization

TxtParamString() allocates space for the returned string in the
dynamic heap through a call to MemHandleNew(), and then
returns the result of calling MemHandleLock() with this handle.
Your code is responsible for freeing this memory when it is no
longer needed.

See Also TxtReplaceStr(), FrmCustomAlert()

TxtPrepFindString Function
Purpose Prepares a string for use in TxtFindString().

Declared In TextMgr.h

Prototype size_t TxtPrepFindString (const char *iSrcTextP,
size_t iSrcLen, char *oDstTextP,
size_t iDstSize)

Parameters → iSrcTextP
The text to be searched for. Must not be NULL.

→ iSrcLen
The number of bytes of iSrcTextP to convert.

← oDstTextP
The same text as in iSrcTextP but converted to a suitable
format for searching. oDstTextP must not be the same
address as iSrcTextP.

→ iDstSize
The length in bytes of the area pointed to by oDstTextP.

Returns The number of bytes from iSrcTextP that were converted.

Comments Use this function to normalize the string to search for before using
TxtFindString() to perform a search that is internal to your
application. If you are using TxtFindString() in response to the
sysAppLaunchCmdFind launch code, the string that the launch
code passes in is already properly normalized for the search.

This function normalizes the string to be searched for. The method
by which a search string is normalized varies depending on the
version of Palm OS and the character encoding supported by the
device.

Text Manager
TxtPreviousCharSize

Exploring Palm OS: Text and Localization 125

If necessary to prevent overflow of the destination buffer, not all of
iSrcTextP is converted.

You must make sure that the parameter iSrcTextP points to the
start of a valid character. That is, it must point to the first byte of a
multi-byte character or it must point to a single-byte character. If it
doesn’t, results are unpredictable.

TxtPreviousCharSize Macro
Purpose Returns the size of the character before the specified offset within a

text buffer.

Declared In TextMgr.h

Prototype #define TxtPreviousCharSize (iTextP, iOffset)

Parameters → iTextP
Pointer to the text buffer.

→ iOffset
A valid offset into the buffer iTextP. This offset must point
to an inter-character boundary.

Returns The size in bytes of the character preceding iOffset in iTextP.
Returns 0 if iOffset is at the start of the buffer (that is, iOffset is
0).

Comments You must make sure that the parameter iTextP points to the start
of a valid character. That is, it must point to the first byte of a multi-
byte character or it must point to a single-byte character; if it
doesn’t, results are unpredictable.

This macro is often slower to use than TxtNextCharSize()
because it must determine the appropriate character boundaries if
the byte immediately before the offset is valid in more than one
location (start, middle, or end) of a multi-byte character. To do this,
it must work backwards toward the beginning of the string until it
finds an unambiguous byte.

See Also TxtGetPreviousChar()

Text Manager
TxtReplaceStr

126 Exploring Palm OS: Text and Localization

TxtReplaceStr Function
Purpose Replaces a substring of a given format with another string.

Declared In TextMgr.h

Prototype uint16_t TxtReplaceStr (char *iStringP,
size_t iMaxLen, const char *iParamStringP,
uint16_t iParamNum)

Parameters ↔ iStringP
The string in which to perform the replacing.

→ iMaxLen
The maximum length in bytes that iStringP can become.

→ iParamStringP
The string that ^iParamNum should be replaced with. If
NULL, no changes are made.

→ iParamNum
A single-digit number (0 to 9).

Returns The number of occurrences found and replaced.

Raises a fatal error message if iParamNum is greater than 9.

Comments This function searches iStringP for occurrences of the string
^iParamNum, where iParamNum is any digit from 0 to 9. When it
finds the string, it replaces it with iParamStringP. Multiple
instances are replaced as long as the resulting string doesn’t contain
more than iMaxLen bytes, not counting the terminating null.

You can set the iParamStringP parameter to NULL to determine
the required length of iStringP before actually doing the
replacing. TxtReplaceStr() returns the number of occurrences it
finds of ^iParamNum. Multiply this value by the length of the
iParamStr you intend to use to determine the appropriate length
of iStringP.

You must make sure that the parameter iStringP points to the
start of a valid character. That is, it must point to the first byte of a
multi-byte character or it must point to a single-byte character; if it
doesn’t, results are unpredictable.

Text Manager
TxtStrEncoding

Exploring Palm OS: Text and Localization 127

TxtSetNextChar Function
Purpose Sets a character within a text buffer.

Declared In TextMgr.h

Prototype size_t TxtSetNextChar (char *iTextP,
size_t iOffset, wchar32_t iChar)

Parameters ↔ iTextP
Pointer to a text buffer.

→ iOffset
A valid offset into the buffer iTextP. This offset must point
to an inter-character boundary.

→ iChar
The character to replace the character at iOffset with. Must
not be a virtual character.

Returns The size of iChar.

Comments This function replaces the character in iTextP at the location
iOffset with the character iChar. Note that there must be enough
space at iOffset to write the character.

You can use TxtCharSize() to determine the size of iChar.

You must make sure that the parameter iTextP points to the start
of a valid character. That is, it must point to the first byte of a multi-
byte character or it must point to a single-byte character; if it
doesn’t, results are unpredictable.

See Also TxtGetNextChar()

TxtStrEncoding Function
Purpose Returns the encoding required to represent a string.

Declared In TextMgr.h

Prototype CharEncodingType TxtStrEncoding
(const char *iStringP)

Parameters → iStringP
A string.

Text Manager
TxtTransliterate

128 Exploring Palm OS: Text and Localization

Returns A CharEncodingType value that indicates the encoding required
to represent iStringP. If any character in the string isn’t
recognizable, then charEncodingUnknown is returned.

Comments The encoding for the string is the maximum encoding of any
character in that string. For example, if a two-character string
contains a blank space and a ü, the appropriate encoding is
charEncodingISO8859_1. The blank space’s minimum encoding
is ASCII. The minimum encoding for the ü is ISO 8859-1. The
maximum of these two encodings is ISO 8859-1.

Use this function for informational purposes only. Your code should
not assume that the character encoding returned by this function is
the Palm OS system’s character encoding. (Instead use
LmGetSystemLocale().)

See Also TxtCharEncoding(), TxtMaxEncoding()

TxtTransliterate Function
Purpose Converts the specified number of bytes in a text buffer using the

specified operation.

Declared In TextMgr.h

Prototype status_t TxtTransliterate (const char *iSrcTextP,
size_t iSrcLength, char *oDstTextP,
size_t *ioDstLength,
TranslitOpType iTranslitOp)

Parameters → iSrcTextP
Pointer to a text buffer.

→ iSrcLength
The length in bytes of iSrcTextP.

← oDstTextP
The output buffer containing the converted characters.

↔ ioDstLength
Upon entry, the maximum length of oDstTextP. Upon
return, the actual length of oDstTextP.

Text Manager
TxtTransliterate

Exploring Palm OS: Text and Localization 129

→ iTranslitOp
A 16-bit unsigned value that specifies which transliteration
operation is to be performed. See TranslitOpType for the
possible values for this field.

You can ensure that you have enough space for the output by
OR-ing your chosen operation with
translitOpPreprocess.

Returns One of the following values:

errNone
Success

txtErrUknownTranslitOp
iTranslitOp’s value is not recognized

txtErrTranslitOverrun
iSrcTextP and oDstTextP point to the same memory
location and the operation would cause the function to
overwrite unprocessed data in the input buffer.

txtErrTranslitOverflow
oDstTextP is not large enough to contain the converted
string.

txtErrTranslitUnderflow
The end of the source buffer contains a partial character.

Comments iSrcTextP and oDstTextP may point to the same location if you
want to perform the operation in place. However, you should be
careful that the space required for oDstTextP is not larger than
iSrcTextP so that you don’t generate a
txtErrTranslitOverrun error.

For example, suppose on a Shift JIS encoded system, you want to
convert a series of single-byte Japanese Katakana symbols to
double-byte Katakana symbols. You cannot perform this operation
in place because it replaces a single-byte character with a multi-byte
character. When the first converted character is written to the buffer,
it overwrites the second input character. Thus, a text overrun has
occurred.

You must make sure that the parameter iSrcTextP points to the
start of a valid character. That is, it must point to the first byte of a

Text Manager
TxtTruncateString

130 Exploring Palm OS: Text and Localization

multi-byte character or it must point to a single-byte character; if it
doesn’t, results are unpredictable.

Example The following code shows how to convert a string to uppercase.

outSize = buf2Len;
error = TxtTransliterate(buf1, buf1len, &buf2, &outSize,
 translitOpUpperCase|translitOpPreprocess);
if (outSize > buf2len)
 /* allocate more memory for buf2 */
error = TxtTransliterate(buf1, buf1Len, &buf2, &outSize,
 translitOpUpperCase);

TxtTruncateString Function
Purpose Determines if a string fits within a given number of bytes. If not,

truncates the string.

Declared In TextMgr.h

Prototype Boolean TxtTruncateString (char *iDstString,
const char *iSrcString, size_t iMaxLength,
Boolean iAddEllipsis)

Parameters ← iDstString
The null-terminated string truncated if necessary so that it is
no more than iMaxLength bytes long.

→ iSrcString
A null-terminated string.

→ iMaxLength
The maximum length of iDstString including the null
terminator.

→ iAddEllipsis
If true, an ellipsis character is the last character of
iDstString if iSrcString had to be truncated. If false,
iSrcString is truncated at the last character that fits in
iDstString.

Returns true if the string was truncated, or false if the string can fit
without truncation.

Comments This function determines whether iSrcString can be copied into
a string with the specified length without being truncated. If it can,

Text Manager
TxtWordBounds

Exploring Palm OS: Text and Localization 131

TxtTruncateString() returns false and copies iSrcString
into iDstString. If the string must be truncated, this function
copies one less than the number of characters that can fit in
iMaxLength into iDstString and then appends an ellipsis (...)
character.

See Also FntWidthToOffset(), WinDrawTruncChars(),
TxtGetTruncationOffset()

TxtWordBounds Function
Purpose Finds the boundaries of a word of text that contains the character

starting at the specified offset.

Declared In TextMgr.h

Prototype Boolean TxtWordBounds (const char *iTextP,
size_t iLength, size_t iOffset,
size_t *oWordStart, size_t *oWordEnd)

Parameters → iTextP
Pointer to a text buffer.

→ iLength
The length in bytes of the text pointed to by iTextP.

→ iOffset
A valid offset into the text buffer iTextP. This offset must
point to the beginning of a character.

← oWordStart
The starting offset of the text word.

← oWordEnd
The ending offset of the text word.

Returns true if a word is found. Returns false if the word doesn’t exist or
is punctuation or whitespace.

Comments Assuming the ASCII encoding, if the text buffer contains the string
“Hi! How are you?” and you pass 5 as the offset,
TxtWordBounds() returns the start and end of the word
containing the character at offset 5, which is the character “o”. Thus,
oWordStart and oWordEnd would point to the start and end of
the word “How”.

Text Manager
TxtWordBounds

132 Exploring Palm OS: Text and Localization

You must make sure that the parameter iTextP points to the start
of a valid character. That is, it must point to the first byte of a multi-
byte character or it must point to a single-byte character; if it
doesn’t, results are unpredictable.

See Also TxtCharBounds(), TxtCharIsDelim(),
TxtGetWordWrapOffset()

Part III
Appendixes

This part contains supplementary localization material. It covers:

Language-specific Information 135

Exploring Palm OS: Text and Localization 135

A
Language-specific
Information
This appendix contains information about language-specific
implementations of Palm OS®. Read it if you are localizing to these
languages to determine the correct programming practices for these
languages.

Notes on the Japanese Implementation 135

Notes on the Japanese Implementation
This section describes programming practices for applications that
are to be localized for Japanese use. It covers:

Japanese Character Encoding 135

Japanese Character Input 135

Displaying Japanese Strings on UI Objects 136

Displaying Error Messages 137

Japanese Character Encoding
The character encoding used on Japanese systems is based on
Microsoft code page 932. The complete 932 character set (JIS level 1
and 2) is supported in both the standard and large font sizes. The
bold versions of these two fonts contain bolded versions of the
glyphs found in the 7-bit ASCII range, but on some devices, the
single-byte Katakana characters and the multi-byte characters are
not bolded.

Japanese Character Input
On Japanese devices, users can enter Japanese text using Latin
(ASCII) characters, and special software called a front-end processor

Language-specif ic Information
Notes on the Japanese Implementation

136 Exploring Palm OS: Text and Localization

(FEP) transliterates this text into Hiragana or Katakana characters.
The user can then ask the FEP to phonetically convert Hiragana
characters into a mixture of Hiragana and Kanji (Kana-Kanji
conversion).

Figure 8.1 Handwriting recognition pinlet on a Japanese
device

The Graffiti® 2 handwriting recognition pinlet for Japanese ROMs
has four buttons that control the FEP transliteration and conversion
process. These four FEP buttons are arranged vertically to the left of
the handwriting recognition area. The top-most FEP button tells the
FEP to attempt Kana-Kanji conversion on the inline text. The next
button confirms the conversion results and removes the first clause
from the inline text. The third button toggles the transliteration
mode between Hiragana and Katakana. The last button toggles the
FEP on and off.

Japanese text entry is always inline, which means that
transliteration and conversion happen directly inside of a field. The
field code passes events to the FEP, which then returns information
about the appropriate text to display.

During inline conversion, the Graffiti 2 space stroke acts as a
shortcut for the conversion FEP button and the return stroke acts as
a shortcut for the confirm FEP button.

Displaying Japanese Strings on UI Objects
To conserve screen space, you should use half-width Katakana
characters on user interface elements (such as buttons, menu items,
labels, and pop-up lists) whenever the string contains only
Katakana characters. If the string contains a mix of Katakana and
either Hiragana, Kanji, or Romaji, then use the full-width Katakana
characters instead.

Language-specif ic Information
Notes on the Japanese Implementation

Exploring Palm OS: Text and Localization 137

Displaying Error Messages
You may have code that uses the macros
DbgOnlyFatalErrorIf() and DbgOnlyFatalError() to
determine error conditions. If the error condition occurs, the system
displays the file name and line number at which the error occurred
along with the message that you passed to the macro. Often these
messages are hard-coded strings. On Japanese systems, Palm OS
traps the messages passed to these two macros and displays a
generic message explaining that an error has occurred.

You should only use DbgOnlyFatalErrorIf() and
DbgOnlyFatalError() for totally unexpected errors. Do not use
them for errors that you believe your end users will see. If you wish
to inform your users of an error, use a localizable resource to display
the error message instead of DbgOnlyFatalErrorIf() or
DbgOnlyFatalError().

Language-specif ic Information
Notes on the Japanese Implementation

138 Exploring Palm OS: Text and Localization

Exploring Palm OS: Text and Localization 139

Index

A
ALPF_FLAG_NO_OVERLAY 30
ALPF_FLAG_NOTIFY_FIND 19, 44
APP_ICON_NAME_RESOURCE 28
APP_LAUNCH_PREFS 19
APP_LAUNCH_PREFS_RESOURCE 30, 42, 44

B
base database 30
byteAttrFirst 87
byteAttrHighLow 87
byteAttrLast 88
byteAttrMiddle 88
byteAttrSingle 88
byteAttrSingleLow 88

C
cCountryName constants 52
char 5
CHAR_ENCODING_VALUE() 94
character constants 5
character encoding 3

retrieving 8
character set 3
characters

attributes 7, 97, 105
constants 5
drawable 104
graphic 101
size 105
valid 104
virtual 7, 104

charAttr_BB 89
charAttr_CN 89
charAttr_DI 89
charAttr_DO 89
charAttr_LO 89
charAttr_PU 89
charAttr_SP 89
charAttr_UP 89
charAttr_XA 89
charAttr_XD 89
charAttr_XS 89

charAttrAlNum 88
charAttrAlpha 88
charAttrCntrl 88
charAttrDelim 88
charAttrGraph 89
charAttrPrint 89
charAttrSpace 89
charEncodingDstBestFitFlag 90, 93
charEncodingHasDoubleByte 90
charEncodingHasLigatures 90
charEncodingOnlySingleByte 90
charEncodingRightToLeft 90
CharEncodingType 64, 65, 85, 90, 94, 98, 105, 121
charEncodingUnknown 121
CharLatin.h 6, 105
Chars.h 5
CharShiftJIS.h 105
Chinese Lunar Calendar 56
chrExclamationMark 90
code page 1252 3, 85
code page 932 4, 85, 135
commandKeyMask 7
country code 35
country name 35
CountryType 51
currency name 35
currency symbol 35

D
Database Manager 30, 31, 60, 67
databases

overlays 30
schema 47

Date and Time Manager 32
date formats 35
DateFormatType 32
dates 32
DateTemplateToAscii() 32
DateToAscii() 32
DayOfMonth() 32
DayOfWeek() 32
DaysInMonth() 32
DbgOnlyFatalError() 137

140 Exploring Palm OS: Text and Localization

DbgOnlyFatalErrorIf() 137
DmFindResource() 31
DmGet1Resource() 31
DmGetFallbackOverlayLocale() 29
DmGetOverlayLocale() 29
DmGetResource() 31
DmGetResourceByIndex() 31
dmModeReadOnly 41
dmModeShowSecret 41
DmNextOpenResDatabase() 31
DmOpenDatabase() 41
DmOpenModeType 41
DmSetFallbackOverlayLocale() 30, 64
DmSetOverlayLocale() 29
drawable characters 104

E
email 55
English system 35

F
fallback overlay locale 29
FEP 136
Find dialog 43
Find Manager 19
Find Results dialog 20, 23, 24, 44, 46, 48
Find() 45
Find.h 39
FindDrawHeader() 20, 42, 45
FindGetLineBounds() 20, 46
FindMatchPtr 39
FindMatchType 39
FindParamsPtr 41
FindParamsType 41, 43, 44, 45, 46
FindSaveMatch() 20, 41, 42, 47, 49
FindSaveMatchV40() 48
FindStrInStrV50() 49
FldGetTextLength() 10
FntCharWidth() 50
FntTruncateString() 12
FntWordWrap() 120
formats locale 29, 61, 65
Formats Preference panel 29, 61, 65, 68

frmGotoEvent 23
FrmSaveAllForms() 24
frmSaveEvent 24

G
GcDrawTextAt() 20
GcFontStringBytesInWidth() 13, 14
gettimezone() 32, 35
Global Find 19, 39
global find 115
GMT 32, 56
GoToParamsType 45
graphic characters 101

H
Hiragana 136

I
inter-character boundary 10
invalid character 6
ISO 3166 52, 65
ISO 639 52, 66
ISO Latin 1 85

K
Kanji 136
Katakana 136
Katakana characters 135
keyDownEvent 5, 7, 45, 101, 104
kMaxCountryNameLen 54, 57
kMaxCurrencyNameLen 54, 57
kMaxCurrencySymbolLen 54, 56, 57
kTxtConvertStateSize 87, 91

L
language code 35
LanguageType 51
Latin encoding 3
lLanguageName constants 52
lmAnyCountry 57, 59, 67
lmAnyLanguage 58, 59, 67
LmBestLocaleToIndex() 57, 59, 61

Exploring Palm OS: Text and Localization 141

lmChoiceCountryName 54
lmChoiceCurrencyDecimalPlaces 54
lmChoiceCurrencyName 54
lmChoiceCurrencySymbol 54
lmChoiceDateFormat 54
lmChoiceInboundDefaultVObjectEncoding 55,

110
lmChoiceLocale 55
lmChoiceLongDateFormat 55
lmChoiceMeasurementSystem 55
lmChoiceNumberFormat 55
lmChoiceOutboundVObjectEncoding 55, 110
lmChoicePrimaryEmailEncoding 55, 110
lmChoicePrimarySMSEncoding 55, 110
lmChoiceSecondaryEmailEncoding 55, 110
lmChoiceSecondarySMSEncoding 56, 110
lmChoiceSupportsLunarCalendar 56
lmChoiceTimeFormat 56
lmChoiceTimeZone 56
lmChoiceUniqueCurrencySymbol 56
lmChoiceWeekStartDay 56
LmCountryToISOName() 60
LmCountryType 51, 52, 53, 60, 65
lmErrBadLocaleIndex 62
lmErrBadLocaleSettingChoice 62
lmErrSettingDataOverflow 62
lmErrUnknownLocale 60, 65, 66, 67
LmGetFormatsLocale() 29, 35, 59, 61, 65
LmGetLocaleSetting() 34, 54, 57, 59, 61, 63, 67, 110
LmGetNumberSeparators() 33, 63, 74, 77
LmGetNumLocales() 63
LmGetROMLocale() 29, 64
LmGetSystemLocale() 8, 29, 65, 105, 110
LmISONameToCountry() 65
LmISONameToLanguage() 66
LmLanguageToISOName() 66
LmLanguageType 51, 52, 53, 66
LmLocaleSettingChoice 54, 57, 61, 62
LmLocaleToIndex() 57, 61, 67
LmLocaleType 53, 57, 59, 61, 64, 65, 67
LmSetFormatsLocale() 29, 67
locale description 35
Locale Manager 34

locale module 112
LocaleMgr.h 59
LocaleMgrTypes.h 51
locales 28, 30
localization, general guidelines 27
LocGetNumberSeparators 54

M
maxCharBytes 92
maxEncodingNameLength 92
maxFindStrLen 43
maxFindStrPrepLen 43
maxStrIToALen 69, 74
measurement system 35
memErrNotEnoughSpace 67
metric system 35
missing character 6
multi-byte characters 95, 116, 117, 118

attributes 105
comparison 106
searching 115
size 105

N
number formats 35
NumberFormatType 53, 74, 77
numbers 33

O
overlay locale 29
OVERLAY_RESOURCE 30
overlays 30

P
Palm OS Latin 3
Palm OS Shift JIS 4
PalmOS.h 5
PilotMain() 19
prefDateFormat 32
PrefGetPreference() 32, 33, 34, 35, 62, 63, 74, 77
prefLongDateFormat 32
prefNumberFormat 63
prefTimeFormat 32

142 Exploring Palm OS: Text and Localization

prefWeekStartDay 32

R
ROM locale 29, 64
Romaji 136

S
schema database 47
Shift JIS encoding 4, 85
sizeOf7BitChar() 94
SMS 55
sprintf() 28, 69, 82
standard C string library 7, 9
StrAToI() 70
StrCaselessCompare() 15, 70
StrCat() 71
strcat() 9, 71
StrChr() 71
strchr() 71
strcmp() 15, 72
StrCompare() 10, 15, 72
StrCompareAscii() 72
StrCopy() 73
strcpy() 9, 73
StrDelocalizeNumber() 33, 73
stricmp() 70
String Manager 9
string templates 15
StringMgr.h 69
strings 9
StrIToA() 69, 74
StrIToH() 75
StrLCat() 75
strlcat() 75
StrLCopy() 76
strlcpy() 76
StrLen() 10, 76
strlen() 76
StrLocalizeNumber() 33, 77
StrNCaselessCompare() 77
StrNCat() 78
strncat() 78
strncmp() 80

StrNCompare() 79
StrNCompareAscii() 80
StrNCopy() 81
StrPrintF 69
StrPrintFV50() 69, 82
StrStr() 82
strstr() 83
StrToLower() 83
StrVPrintF 69
StrVPrintFV50() 69, 82, 83
sysAppLaunchCmdFind 19, 20, 24, 44, 45, 116, 124

example 21
parameter block 41

sysAppLaunchCmdGoTo 20, 23, 44, 47, 48, 49
example 23

sysAppLaunchCmdSaveData 24, 44
sysFtrNumTextMgrFlags 93
SysHandleEvent() 45
system locale 29, 65

T
Text Manager 4
TextMgr.h 85
textMgrBestFitFlag 93
textMgrExistsFlag 93
textMgrStrictFlag 93
textSubstitutionDefaultLen 91
textSubstitutionDefaultStr 91
textSubstitutionEncoding 91
time format 35
time zone 35
TimeFormatType 32
TimeIs24HourFormat() 32
times 32
TimeToAscii() 32
TimeToInt() 32
translitOpCustomBase 94
translitOpLowerCase 93
translitOpPreprocess 94
translitOpReserved2 94
translitOpReserved3 94
translitOpStandardBase 93
TranslitOpType 93

Exploring Palm OS: Text and Localization 143

translitOpUpperCase 93
TxtByteAttr() 88, 95
TxtCaselessCompare() 14, 70, 78, 95, 106
TxtCharAttr() 97
TxtCharBounds() 11, 97
TxtCharEncoding() 98
TxtCharIsAlNum() 97, 99
TxtCharIsAlpha() 99
TxtCharIsCntrl() 97, 100
TxtCharIsDelim() 100
TxtCharIsDigit() 100
TxtCharIsGraph() 101, 102
TxtCharIsHardKey() 101
TxtCharIsHex() 102
TxtCharIsLower() 102
TxtCharIsPrint() 101, 102
TxtCharIsPunct() 103
TxtCharIsSpace() 103
TxtCharIsUpper() 103
TxtCharIsValid() 7, 104
TxtCharIsVirtual() 104
TxtCharSize() 11, 105, 127
TxtCharXAttr() 97, 105
TxtCompare() 10, 14, 72, 80, 106
TxtConvertEncoding() 87, 90, 91, 93, 107
TxtConvertStateType 87, 91, 108
TxtEncodingName() 9, 114
txtErrConvertOverflow 92, 109
txtErrConvertUnderflow 92
txtErrMalformedText 92
txtErrNoCharMapping 92
txtErrTranslitOverflow 92, 129
txtErrTranslitOverrun 92, 129
txtErrTranslitUnderflow 92, 129
txtErrUknownTranslitOp 92
txtErrUnknownEncoding 92
txtErrUnknownEncodingFallbackCopy 93, 110
txtErrUnknownTranslitOp 129

TxtFindString() 20, 42, 48, 115, 124
TxtGetChar() 116
TxtGetEncodingFlags() 90, 117
TxtGetNextChar() 11, 117, 119
TxtGetPrevChar() 11
TxtGetPreviousChar() 118
TxtGetTruncationOffset() 119
TxtGetWordWrapOffset() 120
TxtGlueCharIsValid() 8
TxtGluePrepFindString() 116
TxtMaxEncoding() 99, 121
TxtNameToEncoding() 111, 121
TxtNextCharSize() 122, 125
TxtParamString() 15, 123
TxtPrepFindString() 43, 124
TxtPreviousCharSize() 125
TxtReplaceStr() 15, 126
TxtSetNextChar() 11, 127
TxtStrEncoding() 99, 121, 127
TxtTransliterate() 93, 128
TxtTruncateString() 130
TxtWordBounds() 131

U
UTC 32

V
valid characters 104
vchrFind 45
virtual characters 7, 8, 104
vObjects 55
vsprintf() 69, 83, 84

W
wchar32_t 5, 71, 92
wildcards 57
WinDrawChars() 20, 46
WinDrawTruncChars() 12

144 Exploring Palm OS: Text and Localization

	Text and Localization
	Table of Contents
	About This Document
	Who Should Read This Book
	What This Book Contains
	The Exploring Palm OS Series
	Additional Resources

	Concepts
	Text
	Character Encodings
	Characters
	Declaring Character Variables
	Using Character Constants
	Missing and Invalid Characters
	Retrieving a Character’s Attributes
	Virtual Characters
	Retrieving the Character Encoding

	Strings
	Manipulating Strings
	Performing String Pointer Manipulation
	Truncating Displayed Text
	Comparing Strings
	Dynamically Creating String Content

	Summary of Text API

	Implementing Global Find
	Implementing sysAppLaunchCmdFind
	Implementing sysAppLaunchCmdGoTo
	Implementing sysAppLaunchCmdSaveData
	Summary of Find Manager API

	Localized Applications
	Localization Guidelines
	Locales
	Overlays
	Dates and Times
	Numbers
	Obtaining Locale Information
	Summary of Localization API

	Reference
	Find
	Find Structures and Types
	FindMatchType
	FindParamsType

	Find Constants
	Size Constants

	Find Launch Codes
	sysAppLaunchCmdFind

	Find Functions and Macros
	Find
	FindDrawHeader
	FindGetLineBounds
	FindSaveMatch
	FindSaveMatchV40
	FindStrInStrV50

	Locale Manager Types
	Locale Manager Structures and Types
	CountryType
	LanguageType
	LmCountryType
	LmLanguageType
	LmLocaleType
	NumberFormatType

	Locale Manager Constants
	LmLocaleSettingChoice
	Locale Manager Errors
	Locale Manager Size Constants
	Locale Wildcard Constants

	Locale Manager
	Locale Manager Functions and Macros
	LmBestLocaleToIndex
	LmCountryToISOName
	LmGetFormatsLocale
	LmGetLocaleSetting
	LmGetNumberSeparators
	LmGetNumLocales
	LmGetROMLocale
	LmGetSystemLocale
	LmISONameToCountry
	LmISONameToLanguage
	LmLanguageToISOName
	LmLocaleToIndex
	LmSetFormatsLocale

	String Manager
	String Manager Constants
	String Manager Constants

	String Manager Functions and Macros
	StrAToI
	StrCaselessCompare
	StrCat
	StrChr
	StrCompare
	StrCompareAscii
	StrCopy
	StrDelocalizeNumber
	StrIToA
	StrIToH
	StrLCat
	StrLCopy
	StrLen
	StrLocalizeNumber
	StrNCaselessCompare
	StrNCat
	StrNCompare
	StrNCompareAscii
	StrNCopy
	StrPrintFV50
	StrStr
	StrToLower
	StrVPrintFV50

	Text Manager
	Text Manager Structures and Types
	CharEncodingType
	TxtConvertStateType

	Text Manager Constants
	Byte Attribute Flags
	Character Attributes
	Character Encoding Attributes
	Encoding Conversion Constant Modifiers
	Encoding Conversion Substitution Constants
	Size Constants
	Text Manager Error Constants
	Text Manager Feature Settings
	TranslitOpType

	Text Manager Functions and Macros
	CHAR_ENCODING_VALUE
	sizeOf7BitChar
	TxtByteAttr
	TxtCaselessCompare
	TxtCharAttr
	TxtCharBounds
	TxtCharEncoding
	TxtCharIsAlNum
	TxtCharIsAlpha
	TxtCharIsCntrl
	TxtCharIsDelim
	TxtCharIsDigit
	TxtCharIsGraph
	TxtCharIsHardKey
	TxtCharIsHex
	TxtCharIsLower
	TxtCharIsPrint
	TxtCharIsPunct
	TxtCharIsSpace
	TxtCharIsUpper
	TxtCharIsValid
	TxtCharIsVirtual
	TxtCharSize
	TxtCharXAttr
	TxtCompare
	TxtConvertEncoding
	TxtEncodingName
	TxtFindString
	TxtGetChar
	TxtGetEncodingFlags
	TxtGetNextChar
	TxtGetPreviousChar
	TxtGetTruncationOffset
	TxtGetWordWrapOffset
	TxtMaxEncoding
	TxtNameToEncoding
	TxtNextCharSize
	TxtParamString
	TxtPrepFindString
	TxtPreviousCharSize
	TxtReplaceStr
	TxtSetNextChar
	TxtStrEncoding
	TxtTransliterate
	TxtTruncateString
	TxtWordBounds

	Appendixes
	Language-specific Information
	Notes on the Japanese Implementation
	Japanese Character Encoding
	Japanese Character Input
	Displaying Japanese Strings on UI Objects
	Displaying Error Messages

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

