

Creating a Front-End
Processor

Exploring Palm OS

®

Written by Christopher Bey
Technical assistance from Vivek Magotra

Copyright © 1996–2004, PalmSource, Inc. and its affiliates. All rights reserved. This technical documentation contains
confidential and proprietary information of PalmSource, Inc. (“PalmSource”), and is provided to the licensee (“you”)
under the terms of a Nondisclosure Agreement, Product Development Kit license, Software Development Kit license
or similar agreement between you and PalmSource. You must use commercially reasonable efforts to maintain the
confidentiality of this technical documentation. You may print and copy this technical documentation solely for the
permitted uses specified in your agreement with PalmSource. In addition, you may make up to two (2) copies of this
technical documentation for archival and backup purposes. All copies of this technical documentation remain the
property of PalmSource, and you agree to return or destroy them at PalmSource’s written request. Except for the
foregoing or as authorized in your agreement with PalmSource, you may not copy or distribute any part of this
technical documentation in any form or by any means without express written consent from PalmSource, Inc., and
you may not modify this technical documentation or make any derivative work of it (such as a translation,
localization, transformation or adaptation) without express written consent from PalmSource.

PalmSource, Inc. reserves the right to revise this technical documentation from time to time, and is not obligated to
notify you of any revisions.

THIS TECHNICAL DOCUMENTATION IS PROVIDED ON AN “AS IS” BASIS. NEITHER PALMSOURCE NOR ITS
SUPPLIERS MAKES, AND EACH OF THEM EXPRESSLY EXCLUDES AND DISCLAIMS TO THE FULL EXTENT
ALLOWED BY APPLICABLE LAW, ANY REPRESENTATIONS OR WARRANTIES REGARDING THIS
TECHNICAL DOCUMENTATION, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING WITHOUT
LIMITATION ANY WARRANTIES IMPLIED BY ANY COURSE OF DEALING OR COURSE OF PERFORMANCE
AND ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, ACCURACY, AND SATISFACTORY QUALITY. PALMSOURCE AND ITS SUPPLIERS
MAKE NO REPRESENTATIONS OR WARRANTIES THAT THIS TECHNICAL DOCUMENTATION IS FREE OF
ERRORS OR IS SUITABLE FOR YOUR USE. TO THE FULL EXTENT ALLOWED BY APPLICABLE LAW,
PALMSOURCE, INC. ALSO EXCLUDES FOR ITSELF AND ITS SUPPLIERS ANY LIABILITY, WHETHER BASED IN
CONTRACT OR TORT (INCLUDING NEGLIGENCE), FOR DIRECT, INCIDENTAL, CONSEQUENTIAL,
INDIRECT, SPECIAL, EXEMPLARY OR PUNITIVE DAMAGES OF ANY KIND ARISING OUT OF OR IN ANY WAY
RELATED TO THIS TECHNICAL DOCUMENTATION, INCLUDING WITHOUT LIMITATION DAMAGES FOR
LOST REVENUE OR PROFITS, LOST BUSINESS, LOST GOODWILL, LOST INFORMATION OR DATA, BUSINESS
INTERRUPTION, SERVICES STOPPAGE, IMPAIRMENT OF OTHER GOODS, COSTS OF PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES, OR OTHER FINANCIAL LOSS, EVEN IF PALMSOURCE, INC. OR ITS
SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR IF SUCH DAMAGES COULD
HAVE BEEN REASONABLY FORESEEN.

PalmSource, Palm OS, Palm Powered, Graffiti, and certain other trademarks and logos are trademarks or registered
trademarks of PalmSource, Inc. or its affiliates in the United States, France, Germany, Japan, the United Kingdom, and
other countries. These marks may not be used in connection with any product or service that does not belong to
PalmSource, Inc. (except as expressly permitted by a license with PalmSource, Inc.), in any manner that is likely to
cause confusion among customers, or in any manner that disparages or discredits PalmSource, Inc., its licensor, its
subsidiaries, or affiliates. All other product and brand names may be trademarks or registered trademarks of their
respective owners.

IF THIS TECHNICAL DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE SOFTWARE AND OTHER
DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT TO THE LICENSE AGREEMENTS
ACCOMPANYING THE SOFTWARE AND OTHER DOCUMENTATION.

Exploring Palm OS: Creating a Front-End Processor
Document Number 3118-001
November 9, 2004
For the latest version of this document, visit
http://www.palmos.com/dev/support/docs/.

PalmSource, Inc.
1240 Crossman Avenue
Sunnyvale, CA 94089
USA
www.palmsource.com

http://www.palmos.com/dev/support/docs/
http://www.palmos.com/dev/support/docs/
http://www.palmsource.com

Exploring Palm OS: Creating a Front-End Processor

iii

Table of Contents

 About This Document vii

Intended Audience . vii
FEP Developers . vii
Other Developers vii

Requirements . viii
What this Book Contains. viii
The

Exploring Palm OS

 Series ix
Additional Resources . x

1 Basic Concepts 1

What Is a Front-End Processor? 1
How Does a User Input Text?. 2
How Is Inline Input Processed? 2
How Does the FEP Handle Conversion? 2
What Is a FEP in the Palm OS? 3
For More Information 3

2 The FEP User Interface 5

Input Area Buttons . 5
Standard FEP Buttons. 5
The Change Mode Button 6

Interactions with Forms and Fields 7
The Sample FEP User Interface 7
A Simplified Chinese FEP User Interface. 9
A Japanese FEP User Interface 10
Edit Menu Items . 13
The FEP Panel . 14

3 Creating a FEP Shared Library 17

The Sample FEP . 17
Sample FEP File List 17
The TestSampleFep Application 19
FEP Code Structure 20

Text Services Manager Server. 20

iv

 Exploring Palm OS: Creating a Front-End Processor

Event Flow in a FEP. 21
Initialization Sequence 21
System Events . 22
Field-Level Events 22
Notes About Event Handling 23

FEP Type and Creator ID 23
Modifying the Sample FEP. 23

Changing the Locale 24
Handling Text Services Manager Button Events 24
Handling Other Events 24
Handling the Mode Indicator 25
Handling Auto-Yomi Events (Japanese only) 25
Auto-Extending the Maximum Size of a Field 25
Adding User Dictionary Functions 26

Debugging and Testing the FEP. 26

4 Text Services Manager Reference 29

Text Services Manager Constants 29

Feature Constants 29
TsmFepModeType 29

Text Services Manager Functions and Macros. 30
TsmGetFepMode . 30
TsmSetFepMode . 31

5 Text Services FEP Reference 33

FEP Events. 33

tsmConfirmEvent 33
tsmFepButtonEvent 34
tsmFepModeEvent 35
tsmFepChangeEvent 35
tsmFepDisplayOptionsEvent 36
tsmFepSelectOptionEvent 37

Text Services FEP Structures and Types 37

FepPanelAddWordParamsType 37
TsmFepActionType 37
TsmFepEventType 39
TsmFepInfoType 41

Exploring Palm OS: Creating a Front-End Processor

v

TsmFepStatusType 42

Text Services FEP Constants 44

Button ID Constants 44
Error Codes 45
Miscellaneous Constants 46

Text Services FEP Launch Codes 46

sysAppLaunchCmdFepPanelAddWord 46

Text Services FEP Functions 47
TsmFepCommitAction 47
TsmFepHandleEvent 47
TsmFepMapEvent 48
TsmFepOptionsList 49
TsmFepReset . 49
TsmFepTerminate 50
TsmGetCurrentFepCreator 50
TsmGetSystemFepCreator 51
TsmSetCurrentFepCreator 51
TsmSetSystemFepCreator 52

Text Services FEP Plugin Functions 52
TsmLibFepClose . 52
TsmLibFepCommitAction 53
TsmLibFepDrawModeIndicator 54
TsmLibFepDrawOption 55
TsmLibFepHandleEvent. 55
TsmLibFepMapEvent 57
TsmLibFepOpen . 57
TsmLibFepReset . 58
TsmLibFepTerminate 58
TsmLibGetFepInfo 59

A TextServicesFep.h 61

Index 67

vi

 Exploring Palm OS: Creating a Front-End Processor

Exploring Palm OS: Creating a Front-End Processor

vii

About This

Document

Intended Audience

This document intended for developers who want to create a
language front-end processor (FEP) for a Palm Powered

™

 device. A
front-end processor comprises an engine for converting text from
one form to another (for example, from ASCII to Chinese Hanzi) as
well as a user interface for entering characters and confirming the
conversion. The information in this document is also useful for
developers, such as those implementing their own text controls,
who want to interface with the FEP.

Besides fluency in the language for which you are creating the front-
end processor, you need knowledge of Palm OS

®

 and C/C++
programming.

IMPORTANT:

The

Exploring Palm OS

 series is intended for
developers creating native applications for Palm OS Cobalt. If you
are interested in developing applications that work through PACE
and that also run on earlier Palm OS releases, read the latest
versions of the

Palm OS Programmer’s API Reference

 and

Palm

OS Programmer’s Companion

 instead.

FEP Developers

The entire content of this document is relevant to developers who
are creating FEPs.

Other Developers

Developers who aren’t creating FEPs but instead are implementing
their own text controls, and who thus want to interface with the FEP,

What this Book Contains

viii

 Exploring Palm OS: Creating a Front-End Processor

may find the entire document useful. However, certain portions of
this document are particularly important:

• Chapter 1, “Basic Concepts.”

• Chapter 2, “The FEP User Interface.”

• Chapter 3, “Creating a FEP Shared Library,” from “Event
Flow in a FEP” on page 21 through “FEP Type and Creator
ID” on page 23.

• Chapter 4, “Text Services Manager Reference.”

• “FEP Events” on page 33, in Chapter 5, “Text Services FEP
Reference.”

Requirements

This document assumes you are using the following versions of the
Palm OS development tools:

• Palm OS Developer Suite

• the most recent version of Palm OS Resource Editor

• the most recent version of Palm OS Simulator

• the appropriate ROM file for the Palm OS version and
language you want to support

It also assumes that you have installed the latest Palm OS SDK and
the appropriate language support.

IMPORTANT:

FEPs based on this Sample FEP Kit are

compatible only with Palm OS Cobalt.

What this Book Contains

The following topics are covered in this book:

Chapter 1, “Basic Concepts.” This chapter tells you what a front-end
processor (FEP) is in the Palm OS.

Chapter 2, “The FEP User Interface.” This chapter provides some
examples of FEP user interfaces used by the Sample FEP and by
current Chinese and Japanese Palm Powered handhelds.

The Exploring Palm OS Series

Exploring Palm OS: Creating a Front-End Processor

ix

Chapter 3, “Creating a FEP Shared Library.” This chapter describes
the Sample FEP project and tells you how to modify it to create your
own FEP.

Chapter 4, “Text Services Manager Reference.” This chapter
describes the Text Services Manager API, which serves as the
connection between the front-end processor and the rest of the Palm
OS.

Chapter 5, “Text Services FEP Reference.” This chapter describes the
front-end processor API. The front-end processor shared library
that you design must conform to this API.

The

Exploring Palm OS

 Series

This book is a part of the

Exploring Palm OS

 series. Together, the
books in this series document and explain how to use the APIs
exposed to third-party developers by the fully ARM-native versions
of Palm OS, beginning with Palm OS Cobalt. Each of the books in
the

Exploring Palm OS

 series explains one aspect of the Palm
operating system and contains both conceptual and reference
documentation for the pertinent technology.

As of this writing, the complete

Exploring Palm OS

 series consists of
the following titles:

•

Exploring Palm OS: Programming Basics

•

Exploring Palm OS: Memory, Databases, and Files

•

Exploring Palm OS: User Interface

•

Exploring Palm OS: User Interface Guidelines

 (coming soon)

•

Exploring Palm OS: System Management

•

Exploring Palm OS: Text and Localization

•

Exploring Palm OS: Input Services

•

Exploring Palm OS: High-Level Communications

•

Exploring Palm OS: Low-Level Communications

•

Exploring Palm OS: Telephony and SMS

•

Exploring Palm OS: Multimedia

•

Exploring Palm OS: Security and Cryptography

Addit ional Resources

x

 Exploring Palm OS: Creating a Front-End Processor

•

Exploring Palm OS: Creating a Front-End Processor

•

Exploring Palm OS: Application Porting Guide

Additional Resources

• Documentation

PalmSource publishes its latest versions of this and other
documents for Palm OS developers at

http://www.palmos.com/dev/support/docs/

• Training

PalmSource and its partners host training classes for Palm OS
developers. For topics and schedules, check

http://www.palmos.com/dev/training

• Knowledge Base

The Knowledge Base is a fast, web-based database of
technical information. Search for frequently asked questions
(FAQs), sample code, white papers, and the development
documentation at

http://kb.palmsource.com

http://www.palmos.com/dev/support/docs/
http://www.palmos.com/dev/training
http://kb.palmsource.com

Exploring Palm OS: Creating a Front-End Processor

1

1

Basic Concepts

This chapter describes several concepts that will help you
understand what a front-end processor is and how it is used.

This chapter discusses the following topics:

• What Is a Front-End Processor?

• How Does a User Input Text?

• How Is Inline Input Processed?

• How Does the FEP Handle Conversion?

• What Is a FEP in the Palm OS?

• For More Information

What Is a Front-End Processor?

A

front-end processor

 (FEP), also known as an

input method

, is a
facility that automatically converts phonetic or syllabic characters
into ideographic or complex characters. With a front-end processor,
you can use the Latin characters found on a standard keyboard to
input syllables that are then converted to characters in the target
language, such as the thousands of characters used in languages like
Japanese, Chinese, and Korean.

For example, text input in Japanese requires software for translating
Romaji (phonetic Japanese that uses Latin characters) or Hiragana
(syllabic Japanese) into Kanji (ideographic Chinese characters) or
Katakana (syllabic characters used mainly for foreign words). One
Hiragana sequence may correspond to more than one Kanji
character. The front-end processor must grammatically parse
sentences or clauses of Hiragana text and select the best
combination of Kanji, Hiragana, and Katakana characters to
represent that text.

Basic Concepts

How Does a User Input Text?

2

 Exploring Palm OS: Creating a Front-End Processor

How Does a User Input Text?

Most front-end processors perform the character conversion within
the current line of text, a method known as

inline input

. The field
code passes events to the FEP, which then returns information
about the appropriate text to display. Special characters, such as
space or linefeed, are often used to initiate or confirm conversion.

In the Palm OS

®

, a front-end processor is known as a

text service

.
The

Text Services Manager

 provides functions that let forms, fields,
and text services communicate about what happens in the

active
input field

—the location in which the user enters text and where
the text service (such as the front-end processor) tells the field what
text to display.

How Is Inline Input Processed?

The front-end processor processes the user input, called raw text, as
it is entered. The field code then draws the text on the screen as
entered. The front-end processor then converts the raw text,
translating it from phonetic or syllabic to a more complex
representation. Finally, it confirms the converted text upon user
approval of the conversion. The front-end processor continually
tells the field code to remove the confirmed text from the beginning
of the active input area.

An exception to this process occurs when a user taps outside the
active input area or otherwise causes the field to lose the focus. In
this case, the user has implicitly requested confirmation of the
existing text.

How Does the FEP Handle Conversion?
The field code works with the FEP to support inline conversion.
This is the only method of FEP-related text entry supported by Palm
OS. There is no floating window or bottom-line input, as is
provided by some other operating systems. Text that is part of the
inline conversion process (that is, text in the active input area) is
underlined by the field code.

Basic Concepts
For More Information

Exploring Palm OS: Creating a Front-End Processor 3

Because a sequence of characters rarely has a one-to-one mapping
with a single word or character in the FEP’s conversion dictionary,
the FEP’s user interface can be extended. For example, in the Sample
FEP, when a user writes an acronym that has more than one
possible meaning, the user must choose the appropriate meaning. In
the Palm OS Sample FEP, the user interface presents these options
in a pop-up list.

What Is a FEP in the Palm OS?
In the Palm OS, FEPs are text service components that are
implemented as shared libraries. These libraries can be created by
any third-party developer or Palm OS licensee. FEPs must be
implemented according to the FEP Shared Library API, which is
described in Chapter 5, “Text Services FEP Reference.”

Applications can control the FEP through the Text Services Manager
API, which is described in Chapter 4, “Text Services Manager
Reference.” This API provides functions to get and set the current
FEP mode, which is useful for explicitly disabling the FEP when a
field shouldn’t allow in-line conversion.

For More Information
Palm provides a sample FEP shared library to help you get started.

• Chapter 2, “The FEP User Interface,” describes the user
interface of a sample FEP running on a Palm Powered™
device.

• Chapter 3, “Creating a FEP Shared Library,” describes how
to modify a sample FEP to create a new FEP shared library.

• Chapter 4, “Text Services Manager Reference,” describes the
Text Services Manager API.

• Chapter 5, “Text Services FEP Reference,” describes the FEP
Shared Library API. A FEP must implement the API
described in this chapter.

Basic Concepts
For More Information

4 Exploring Palm OS: Creating a Front-End Processor

Exploring Palm OS: Creating a Front-End Processor 5

2
The FEP User
Interface
This chapter describes the user interface of the Sample FEP that is
provided with the FEP Kit. This interface is similar to the interface
that some real FEPs use, including the Palm OS® standard
Simplified Chinese FEP, called the Pinyin FEP, and the standard
Japanese FEP. This chapter also provides examples of input area
designs for handhelds that rely on FEPs for entering characters.

This chapter covers the following concepts:

• Input Area Buttons

• Interactions with Forms and Fields

Input Area Buttons
Handheld devices that include FEPs typically provide either three
or four extra input area buttons in addition to those provided on all
Palm Powered™ handhelds. Like other input area buttons, tapping
one of these buttons sends a keyDownEvent to the system. This
event then affects what the user sees on the screen.

Standard FEP Buttons
Figure 2.1 shows an example of the three-button interface on a
Simplified Chinese handheld.

The FEP User Interface
Input Area Buttons

6 Exploring Palm OS: Creating a Front-End Processor

Figure 2.1 Input area for a Simplified Chinese handheld

The three buttons correspond to "Convert," "Confirm," and
"On/Off."

Convert triggers conversion of the text in the active field if there is
no clause (converted text). If there is converted text, then it selects
the next option. If the user has selected non-inline text and taps the
Convert button, this text is used to “prime the pump.” This priming
text gets passed to the FEP's conversion engine as if the user had
entered it all with the FEP on (as if it were all raw inline text) and
then tapped the Convert button.

Confirm accepts the currently entered text. If there is no clause (a
grammatically meaningful group of characters), then all of the raw
inline text is dumped into the field, and the inline text area becomes
empty. If there is a clause, then only that clause is dumped into the
field (that is, removed from the start of the inline text area).

On/Off turns the FEP on or off.

The Keyboard buttons shown in Figure 2.1 just bring up a keyboard
dialog with the chosen character set.

The Change Mode Button
For languages such as Japanese, which have multiple character sets,
the interface also contains a "Change Mode" button, shown in
Figure 2.2.

Convert
Confirm
On/Off

Keyboard

The FEP User Interface
Interactions with Forms and Fields

Exploring Palm OS: Creating a Front-End Processor 7

Figure 2.2 Input area for a Japanese handheld

Change Mode toggles the FEP's input mode. For the Palm OS
standard Japanese FEP, it toggles between Hiragana and Katakana.
If there is no clause, but there is raw inline text, then it transliterates
the text between Hiragana and Katakana. If there is a clause, then it
converts the clause to Hiragana (if Kanji or Katakana) and Katakana
(if Hiragana).

Interactions with Forms and Fields
In order to capture and convert text, the FEP must interact
extensively with Palm OS and with an application’s forms and
fields. The following sections illustrate this process with examples.

The Sample FEP User Interface
In this section, we will use the Sample FEP to illustrate common FEP
interface features. The Sample FEP converts acronyms into their
full-length representations. Because the results of the sample FEP
are all simple English phrases containing only low ASCII characters
that are present on every language version of Palm OS, this sample
project will run on any language version of Palm OS.

Inline Text Conversion

Suppose you want to begin a memo with the words, “With regard
to your letter on the 28th,...” The Sample FEP lets you save time by
writing the acronym, “wrt,” instead of “With Regard To.”

As the first step, create a new memo in Memo Pad and write the
letters “wrt.”

Convert

Confirm

Change Mode

On/Off

Keyboard

The FEP User Interface
Interactions with Forms and Fields

8 Exploring Palm OS: Creating a Front-End Processor

To convert the acronym to its long version, write the space character
in the input area or tap the Convert button. This action displays the
full-length version of the acronym (see Figure 2.3).

Figure 2.3 Sample FEP, converting “wrt”

Options Pop-up List

In the Sample FEP, if you try the conversion operation more than
once, the options pop-up list appears. It contains a list of all possible
matches for that acronym in the user dictionary (see Figure 2.4).

Figure 2.4 Sample FEP options list

Select the full-length version that is most appropriate, then tap the
Confirm button. The final result contains the correct phrase.

The FEP User Interface
Interactions with Forms and Fields

Exploring Palm OS: Creating a Front-End Processor 9

A Simplified Chinese FEP User Interface
This section illustrates the Pinyin FEP.

Inline Text Conversion

Suppose you want to create a new Address Book entry, including
the City/Province Name, “Beijing.” The Pinyin FEP lets you enter
Simplified Chinese syllables using Latin characters.

To begin, create a new Address Book entry and place the cursor in
the City/Province field. Write the letters “beijing” in the input area.

To convert the word to its Chinese version, write the “space”
character in the input area or tap the Convert button. This action
displays the Chinese version (see Figure 2.5).

Figure 2.5 Completed conversion of “Beijing”

Tap the Confirm button to accept the characters and continue
writing.

The FEP User Interface
Interactions with Forms and Fields

10 Exploring Palm OS: Creating a Front-End Processor

Options Pop-up List

In a FEP that supports an options pop-up list, if you write some
inline text and then write the “space” character or tap the Convert
button more than once, the pop-up list appears. For example, if you
write the characters “bei,” and tap Convert twice, you get the pop-
up list shown in Figure 2.6.

Figure 2.6 Pinyin FEP options pop-up list

Select the character or characters that are most appropriate. When
finished, tap the Confirm button.

A Japanese FEP User Interface
This section illustrates the Japanese FEP, which shows how to use a
four-button input area.

The FEP User Interface
Interactions with Forms and Fields

Exploring Palm OS: Creating a Front-End Processor 11

Inline Text Conversion

Suppose you want to enter the Kanji characters for “Tokyo” in the
City Name field of an Address Book entry. Writing the two Romaji
syllables, “tou” and “kyou,” results in the Hiragana characters
shown in Figure 2.7.

Figure 2.7 “Tokyo,” pre-conversion

To get the correct Kanji characters, write the “space” character or tap
the Convert button.

Options Pop-up List

When you enter the “space” character or tap the Convert input area
button, the correct character may not appear immediately. If you
enter “space” or tap the Convert button more than once, the options
pop-up list appears. See Figure 2.8 for an example.

The FEP User Interface
Interactions with Forms and Fields

12 Exploring Palm OS: Creating a Front-End Processor

Figure 2.8 Japanese FEP options pop-up list

Select the character or characters that are most appropriate. When
finished, tap the Confirm button.

The final result contains the correct combination of Kanji characters,
as shown in Figure 2.9.

The FEP User Interface
Interactions with Forms and Fields

Exploring Palm OS: Creating a Front-End Processor 13

Figure 2.9 Completed Conversion of “Tokyo”

Edit Menu Items
A Palm OS FEP can automatically add a new menu item to any Edit
menu that ends with the Graffiti® 2 Help item. This item calls a
conversion dictionary that the user can edit.

Palm Powered handhelds may include a built-in bilingual
dictionary for the user’s reference. This dictionary is not linked to
the FEP, but to the Word Lookup application. Instead, the FEP can
support a User Dictionary in addition to its own conversion
dictionary. The user can add custom words and their converted
forms to the User Dictionary.

Figure 2.10 illustrates the Edit menu items on a typical Japanese
device.

The FEP User Interface
Interactions with Forms and Fields

14 Exploring Palm OS: Creating a Front-End Processor

Figure 2.10 Example of Japanese edit menu

The FEP Panel
The FEP Panel lets users add words to the User Dictionary and
maintain the list of added words. It can also let the user set FEP
preferences.

You can access the FEP Panel, which contains the list of added
words, from the Preferences application or from the Edit >
Add Word menu item. Note that the Add Word item will
automatically be included in any menu that contains the Graffiti 2
Help command (sysEditMenuGraffitiCmd), provided there also
exists a panel (PRC with type 'panl') that has the same creator as
the current FEP.

The FEP Panel is usually displayed on the pop-up list as “Sample
FEP” or the corresponding name of the FEP used on the handheld.
The following figures show the FEP Panel from a handheld running
the Sample FEP. The user interface is in English by default.

Note that sample code for the FEP Panel is not provided in the FEP
kit. Earlier versions of the kit for Palm OS Garnet do include FEP
Panel sample code.

Add word (opens the FEP Panel)

Word Lookup (only works if a
bilingual dictionary is installed;
opens the Word Lookup
application)

The FEP User Interface
Interactions with Forms and Fields

Exploring Palm OS: Creating a Front-End Processor 15

Figure 2.11 Sample FEP Panel

The New Dictionary Entry dialog appears when a user taps the
New button or selects the Add Word option from the Edit menu in
an application. The following figure shows the New Dictionary
Entry dialog from the Sample FEP Panel.

Figure 2.12 Sample FEP New Dictionary Entry Dialog

The FEP User Interface
Interactions with Forms and Fields

16 Exploring Palm OS: Creating a Front-End Processor

Exploring Palm OS: Creating a Front-End Processor 17

3
Creating a FEP
Shared Library
The Sample FEP Kit provides a Sample FEP shared library to help
you get started with creating your own FEP. The Sample FEP Kit
also includes a test application that will help you debug and test
your FEP.

This chapter discusses the following topics:

• The Sample FEP

• Text Services Manager Server

• Event Flow in a FEP

• FEP Type and Creator ID

• Modifying the Sample FEP

• Debugging and Testing the FEP

The Sample FEP
The Sample FEP shipped with this document is a simple acronym
converter: it takes an acronym as input and converts it to the
spelled-out English version. PalmSource provides this sample code
as a starting place for creating your own FEP. The following sections
describe the basic structure of the Sample FEP project.

IMPORTANT: FEPs based on this Sample FEP Kit are
compatible with Palm OS® Cobalt.

Sample FEP File List
The files that you will use with the Sample FEP project are described
in the following table. All paths below (except the first one) are
relative to the sample FEP directory: \PDK\samples\SampleFep

Creating a FEP Shared Library
The Sample FEP

18 Exploring Palm OS: Creating a Front-End Processor

Table 3.1 Sample FEP File List

File Name Description

Directory: PDK \headers

TextServicesFep.h Header file that contains most of the function
declarations required to implement the FEP API.
This header is available in the PDK \headers
directory. For those developers without access to
the PDK, see Appendix A for the contents of this
header file.

Directory: \Dictionaries

SampleFep-Med.pdb Sample dictionary for use with the Sample FEP. It
contains a list of acronyms and their spelled-out
English equivalents.

Warning: The Sample FEP will not run without this
dictionary installed.

Directory: \Headers

SampleFep.h Public header file for the FEP. This file contains the
custom defines and function declarations that are
specific to a particular FEP. For example, this is
where the FEP name is defined.

Directory: \rsc

SampleFepLib.xrd An XML resource description file that contains the
sample FEP icon name and bitmap references.
Bitmaps are stored in the \SampleFep
subdirectory.

Directory: \

SampleFep.cpp Source code for Sample FEP top-level functions.

SampleFepEngine.cpp Source code for Sample FEP low-level conversion
functions.

SampleFepEngine.h Header file for the Sample FEP conversion engine.

Creating a FEP Shared Library
The Sample FEP

Exploring Palm OS: Creating a Front-End Processor 19

The TestSampleFep Application
The TestSampleFep application is also included in the Sample FEP
Kit in SampleFep\Test. This application lets you switch between the
default FEP and your new FEP for testing purposes. The application
contains a text field and buttons that represent the input area
buttons that you normally see on a handheld that uses a FEP:
“Convert,” “Confirm,” “On/Off”, and “Activate/Deactivate”.

SampleFepEvents.cpp Source code for Sample FEP event-handling
functions.

SampleFepEvents.h Header file for the Sample FEP event handling
functions.

SampleFepGlobals.h Header file that defines a structure typedef that is
used to pass FEP state (global and session-specific)
to all functions.

SampleFepOptions.cpp Source code for Sample FEP options list functions.

SampleFepOptions.h Header file for the sample FEP options list
functions.

SampleFepPrv.h Header file that contains the private FEP
declarations which are used by multiple source
files. For example, the FEP internal state structure
uses some of these declarations.

SampleFepUtil.cpp Source file for functions that are not top-level. These
include functions called by top-level functions in
SampleFep.cpp, SampleFepEngine.cpp (the
dictionary engine), SampleFepEvents.cpp (event
handling), and SampleFepOptions.cpp (options
list handling).

SampleFepUtil.h Header file for the Sample FEP utility functions.

Other files The other files in this directory are Palm OS
Developer Suite project files.

Table 3.1 Sample FEP File List (continued)

File Name Description

Creating a FEP Shared Library
Text Services Manager Server

20 Exploring Palm OS: Creating a Front-End Processor

The TestSampleFep application requires that the FEP you are testing
have the creator 'sfep'.

The section, “Debugging and Testing the FEP” on page 26, describes
this application in more detail.

FEP Code Structure
The FEP code is structured into three layers:

• SampleFep.cpp implements all of the top-level FEP
functions described in Chapter 5, “Text Services FEP
Reference.”

• Below this level are SampleFepEvents.cpp and
SampleFepOptions.cpp, which implement the FEP user
interface.

• The user interface depends on the FEP engine, which is
implemented by functions in the SampleFepEngine.cpp
file.

Text Services Manager Server
The Text Services Manager has a server component that globally
maintains the current FEP and current FEP mode across all
processes and threads.

There can be only one current FEP in the system and one global FEP
mode, even though there may be more than one user interface
context that is using a FEP. In such a case, each would be using the
same FEP, but the server maintains separate state objects for each
client so it’s always clear which is the active client.

There can be multiple clients running in different threads, so a FEP
client must get its current mode from the server and not attempt to
maintain its own mode. This is because the mode could be changed
by a client in another thread. Use the function TsmGetFepMode()
to get the FEP mode and TsmSetFepMode() to set the FEP mode.
These functions interact with the server to get and set the mode.

When a FEP session starts or becomes the active session after having
been inactive, the server calls the TsmLibFepReset() function in
the FEP library. This gives the FEP a chance to start with a clean

Creating a FEP Shared Library
Event Flow in a FEP

Exploring Palm OS: Creating a Front-End Processor 21

slate; any internal globals it may have been maintaining for another
session should get cleaned up here. It also alerts the FEP that the
global FEP mode may have changed and it should check the mode
and set it if necessary.

If you want to use globals in your FEP, ensure that they are thread
safe. You can put them in the FEP instance record
(TsmFepStatusType), or always reset them when the FEP receives
the TsmLibFepReset() call.

Event Flow in a FEP
This section describes how Palm OS interacts with a FEP, including
how events get passed to a FEP.

Initialization Sequence
The following sequence of calls is used to load the correct FEP when
a new user interface context is created:

1. The Text Services Manager is initialized. It calls
TsmGetSystemFepCreator() to determine the creator
code of the system FEP. It then calls TsmLibGetFepInfo()
for this FEP to find out whether or not the FEP should be
loaded. If the FEP version number is invalid, the FEP will not
be loaded. For more information about the FEP version
number, read about the TsmFepInfoType data structure.

2. If the FEP should be loaded, then the Text Manager calls
TsmLibFepOpen(). If that call succeeds, then the FEP is set
as the current FEP.

The FEP should maintain some sort of reference counting in order to
be aware if it is being called to be loaded more than once. In such a
case all it needs to do is set up its globals and does not need to
allocate a new set, since only once FEP session will be active at any
time.

You can see how the Sample FEP uses the gFepOpenCount global
to maintain reference counting.

Creating a FEP Shared Library
Event Flow in a FEP

22 Exploring Palm OS: Creating a Front-End Processor

System Events
The following event processing takes place above the level of field
editing of text:

• Whenever SysHandleEvent() is called, it calls the Text
Manager. If the event is a Text Services Manager virtual
keyDownEvent (for example, one of the four Text Services
Manager input area buttons, or a mode change virtual
character), then the event gets re-posted as a
tsmFepButtonEvent or tsmFepModeEvent. Otherwise,
TsmLibFepMapEvent() is called. This lets the FEP remap
certain events when appropriate. For example, the “space”
keyDownEvent gets remapped to a Text Services Manager
button “convert” event if there is an active inline session
which contains text.

• Whenever FrmHandleEvent() is called with a
keyDownEvent, tsmFepButtonEvent, or
tsmFepModeEvent, and there is no active field, then it calls
TsmLibFepHandleEvent(). This lets the user turn the FEP
on and off, for example, even when the current form has no
text field.

Field-Level Events
The following events occur when a user is editing text in a field:

Whenever FldHandleEvent() is called, it calls
TsmLibFepHandleEvent(). If the FEP handles the event, then it
returns true, and FldHandleEvent() skips its event processing.
Based on the results returned in the status and action structures
passed to TsmLibFepHandleEvent(), the field code will update
text, redraw the field, and update the selection range or insertion
point as appropriate.

For example, suppose the field gets a keyDownEvent. The FEP
determines whether it is active (“on”) or inactive (“off”). If the FEP
handles the event, TsmLibFepHandleEvent() returns
information that tells the field code what to do (for example, “move
the insertion point one character to the right”).

When FldHandleEvent() has finished processing the structures
returned by TsmLibFepHandleEvent(), it calls
TsmLibFepCommitAction()). This lets the FEP do things like

Creating a FEP Shared Library
Modifying the Sample FEP

Exploring Palm OS: Creating a Front-End Processor 23

unlock/deallocate the buffers it uses to pass back inline text to the
field code.

Whenever the field loses the focus (for example, the user tapped
elsewhere on the screen or the form was closed),
TsmLibFepTerminate() is called. This lets the FEP reset its state;
it can also return information to the field about how things need to
be updated (for example, if partially entered Hiragana characters
need to be deleted).

At various times the field code will call TsmLibFepReset() to put
the FEP into a known, safe state. The FEP should treat this like a call
to TsmLibFepTerminate(), but without returning any action
information.

Notes About Event Handling
When the user has written some text and confirmed it, the FEP has
the option of posting a tsmConfirmEvent event. Eventually, this
event reaches the top of the event queue. If the form is gone and
another form is current, the new form receives the event, but that
form was not the form that generated the event. To avoid this
problem, the application must verify that the form ID contained in
the event matches the current form ID.

FEP Type and Creator ID
The FEP creator ID must be unique, and should be assigned like any
other creator ID by registering at http://dev.palmos.com/
creatorid/. The FEP’s type must be sysFileTFep ('libt').

The name can be anything you like.

Modifying the Sample FEP
This section talks about how to handle various issues involved with
writing FEPs.

• Changing the Locale

• Handling Text Services Manager Button Events

• Handling Other Events

http://dev.palmos.com/creatorid/
http://dev.palmos.com/creatorid/

Creating a FEP Shared Library
Modifying the Sample FEP

24 Exploring Palm OS: Creating a Front-End Processor

• Handling the Mode Indicator

• Handling Auto-Yomi Events (Japanese only)

• Auto-Extending the Maximum Size of a Field

• Adding User Dictionary Functions

Changing the Locale
The Sample FEP uses a Latin character set. If you want to design a
FEP for a different language, you must have access to a version of
Palm OS that supports that language and its character set. You must
select an appropriate prefix file for your target locale.

Handling Text Services Manager Button Events
As described in Chapter 2, “The FEP User Interface,” a typical FEP
receives input from three or four special Text Services Manager
buttons in the input area. Tapping one of these buttons generates a
keyDownEvent with one of the following characters: vchrTsm1,
vchrTsm2, vchrTsm3, or vchrTsm4. When SysHandleEvent()
passes these events to TsmLibFepMapEvent(), a corresponding
Text Services Manager button event gets posted. This event
eventually gets passed to the FEP through the form or field code.

One of the hardest user interface events to handle properly in a FEP
is when the user selects text and then taps on the “Convert” button.
For instance, if the FEP can’t process all of the text at once, the FEP
needs to be able to tell the caller that it took only part of the text.

Look at the HandleButtonEvent function in
SampleFepEvents.cpp for an example, because this shifting of
text can be difficult to get right. FEP buffer size is limited, and it can
be difficult to communicate back to the field code when this
limitation becomes an issue.

Handling Other Events
Some regular keyDownEvents (for example, space and linefeed)
are given special meaning by the FEP. As with the FEP buttons,
these get converted into Text Services Manager button events by
TsmLibFepMapEvent() when appropriate (for example, if there is

Creating a FEP Shared Library
Modifying the Sample FEP

Exploring Palm OS: Creating a Front-End Processor 25

no current conversion session, then the space and linefeed
characters are given no special meaning by the FEP).

Handling the Mode Indicator
The FEP is given a chance to draw its own mode indicator in the
space normally occupied by the handwriting recognition system’s
shift mode indicator. If the FEP is off, then the regular mode
indicator is in effect.

Handling Auto-Yomi Events (Japanese only)
In the Japanese language, some words (especially names) may have
pronunciations that differ from the usual pronunciation for that
sequence of characters. The characters that represent the
pronunciation are called yomi. The standard PalmSource Japanese
Address Book contains corresponding yomi text fields for the Last
Name, First Name, and Company Name fields.

Whenever the FEP dumps converted text, either as a result of a call
to TsmLibFepHandleEvent() or TsmLibFepTerminate(), it
also posts an “auto-yomi” event through tsmConfirmEvent. This
event contains pointers to the yomi text and the resulting converted
text. This event is used by the Japanese Address Book to
automatically fill in the pronunciation field when the user is editing
the Last Name, First Name, and Company Name fields.

In most cases, the auto-yomi event causes the yomi field to be filled
in with the same characters used in the regular text field. The user
can then change the yomi text manually if the pronunciation should
be different.

If a specific name always has the same pronunciation, you can add
an entry to the FEP User Dictionary through the FEP Panel. Then,
when the user enters that name, the corresponding yomi text will
always appear in the yomi text field.

Auto-Extending the Maximum Size of a Field
The Category Manager and the Keyboard application use features
set up by the Text Services Manager with information provided by
the FEP (by TsmLibGetFepInfo()). These features mainly

Creating a FEP Shared Library
Debugging and Testing the FEP

26 Exploring Palm OS: Creating a Front-End Processor

involve auto-extending the maximum size (in bytes) of a field so
that the user can temporarily enter more text (for example, in a
transitional character set such as Japanese Hiragana). This
expanded text will later get converted into fewer bytes of the final
character set (for example, Japanese Kanji).

Adding User Dictionary Functions
Data found in a front-end processor’s user dictionary is typically
used by the FEP engine during conversion and is viewed or edited
in a FEP Panel, whose user interface must be supplied by the FEP.
The sample FEP code shows an example of how to do this.

The format of the user dictionary is proprietary to each vendor; the
Palm OS does not have a standard format. Currently there is no
public API to get entries from the user dictionary or to add entries to
the user dictionary.

When the user selects the “Add Word” command from the Edit
menu, the sysAppLaunchCmdFepPanelAddWord command
launches the FEP Panel that has the same creator ID as the FEP and
the type 'panl'.

The system passes the FepPanelAddWordParamsType structure
to the FEP Panel with the sysAppLaunchCmdFepPanelAddWord
launch code. This structure contains information about the new
word to be added to the user dictionary.

Debugging and Testing the FEP
The TestSampleFep application makes it easy to test your FEP in the
Palm OS Simulator. It lets you activate and deactivate your FEP. It
also provides a text field so that you can enter and convert text.

The test application requires that your FEP have the creator
'sfep'.

To debug the FEP:

1. Run Palm OS Simulator using a compatible ROM.

2. Install the FEP’s conversion dictionary, if it is not embedded
in the PRC file. (For the Sample FEP, install
SampleFep-Med.pdb.)

Creating a FEP Shared Library
Debugging and Testing the FEP

Exploring Palm OS: Creating a Front-End Processor 27

3. Debug the application.

4. In Palm OS Simulator, tap the Activate button to make your
FEP the current FEP. Until you deactivate the FEP or reset the
handheld, all FEP calls will be handled by your FEP. The
button should now say, “Deactivate.”

5. To deactivate your FEP, launch the TestSampleFep
application. Tap the Deactivate button to make the system
FEP the current FEP. You can now safely delete or update
your sample FEP.

Creating a FEP Shared Library
Debugging and Testing the FEP

28 Exploring Palm OS: Creating a Front-End Processor

Exploring Palm OS: Creating a Front-End Processor 29

4
Text Services
Manager Reference
This chapter provides information about the public Text Services
Manager (TSM) APIs.

Text Services Manager Constants 29

Text Services Manager Functions and Macros 30

The header file TextServicesMgr.h declares the API that this
chapter describes.

Text Services Manager Constants

Feature Constants
Purpose Constants used with the FtrGet() function.

Declared In TextServicesMgr.h

Constants #define tsmFtrCreator sysFileCTextServices
Creator ID of the Text Services Manager.

#define tsmFtrNumFlags 0
Selector passed to FtrGet() to get the Text Services
Manager flags.

#define tsmFtrFlagsHasFep 0x00000001L
Indicates the bit set in the return value of FtrGet() if a FEP
is installed.

TsmFepModeType Typedef
Purpose Specifies the input modes used by the functions

TsmGetFepMode() and TsmSetFepMode().

Text Services Manager Reference
Text Services Manager Functions and Macros

30 Exploring Palm OS: Creating a Front-End Processor

Declared In TextServicesMgr.h

Prototype typedef uint16_t TsmFepModeType

Constants #define tsmFepModeDefault ((TsmFepModeType)0)
The default input mode for the FEP. For example, with the
Japanese FEP, the default mode is Hiragana.

#define tsmFepModeOff ((TsmFepModeType)1)
Indicates that there is no active FEP input mode (the FEP is
off).

#define tsmFepModeCustom ((TsmFepModeType)128)
A custom FEP input mode. You can have more than one
custom mode; the starting value is 128. Katakana is an
example of a custom input mode for the Japanese FEP.

Text Services Manager Functions and Macros

TsmGetFepMode Function
Purpose Returns the current input mode for the active FEP.

Declared In TextServicesMgr.h

Prototype TsmFepModeType TsmGetFepMode (void)

Parameters None.

Returns If there is an active FEP, returns the current mode for the active FEP.
If there is no active FEP, returns tsmFepModeOff.

Comments The most common use for this function is to save the current FEP
mode. You could then call TsmSetFepMode() to set the current
mode to “off” and again to restore the saved mode once the
application has finished using a special text field.

Text Services Manager Reference
TsmSetFepMode

Exploring Palm OS: Creating a Front-End Processor 31

TsmSetFepMode Function
Purpose Sets the input mode for the active FEP.

Declared In TextServicesMgr.h

Prototype TsmFepModeType TsmSetFepMode
(TsmFepModeType inNewMode)

Parameters → inNewMode
The new FEP input mode.

Returns Returns the previous input mode. If there is no active FEP, returns
tsmFepModeOff.

Comments The most common use for this function is to set the FEP mode to
“off” while the application is using a special text field, and then to
restore the previous mode. See TsmGetFepMode() for more
information on saving and restoring the FEP mode.

One common reason for explicitly disabling the FEP in code is when
a text field will only contain 7-bit ASCII (numeric fields
automatically turn off the FEP). For example, if the application has a
password field and the contents of that field will always be 7-bit
ASCII, the application should turn off the FEP to help prevent the
user from entering invalid characters into the field.

Another common case occurs when the application has a numeric
field, but cannot just rely on the numeric field attribute. For
example, if you want the user to be able to enter the minus (“-”)
sign, you cannot use a numeric field because the field code prevents
the user from entering this character since it’s not a digit or a period.
In this case, you should make it a regular field and have the
application screen the characters. The application should disable the
FEP when such a pseudo-numeric field is active.

Text Services Manager Reference
TsmSetFepMode

32 Exploring Palm OS: Creating a Front-End Processor

Exploring Palm OS: Creating a Front-End Processor 33

5
Text Services FEP
Reference
This chapter provides information about the FEP API as declared in
TextServicesFep.h (see Appendix A). For source code
examples, see SampleFep.cpp in the Sample FEP.

This chapter also provides information about the system-level
events specific to the Text Services Manager (TSM). These events
and structures defined in the Palm OS® header files EventCodes.h
and Event.h.

FEP Events . 33

Text Services FEP Structures and Types. 37

Text Services FEP Constants. 44

Text Services FEP Launch Codes. 46

Text Services FEP Functions. 47

Text Services FEP Plugin Functions 52

Your FEP shared library must implement the API described in the
section “Text Services FEP Plugin Functions” on page 52.

FEP Events

tsmConfirmEvent
Purpose Optionally sent by a FEP when converted text has been confirmed,

either explicitly by the user or as a result of the field losing the focus.

For this event, the EventType data field contains the structure
shown in the Prototype section, below.

Text Services FEP Reference
tsmFepButtonEvent

34 Exploring Palm OS: Creating a Front-End Processor

Declared In Event.h

Prototype struct _TSMConfirmType {
 char *yomiText;
 uint16_t formID;
 uint16_t padding_1;
}

Fields yomiText
A pointer to the raw text that the user entered during
conversion, which corresponds to the converted text being
confirmed.

formID
The ID of the form that was active when the converted text
was confirmed. This is useful for proper event processing
when tsmConfirmEvent is being generated while one form
is being closed and other form is opened: the event won’t be
processed until after the new form has become active.

padding_1
Padding bytes.

Comments An application (such as the Address Book) can use the data
contained in this event to automatically set the data in a
pronunciation field, instead of forcing users to re-enter the same text
that they just passed to the FEP.

tsmFepButtonEvent
Purpose Tapping on a Text Services Manager input area button posts a

keyDownEvent with a virtual character code (vchrTsm1 through
vchrTsm4) and the command bit set in the event’s modifier field. If
the keyDownEvent’s character code matches one of the four that
correspond to the input area buttons, SysHandleEvent() calls the
Text Services Manager to remap the event to be a
tsmFepButtonEvent.

For this event, the EventType data field contains the structure
shown in the Prototype section, below.

Text Services FEP Reference
tsmFepChangeEvent

Exploring Palm OS: Creating a Front-End Processor 35

Declared In Event.h

Prototype struct _TSMFepButtonType {
 uint16_t buttonID;
}

Fields buttonID
This field can have one of the values defined in “Button ID
Constants” on page 44. Some FEPs may not use all of these
values.

NOTE: The tsmFepButtonShorten and
tsmFepButtonLengthen values don’t correspond to any of the
four input area buttons; typically these values are generated by a
physical keyboard, and are used to indicate clause shortening
and lengthening.

tsmFepModeEvent
Purpose Used to change the FEP mode. This includes turning the FEP off,

and turning it on (in its default mode). FEP mode changes must be
handled through events to ensure proper FEP/field code
synchronization.

For this event, the EventType data field contains the structure
shown in the Prototype section, below.

Declared In Event.h

Prototype struct _TSMFepModeEventType {
 uint16_t mode;
}

Fields mode
One of the constants described in “TsmFepModeType” on
page 29.

tsmFepChangeEvent
Purpose Sent by the Text Services Manager when the FEP is changed, to

make all threads aware of the change. This event is used only by the

Text Services FEP Reference
tsmFepDisplayOptionsEvent

36 Exploring Palm OS: Creating a Front-End Processor

Text Services Manager and a FEP does not need to pay attention to
it.

For this event, the EventType data field contains the structure
shown in the Prototype section, below.

Declared In Event.h

Prototype struct tsmFepChange {
 uint32_t creator;
} tsmFepChange

Fields creator
Creator ID of the new FEP.

tsmFepDisplayOptionsEvent
Purpose Sent by the Text Services Manager when the user has requested that

the FEP display the options list. This event is used only by the Text
Services Manager and a FEP does not need to pay attention to it.

For this event, the EventType data field contains the structure
shown in the Prototype section, below.

Declared In Event.h

Prototype struct tsmFepDisplayOptions {
 uint16_t numOptions;
 uint16_t curOption;
 uint16_t maxOptionWidth;
} tsmFepDisplayOptions

Fields numOptions
Number of options in the list.

curOption
The number of the currently selected option in the list. List
items are numbered beginning with 0.

maxOptionWidth
The maximum option width in pixels.

Text Services FEP Reference
TsmFepActionType

Exploring Palm OS: Creating a Front-End Processor 37

tsmFepSelectOptionEvent
Purpose Sent by the Text Services Manager to the FEP when an item is

selected in the FEP options list.

For this event, the EventType data field contains the structure
shown in the Prototype section, below.

Declared In Event.h

Prototype struct tsmFepSelectOption {
 int16_t selection;
} tsmFepSelectOption

Fields selection
The number of the selected option. List items are numbered
beginning with 0.

Text Services FEP Structures and Types

FepPanelAddWordParamsType Struct
Purpose The parameter block for the launch command

sysAppLaunchCmdFepPanelAddWord.

Declared In TextServicesFep.h

Prototype typedef struct {
 const char *wordP;
 size_t wordLen;
} FepPanelAddWordParamsType

Fields wordP
Pointer to the word to be added or looked up.

wordLen
Length of the word in wordP.

TsmFepActionType Struct
Purpose The FEP functions TsmLibFepHandleEvent() and

TsmLibFepTerminate() use this structure to tell the caller what

Text Services FEP Reference
TsmFepActionType

38 Exploring Palm OS: Creating a Front-End Processor

needs to be done to update the text display to synchronize it with
the FEP.

Declared In TextServicesFep.h

Prototype typedef struct {
 size_t dumpLength;
 size_t primedLength;
 Boolean updateText;
 Boolean updateSelection;
 Boolean handledEvent;
} TsmFepActionType

Fields dumpLength
Tells the caller how many bytes of text in the
TsmFepStatusType.inlineText data should be
removed from the front of the inline area and made part of
the regular (non-inline) text. A value of zero means that
nothing is being dumped.

primedLength
The FEP uses this field to tell the caller how much of the
priming text (passed to it in
TsmFepEventType.primeText) it was able to accept or
use. The caller uses this value to trim unused bytes from the
end of the inline area, because initially it assumes that all of
the selected (priming) text became inline text.

updateText
This field is set to true whenever the contents or length of
the TsmFepStatusType.inlineText data has been
changed.

updateSelection
This field is set to true whenever the clause or highlighting
offsets in the TsmFepStatusType structure have changed.

handledEvent
This field is true when TsmLibFepHandleEvent() has
completely handled the event, and thus the caller should not
do any further processing of the event.

Text Services FEP Reference
TsmFepEventType

Exploring Palm OS: Creating a Front-End Processor 39

TsmFepEventType Struct
Purpose This structure is passed to the TsmLibFepHandleEvent()

function. It contains extra information required by the FEP to
correctly handle the event. This structure is filled in by the field
object, and is read-only; the FEP does not need to update any of the
fields in this structure.

Declared In TextServicesFep.h

Prototype typedef struct {
 size_t penOffset;
 Boolean penLeading;
 Boolean formEvent;
 uint16_t padding;
 size_t maxInline;
 char *primeText;
 size_t primeOffset;
 size_t primeLen;
} TsmFepEventType

Fields penOffset
The offset (in bytes) from the beginning of the
TsmFepStatusType.inlineText data to the offset of the
character located at the event’s screenX and screenY
location. This field is only valid for penDownEvents.

Note that this field will contain a negative number if the user
taps on text before the start of the inline area, and it could
also be past the end of the inline text area.

penLeading
Indicates whether a penDownEvent occurred on the left side
of the character following penOffset, or the right side of
the character preceding penOffset. The value is true if the
penDown Event was on the left (leading edge) side of the
following character.

formEvent
This field is true if TsmLibFepHandleEvent() is being
called by the form code (when there is no active field), and
thus the status record should not be modified.

padding
Padding bytes.

Text Services FEP Reference
TsmFepEventType

40 Exploring Palm OS: Creating a Front-End Processor

maxInline
The maximum number of bytes allowable in the inline text
area. It is up to the FEP to constrain the results it passes back
in the TsmFepStatusType record such that
convertedLen + pendingLen is always less than or equal
to this limit. This limit is calculated by the field object, based
on the amount of text in the field, the current size of the inline
area, and the maximum allowable text in the field.

primeText
A pointer to text used to “prime” the conversion process. If
there is no active inline area, its value is determined as
follows: the user selects text in a field, and then the user turns
the FEP on, taps the mode change button, or taps the convert
button.

The field code will set primeText to be the field’s text
pointer.

primeOffset
The offset to the beginning of the selected text defined by the
primeText pointer.

primeLen
The length of the selected text defined by the primeText
pointer.

NOTE: The value of primeLen might be greater than the
maximum amount of text that the FEP can handle. In that case,
the FEP should ignore text beyond what it can handle, and set up
the TsmFepActionType.primedLength field with the amount
of text it was able to use for the inline text.

Text Services FEP Reference
TsmFepInfoType

Exploring Palm OS: Creating a Front-End Processor 41

TsmFepInfoType Struct
Purpose The TsmFepInfoType structure is returned by the

TsmLibGetFepInfo() function, which is usually called before the
FEP is actually opened.

Declared In TextServicesFep.h

Prototype typedef struct {
 uint32_t apiVersion;
 uint32_t libVersion;
 uint32_t libMaker;
 CharEncodingType encoding;
 LmLanguageType language;
 size_t stackExtra;
 size_t fieldExtra;
} TsmFepInfoType

Fields apiVersion
This field should always be set to tsmFepAPIVersion,
which is a constant defined in TextServicesFep.h (see
Appendix A). The tsmAPIVersion constant is a standard
Palm OS version number of the format
x.y.z<release stage><release number>

and encoded as a 32-bit value. For example, version 1.12b3
would be encoded as 0x01122003.

The value in this field is used by the Text Services Manager to
decide if the FEP implements an appropriate version of the
API. If the value returned by the FEP matches the current
API version number in the major and minor fields, then the
FEP can be used. Otherwise the FEP is ignored.

libVersion
The version number for any custom APIs implemented by
the FEP library. This field is useful for code that calls any of
the library’s extended functions; for example, a function that
accesses the user dictionary.

libMaker
A four character “FEP Maker” code. This should always be
the same as the FEP creator ID. Otherwise, by convention this
code should match the creator code used by any associated
panel or application that is part of the FEP software package.

Text Services FEP Reference
TsmFepStatusType

42 Exploring Palm OS: Creating a Front-End Processor

encoding
A Text Manager character encoding value as defined in
PalmLocale.h, for example charEncodingPalmSJIS for
Japanese FEPs.

language
A Locale Manager language code as defined in
LocaleMgrTypes.h; for example, lJapanese for Japanese
FEPs.

stackExtra
The maximum amount of stack space in bytes that would be
used by the FEP in response to the
TsmLibFepHandleEvent() call.

fieldExtra
The number of extra bytes needed to auto-expand “short”
fields so that the user can enter enough pre-conversion text to
correctly specify the post-conversion results.

For example, some Japanese Kanji characters could require
up to ten bytes of text entry in order to specify the Hiragana
characters that will be converted into two double-byte Kanji
characters. In this example, six extra bytes would be required
to set the last two characters in a field to the converted Kanji.
This value is primarily used by the Category code when the
user is editing the names of categories.

TsmFepStatusType Struct
Purpose This structure is allocated by TsmLibFepOpen(), and returned to

the caller. It is then passed to many of the FEP functions, until
TsmLibFepClose() deallocates it. The FEP uses this structure to
tell the field object code what to display, and how to display it.

Text Services FEP Reference
TsmFepStatusType

Exploring Palm OS: Creating a Front-End Processor 43

Declared In TextServicesFep.h

Prototype typedef struct {
 char *inlineText;
 size_t convertedLen;
 size_t pendingLen;
 size_t selectStart;
 size_t selectEnd;
 size_t clauseStart;
 size_t clauseEnd;
} TsmFepStatusType

Fields inlineText
The reference number of the FEP shared library. This is filled
in by the Text Services Manager after the call to
TsmLibFepOpen() succeeds.

convertedLen
A pointer to the text that is controlled by the FEP. This text is
often called the “active input area” text.

pendingLen
The amount of text (in bytes) in the inlineText data that
has been entered but not yet converted. This text always
follows the converted text.

selectStart
The offset (in bytes) from the beginning of the inlineText
data to the beginning of the selected text.

selectEnd
The offset (in bytes) from the beginning of the inlineText
data to the end of the selected text. If there is an insertion
point, but no selection range, then this value will be the same
as selectStart.

clauseStart
The offset (in bytes) from the beginning of the inlineText
data to the beginning of the current clause text. Only
converted text can contain clauses. If there is no converted
text, or no clause, then this field should contain zero.

clauseEnd
The offset (in bytes) from the beginning of the inlineText
data to the end of the current clause text. If there is no
converted text, or no clause, then this field should contain
zero.

Text Services FEP Reference
Text Services FEP Constants

44 Exploring Palm OS: Creating a Front-End Processor

NOTE: If the FEP is dumping text from the inline area into the
field object, these offsets are still relative to the state of the inline
text before any dumping has taken place. The
TsmLibFepCommitAction() call should update the FEP’s
internal state to reflect the effect of dumping text.

NOTE: The FEP typically adds extra information to the end of
this record, to maintain private information about the session.

Text Services FEP Constants

Button ID Constants
Purpose Possible values for the buttonID field in a tsmFepButtonEvent

event.

Declared In TextServicesFep.h

Constants #define tsmFepButtonConvert 0
The Convert button.

#define tsmFepButtonConfirm 1
The Confirm button.

#define tsmFepButtonMode 2
The Mode button.

#define tsmFepButtonOnOff 3
The On/Off button.

#define tsmFepButtonShorten 4
The Shorten button.

#define tsmFepButtonLengthen 5
The Lengthen button.

Comments The tsmFepButtonShorten and tsmFepButtonLengthen
values don’t correspond to any of the four input area buttons;
typically these values are generated by a physical keyboard, and are
used to indicate clause shortening and lengthening.

Text Services FEP Reference
Error Codes

Exploring Palm OS: Creating a Front-End Processor 45

Error Codes
Purpose Error codes returned by FEP shared library functions.

Declared In TextServicesFep.h

Constants #define tsmErrFepCantCommit (tsmErrorClass | 2)
The TsmLibFepCommitAction() function encountered an
error.

#define tsmErrFepCustom (tsmErrorClass | 128)
FEPs can return custom error codes starting from here.

#define tsmErrFepNeedCommit (tsmErrorClass | 1)
The FEP is waiting for a TsmLibFepCommitAction() call.

#define tsmErrFepNotOpen (tsmErrorClass | 3)
The FEP is not open.

#define tsmErrFepReentrancy (tsmErrorClass | 8)
The FEP is currently running code in another thread and
cannot process the call.

#define tsmErrFepStillOpen (tsmErrorClass | 4)
The FEP has additional contexts that are still active.

#define tsmErrFepWrongAPI (tsmErrorClass | 5)
The FEP library API version does not match the Text Services
Manager API version.

#define tsmErrFepWrongEncoding (tsmErrorClass | 6)
The FEP has received data in the wrong encoding. Currently
the OS doesn’t do anything special when this error code is
returned by the FEP.

#define tsmErrFepWrongLanguage (tsmErrorClass | 7)
The FEP has received data in the wrong language. Currently
the OS doesn’t do anything special when this error code is
returned by the FEP.

#define tsmErrUnimplemented (tsmErrorClass | 0)
The FEP doesn’t implement the function. Currently the OS
doesn’t do anything special when this error code is returned
by the FEP.

Text Services FEP Reference
Miscellaneous Constants

46 Exploring Palm OS: Creating a Front-End Processor

Miscellaneous Constants
Purpose Miscellaneous constants.

Declared In TextServicesFep.h

Constants #define tsmFepAPIVersion (sysMakeROMVersion(6, 0,
0, sysROMStageRelease, 0))

Text Services Manager FEP API version information.

#define tsmFtrNumFepStackExtra 128
Selector used for FtrGet() to get the maximum number of
extra stack bytes required by the FEP.

#define tsmFtrNumFepFieldExtra 129
Selector used for FtrGet() to get the maximum number of
extra field bytes required by the FEP.

#define tsmInvalidFepCreator 0
Creator code used to indicate no FEP, for getting and setting
the current and system FEP.

Text Services FEP Launch Codes

sysAppLaunchCmdFepPanelAddWord
Purpose Send this launch code to the FEP panel to add a word to the FEP

user dictionary.

Declared In CmnLaunchCodes.h

Prototype #define sysAppLaunchCmdFepPanelAddWord 87

Parameters The launch code’s parameter block pointer references a
FepPanelAddWordParamsType structure that indicates the word
to be added.

Text Services FEP Reference
TsmFepHandleEvent

Exploring Palm OS: Creating a Front-End Processor 47

Text Services FEP Functions

TsmFepCommitAction Function
Purpose Unlocks or deallocates any buffers used to pass information back to

the caller in the TsmFepStatusType record as a result of a
TsmLibFepHandleEvent() or TsmLibFepTerminate() call.

Declared In TextServicesFep.h

Prototype status_t TsmFepCommitAction (void)

Parameters None.

Returns errNone if the call was successful. Returns
tsmErrFepReentrancy if the FEP is currently running code in
another thread and cannot process the call. A FEP can prevent this
error by doing reference counting.

Comments This function also updates any status record or internal offsets that
need adjusting because text is being dumped from the inline text
area.

TsmFepHandleEvent Function
Purpose Tells the caller whether or not the FEP completely handled the

event. Updates the TsmFepStatusType record as appropriate, and
sets fields in the TsmFepActionType record to tell the caller what
needs to be updated.

Declared In TextServicesFep.h

Prototype status_t TsmFepHandleEvent
(const EventType *inEventP,
const TsmFepEventType *inTsmEventP,
TsmFepStatusType **ioStatusP,
TsmFepActionType *outActionP)

Parameters → inEventP
A pointer to a system event record, such as a typical
penDownEvent or keyDownEvent.

Text Services FEP Reference
TsmFepMapEvent

48 Exploring Palm OS: Creating a Front-End Processor

→ inTsmEventP
A pointer to a TsmFepEventType structure, which contains
extra information about the event.

↔ ioStatusP
Pointer to a status pointer for this context.

← outActionP
A pointer to a TsmFepActionType structure, which the FEP
fills in with information that the caller needs to know to
correctly update the display to reflect the current FEP state.

Returns Return one of the following:

errNone
The event was handled successfully
(outActionP.handledEvent is true), or the event was
not completely handled by this function
(outActionP.handledEvent is false).

tsmErrFepReentrancy
The FEP is currently running code.

tsmErrFepNeedCommit
The FEP is waiting for a TsmLibFepCommitAction() call.

See Also FEP Events

TsmFepMapEvent Function
Purpose Determines whether or not an event should be remapped by the

FEP. If it needs to be remapped, then it posts the remapped event to
the event queue.

Declared In TextServicesFep.h

Prototype Boolean TsmFepMapEvent
(const EventType *inEventP)

Parameters → inEventP
A pointer to the event record.

Returns true if the event was remapped.

Comments This function is commonly used to remap FEP button shortcut
characters (that is, space or linefeed) to their FEP button
equivalents. For example, it maps the shift left and right arrow

Text Services FEP Reference
TsmFepReset

Exploring Palm OS: Creating a Front-End Processor 49

keyDownEvents to shorten/lengthen clause events. Note that the
remapping is conditional on the state of the FEP. For example, a
space is only remapped to a convert event if the FEP has inline text,
otherwise it gets treated like a regular space character (no
remapping).

TsmFepOptionsList Function
Purpose Pops up the list of options for the FEP.

Declared In TextServicesFep.h

Prototype void TsmFepOptionsList (uint16_t iNumOptions,
uint16_t iCurOption, uint16_t iMaxOptionWidth)

Parameters → iNumOptions
Number of options in the list.

→ iCurOption
The currently selected item.

→ iMaxOptionWidth
Maximum width of the list in pixels.

Returns The index of the list item selected, or noListSelection if no item
was selected.

Comments This function queues an event to pop up the FEP options list. When
this event is handled by TsmFepHandleEvent(), the
TsmLibFepDrawOption() function is called to draw each item in
the list. This function is passed the item number and the bounds in
which the option item is to be drawn.

TsmFepReset Function
Purpose Calls through to the current FEP’s TsmLibFepReset() function,

which resets the FEP by clearing all buffers and setting the state
back to raw text.

Declared In TextServicesFep.h

Prototype status_t TsmFepReset (void)

Parameters None.

Text Services FEP Reference
TsmFepTerminate

50 Exploring Palm OS: Creating a Front-End Processor

Returns errNone if the call was successful. Returns
tsmErrFepReentrancy if the FEP is currently running code and
cannot process the call.

Comments This function does not change the mode. It also ignores any pending
commits (see TsmLibFepCommitAction()).

TsmFepTerminate Function
Purpose Calls through to the current FEP’s TsmLibFepTerminate()

function, which ends the conversion session, if active, updates the
TsmFepStatusType record with the new status, and fills in the
TsmFepActionType record to tell the caller what needs to be
updated.

Declared In TextServicesFep.h

Prototype status_t TsmFepTerminate
(TsmFepStatusType **ioStatusP,
TsmFepActionType *outActionP)

Parameters ↔ ioStatusP
Pointer to the FEP’s status record.

← outActionP
Pointer to the FEP’s action record.

Returns errNone if the call was successful. Returns
tsmErrFepReentrancy if the FEP is currently running code and
cannot process the call.

TsmGetCurrentFepCreator Function
Purpose Gets the creator ID of the current FEP.

Declared In TextServicesFep.h

Prototype Boolean TsmGetCurrentFepCreator
(uint32_t *oFepCreatorP)

Parameters ← oFepCreatorP
Pointer to the current FEP creator ID. If there is no current
FEP, then *oFepCreatorP contains
tsmInvalidFepCreator.

Text Services FEP Reference
TsmSetCurrentFepCreator

Exploring Palm OS: Creating a Front-End Processor 51

Returns true if there is a current FEP.

See Also TsmSetCurrentFepCreator(), TsmGetSystemFepCreator()

TsmGetSystemFepCreator Function
Purpose Gets the creator ID of the system FEP. The system FEP is the FEP

that will be used to initialize the current FEP when you perform a
soft-reset of the handheld.

Declared In TextServicesFep.h

Prototype Boolean TsmGetSystemFepCreator
(uint32_t *oFepCreatorP)

Parameters ← oFepCreatorP
Pointer to the returned FEP plugin library creator ID, or
tsmInvalidFepCreator if there is no system FEP.

Returns true if there is a system FEP.

See Also TsmSetSystemFepCreator(), TsmGetCurrentFepCreator()

TsmSetCurrentFepCreator Function
Purpose Sets the current FEP to be the FEP with the specified creator ID,

opens it and makes it usable.

Declared In TextServicesFep.h

Prototype status_t TsmSetCurrentFepCreator
(uint32_t iFepCreator)

Parameters → iFepCreator
FEP plugin library creator ID.

Returns errNone if the current FEP was changed to the FEP with the
specified creator ID. Otherwise, it returns one of the following result
codes:

tsmErrFepWrongAPI
The FEP library API version does not match the Text Services
Manager API version.

sysInvalidRefNum
The FEP library could not be opened.

Text Services FEP Reference
TsmSetSystemFepCreator

52 Exploring Palm OS: Creating a Front-End Processor

tsmErrFepStillOpen
The previous FEP is still open.

Comments All FEP plugin libraries are of type sysFileTFep.

See Also TsmGetCurrentFepCreator(), TsmSetSystemFepCreator()

TsmSetSystemFepCreator Function
Purpose Sets the creator ID of the system FEP.

Declared In TextServicesFep.h

Prototype void TsmSetSystemFepCreator
(uint32_t iFepCreator)

Parameters → iFepCreator
FEP plugin library creator ID.

Returns Nothing.

See Also TsmGetSystemFepCreator(), TsmSetCurrentFepCreator()

Text Services FEP Plugin Functions
Your FEP shared library must implement the functions described in
this section.

TsmLibFepClose Function
Purpose Deallocates a TsmFepStatusType structure previously returned

by TsmLibFepOpen(). If this closes the last active FEP session,
then disposes of any shared information (for example, unlocks
dictionary data).

Declared In TextServicesFep.h

Prototype status_t TsmLibFepClose
(TsmFepStatusType *ioStatusP)

Parameters ↔ ioStatusP
Status pointer for this context.

Returns Return one of the following:

Text Services FEP Reference
TsmLibFepCommitAction

Exploring Palm OS: Creating a Front-End Processor 53

errNone
No error; call succeeded.

tsmErrFepNotOpen
The FEP is not open.

tsmErrFepReentrancy
The FEP is currently running code in another thread.

tsmErrFepStillOpen
The FEP has additional contexts that are active.

Comments This function ignores any pending commits (see
TsmLibFepCommitAction()).

See Also TsmLibFepOpen()

TsmLibFepCommitAction Function
Purpose Unlocks or deallocates any buffers used to pass information back to

the caller in the TsmFepStatusType record as a result of a
TsmLibFepHandleEvent() or TsmLibFepTerminate() call.

Declared In TextServicesFep.h

Prototype status_t TsmLibFepCommitAction
(TsmFepStatusType *ioStatusP)

Parameters ↔ ioStatusP
Status pointer for this context.

Returns errNone if the call was successful. Returns
tsmErrFepReentrancy if the FEP is currently running code in
another thread and cannot process the call.

Comments This function also updates any status record or internal offsets that
need adjusting because text is being dumped from the inline text
area.

Text Services FEP Reference
TsmLibFepDrawModeIndicator

54 Exploring Palm OS: Creating a Front-End Processor

TsmLibFepDrawModeIndicator Function
Purpose If the FEP is active, then draws a mode indicator which corresponds

to the FEP’s current mode.

Declared In TextServicesFep.h

Prototype Boolean TsmLibFepDrawModeIndicator
(TsmFepModeType inFepMode, uint16_t gsiState,
Coord x, Coord y)

Parameters → inFepMode
The FEP input mode; see “TsmFepModeType” on page 29.
This is the current FEP mode as maintained by the server.

→ gsiState
Mode indicator state. It can have the values defined by
GsiShiftState in GraffitiShift.h.

→ x
x coordinate of the location where the character is to be
drawn (left bound).

→ y
y coordinate of the location where the character is to be
drawn (top bound).

Returns true if the call drew the mode indicator.

Comments For Japanese, the recommended mode indicators are as follows:

For Chinese handhelds, which may have multiple FEPs, use a
character that will identify the FEP that is currently active. For
example, the Palm OS standard Pinyin FEP uses the “pin” character
to indicate that the FEP is on.

NOTE: The mode indicator doesn't change based on the state
of the FEP. For example, the FEP mode stays the same whether
or not the inline session contains converted text.

FEP off, regular mode lower-case, full-width Latin “a”

FEP off, shifted mode upper-case, full-width Latin “a”

FEP on, default (Hiragana) Hiragana “a”

FEP on, Katakana Katakana “a”

Text Services FEP Reference
TsmLibFepHandleEvent

Exploring Palm OS: Creating a Front-End Processor 55

TIP: You can use the constants kMaxGsiWidth and
kMaxGsiHeight to limit the size of your mode indicator. These
constants are defined in GraffitiShift.h. All of the pixels in
the rectangle defined by these constants must be set (that is,
erased or redrawn) if the FEP draws the indicator, to ensure
proper updating.

TsmLibFepDrawOption Function
Purpose Draws an option in the FEP options list.

Declared In TextServicesFep.h

Prototype void TsmLibFepDrawOption
(const TsmFepStatusType *inStatusP,
uint16_t iItemNumber,
const RectangleType *iBounds)

Parameters → inStatusP
Pointer to the FEP status record.

→ iItemNumber
The item number of the option to draw.

→ iBounds
The bounds where the option is to be drawn.

Returns Nothing.

Comments This function is called by the list code, once for each item in the list.
This function should draw the appropriate options item within the
bounds indicated by iBounds.

TsmLibFepHandleEvent Function
Purpose Tells the caller whether or not the FEP completely handled the

event. Updates the TsmFepStatusType record as appropriate, and

Text Services FEP Reference
TsmLibFepHandleEvent

56 Exploring Palm OS: Creating a Front-End Processor

sets fields in the TsmFepActionType record to tell the caller what
needs to be updated.

Declared In TextServicesFep.h

Prototype status_t TsmLibFepHandleEvent
(const EventType *inEventP,
const TsmFepEventType *inTsmEventP,
TsmFepStatusType *ioStatusP,
TsmFepActionType *outActionP)

Parameters → inEventP
Pointer to a system event record, such as a typical
penDownEvent or keyDownEvent.

→ inTsmEventP
Pointer to a TsmFepEventType structure, which contains
extra information about the event.

↔ ioStatusP
Status pointer for this context.

← outActionP
Pointer to a TsmFepActionType structure, which the FEP
fills in with information that the caller needs to know to
correctly update the display to reflect the current FEP state.

Returns One of the following:

errNone
The event was handled successfully
(outActionP.handledEvent is true), or the event was
not completely handled by this function
(outActionP.handledEvent is false).

tsmErrFepReentrancy
The FEP is currently running code.

tsmErrFepNeedCommit
The FEP is waiting for a TsmLibFepCommitAction() call.

Text Services FEP Reference
TsmLibFepOpen

Exploring Palm OS: Creating a Front-End Processor 57

TsmLibFepMapEvent Function
Purpose Determines whether or not an event should be remapped by the

FEP. If it needs to be remapped, then this function posts the
remapped event to the event queue.

Declared In TextServicesFep.h

Prototype Boolean TsmLibFepMapEvent
(const TsmFepStatusType *inStatusP,
const EventType *inEventP)

Parameters → inStatusP
Pointer to the FEP status record.

→ inEventP
Pointer to the event record.

Returns true if the event was remapped.

Comments This function is commonly used to remap FEP button shortcut
characters (that is, space or linefeed) to their FEP button
equivalents. For example, it maps the shift left and right arrow
keyDownEvents to shorten/lengthen clause events. Note that the
remapping is conditional on the state of the FEP. For example, a
space is only remapped to a convert event if the FEP has inline text,
otherwise it gets treated like a regular space character (no
remapping).

TsmLibFepOpen Function
Purpose Allocates and initializes a new instance of the TsmFepStatusType

structure, and returns this structure to the caller. If this is the first
TsmLibFepOpen() call, it should also set up any shared
information, such as dictionary data.

Declared In TextServicesFep.h

Prototype status_t TsmLibFepOpen
(TsmFepStatusType **outStatusP)

Parameters ← outStatusP
Pointer to a pointer to the new instance (status) record.

Text Services FEP Reference
TsmLibFepReset

58 Exploring Palm OS: Creating a Front-End Processor

Returns errNone if the call was successful; otherwise, returns a standard
error code that indicates the nature of the problem, such as
memErrNotEnoughSpace or dmErrCantFind.

Comments Note that typically a FEP will allocate extra space at the end of the
TsmFepStatusType structure to hold extra information about the
session.

See Also TsmLibFepClose()

TsmLibFepReset Function
Purpose Resets the FEP (input method) by clearing all buffers and setting the

state back to raw text. However, does not change the mode.

Declared In TextServicesFep.h

Prototype status_t TsmLibFepReset
(TsmFepStatusType *ioStatusP)

Parameters ↔ ioStatusP
Status pointer for this context.

Returns errNone if the call was successful. Returns
tsmErrFepReentrancy if the FEP is currently running code and
cannot process the call.

Comments This function ignores any pending commits (see
TsmLibFepCommitAction()).

TsmLibFepTerminate Function
Purpose Ends the conversion session, if active. Updates the

TsmFepStatusType record with the new status, and fills in the
TsmFepActionType record to tell the caller what needs to be
updated.

Declared In TextServicesFep.h

Prototype status_t TsmLibFepTerminate
(TsmFepStatusType *ioStatusP,
TsmFepActionType *outActionP)

Parameters ↔ ioStatusP
Pointer to the FEP’s status record

Text Services FEP Reference
TsmLibGetFepInfo

Exploring Palm OS: Creating a Front-End Processor 59

← outActionP
Pointer to the FEP’s action record.

Returns errNone if the call was successful. Returns
tsmErrFepReentrancy if the FEP is currently running code and
cannot process the call.

TsmLibGetFepInfo Function
Purpose Fills in the TsmFepInfoType structure with information about the

FEP.

Declared In TextServicesFep.h

Prototype status_t TsmLibGetFepInfo
(TsmFepInfoType *outInfoP)

Parameters ← outInfoP
Pointer to the information record to be filled in.

Returns errNone if the call was successful. Returns
tsmErrFepReentrancy if the FEP is currently running code and
cannot process the call.

Comments This function can and will get called before the FEP library has been
opened, so potentially no globals have been set up. This function
should just fill in the information record with the available
information and return.

Text Services FEP Reference
TsmLibGetFepInfo

60 Exploring Palm OS: Creating a Front-End Processor

Exploring Palm OS: Creating a Front-End Processor 61

A
TextServicesFep.h

WARNING! This file is provided here for illustrative purposes
only. It is normally considered “private” because its contents are
subject to change. Subsequent releases of Palm OS® make no
guarantee of compatibility; any code that depends on the contents
of this file is not guaranteed to work with future releases of the
OS.

/**
 *
 * Copyright (c) 1999-2003 PalmSource, Inc. All rights reserved.
 *
 * File: TextServicesFep.h
 *
 * Release: Palm OS 6.0
 *
 * Description:
 * Header file for calling the FEP or its associated user dictionary editor.
 *
 ***/

#ifndef _TEXTSERVICESFEP_H_
#define _TEXTSERVICESFEP_H_

#include <PalmTypes.h>
#include <Event.h> // EventType
#include <SystemMgr.h> // sysAppLaunchCmdCustomBase
#include <TextServicesMgr.h> // TsmFepModeType
#include <TextMgr.h> // CharEncodingType

/***
 * Public constants
 ***/

// Our uint32_t version number available in TsmFepInfoType.apiVersion
// 0xMMmfsbbb, where MM is major version, m is minor version
// f is bug fix, s is stage: 3-release,2-beta,1-alpha,0-development,
// bbb is build number for non-releases

TextServicesFep.h

62 Exploring Palm OS: Creating a Front-End Processor

// V1.12b3 would be: 0x01122003
// V2.00a2 would be: 0x02001002
// V1.01 would be: 0x01013000

#define tsmFepAPIVersion(sysMakeROMVersion(6, 0, 0, sysROMStageRelease, 0))

// Creator code used to indicate no FEP, for get/set of current/system FEP.
#define tsmInvalidFepCreator 0

// Possible values for the .buttonID field in a tsmFepButtonEvent event.
#define tsmFepButtonConvert 0
#define tsmFepButtonConfirm 1
#define tsmFepButtonMode 2 // Was tsmFepButtonKana
#define tsmFepButtonOnOff 3
#define tsmFepButtonShorten 4
#define tsmFepButtonLengthen 5

// Selector used with call to FtrGet(tsmFtrCreator, xxx) to get the
// max number of extra stack bytes required by the FEP.
#define tsmFtrNumFepStackExtra 128

// Selector used with call to FtrGet(tsmFtrCreator, xxx) to get the
// max number of extra field bytes required by the FEP.
#define tsmFtrNumFepFieldExtra129

// Errors specific to the Text Services Fep library.
#define tsmErrUnimplemented (tsmErrorClass | 0)
#define tsmErrFepNeedCommit (tsmErrorClass | 1)
#define tsmErrFepCantCommit (tsmErrorClass | 2)
#define tsmErrFepNotOpen (tsmErrorClass | 3)
#define tsmErrFepStillOpen (tsmErrorClass | 4)
#define tsmErrFepWrongAPI (tsmErrorClass | 5)
#define tsmErrFepWrongEncoding (tsmErrorClass | 6)
#define tsmErrFepWrongLanguage (tsmErrorClass | 7)
#define tsmErrFepReentrancy (tsmErrorClass | 8)
#define tsmErrFepCustom (tsmErrorClass | 128)

/***
 * Public types
 ***/

// Structure returned by TsmLibGetFepInfo routine.
typedef struct {
 uint32_tapiVersion; // Tsm API implemented by library.
 uint32_tlibVersion; // Custom API implemented by library.
 uint32_tlibMaker; // Who made this input method (creator).

 CharEncodingType encoding; // e.g. charEncodingPalmLatin

TextServicesFep.h

Exploring Palm OS: Creating a Front-End Processor 63

 LmLanguageTypelanguage; // e.g. lJapanese

 size_t stackExtra; // Extra stack space needed by FEP
 size_t fieldExtra; // Extra field space needed by FEP.
} TsmFepInfoType;

// Structure returned by TsmFepHandleEvent/TsmFepTerminate routines
// Note that the updateText and updateSelection flags are for efficiency
// only - the field code can use these to reduce the amount of redrawing
// required.
typedef struct {
 size_t dumpLength; // Length of text to dump (or zero)
 size_t primedLength; // Length of priming text used by FEP

 Boolean updateText; // True -> update inline text.
 Boolean updateSelection; // True -> update selection range.
 Boolean handledEvent; // True -> Fep handled event.
 Boolean reserved;
} TsmFepActionType;

// Structure passed to TsmFepHandleEvent routine.
typedef struct {
 size_t penOffset; // Offset (relative to start of inline text)
 // of event's screenX/screenY location.
 Boolean penLeading; // True -> position is on leading edge of the
 // character at penOffset.
 Boolean formEvent; // True -> caller is form code, thus NO CHANGES
 // to TsmStatusRec are allowed.
 uint16_t padding;
 size_t maxInline; // Max allowable size of inline, in bytes.
 char *primeText; // ptr to selected text (if inline not active)
 size_t primeOffset; // Offset to selected text.
 size_t primeLen; // Length of selected text.
} TsmFepEventType;

// Structure exchanged with many FEP routines. This is how
// the FEP tells the editing code what to display, and how
// to display it. Note that it's also the context record for the
// FEP, thus additional (private) conversion information will
// typically be appended by the FEP.
typedef struct {
 char *inlineText; // ptr to inline text.

 size_t convertedLen; // Length of converted text.
 size_t pendingLen; // Length of unconverted (pending) text.

 size_t selectStart; // Start of selection range.
 size_t selectEnd; // End of selection range (can extend past

TextServicesFep.h

64 Exploring Palm OS: Creating a Front-End Processor

 // end of inline text)

 size_t clauseStart; // Start of converted clause highlighting
 size_t clauseEnd; // End of converted clause highlighting
} TsmFepStatusType;

// Parameter block passed with the sysAppLaunchCmdFepPanelAddWord command,
// when the user selects "Add Word..." from the system edit menu.
typedef struct
{
 const char* wordP; // Ptr to word to add to FEP's user dictionary.
 size_t wordLen; // Length of word.
} FepPanelAddWordParamsType;

/***
 * Public functions
 ***/

#ifdef __cplusplus
extern "C" {
#endif

// Get the creator of the system FEP.
Boolean TsmGetSystemFepCreator(uint32_t *oFepCreatorP);

// Set the creator of the system FEP.
void TsmSetSystemFepCreator(uint32_t iFepCreator);

// Get the creator of the current FEP.
Boolean TsmGetCurrentFepCreator(uint32_t *oFepCreatorP);

// Set the creator of the current FEP, and make it active.
status_t TsmSetCurrentFepCreator(uint32_t iFepCreator);

status_t TsmFepHandleEvent(const EventType* inEventP,
 const TsmFepEventType* inTsmEventP,
 TsmFepStatusType **ioStatusP,
 TsmFepActionType *outActionP);

Boolean TsmFepMapEvent(const EventType *inEventP);

status_t TsmFepTerminate(TsmFepStatusType **ioStatusP, TsmFepActionType
*outActionP);

status_t TsmFepReset(void);

status_t TsmFepCommitAction(void);

TextServicesFep.h

Exploring Palm OS: Creating a Front-End Processor 65

// Display a deferred options list. Used by native FEPs in 6.0 to display
// an options list at a later time, to avoid re-entrancy problems.
void TsmFepOptionsList(uint16_t iNumOptions,
 uint16_t iCurOption,
 uint16_t iMaxOptionWidth);

/***
 * FEP Shared Library routines. These are the declarations of the
 * functions inside of the current FEP library, which will be called by the
 * cover routines above.
 ***/

// Open up an instance of the Fep. The Fep is responsible for allocating
// the TsmFepStatusType structure (to which it might append additional
// context information) and returning back a pointer to it.
status_t TsmLibFepOpen(TsmFepStatusType** outStatusP);

// Close down an instance of the Fep. The Fep is responsible
// for disposing of the TsmFepStatusType which it allocated in TsmLibFepOpen().
status_t TsmLibFepClose(TsmFepStatusType* ioStatusP);

// Return information about the Fep in the TsmFepInfoType structure.
status_t TsmLibGetFepInfo(TsmFepInfoType* outInfoP);

// Handle an event passed in <inEventP>. Additional information about the event
// is passed in the TsmFepEventType structure. Update the inline text data in
// the TsmFepStatusType, and tell the caller what happened by setting up the
// TsmFepActionType structure (including whether the event was handled by the
// Fep).
status_t TsmLibFepHandleEvent(const EventType* inEventP,
 const TsmFepEventType* inTsmEventP,
 TsmFepStatusType* ioStatusP,
 TsmFepActionType* outActionP);

// Decide if <inEvent> should be remapped to some other event. If so, return
// true. If we return true, then go ahead and perform the remapping by posting
// a new event with the remapped info.
Boolean TsmLibFepMapEvent(const TsmFepStatusType* inStatusP,
 const EventType* inEventP);

// Terminate an inline session. Typically this involves 'dumping' all of the
// converted text, and potentially deleting any untransliterated input text.
// As with TsmLibFepHandleEvent, update the inline text data in the
// TsmFepStatusType, and indicate what was done in the TsmFepActionType.
status_t TsmLibFepTerminate(TsmFepStatusType* ioStatusP,
 TsmFepActionType* outActionP);

TextServicesFep.h

66 Exploring Palm OS: Creating a Front-End Processor

// Reset an inline session. The state of the Fep is reset to empty, raw
// text, nothing to dump, etc. This call should only be made when the
// conversion results are not required, otherwise TsmTerminate should be used.
status_t TsmLibFepReset(TsmFepStatusType* ioStatusP);

// The caller has processed the action which was returned by either the
// TsmHandleEvent or TsmTerminate routine, so it is now safe to reset any
// temporary state information (e.g. dumped text) in <ioStatus>.
status_t TsmLibFepCommitAction(TsmFepStatusType* ioStatusP);

// Draw the Fep mode indicator at location <x,y>.
Boolean TsmLibFepDrawModeIndicator(TsmFepModeType inFepMode,
 uint16_t gsiState,
 Coord x,
 Coord y);

// Draw an option in the FEP options list.
void TsmLibFepDrawOption(const TsmFepStatusType *inStatusP,
 uint16_t iItemNumber,
 const RectangleType* iBounds);

#ifdef __cplusplus
}
#endif

#endif

Exploring Palm OS: Creating a Front-End Processor 67

Index

Symbols
_TSMConfirmType 34
_TSMFepButtonType 35
_TSMFepModeEventType 35

A
active input area 2
API version number 41
auto-yomi events 25, 34

B
button ID constants 44
buttons

input area 5

C
clause 6
confirmation 2
conversion, of text 2, 7, 9, 11

E
Edit menu 13
error codes 45
event flow 21
event handling 23
Event.h 33
EventCodes.h 33
events 33

auto-yomi 25, 34

F
FEP

code structure 20
definition 1
event flow 21
resetting 23

FEP events 33
FEP Panel

adding entries 25
creator ID 26
interface 14

FepPanelAddWordParamsType 37

field
extending size 25
processing raw text 2

field-level events 22
FldHandleEvent 22
form 2, 34
front-end processor. See FEP 1

H
Hiragana 1

I
initialization sequence 21
inline input. 2
input area 35, 44
input area buttons 5, 35, 44
input method 1
input mode 7, 29

K
Kanji 1
Katakana 1

L
locale 24
Locale Manager 42

M
mode indicator 25, 54

O
options pop-up list 11, 19

P
penDownEvent 39
priming text 38

R
raw text 2
remap characters 48, 57
resetting the FEP 23
Romaji 1

68 Exploring Palm OS: Creating a Front-End Processor

S
Sample FEP

code structure 20
file list 17
modifying 23

Sample FEP Kit 17
Sample FEP structure 17
SampleFep.cpp 33
shared libraries 3
shift indicator 25, 54
space and linefeed characters 24
sysAppLaunchCmdFepPanelAddWord 46
sysInvalidRefNum 51
system events 22

T
TestSampleFep 26
TestSampleFep project 19
text service 2
Text Services Manager 2
TextServicesFep.h 33
TextServicesMgr.h 29
TSM 2
tsmConfirmEvent 33
tsmErrFepCantCommit 45
tsmErrFepCustom 45
tsmErrFepNeedCommit 45, 48, 56
tsmErrFepNotOpen 45
tsmErrFepReentrancy 45, 47, 48, 50, 53, 56, 58, 59
tsmErrFepStillOpen 45, 52
tsmErrFepWrongAPI 45, 51
tsmErrFepWrongEncoding 45
tsmErrFepWrongLanguage 45
tsmErrUnimplemented 45
TsmFepActionType 37
tsmFepAPIVersion 46
tsmFepButtonConfirm 44
tsmFepButtonConvert 44
tsmFepButtonEvent 34
tsmFepButtonLengthen 44
tsmFepButtonMode 44
tsmFepButtonOnOff 44
tsmFepButtonShorten 44

tsmFepChange 36
tsmFepChangeEvent 35
TsmFepCommitAction() 47
tsmFepDisplayOptions 36
tsmFepDisplayOptionsEvent 36
TsmFepEventType 39
TsmFepHandleEvent() 47
TsmFepInfoType 41
TsmFepMapEvent() 48
tsmFepModeCustom 30
tsmFepModeDefault 30
tsmFepModeEvent 35
tsmFepModeOff 30
TsmFepModeType 29
TsmFepOptionsList() 49
TsmFepReset() 49
tsmFepSelectOption 37
tsmFepSelectOptionEvent 37
TsmFepStatusType 42
TsmFepTerminate() 50
tsmFtrCreator 29
tsmFtrFlagsHasFep 29
tsmFtrNumFepFieldExtra 46
tsmFtrNumFepStackExtra 46
tsmFtrNumFlags 29
TsmGetCurrentFepCreator() 50
TsmGetFepMode() 30
TsmGetSystemFepCreator() 51
TsmHandleEvent 22
tsmInvalidFepCreator 46
TsmLibFepClose() 52
TsmLibFepCommitAction 22
TsmLibFepCommitAction() 53
TsmLibFepDrawModeIndicator() 54
TsmLibFepDrawOption() 55
TsmLibFepHandleEvent 22, 23
TsmLibFepHandleEvent() 55
TsmLibFepMapEvent() 57
TsmLibFepOpen() 57
TsmLibFepReset() 58
TsmLibFepTerminate() 58
TsmLibGetFepInfo() 59
TsmSetCurrentFepCreator() 51

Exploring Palm OS: Creating a Front-End Processor 69

TsmSetFepMode() 31
TsmSetSystemFepCreator() 52

U
User Dictionary

functions 26
interface 13

V
virtual characters 24, 34

Y
yomi characters 25

70 Exploring Palm OS: Creating a Front-End Processor

	Creating a Front-End Processor
	Table of Contents
	About This Document
	Intended Audience
	FEP Developers
	Other Developers

	Requirements
	What this Book Contains
	The Exploring Palm OS Series
	Additional Resources

	Basic Concepts
	What Is a Front-End Processor?
	How Does a User Input Text?
	How Is Inline Input Processed?
	How Does the FEP Handle Conversion?
	What Is a FEP in the Palm OS?
	For More Information

	The FEP User Interface
	Input Area Buttons
	Standard FEP Buttons
	The Change Mode Button

	Interactions with Forms and Fields
	The Sample FEP User Interface
	A Simplified Chinese FEP User Interface
	A Japanese FEP User Interface
	Edit Menu Items
	The FEP Panel

	Creating a FEP Shared Library
	The Sample FEP
	Sample FEP File List
	The TestSampleFep Application
	FEP Code Structure

	Text Services Manager Server
	Event Flow in a FEP
	Initialization Sequence
	System Events
	Field-Level Events
	Notes About Event Handling

	FEP Type and Creator ID
	Modifying the Sample FEP
	Changing the Locale
	Handling Text Services Manager Button Events
	Handling Other Events
	Handling the Mode Indicator
	Handling Auto-Yomi Events (Japanese only)
	Auto-Extending the Maximum Size of a Field
	Adding User Dictionary Functions

	Debugging and Testing the FEP

	Text Services Manager Reference
	Text Services Manager Constants
	Feature Constants
	TsmFepModeType

	Text Services Manager Functions and Macros
	TsmGetFepMode
	TsmSetFepMode

	Text Services FEP Reference
	FEP Events
	tsmConfirmEvent
	tsmFepButtonEvent
	tsmFepModeEvent
	tsmFepChangeEvent
	tsmFepDisplayOptionsEvent
	tsmFepSelectOptionEvent

	Text Services FEP Structures and Types
	FepPanelAddWordParamsType
	TsmFepActionType
	TsmFepEventType
	TsmFepInfoType
	TsmFepStatusType

	Text Services FEP Constants
	Button ID Constants
	Error Codes
	Miscellaneous Constants

	Text Services FEP Launch Codes
	sysAppLaunchCmdFepPanelAddWord

	Text Services FEP Functions
	TsmFepCommitAction
	TsmFepHandleEvent
	TsmFepMapEvent
	TsmFepOptionsList
	TsmFepReset
	TsmFepTerminate
	TsmGetCurrentFepCreator
	TsmGetSystemFepCreator
	TsmSetCurrentFepCreator
	TsmSetSystemFepCreator

	Text Services FEP Plugin Functions
	TsmLibFepClose
	TsmLibFepCommitAction
	TsmLibFepDrawModeIndicator
	TsmLibFepDrawOption
	TsmLibFepHandleEvent
	TsmLibFepMapEvent
	TsmLibFepOpen
	TsmLibFepReset
	TsmLibFepTerminate
	TsmLibGetFepInfo

	TextServicesFep.h
	Index
	Symbols
	A
	B
	C
	E
	F
	H
	I
	K
	L
	M
	O
	P
	R
	S
	T
	U
	V
	Y

