

Developing SDIO
Peripherals for Palm

Handhelds

CONTRIBUTORS

Written by Greg Wilson
Production by <dot>

PS

 document production services
Engineering contributions by William Pfutzenreuter, Geoff Richmond, Gary Stratton

Copyright © 1996 - 2002, Palm, Inc. All rights reserved. This documentation may be printed and copied
solely for use in developing products for Palm OS software. In addition, two (2) copies of this documenta-
tion may be made for archival and backup purposes. Except for the foregoing, no part of this documenta-
tion may be reproduced or transmitted in any form or by any means or used to make any derivative work
(such as translation, transformation or adaptation) without express written consent from Palm, Inc.

Palm, Inc. reserves the right to revise this documentation and to make changes in content from time to
time without obligation on the part of Palm, Inc. to provide notification of such revision or changes.
PALM, INC. MAKES NO REPRESENTATIONS OR WARRANTIES THAT THE DOCUMENTATION IS
FREE OF ERRORS OR THAT THE DOCUMENTATION IS SUITABLE FOR YOUR USE. THE DOCUMEN-
TATION IS PROVIDED ON AN “AS IS” BASIS. PALM, INC. MAKES NO WARRANTIES, TERMS OR
CONDITIONS, EXPRESS OR IMPLIED, EITHER IN FACT OR BY OPERATION OF LAW, STATUTORY
OR OTHERWISE, INCLUDING WARRANTIES, TERMS, OR CONDITIONS OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND SATISFACTORY QUALITY.

TO THE FULL EXTENT ALLOWED BY LAW, PALM, INC. ALSO EXCLUDES FOR ITSELF AND ITS SUP-
PLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR TORT (INCLUDING NEGLIGENCE),
FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL, OR PUNITIVE DAMAGES OF
ANY KIND, OR FOR LOSS OF REVENUE OR PROFITS, LOSS OF BUSINESS, LOSS OF INFORMATION
OR DATA, OR OTHER FINANCIAL LOSS ARISING OUT OF OR IN CONNECTION WITH THIS DOCU-
MENTATION, EVEN IF PALM, INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Palm Computing, Palm OS, Graffiti, HotSync, and Palm Modem are registered trademarks, and Palm III,
Palm IIIe, Palm IIIx, Palm V, Palm Vx, Palm VII, Palm, Palm Powered, More connected., Simply Palm, the
Palm logo, Palm Computing platform logo, Palm III logo, Palm IIIx logo, Palm V logo, and HotSync logo
are trademarks of Palm, Inc. or its subsidiaries. All other product and brand names may be trademarks or
registered trademarks of their respective owners.

IF THIS DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE OTHER SOFTWARE AND
DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT TO THE LICENSE AGREEMENT AC-
COMPANYING THE COMPACT DISC.

Developing SDIO Peripherals for Palm Handhelds
February 1, 2002
PluggedIn program members (http://www.palm.com/developers/)
can obtain the latest version of this document by logging into:
https://pluggedin.palm.com/

Palm, Inc.
5470 Great America Pkwy.
Santa Clara, CA 95052
USA
www.palm.com

http://www.palm.com/developers/
http://www.palm.com
https://pluggedin.palm.com/

Developing SDIO Peripherals for Palm Handhelds

iii

Table of Contents

 About This Document 1

Additional Resources . 1

1 Developing SDIO Applications for Palm Handhelds 3

Useful Information and Tools. 3
SD, SDIO, and MMC Specifications 4
Palm OS SDK . 4

Software Architecture of an SDIO Application 5
Expansion Manager 6
VFS Manager . 7
SDIO Slot Driver . . 7
Notification Manager 8

Guidelines for SDIO Applications. 8
Power Management 8

Turning on Card Functions 8
Auto Power Off . 9
Callbacks . 10

Interrupt Handling 10
Detecting Card Insertion and Removal 11
Auto Run . 12

Developing the SDIO Peripheral 16
EDK . 17
Specifications . 17
SPI Mode . 17
SDIO Slot Driver . 17
SDIO Card Initialization and Identification on Palm OS . . . 18

Identification . 19
Initialization . 19

CSA . 19
Debugging Your SDIO Card 20

2 SDIO Slot Driver 23

AutoRun Data Structures 23
AutoRunInfoType 23

iv

 Developing SDIO Peripherals for Palm Handhelds

Field Descriptions 24
AutoRunMediaType 25
AutoRunOemManufacturerType. 25
AutoRunOemProductIDType 25
AutoRunFunctionNumType. 25
AutoRunFunctionStandardType 26
AutoRunSourceType 26

AutoRunSlotDriverType 26
Field Descriptions 26

AutoRun Constants . 27
Media Types . 27

autoRunMediaMMCmem. 27
autoRunMediaMMCrom 28
autoRunMediaSDmem 28
autoRunMediaSDrom 29
autoRunMediaSDIO 29
autoRunMediaPnps 30

I/O Device Interface Codes 31
sysNotifyDriverSearch 31

SDIO Slot Driver Data Structures 32
SDIOAutoPowerOffType 32

Field Descriptions 32
SDIOCallbackType 32

Field Descriptions 33
SDIOCallbackSelectType 33

SDIOCardPowerType 34
SDIOCurrentLimitType 35

Field Descriptions 36
SDIOFuncType. 36
SDIOPowerType . 37

Field Descriptions 37
SDIORWModeType. 37
SDIOSDBitModeType. 38
SDIOSlotType . 39

SDIO Slot Driver Constants 40

Developing SDIO Peripherals for Palm Handhelds

v

sysFileApiCreatorSDIO 40
Number of Entries 40

SDIO Slot Driver Functions 40
SDIOAccessDelay 40

SDIOAccessDelayType 41
SDIOAPIVersion . 42
SDIODebugOptions 42

SDIODebugOptionType 44
SDIODisableHandheldInterrupt 45
SDIOEnableHandheldInterrupt 46
SDIOGetAutoPowerOff 47
SDIOGetAutoRun 48

SDIOAutoRunInfoType. 50
Field Descriptions 50

SDIOGetCallback 50
SDIOGetCardInfo 53

SDIOCardInfoType. 54
Field Descriptions 54

SDIOGetCurrentLimit 57
SDIOGetPower . 58
SDIOGetSlotInfo . 59

SDIOSlotInfoType 60
Field Descriptions 61

SDIORemainingCurrentLimit 61
SDIORWDirect. 63

SDIORWDirectType 64
Field Descriptions 65

SDIORWExtendedBlock. 65
SDIORWExtendedBlockType 67
Field Descriptions 68

SDIORWExtendedByte 69
SDIORWExtendedByteType 70
Field Descriptions 71

SDIOSetAutoPowerOff 72
SDIOSetBitMode . 73

SDIOSDBitModeRequestType 74
Field Descriptions 74

SDIOSetCallback . 75

vi

 Developing SDIO Peripherals for Palm Handhelds

SDIOSetCurrentLimit 77
SDIOSetPower . 79
SDIOTupleWalk . 80

SDIOTupleType 81
Field Descriptions 81

Application-Defined Functions 82
SDIOCallbackPtr . 82

 Index 85

Developing SDIO Peripherals for Palm Handhelds

1

About This

Document

This document is intended to assist you in writing Palm OS®
applications that interact with SDIO hardware. Because there is a
wide range of possible SDIO devices, it focuses solely on those
aspects of program design that are specific to the Palm OS, Palm
handhelds, and to the SDIO slot driver.

This document also contains a complete API reference for the SDIO
slot driver.

Additional Resources

• Documentation

Palm publishes its latest versions of this and other
documents for Palm OS developers at

http://www.palmos.com/dev/tech/docs/

• Training

Palm and its partners host training classes for Palm OS
developers. For topics and schedules, check

http://www.palmos.com/dev/tech/support/
classes/

• Knowledge Base

The Knowledge Base is a fast, web-based database of
technical information. Search for frequently asked questions
(FAQs), sample code, white papers, and the development
documentation at

http://www.palmos.com/dev/kb/

http://www.palmos.com/dev/tech/docs/
http://oasis.palm.com/dev/kb/
http://www.palmos.com/dev/tech/support/classes/
http://www.palmos.com/dev/tech/support/classes/

2

 Developing SDIO Peripherals for Palm Handhelds

Developing SDIO Peripherals for Palm Handhelds

3

1

Developing SDIO
Applications for

Palm Handhelds

Much of an SDIO application is dictated by the hardware with
which it interacts. However, because SDIO is a standard, and
because these SDIO applications run on the Palm OS®, all such
applications have a number of traits in common. This commonality
is the subject of this chapter.

This chapter begins by ensuring that you have all of the software,
hardware, and documentation that you’ll need to create your
application. It next talks about the various aspects of the Palm OS
that you’ll use when writing your application, and then provides
some programming guidelines specific to SDIO applications. It ends
with a few pointers relative to creating and debugging the SDIO
card itself.

Useful Information and Tools

This document is by no means an exhaustive source of information
with regard to creating SDIO applications. In addition to it, you’ll
want to have a copy of the SDIO Specification and an up-to-date
copy of the

Palm OS Programmer’s API Reference

 and

Companion

.

If you are developing SDIO hardware, you will also want to know
about Palm’s HDK (Hardware Development Kit) and EDK
(Expansion Development Kit). The HDK contains mechanical
specifications, drawings, and documentation that assist with the
design of peripherals. The EDK is a set of parts or items available for
purchase at the Palm Expansion Parts Store. Information on all of
these items can be found at the PluggedIn Program website at http:/
/www.palmos.com/dev/pluggedin/.

http://www.palmos.com/dev/pluggedin/
http://www.palmos.com/dev/pluggedin/

Developing SDIO Applications for Palm Handhelds

Useful Information and Tools

4

 Developing SDIO Peripherals for Palm Handhelds

SD, SDIO, and MMC Specifications

The SD Card Association (SDA) publishes the

SDIO Card
Specification,

 which is based on and refers to the SDA document
titled

SD Memory Card Specifications, Part 1, PHYSICAL LAYER
SPECIFICATION

. Both of these documents provide essential
foundation material for the contents of this document. You should
be familiar with the

SDIO Card Specification

 and with those parts of
the

SD Memory Card Specifications

 that document card modes, card
initialization, interrupts, registers, and card reading and writing.
Depending on the SDIO hardware with which you are working,
additional sections of the

SD Memory Card Specifications

 document
may be of interest.

The SD Card Association’s website can be found at http://
www.sdcard.org/. You’ll need to be a member in order to obtain the
specifications from the SD Card Association.

NOTE:

Creating Palm OS applications that can use and
exchange data from other products via SD Memory cards is
outside the scope of this document. However, to make sure that
data can be interchanged with present and future SD products,
please refer to the appropriate SD Association specification

depending on the type of application.

For developers working with MultiMediaCards (MMC), the
MultiMediaCard Association’s website can be found at http://
www.mmca.org/. The MMC specifications are available from the
MultiMediaCard Association to MMCA members.

The SDIO slot driver has been written to accommodate the
following specifications:

• MMC memory cards, V1.4 to V3.0

• SD memory cards, Part 1, V1.0 (and the supplement to part 1)

• SDIO V1.0

Palm OS SDK

General Palm OS programming concepts are documented in the

Palm OS Programmer’s Companion

. Reference documentation for the

http://www.sdcard.org/
http://www.sdcard.org/
http://www.mmca.org/
http://www.mmca.org/

Developing SDIO Applications for Palm Handhelds

Software Architecture of an SDIO Application

Developing SDIO Peripherals for Palm Handhelds

5

APIs made public by the Palm OS can be found in the

Palm OS
Programmer’s API Reference

. Both of these documents are installed as
part of the Palm OS Software Developer’s Kit (SDK) and can also be
found on Palm’s developer website at http://www.palmos.com/
dev/tech/docs/. Note that Palm’s documentation is often updated
after the SDK has shipped; always check the website for the latest,
most up-to-date documentation. Be sure that you have the latest
SDK and documentation; SDIO applications are not supported on
versions of the Palm OS prior to 4.0.

Although you’ll want to be familiar with a number of different
aspects of Palm OS programming, pay particular attention to the
portions of the

Companion

 and

Reference

 that cover the Expansion
and VFS Managers; these chapters show you how to read and write
expansion media, including SD memory cards.

In addition to the Palm OS SDK, you should also have the header
files for the SDIO slot driver and copies of the SDIO sample
applications provided by Palm. These are included with the Palm
SDIO SDK. The header files included with the SDIO SDK are
compatible with the Palm OS SDK and must be copied into a folder
in your project’s “include” path. Refer to the

ReadMe

 file in the
SDIO SDK for up-to-date installation instructions to ensure that the
SDIO APIs can be used with your project.

Software Architecture of an SDIO Application

Palm OS applications that interact with SDIO cards make use of the
functions provided by the Expansion Manager, the VFS Manager,
and the SDIO slot driver. Before you can write such a Palm OS
application, you should have an understanding of how your
application will interact with these and other features of the Palm
OS.

Figure 1.1 presents a simplified view of how the SDIO slot driver
relates to your applications, the Expansion Manager, and the VFS
Manager. Unlike other Expansion Manager slot drivers, the SDIO
slot driver exposes its APIs to applications. Because it also lies
beneath the Expansion and VFS managers, you access SDIO
hardware through a combination of Expansion Manager, VFS
Manager, and SDIO slot driver calls. Note that you use the VFS

http://www.palmos.com/dev/tech/docs/
http://www.palmos.com/dev/tech/docs/

Developing SDIO Applications for Palm Handhelds

Software Architecture of an SDIO Application

6

 Developing SDIO Peripherals for Palm Handhelds

Manager with a given SDIO card only if there is an SD or SDIO file
system present on that card.

The VFS Manager APIs are used for all file system access on an
expansion card. When inserted, SD memory and SDIO CSA
memory is mounted as file system memory. Therefore, access to
these memory areas is done using the VFS Manager APIs. Details of
accessing data on file systems can be found in the standard Palm OS
documentation on Expansion Manager and VFS APIs.

Figure 1.1 Relationship between SDIO application, SDIO slot
driver, and other key OS components

Expansion Manager

The Expansion Manager is a software layer that manages slot
drivers on Palm OS handhelds. The Expansion Manager is not
solely responsible for support of expansion cards; rather, it provides
an architecture and higher-level set of APIs that, with the help of
low-level slot drivers and file system libraries, support various
types of media.

Applications and System

VFS
Manager

Expansion
Manager

FAT
File

System

SDIO Slot
Driver

(SD, SDIO, MMC)

Developing SDIO Applications for Palm Handhelds

Software Architecture of an SDIO Application

Developing SDIO Peripherals for Palm Handhelds

7

The Expansion Manager:

• broadcasts notification of card insertion and removal

• plays sounds to signify card insertion and removal

• mounts and unmounts card-resident volumes

NOTE:

Some of the functions provided by the Expansion
Manager are designed to be used by slot drivers and file systems

and are not generally used by third-party applications.

For a detailed explanation of the functions that make up the
Expansion Manager, see the “Expansion Manager” chapter in the

Palm OS Programmer’s API Reference

.

VFS Manager

The VFS (Virtual File System) Manager provides a unified API that
gives applications access to many different file systems on many
different media types, including SD media. The VFS Manager is
used for all file system access on an expansion card. In the case of an
SDIO card, the VFS Manager is typically used to access any function
CSA memory. The data stored in CSA memory is structured as a
FAT12/16 file system and is therefore ideally suited for access by the
VFS Manager.

Combo cards may contain SD memory that is also accessed through
the VFS Manager APIs.

For a detailed explanation of the functions that make up the VFS
Manager, see the “Virtual File System Manager” chapter in the

Palm
OS Programmer’s API Reference

.

SDIO Slot Driver

To simplify the interaction with the SDIO hardware, Palm has
created an SDIO slot driver. It replaces the Palm OS 4.0 SD/MMC
slot driver, which isn’t SDIO-aware, and consists of data structures
and functions that allow you to easily manage power, interrupts,
and data on the SDIO card.

Developing SDIO Applications for Palm Handhelds

Guidelines for SDIO Applications

8

 Developing SDIO Peripherals for Palm Handhelds

The SDIO slot driver controls all media supported by an SD
expansion slot, including SD media, MMC media, and SDIO media.

An examination of the functions provided by the SDIO slot driver
shows that it implements most of the software functionality
outlined in the SDIO Card Specification. It does not, however,
support the following:

• SDIO Suspend/Resume Operation

• SDIO Read Wait Operation

• SDIO RW Extended Block Operation in “forever” mode

Notification Manager

The Palm OS Notification Manager allows applications to receive
notification when certain system-level or application-level events
occur. Although the Notification Manager has many uses,
developers of SDIO applications should particularly take note of the
fact that you use it to detect card removal.

Guidelines for SDIO Applications

All SDIO applications need to be aware of the power needs of the
SDIO card. As well, they need to be able to handle interrupts
generated by the card, and must be aware of when an SDIO card is
inserted or removed from the handheld’s SD slot. The following
sections discuss these and other SDIO-application-specific topics.

Power Management

When the handheld awakes from sleep mode, it doesn’t turn the
card on. Only when there is a request to access the card does it turn
the card on.

Turning on Card Functions

You can either turn on a given SDIO card function explicitly with
SDIOSetPower, or you can turn it on implicitly by simply accessing
the function. However you turn functions on, be aware that you as
an application developer are responsible for managing card power.

Developing SDIO Applications for Palm Handhelds

Guidelines for SDIO Applications

Developing SDIO Peripherals for Palm Handhelds

9

You must ensure that the total of all function hardware that is active
does not draw in excess of the SDIO-specified maximum of 200ma.

Perform the following steps to explicitly turn on an SDIO card
function:

1. Disable SDIO interrupts with

SDIODisableHandheldInterrupt

—even if your
application doesn’t use interrupts.

2. Verify that there is sufficient current available to power the
card function. To aid in the power management process, the
SDIO slot driver provides three functions:

SDIOGetCurrentLimit

,

SDIOSetCurrentLimit

, and

SDIORemainingCurrentLimit

.

NOTE:

These three functions do not detect or limit current draw,
check the battery level, or reflect how much energy the battery
has left.

The current limit for each function can be obtained by calling
SDIOGetCurrentLimit or changed by calling
SDIOSetCurrentLimit. Prior to enabling power to a given
function, call SDIOGetCurrentLimit to determine how
much power it will draw, and compare it to the value
returned from SDIORemainingCurrentLimit, which
indicates how much current can be spared.

3. Turn the function on using SDIOSetPower.

4. Reenable interrupts by calling
SDIOEnableHandheldInterrupt.

After turning off an SDIO card function (with SDIOSetPower), be
sure to call SDIOSetCurrentLimit and set its current limit to
zero.

When a card is removed, all of the in-memory current limits are
automatically set to zero.

Auto Power Off

The SDIOSetAutoPowerOff function allows you to specify an
amount of time after which the power and data signals to a given
function on an SDIO card should be turned off. You specify this time

Developing SDIO Applications for Palm Handhelds
Guidelines for SDIO Applications

10 Developing SDIO Peripherals for Palm Handhelds

interval in system ticks; there are 100 system ticks per second. To
disable the auto-power-off feature, simply call this function and
supply a tick count of zero.

To obtain the current auto-power-off settings for a given SDIO card
function, use SDIOGetAutoPowerOff.

Callbacks

The SDIO slot driver allows your application to register callback
functions that will be invoked whenever the corresponding event
occurs on the SDIO card. Several of these callbacks relate to power
management.

Whenever the handheld is about to be put to sleep, the callback
function corresponding to sdioCallbackSelectSleep is called.
Just after the handheld wakes, the function corresponding to
sdioCallbackSelectAwake is called. These callback functions
can be called from either an interrupt routine or a non-interrupt
routine; as a result interrupts may be disabled or enabled. In either
case, they should always be as fast as possible.

Whenever SDIO card power is turned on or is about to be turned
off, the callback function corresponding to
sdioCallbackSelectPowerOn or
sdioCallbackSelectPowerOff, respectively, is called. While
processing these functions, never call SDIOSetPower in order to
turn an SDIO card’s power on or off. These functions can be called
from within an interrupt handler, so they should be as fast as
possible.

For more information on callback functions, see “Application-
Defined Functions” on page 82.

Interrupt Handling
An SDIO card is capable of interrupting the host device into which
it is inserted—in this case, the Palm handheld. The SDIO slot driver
allows you to register a callback function that is called whenever the
card interrupts the handheld.

Register for the interrupt callback by calling SDIOSetCallback
and specifying that you are registering for
sdioCallbackSelectInterruptSdCard. In your callback

Developing SDIO Applications for Palm Handhelds
Guidelines for SDIO Applications

Developing SDIO Peripherals for Palm Handhelds 11

function, be sure to reset the interrupt source to prevent the
interrupt callback from being called again inadvertently. See
“Application-Defined Functions” on page 82 for the parameters that
are passed to your callback function when it is called.

Whether or not you have registered an interrupt callback function,
you can enable or disable the SDIO interrupt on the handheld by
calling SDIOEnableHandheldInterrupt or
SDIODisableHandheldInterrupt. Note that these functions
only affect interrupts on the handheld; they do not turn on or off
interrupts on the SDIO card itself.

These functions are implemented as an incrementing counter,
making them re-entrant. For instance, for every call to
SDIODisableHandheldInterrupt there must be an equal
number (or more) of calls to SDIOEnableHandheldInterrupt in
order to re-enable interrupts.

By default, when the card is inserted interrupts on the handheld are
enabled, but are disabled internally until an interrupt callback is set
with SDIOSetCallback. Note that in order to receive the SDIO
interrupt, power to the card must be on, even if the handheld is
asleep.

Detecting Card Insertion and Removal
Applications that depend on the presence of the SDIO card in the
slot should register for a sysNotifyCardRemovedEvent, which
is broadcast when the user removes the card from the SD slot. The
following code excerpt shows how you might do this for an
executing SDIO application:

#include <PalmTypes.h>
#include <NotifyMgr.h>

typedef struct {
 UInt16 slotLibRefNum; // contains a valid slot driver
 // library reference number
 UInt16 slotRefNum; // contains a valid slot number
 // additional app-specific globals here
} MyGlobals;

MyGlobals myGlobals; // Remember to lock this if you
 // "App_Stop" and still need this!

Developing SDIO Applications for Palm Handhelds
Guidelines for SDIO Applications

12 Developing SDIO Peripherals for Palm Handhelds

Err MySysNotifyRegister(void){
 LocalID dbID;
 Err err;
 UInt16 cardNo;

 err = SysCurAppDatabase(&cardNo, &dbID);
 if (err == errNone)
 err = SysNotifyRegister(cardNo, dbID,
 sysNotifyCardRemovedEvent,
 &MyNotifyCardRemovedEvent,
 sysNotifyNormalPriority, &myGlobals);
 return(err);
}

Err MyNotifyCardRemovedEvent(SysNotifyParamType
*notifyParamsP){
 MyGlobals *myGlobalsP =
 (MyGlobals *)notifyParamsP->userDataP;
 UInt16 slotRefNum =
 (UInt16)notifyParamsP->notifyDetailsP;

 if (slotRefNum != myGlobalsP->slotRefNum)
 return(errNone); // wrong slot driver
 // app-specific code here. this slot driver’s card has
 // been removed
 return(errNone);
}

Be sure to unregister for the sysNotifyCardRemovedEvent
notification and any SDIO callbacks when your application
terminates.

For more information on registering and unregistering for
notifications, see the Notification Manager chapter in the Palm OS
SDK Reference. The “Expansion” chapter of the Palm OS
Programmer’s Companion, vol. I discusses, among other things, the
various notifications that are issued when a card is inserted or
removed, or when a volume is mounted or un-mounted.

Auto Run
When a card is inserted into the SD slot, after it has been initialized
any file system memory present on the card is mounted by the
Expansion Manager. This includes all SD memory, in the case of a

Developing SDIO Applications for Palm Handhelds
Guidelines for SDIO Applications

Developing SDIO Peripherals for Palm Handhelds 13

standard SD card or SDIO combo card, and all SDIO Function CSA
memory for functions 0-7.

After mounting of the file systems, the SDIO slot driver broadcasts a
series of Auto Run (sysNotifyDriverSearch) notifications.
These notifications are sent in an attempt to locate function- or card-
specific drivers, and allow those drivers that are already on the
handheld to launch themselves.

The typical sequence of events after a card is inserted is as follows:

1. Power is applied to the card.

2. The card is initialized according to the SDIO, SD, or MMC
specification, as appropriate.

3. Information about the card (tuples, clock speed, CSD, CID,
etc.) is read.

4. Any recognized file systems are mounted.

5. sysAppLaunchCmdCardLaunch is sent to start.prc on
each mounted file system.

6. The Auto Run notifications (sysNotifyDriverSearch)
are sent.

7. sysAppLaunchCmdNormalLaunch is sent to start.prc
on each mounted file system.

For SDIO cards, one Auto Run notification is broadcast for the SD
memory portion of a combo card, and an additional notification is
broadcast for each card function (up to 7). For SD memory and
MMC memory cards, only one such notification is sent. The
notifications are sent starting with SD memory, followed by
function 7 (if there is one) and proceeding to function 1 as
appropriate.

The notifyDetailsP field of the SysNotifyParamType
structure that accompanies the Auto Run notification points to an
AutoRunInfoType structure. Each driver that has registered for
sysNotifyDriverSearch should examine the contents of the
AutoRunInfoType structure to determine if it is the driver that
should control the inserted card. If so, the driver should then check
the SysNotifyParamType structure’s handled field. If handled
is set to true, another driver has received the broadcast and will

Developing SDIO Applications for Palm Handhelds
Guidelines for SDIO Applications

14 Developing SDIO Peripherals for Palm Handhelds

control the card. If handled is set to false, the driver should set it
to true to indicate that it will control the device.

To see if an SDIO card is inserted and verify that it is the correct
card, use the following sample code.

Listing 1.1 Checking for the correct SDIO card

/***
 *
 * FUNCTION: CheckMyCardInfo
 *
 * DESCRIPTION: This routine is used to check if the card inserted is
 * my card. This checks an "autorun" parameter block to see
 * if this card is the correct card.
 *
 * It can be used for the autorun event AND for detecting the
 * identity of an already inserted card.
 *
 * PARAMETERS: AutoRunInfoType *autoRunPtr
 *
 * RETURNED: true - success, correct card
 * false - not my card.
 *
 ***/
static Boolean CheckMyCardInfo(AutoRunInfoType* autoRunPtr){
 //The SDIO cards Manufacturer & ID numbers
 #define MySdioCardOemManufacturer 0x00005672L //Manufacturer ID
 #define MySdioCardOemID 0x00004673L //OEM ID
 #define MySdioCardOemFunctionNum 1 //We only check function 1

 Boolean result = false;

 if (autoRunPtr->media != autoRunMediaSDIO)
 goto Skip;

 // Check the AutoRun parameters to see if it is our card
 // First, check the manufacturer id
 if (autoRunPtr->oemManufacturer != MySdioCardOemManufacturer)
 goto Skip;
 // Check the OEM id
 if (autoRunPtr->oemID != MySdioCardOemID)
 goto Skip;
 // This card is an SDIO custom device
 if (autoRunPtr->oemFunctionStandard != autoRunFunctionStandardSDIOCustom)
 goto Skip;
 //We are only checking function 1

Developing SDIO Applications for Palm Handhelds
Guidelines for SDIO Applications

Developing SDIO Peripherals for Palm Handhelds 15

 if (autoRunPtr->oemFunctionNum != MySdioCardOemFunctionNum)
 goto Skip;
 if (autoRunPtr->sourceStruct != autoRunSourceSlotDriverType)
 goto Skip;

 //
 // This is the correct SDIO card
 //
 result = true;

Skip:
 return(result);
}

/***
 *
 * FUNCTION: CheckCardInserted
 *
 * DESCRIPTION: This routine is used to check if a card is inserted and
 * that it is the correct card.
 *
 * PARAMETERS: void
 *
 * RETURNED: errNone - success, correct card
 * expErrCardNotPresent - no expansion cards inserted.
 * expErrEnumerationEmpty - no matching card found
 *
 ***/
static Err CheckCardInserted(void){
 Err err = errNone;
 UInt32 slotIterator;
 UInt16 slotRefNum;
 UInt16 slotLibRefNum;
 UInt32 mediaType;
 UInt16 count = 0;
 SDIOAutoRunInfoType autoRunInfo;

 // Check each slot
 slotIterator = expIteratorStart;
 while(slotIterator != expIteratorStop){
 err = ExpSlotEnumerate(&slotRefNum, &slotIterator);
 if (err){
 break;
 }

 // Find the slot driver for this slot
 err = ExpSlotLibFind(slotRefNum, &slotLibRefNum);

Developing SDIO Applications for Palm Handhelds
Developing the SDIO Peripheral

16 Developing SDIO Peripherals for Palm Handhelds

 if (!err){
 err = SlotMediaType(slotLibRefNum, slotRefNum, &mediaType);
 if (!err){
 // Is this Slot Driver an SD slot driver?
 if (mediaType == expMediaType_SecureDigital){
 // Is the card inserted?
 err = ExpCardPresent(slotRefNum);
 if (!err){
 // Count the number of cards we have found
 count++;

 // Get the AutoRun Information from function 1 of
 // the card. The autorun information contains fields
 // that identify the card.
 autoRunInfo.sdioSlotNum = sdioSlotFunc1;
 err = SDIOGetAutoRun(slotLibRefNum, &autoRunInfo);
 if (err == errNone){
 if (CheckMyCardInfo(&autoRunInfo.autoRun)){
 // We found it!
 goto Exit;
 }
 }
 }
 }
 }
 }
 }
 if (count == 0)
 err = expErrCardNotPresent;
 else
 err = expErrEnumerationEmpty;
Exit:
 return(err);
}

Developing the SDIO Peripheral
An SDIO application is only as good as the hardware with which it
interacts. The following sections provide some tips for the creation
and debugging of an SDIO peripheral to be used with a Palm
handheld.

Developing SDIO Applications for Palm Handhelds
Developing the SDIO Peripheral

Developing SDIO Peripherals for Palm Handhelds 17

EDK
Palm has made available the SDIO Developer Card #1, a sample
SDIO design demonstrating an SDIO interface to a microcontroller.
It is an Expansion Developer Kit (EDK) that allows hardware
developers to experiment with SDIO hardware and software for
prototyping and evaluation purposes. The card includes a flash-
programmable PIC microcontroller and a CPLD for maximum
flexibility in prototyping.

Palm’s EDK is available for purchase at the Palm Expansion Parts
Store. For more information, see Palm’s PluggedIn Program website
at http://www.palmos.com/dev/pluggedin/.

Specifications
When developing an SDIO peripheral, it is extremely important that
you following the specifications identified in “SD, SDIO, and MMC
Specifications” on page 4. Be sure to pay close attention to the
power restrictions, as the Palm handheld isn’t able to deliver more
power to an SDIO peripheral than the specification maximum.

As discussed in “SDIO Slot Driver” on page 17, all SDIO cards must
support SPI mode. For future compatibility, your SDIO card should
also support SD 1-bit mode, as required in the SDIO specification.
Future Palm handhelds will likely support the SD 1-bit or SD 4-bit
modes.

SPI Mode
All Palm handhelds running Palm OS 4.0 are SPI mode hosts.
Accordingly, SDIO cards must support SPI mode in order to be
compatible with these handhelds. In addition, the SDIO
specification indicates that all SDIO cards must support SPI mode
and SD 1-bit mode to be compliant. It is important to be compliant
with this specification, since future Palm handhelds will likely
support the SD 1-bit or SD 4-bit modes.

SDIO Slot Driver
A Palm handheld running Palm OS 4.0 supports SD/MMC
expansion cards. If the SDIO slot driver is installed, it will also

http://www.palmos.com/dev/pluggedin/

Developing SDIO Applications for Palm Handhelds
Developing the SDIO Peripheral

18 Developing SDIO Peripherals for Palm Handhelds

support SDIO expansion cards. In both cases, only one file system
can be mounted for a given expansion card. Future versions of the
Palm OS will likely lift this restriction, allowing up to seven file
systems to be mounted for an SDIO expansion card.

In order to support SDIO peripherals, handhelds running Palm OS
4.0 must either be flash-upgraded to a version of the OS that
supports SDIO, or must have the SDIO slot driver separately
installed in RAM. The SDIO slot driver can be downloaded from the
Palm website and installed as a PRC file in RAM on Palm OS 4.0
devices. After a soft reset, the slot driver in RAM is recognized and
takes precedence over the SD/MMC slot driver in ROM.

You can verify whether a given slot driver is “SDIO-aware” by
calling SDIOAPIVersion. This function returns
expErrUnimplemented if the specified driver doesn’t support
SDIO, or errNone if it does. If the driver does support SDIO this
function also returns the slot driver version number through the
versionP parameter.

To remove the SDIO slot driver from RAM, you must perform a
hard reset of the handheld. You cannot delete the SDIO slot driver
using the Application Launcher’s “Delete” function. Note that to
avoid having the SDIO slot driver reinstalled on the handheld
during the next HotSync operation, you must remove the slot driver
PRC from the Backup directory of your desktop computer.

SDIO Card Initialization and Identification on
Palm OS
The process of identifying and initializing an SDIO card is specified
in the SDIO Card Specification. One of the first steps in developing an
SDIO card is to have the card identify itself as an SDIO card to the
host. While performing this task you’ll likely want to make use of
the command tracing functionality of the debug SDIO slot driver.
By enabling tracing on the debug slot driver, you can follow the
power-up/power-down sequence of the card, plus all commands
sent to the card during the initialization and identification phase.
See “Debugging Your SDIO Card” on page 20 for instructions on
how to enable tracing.

Developing SDIO Applications for Palm Handhelds
Developing the SDIO Peripheral

Developing SDIO Peripherals for Palm Handhelds 19

Identification

Identification of a card is done only once, at the time the card is
inserted in the handheld’s SD slot. Information obtained from the
card during the identification phase is retained in the handheld’s
memory until the card is removed. Among other things, this
information includes:

• the type of card in the slot

• what the card contains

• the card’s limits

• data read from tuples

By default SDIO cards power-off automatically after a certain
amount of inactivity. This behavior can be modified with the
SDIOSetAutoPowerOff function.

Initialization

A card is initialized every time it is turned on. The SDIO slot driver
follows the appropriate initialization flowchart—SD mode or SPI
mode—from the “SDIO Card Initialization” section of the SDIO
Card Specification to initialize the card.

During the initialization phase, the handheld operates within the
range of SD or SPI clock frequencies specified in the SD Memory
Card Specifications (from zero to 400kHz). The actual clock frequency
used depends upon the model of the Palm handheld.

The TPLFID_FUNCTION tuple, located immediately after the
CISTPL_FUNCID tuple in the CIS for function 0, contains the
TPLFE_MAX_TRAN_SPEED byte. This byte indicates “the
maximum transfer rate per one data line during data transfer”;
essentially, the maximum clock frequency that the card can support.
As soon as this tuple is read, the SDIO slot driver increases the clock
speed to the highest possible frequency that doesn’t exceed the
maximum specified in TPLFE_MAX_TRAN_SPEED.

CSA
In order for a an SDIO card’s CSA (Code Storage Area) to be
readable by the Palm OS, the CSA should be in FAT12/FAT16
format, and any drivers, data, or applications that the peripheral

Developing SDIO Applications for Palm Handhelds
Developing the SDIO Peripheral

20 Developing SDIO Peripherals for Palm Handhelds

would like to be automatically detected by the Palm handheld
should reside in the /Palm and /Palm/Launcher directories.
Once the CSA area is mounted, applications may access any data
within the CSA irrespective of the directory in which that data
resides.

Debugging Your SDIO Card
The SDIO slot driver includes the SDIODebugOptions function
which, on a debug version of the SDIO slot driver, enables and
disables command tracing. Command tracing is very useful for
debugging the identification, initialization, and communications
functions of an SDIO card. When tracing is enabled, all trace
information is dumped in ASCII format to the handheld’s USB or
serial port.

In order to perform command tracing, a debug version of the SDIO
slot driver must be resident on your handheld. A debug version of
the SDIO slot driver is available through the Plugged In program.
Install it as follows:

1. If necessary, uninstall the existing RAM-resident “SlotDriver:
SDIO-sdsd” slot driver from your Palm handheld by performing
a hard reset. This step is only required if the slot driver is resident
in RAM.

2. Install the debug version of the slot driver using the standard
Palm Desktop Install Tool.

3. Perform a soft reset of the device to activate the newly-installed
slot driver.

You can now enable command tracing by calling
SDIODebugOptions directly from your application, or by using a
helper application such as the SDDbgTrace sample application
included with the SDIO SDK. To use the SDDbgTrace application
to enable command tracing, perform the following steps:

1. Install the SDDbgTrace PRC file to the handheld using the Palm
Desktop Install Tool.

2. Start SDDbgTrace on the handheld.

3. Select the desired tracing option from the Trace Option pop-up
trigger.

Developing SDIO Applications for Palm Handhelds
Developing the SDIO Peripheral

Developing SDIO Peripherals for Palm Handhelds 21

NOTE: If the Trace Option shows “Not Supported”, the debug
version of the SDIO slot driver is not installed.

The selected tracing option remains active until you perform a soft
reset or until the next time you run the SDDbgTrace application.
Each time you run the SDDbgTrace application, tracing is initially
set to “None”.

The Palm Debugger is a convenient tool for viewing the trace
output. Note that current versions of the Palm Debugger require
that you connect to the handheld using the serial port—which
means that you must have a serial cradle if you are working with a
handheld such as the Palm m500 or m505. The following procedure
shows you how to use the Palm Debugger to view trace output:

1. Ensure that the HotSync Manager is not running on the desktop,
and that a HotSync operation is not in progress.

2. Start the Palm Debugger, and set it to monitor the COM port on
the desktop to which the Palm serial cradle is connected.

3. Insert the Palm handheld into the serial cradle.

4. Enable command tracing by having your application call the
SDIODebugOptions function or by using the SDDbgTrace
application.

NOTE: If this option is activated before the device is in a serial
cradle, all debug messages will be routed to the USB cradle (until
a soft reset is generated) by default. However, since you are not
connected to a USB cradle, the software will “lock” forever trying
to open a non-existent USB port. To recover from this, either
press reset or start a USB debugger on your desktop computer
and then place the handheld in the USB cradle.

5. Insert an SD, MMC, or SDIO card into the handheld’s SD slot.

The specified tracing information is sent to the device serial port
and displayed in the Debugger window on the desktop.

Developing SDIO Applications for Palm Handhelds
Developing the SDIO Peripheral

22 Developing SDIO Peripherals for Palm Handhelds

The Metrowerks debugger console window can also be used to
monitor trace output, but note that the formatting of the output can
be affected by display of CR/LF information.

Developing SDIO Peripherals for Palm Handhelds 23

2
SDIO Slot Driver
This chapter provides reference material for the SDIO Slot Driver
API:

• AutoRun Data Structures

• AutoRun Constants

• SDIO Slot Driver Data Structures

• SDIO Slot Driver Constants

• SDIO Slot Driver Functions

• Application-Defined Functions

The header file SDIO.h declares the SDIO Slot Driver API. The
AutoRun data structures and constants are declared in AutoRun.h.

AutoRun Data Structures

AutoRunInfoType
When a card is inserted into the SD slot, after it has been initialized
the SDIO slot driver broadcasts a series of
sysNotifyDriverSearch notifications (one for each function—
up to 8—on an SDIO card; only one notification is broadcast for an
SD or MMC memory card) in an attempt to locate function- or card-
specific drivers. The notifyDetailsP field of the
SysNotifyParamType structure that accompanies the notification
points to an AutoRunInfoType structure. Each driver that has
registered for sysNotifyDriverSearch should examine the
contents of the AutoRunInfoType structure to determine if it is the
driver that should control the inserted card. If so, the driver should
then check the SysNotifyParamType structure’s handled field.
If handled is set to true, another driver has received the broadcast
and will control the card. If handled is set to false, the driver
should set it to true to indicate that it will control the device.

SDIO Slot Driver
AutoRun Data Structures

24 Developing SDIO Peripherals for Palm Handhelds

The AutoRunInfoType structure can also be obtained by calling
SDIOGetAutoRun.

The AutoRunInfoType structure is declared as follows:

typedef struct {
 AutoRunMediaType media;
 AutoRunOemManufacturerType oemManufacturer;
 AutoRunOemProductIDType oemID;
 AutoRunFunctionNumType oemFunctionNum;
 AutoRunFunctionStandardType
oemFunctionStandard;
 AutoRunSourceType sourceStruct;
 union {
 AutoRunSlotDriverType slotDriver;
 } source;
} AutoRunInfoType

typedef AutoRunInfoType *AutoRunInfoP

Field Descriptions

media Identifies the type of card in the SD slot.
The contents of the oem... fields in the
AutoRunInfoType structure depend
on the value of this field and are
obtained from the card. See “Media
Types”, below, for the defined values
for this field and the corresponding
values for the remaining
AutoRunInfoType fields.

oemManufacturer Device manufacturer number.

oemID Device manufacturer’s product
number.

oemFunctionNum Function number, for multi-function
cards. Not used for single-function
cards.

SDIO Slot Driver
AutoRun Data Structures

Developing SDIO Peripherals for Palm Handhelds 25

AutoRunMediaType

typedef UInt32 AutoRunMediaType

SD card type.

AutoRunOemManufacturerType

typedef UInt32 AutoRunOemManufacturerType

Device manufacturer number.

AutoRunOemProductIDType

typedef UInt32 AutoRunOemProductIDType

Device manufacturer’s product number.

AutoRunFunctionNumType

typedef UInt16 AutoRunFunctionNumType

Function number from a multi-function card (ranges in value from
1-7).

oemFunctionStandard For multi-function cards, I/O device
interface code for the function indicated
by oemFunctionNum. Not used for
single-function cards.

sourceStruct Specifies which member of the source
union to use, if any. This field is usually
set to
autoRunSourceSlotDriverType.

source The members of this union provide
additional information about the slot
driver; which member to choose is
determined by the value of the
sourceStruct field. Currently this
union has only one member: a structure
that identifies the slot driver. See
AutoRunSlotDriverType for a
description of this structure.

SDIO Slot Driver
AutoRun Data Structures

26 Developing SDIO Peripherals for Palm Handhelds

AutoRunFunctionStandardType

typedef UInt16 AutoRunFunctionStandardType

I/O device interface code.

AutoRunSourceType

typedef UInt16 AutoRunSourceType

Specifies which member of the source union to use, if any. The
following values have been defined for this type:

AutoRunSlotDriverType
Identifies the slot driver that issued the sysNotifyDriverSearch
notification. This structure is a member of the AutoRunInfoType
structure’s source union.

typedef struct AutoRunSlotDriverType {
 UInt16 volRefNum;
 UInt16 slotLibRefNum;
 UInt16 slotRefNum;
} AutoRunSlotDriverType

Field Descriptions

Constant Value Description

autoRunSourceNone 0 source is not used.

autoRunSourceSlot
DriverType

1 source is
AutoRunSlotDriverType.

volRefNum The volume reference number for the
mounted file system, if there is one, or
vfsInvalidVolRef if there is no
mounted file system.

SDIO Slot Driver
AutoRun Constants

Developing SDIO Peripherals for Palm Handhelds 27

AutoRun Constants

Media Types
The defined values for the AutoRunInfoType structure’s media
field and the corresponding values of the oem...
AutoRunInfoType fields are listed in the following sections.

autoRunMediaMMCmem

autoRunMediaMMCmem is used for MMC memory cards. This
constant is defined as follows:

#define autoRunMediaMMCmem
((AutoRunMediaType)'mcmm')

When the AutoRunInfoType structure’s media field is set to
autoRunMediaMMCmem, the oem... fields are defined as shown
here:

slotLibRefNum The slot library reference number for
the slot driver that issued the
sysNotifyDriverSearch
notification.

slotRefNum The slot reference number for the slot
driver that issued the
sysNotifyDriverSearch
notification, or
expInvalidSlotRefNum if there is
no such slot.

AutoRunInfoType Field Value

oemManufacturer MMC’s CID register, MID (8-bit
unsigned Manufacturer field)

oemID MMC’s CID Register, OID (16 bit
unsigned OEM/Application ID)

SDIO Slot Driver
AutoRun Constants

28 Developing SDIO Peripherals for Palm Handhelds

autoRunMediaMMCrom

autoRunMediaMMCrom is used for MMC ROM cards. This constant
is defined as follows:

#define autoRunMediaMMCrom
((AutoRunMediaType)'mcrm')

When the AutoRunInfoType structure’s media field is set to
autoRunMediaMMCrom, the oem... fields are defined as shown
here:

autoRunMediaSDmem

autoRunMediaSDmem is used for SD memory cards. This constant
is defined as follows:

#define autoRunMediaSDmem
((AutoRunMediaType)'sdmm')

When the AutoRunInfoType structure’s media field is set to
autoRunMediaSDmem, the oem... fields are defined as shown
here:

oemFunctionNum Not used.

oemFunctionStandard Not used.

AutoRunInfoType Field Value

AutoRunInfoType Field Value

oemManufacturer MMC’s CID register, MID (8-bit
unsigned Manufacturer field)

oemID MMC’s CID Register, OID (16 bit
unsigned OEM/Application ID)

oemFunctionNum Not used.

oemFunctionStandard Not used.

SDIO Slot Driver
AutoRun Constants

Developing SDIO Peripherals for Palm Handhelds 29

autoRunMediaSDrom

autoRunMediaSDrom is used for SD ROM cards. This constant is
defined as follows:

#define autoRunMediaSDrom
((AutoRunMediaType)'sdrm')

When the AutoRunInfoType structure’s media field is set to
autoRunMediaSDrom, the oem... fields are defined as shown
here:

autoRunMediaSDIO

autoRunMediaSDIO is used for SD I/O cards. This constant is
defined as follows:

AutoRunInfoType Field Value

oemManufacturer SD’s CID register, MID (8-bit
unsigned Manufacturer field)

oemID SD’s CID Register, OID (16 bit
unsigned OEM/Application ID)

oemFunctionNum Not used.

oemFunctionStandard Not used.

AutoRunInfoType Field Value

oemManufacturer SD’s CID register, MID (8-bit
unsigned Manufacturer field)

oemID SD’s CID Register, OID (16 bit
unsigned OEM/Application ID)

oemFunctionNum Not used.

oemFunctionStandard Not used.

SDIO Slot Driver
AutoRun Constants

30 Developing SDIO Peripherals for Palm Handhelds

#define autoRunMediaSDIO
((AutoRunMediaType)'sdio')

When the AutoRunInfoType structure’s media field is set to
autoRunMediaSDIO, the oem... fields are defined as shown here:

autoRunMediaPnps

autoRunMediaPnps is used for Plug and Play for a serial
peripheral. This constant is defined as follows:

#define autoRunMediaPnps
((AutoRunMediaType)'pnps')

When the AutoRunInfoType structure’s media field is set to
autoRunMediaPnps, the oem... fields are defined as shown here:

AutoRunInfoType Field Value

oemManufacturer TPLMID_MANF field inside the
function’s CID CISTPL_MANFID
tuple (16-bit Manufacturer field)

oemID TPLMID_CARD field inside the
function’s CID CISTPL_MANFID
tuple (16 bit OEM/Application ID)

oemFunctionNum Function number (1-7).

oemFunctionStandard I/O device interface code field in the
SD card’s FBR. See “I/O Device
Interface Codes” on page 31 for a list
of constants that can be used with
this field.

AutoRunInfoType Field Value

oemManufacturer Vendor ID from the Pnps
Configuration Data Structure (16-bit
unsigned field)

oemID Device ID from the Pnps
Configuration Data Structure (16-bit
unsigned field)

SDIO Slot Driver
AutoRun Constants

Developing SDIO Peripherals for Palm Handhelds 31

I/O Device Interface Codes
When the AutoRunInfoType structure’s media field is set to
autoRunMediaSDIO, its oemFunctionStandard field can
assume one of the following values:

sysNotifyDriverSearch

oemFunctionNum Not used.

oemFunctionStandard Not used.

AutoRunInfoType Field Value

Constant Value Description

autoRunFunctionStandardSDIOCustom 0 Driver for custom
function.

autoRunFunctionStandardSDIOUart 1 Driver for SDIO
UART.

autoRunFunctionStandardSDIOBlueToothFat 2 Driver for SDIO
Bluetooth Fat.

autoRunFunctionStandardSDIOBlueToothThin 3 Driver for SDIO
BlueTooth Thin.

Constant Value Description

sysNotifyDriverSearch 'arun' Sent after a card has
been inserted and the
card’s information has
been identified. It
allows SDIO drivers
already on the
handheld to launch
themselves. The
parameter pointer that
accompanies the
notification points to an
AutoRunInfoType
structure.

SDIO Slot Driver
SDIO Slot Driver Data Structures

32 Developing SDIO Peripherals for Palm Handhelds

SDIO Slot Driver Data Structures

SDIOAutoPowerOffType
Used with SDIOGetAutoPowerOff and SDIOSetAutoPowerOff
to specify auto-power-off parameters for a specific SDIO card
function.

typedef struct {
 SDIOSlotType sdioSlotNum;
 UInt16 ticksTillOff;
 SDIOCardPowerType sleepPower;
} SDIOAutoPowerOffType

Field Descriptions

SDIOCallbackType
Used in conjunction with the SDIOGetCallback and
SDIOSetCallback functions, this structure associates a C function
with a particular SDIO function callback type.

sdioSlotNum Identifies a specific SDIO card
function’s slot driver. See
SDIOSlotType for a list of values that
can be used here.

ticksTillOff The amount of time, in system ticks,
before power to the SDIO card function
is automatically turned off. A value of
zero disables the auto-power-off
function.

sleepPower Specifies whether the SDIO card
function’s power and data signals
should be turned on or off, whether the
SD Memory card portion of a combo
card should be reset, or whether to wait
for the SDIO portion of an SD card to be
ready. See SDIOCardPowerType for a
list of values that can be used here.

SDIO Slot Driver
SDIO Slot Driver Data Structures

Developing SDIO Peripherals for Palm Handhelds 33

typedef struct {
SDIOSlotType sdioSlotNum;
SDIOCallbackSelectType callbackSelect;
SDIOCallbackPtr callBackP;
MemPtr userDataP;

} SDIOCallbackType;

Field Descriptions

SDIOCallbackSelectType

Values of type SDIOCallbackSelectType are used in an
SDIOCallbackType structure to identify which of an SDIO card
function’s callbacks is needed or is to be set.

typedef UInt16 SDIOCallbackSelectType

The following constant values have been defined for this type:

sdioSlotNum Identifies the SDIO card function who’s
callback is needed or is to be set. See
SDIOSlotType for the set of values
that can be used with this field.

callbackSelect Identifies the particular callback that is
needed or is to be set. See
SDIOCallbackSelectType, below,
for the set of values that can be used
with this field.

callBackP Pointer to the callback function. See the
SDIOCallbackPtr function
description for the order and type of the
callback function’s parameters.

userDataP Pointer to a block of user data that is
passed to the callback function when
the function is called.

SDIO Slot Driver
SDIO Slot Driver Data Structures

34 Developing SDIO Peripherals for Palm Handhelds

SDIOCardPowerType
Used with SDIOPowerType and SDIOAutoPowerOffType to
specify whether the SDIO card’s power and data signals should be
turned on or off, whether the SD Memory section of a combo card
should be reset, or whether to wait for the SDIO portion of an SD
card to be ready.

typedef UInt16 SDIOCardPowerType

The following constant values have been defined for this type:

Constant Value Description

SDIOCallbackSelect
InterruptSDCard

0 Callback that occurs when an
SDIO card interrupts the
handheld. Note that this
particular callback is made
during the processing of an
interrupt.

SDIOCallbackSelect
Sleep

1 Callback that occurs when the
handheld wants to go to sleep.

SDIOCallbackSelect
Awake

2 Callback that occurs when the
handheld wants to wake up.

SDIOCallbackSelect
PowerOn

3 Callback that occurs when
power is applied to the SDIO
card.

SDIOCallbackSelect
PowerOff

4 Callback that occurs when
power is removed from the
SDIO card.

SDIOCallbackSelect
Reset

5 Callback that occurs when the
SDIO section of the card is
reset.

SDIOCallbackSelect
BitMode

6 Callback that occurs when the
bus width of the card is
changed.

SDIO Slot Driver
SDIO Slot Driver Data Structures

Developing SDIO Peripherals for Palm Handhelds 35

SDIOCurrentLimitType
Used with SDIOGetCurrentLimit, SDIOSetCurrentLimit,
and SDIORemainingCurrentLimit to specify an SDIO card
function and the maximum current that can be required by that
function.

typedef struct {
 SDIOSlotType sdioSlotNum;
 UInt32 uaMaximum;
} SDIOCurrentLimitType

Constant Value Description

sdioCardPowerOff 0 Turn off the card, put the data
signals in a low power state.

sdioCardPowerOn 1 Power on and initialize the
card.

sdioCardResetSDMem 2 Force the SD Memory section
of an SD combo card to be
software reset by a CMD0.
The function returns after the
card is initialized. This value
cannot be used with
SDIOSetAutoPowerOff.

sdioCardWaitSDIO 3 Wait for the I/O portion of an
SDIO card to be ready (after
IO_SEND_OP_COND—
CMD5). Use this after
resetting one or more
functions. This value cannot
be used with
SDIOSetAutoPowerOff.

SDIO Slot Driver
SDIO Slot Driver Data Structures

36 Developing SDIO Peripherals for Palm Handhelds

Field Descriptions

SDIOFuncType
Used with the SDIORWDirect, SDIORWExtendedByte, and
SDIORWExtendedBlock functions to specify the number of the
SDIO card function area to be read or written, or with the
SDIOTupleWalk function to specify the number of the function to
be searched.

typedef UInt16 SDIOFuncType

The following constant values have been defined for this type:

sdioSlotNum Identifies a specific function slot driver
within an SDIO card. See
SDIOSlotType for a list of values that
can be used here.

uaMaximum The specified function’s maximum
peak current in micro-amps (when
used with SDIOGetCurrentLimit or
SDIOSetCurrentLimit), or the
remaining maximum current for the
entire card in micro-amps (when used
with
SDIORemainingCurrentLimit).

Constant Value Description

sdioFunc0 0 SDIO function 0 area (CIA—
Common I/O Area).

sdioFunc1 1 SDIO function 1 area.

sdioFunc2 2 SDIO function 2 area.

sdioFunc3 3 SDIO function 3 area.

sdioFunc4 4 SDIO function 4 area.

sdioFunc5 5 SDIO function 5 area.

SDIO Slot Driver
SDIO Slot Driver Data Structures

Developing SDIO Peripherals for Palm Handhelds 37

SDIOPowerType
Used by SDIOGetPower and SDIOSetPower to get and set an SD
card function’s power setting.

typedef struct {
SDIOSlotType sdioSlotNum;
SDIOCardPowerType powerOnCard;

} SDIOPowerType

Field Descriptions

SDIORWModeType
Specifies the particular operation to be performed when using
SDIORWDirect, SDIORWExtendedBlock, and
SDIORWExtendedByte.

typedef UInt16 SDIORWModeType

The following constant values have been defined for this type:

sdioFunc6 6 SDIO function 6 area.

sdioFunc7 7 SDIO function 7 area.

Constant Value Description

sdioSlotNum Identifies a specific SDIO card
function’s slot driver. See
SDIOSlotType for a list of values that
can be used here.

powerOnCard An SDIOCardPowerType that
specifies whether power should be
applied to or removed from the SDIO
card function, or that indicates whether
power is or is not currently being
applied to the function.

SDIO Slot Driver
SDIO Slot Driver Data Structures

38 Developing SDIO Peripherals for Palm Handhelds

SDIOSDBitModeType
Used in the SDIOCardInfoType and
SDIOSDBitModeRequestType structures to indicate which SDIO
bit mode is to be used when interacting with a particular SDIO card
function.

typedef UInt16 SDIOSDBitModeType

The following constant values have been defined for this type:

Constant Value Description

sdioRWModeWrite 0x0001 Write data from the specified buffer to the
card.

sdioRWModeRead 0x0002 Read data from the card and place it in the
specified buffer.

sdioRWModeWriteRead 0x0003 Write data from the specified buffer to the
card, then read the data from the card and
place it back into the buffer.

sdioRWModeFixedAddress 0x0004 Use in combination with
sdioRWModeWrite, sdioRWModeRead,
or sdioRWModeWriteRead to perform a
multi-byte read or write to a single
register address. Useful when transferring
data using a FIFO inside the I/O device.

sdioRWModeForceBlockSize 0x0008 Use in combination with
sdioRWModeWrite, sdioRWModeRead,
or sdioRWModeWriteRead to cause
SDIORWExtendedBlock to always set
the block size. This is useful if the driver
resets an I/O only card or the I/O portion
of a combo card, or if it alters the I/O
block length in the FBR (Function Basic
Registers).

SDIO Slot Driver
SDIO Slot Driver Data Structures

Developing SDIO Peripherals for Palm Handhelds 39

SDIOSlotType
Used with a number of types and functions to identify a specific
function slot driver within an SDIO card.

typedef UInt16 SDIOSlotType

The following constant values have been defined for this type:

Constant Value Description

sdioSD1BitMode 1 SDIO 1-bit mode (SD or SPI mode)

sdioSD4BitMode 4 SDIO 4-bit mode (SD mode only)

Constant Value Description

sdioSlotSDMem 0 SD Memory card slot (for
regular memory cards or
SD combo cards)

sdioSlotFunc1 1 SDIO function 1 slot for
SDIO cards

sdioSlotFunc2 2 SDIO function 2 slot for
SDIO cards

sdioSlotFunc3 3 SDIO function 3 slot for
SDIO cards

sdioSlotFunc4 4 SDIO function 4 slot for
SDIO cards

sdioSlotFunc5 5 SDIO function 5 slot for
SDIO cards

sdioSlotFunc6 6 SDIO function 6 slot for
SDIO cards

sdioSlotFunc7 7 SDIO function 7 slot for
SDIO cards

SDIO Slot Driver
SDIO Slot Driver Constants

40 Developing SDIO Peripherals for Palm Handhelds

SDIO Slot Driver Constants

sysFileApiCreatorSDIO

Number of Entries

SDIO Slot Driver Functions

New SDIOAccessDelay

Purpose Change the SDIO card access timeout for reads and writes using
IO_RW_DIRECT and IO_RW_EXTENDED from the 1 second
default.

Prototype Err SDIOAccessDelay (UInt16 slotLibRefNum,
SDIOAccessDelayType *delayMSP)

Parameters -> slotLibRefNum
Slot driver library reference number.

Constant Value Description

sysFileApiCreatorSDIO 'sdio' Creator code for the
SDIO slot driver.

Constant Value Description

sdioFuncEntries 8 The number of possible SDIO card
functions.

sdioCallbackSelectEntries 7 The number of possible callbacks for a
given SDIO card function.

SDIO Slot Driver
SDIO Slot Driver Functions

Developing SDIO Peripherals for Palm Handhelds 41

-> delayMSP Pointer to the desired timeout, in milliseconds.
The minimum timeout that can be set with this
function is 1,000 milliseconds, or 1 second. See
SDIOAccessDelayType in the Comments
section, below.

Result errNone No error.

expErrCardNotPresent
There isn’t a card in the slot associated with the
specified slot driver.

expErrUnimplemented
The specified slot driver does not support
SDIO.

sysErrParamErr delayMSP is NULL.

Comments The default timeout for any SDIO card is 1 second. Use this function
if your card needs a longer worst-case delay. Note that this timeout
only affects reads and writes using IO_RW_DIRECT and
IO_RW_EXTENDED; basic commands such as those that read the
CCCRs, FBRs, and tuples must execute within 1 second. If a file
system is available, it is mounted with this 1 second limitation.

NOTE: The SDIO slot driver initializes and identifies the card
and mounts files before a custom slot driver gains access to the
card. The SDIO slot driver assumes that the card functions
properly with the 1-second specification time limit.

This function requires that an SDIO card be present in the slot.

This function can safely be called from within an interrupt service
routine.

SDIOAccessDelayType

The maximum timeout, in milliseconds, for reads and writes using
the IO_RW_DIRECT and IO_RW_EXTENDED commands.

SDIO Slot Driver
SDIO Slot Driver Functions

42 Developing SDIO Peripherals for Palm Handhelds

typedef UInt16 SDIOAccessDelayType;

New SDIOAPIVersion

Purpose Determine if the specified slot driver is SDIO aware and, if so,
return the slot driver version number.

Prototype Err SDIOAPIVersion (UInt16 slotLibRefNum,
SDIOAPIVersionType *versionP)

Parameters -> slotLibRefNum
Slot driver library reference number.

<- versionP Pointer to the version number of this SDIO-
aware slot driver. See the Comments section,
below, for a description of
SDIOAPIVersionType.

Result errNone The specified slot driver is SDIO aware, and the
version number was successfully set.

expErrUnimplemented (or any other error)
The specified slot driver does not support
SDIO.

sysErrParamErr versionP is invalid.

Comments This function can safely be called from within an interrupt service
routine. It does not require a SDIO card in the slot to work

SDIOAPIVersionType is declared as follows:

typedef UInt32 SDIOAPIVersionType

New SDIODebugOptions

Purpose Enable or disable the sending of debug messages to the serial or
USB port.

SDIO Slot Driver
SDIO Slot Driver Functions

Developing SDIO Peripherals for Palm Handhelds 43

Prototype Err SDIODebugOptions (UInt16 slotLibRefNum,
SDIODebugOptionType *debugOptionsP)

Parameters -> slotLibRefNum
Slot driver library reference number.

<-> debugOptionsP
Pointer to an SDIODebugOptionType
structure which specifies which messages
should be sent. See the Comments section,
below, for a description of the
SDIODebugOptionType structure.

Result errNone No error.

expErrUnsupportedOperation
This is not a debug ROM or debug RAM patch.
No debug features are available.

expErrUnimplemented
The specified slot driver does not support
SDIO.

Comments If you use this function to enable debugging, be sure that the
handheld is in a cradle and a debugger is running on your desktop
computer. CodeWarrior can be used, but it adds extra carriage-
return/linefeed pairs to the messages.

WARNING! If this option is activated, and the device is not in a
cradle, all debug messages will be routed to the USB cradle by
default. However, since the device is not in a USB cradle, the
software will “lock”, forever trying to open a non-existent USB
port. To recover, either press reset or start a USB debugger on
your PC or Mac and then connect the handheld to the cradle.

To deactivate debugging, perform a soft reset on the handheld or
call SDIODebugOptions and specify
sdioDebugOptionTraceNone.

SDIO Slot Driver
SDIO Slot Driver Functions

44 Developing SDIO Peripherals for Palm Handhelds

NOTE: This is not a real time trace: the serial port slows down
the card’s response. Use a logic analyzer for real time tracing.

This function can safely be called from within an interrupt service
routine.

SDIODebugOptionType

This structure is used with SDIODebugOptions and identifies
which debug messages, if any, are to be sent to the serial or USB
port.

typedef UInt16 SDIODebugOptionType

The following constant values have been defined for this type:

Constant Value Description

sdioDebugOptionTraceCmds 0x0001 Sends all commands that are
issued to the card.

sdioDebugOptionTraceRejection 0x0002 Sends rejection reasons.

sdioDebugOptionTraceCmdData 0x0004 Sends the data from commands
that have command/response/
data, warning. Note that this is a
lot of data.

sdioDebugOptionTraceContents 0x0008 Sends the contents of tuples and/
or parts of the CSD (Card Specific
Data register) when they are
accessed just after card insertion.

sdioDebugOptionTraceProgress 0x0010 Sends the progress of the tests that
are performed upon card insertion.

sdioDebugOptionTraceISR 0x0020 Allows debug messages to be sent
from within interrupt handlers. Be
sure to keep the stack small to
avoid overflows.

SDIO Slot Driver
SDIO Slot Driver Functions

Developing SDIO Peripherals for Palm Handhelds 45

Compatibility For debug ROMs and debug RAM patches only.

New SDIODisableHandheldInterrupt

Purpose Disables the interrupt on the handheld. This function does not turn
off interrupts on the card.

Prototype Err SDIODisableHandheldInterrupt
(UInt16 slotLibRefNum)

Parameters -> slotLibRefNum
Slot driver library reference number.

Result errNone No error.

expErrCardNotPresent
There isn’t a card in the slot associated with the
specified slot driver.

expErrUnimplemented
The specified slot driver does not support
SDIO.

expErrUnsupportedOperation
SDIODisableHandheldInterrupt has been
called in excess of 65,535 times.

sdioDebugOptionTraceMost sdioDebugOptionTraceCmds |
sdioDebugOptionTraceRejection |
sdioDebugOptionTraceContents |
sdioDebugOptionTraceProgress |
sdioDebugOptionTraceISR

sdioDebugOptionTraceAll -1 Enable all options.

sdioDebugOptionTraceNone 0 Disable all options.

Constant Value Description

SDIO Slot Driver
SDIO Slot Driver Functions

46 Developing SDIO Peripherals for Palm Handhelds

Comments This function is implemented as an incrementing counter, making it
re-entrant. For every call to SDIODisableHandheldInterrupt
there must be an equal number (or more) of calls to
SDIOEnableHandheldInterrupt in order to re-enable
interrupts.

This function requires that an SDIO card be present in the slot.

This function can safely be called from within an interrupt service
routine.

New SDIOEnableHandheldInterrupt

Purpose Enables the interrupt on the handheld. This function does not affect
interrupts on the card.

Prototype Err SDIOEnableHandheldInterrupt
(UInt16 slotLibRefNum)

Parameters -> slotLibRefNum
Slot driver library reference number.

Result errNone No error.

expErrCardNotPresent
There isn’t a card in the slot associated with the
specified slot driver.

expErrUnimplemented
The specified slot driver does not support
SDIO.

expErrUnsupportedOperation
Interrupts are already enabled.

Comments This function is implemented as a decrementing counter, making it
re-entrant. For every call to SDIODisableHandheldInterrupt
there must be an equal number (or more) of calls to
SDIOEnableHandheldInterrupt in order to re-enable
interrupts.

SDIO Slot Driver
SDIO Slot Driver Functions

Developing SDIO Peripherals for Palm Handhelds 47

By default, when the card is inserted interrupts on the handheld are
enabled by this function, but are disabled internally until an
interrupt callback is set with SDIOSetCallback. Note that in
order to receive the SDIO interrupt, power to the card must be on,
even if the handheld is asleep.

This function requires that an SDIO card be present in the slot.

This function can safely be called from within an interrupt service
routine.

New SDIOGetAutoPowerOff

Purpose Get the current auto-power-off settings for the SD slot.

Prototype Err SDIOGetAutoPowerOff (UInt16 slotLibRefNum,
SDIOAutoPowerOffType *autoP)

Parameters -> slotLibRefNum
Slot driver library reference number.

<-> autoP Pointer to an SDIOAutoPowerOffType
structure which indicates the current auto-
power-off settings for the SD slot. Before calling
SDIOGetAutoPowerOff, set this structure’s
sdioSlotNum field to indicate the current slot
driver function number. Upon return, the
ticksTillOff field indicates the number of
system ticks until the slot is turned off. A
ticksTillOff value of zero indicates that
auto-off is disabled.

Result errNone No error.

expErrCardNotPresent
There isn’t a card in the slot associated with the
specified slot driver.

SDIO Slot Driver
SDIO Slot Driver Functions

48 Developing SDIO Peripherals for Palm Handhelds

expErrUnimplemented (or any other error)
The specified slot driver does not support
SDIO.

sysErrParamErr autoP is invalid.

Comments This function requires that an SDIO card be present in the slot, since
these settings are erased when a card is removed. Note that every
time a card is inserted into the SD slot, the auto-power-off time is set
to 15 seconds.

When the handheld awakes from sleep mode, it doesn’t turn the
card on. Only when there is a request to access the card does it turn
the card on.

This function only works with SDIO cards; it cannot be used when a
memory card is in the slot.

This function can safely be called from within an interrupt service
routine.

See Also SDIOGetPower, SDIOSetAutoPowerOff

New SDIOGetAutoRun

Purpose Provide a description of the SD/MMC memory card or SDIO card
that is currently inserted.

Prototype Err SDIOGetAutoRun (UInt16 slotLibRefNum,
SDIOAutoRunInfoType *autoRunP)

Parameters -> slotLibRefNum
Slot driver library reference number.

SDIO Slot Driver
SDIO Slot Driver Functions

Developing SDIO Peripherals for Palm Handhelds 49

<-> autoRunP Pointer to an SDIOAutoRunInfoType
structure, which describes the SD/MMC
memory card or SDIO card that is currently
inserted. Before calling SDIOGetAutoRun set
this structure’s sdioSlotNum field to the card
function you are using (a value of 1-7 indicates
one of the SDIO functions, while a value of 0
indicates the SD memory card slot driver). See
the Comments section, below, for a description
of the SDIOAutoRunInfoType structure.

Result errNone No error.

expErrCardNotPresent
There isn’t a card in the slot associated with the
specified slot driver.

expErrUnimplemented
The specified slot driver does not support
SDIO.

expErrUnsupportedOperation
The SDIO card does not support the specified
SDIO card function.

sysErrParamErr autoRunP is invalid, or one of its fields is
invalid.

Comments Information provided by this function is only maintained while a
card is in the SD slot, and is erased when the card is removed.
Because of this, this function requires that an SDIO card be present
in the slot.

This structure is provided to SDIO device drivers as part of the
sysNotifyDriverSearch notification that is broadcast by the
SDIO slot driver in an attempt to locate a device driver for an SDIO
card.

This function can safely be called from within an interrupt service
routine.

SDIO Slot Driver
SDIO Slot Driver Functions

50 Developing SDIO Peripherals for Palm Handhelds

SDIOAutoRunInfoType

This structure is passed to the SDIOGetAutoRun function and is
used to specify the function making the request and the SDIO bit
mode that is to be set.

typedef struct {
 SDIOSlotType sdioSlotNum;
 AutoRunInfoType autoRun;
} SDIOAutoRunInfoType

Field Descriptions

New SDIOGetCallback

Purpose Obtain pointers to an SDIO card function’s callback routine and
associated data.

Prototype Err SDIOGetCallback (UInt16 slotLibRefNum,
SDIOCallbackType *callBackP)

Parameters -> slotLibRefNum
Slot driver library reference number.

sdioSlotNum The ID of the function in the current
slot driver about which slot library
information is desired. Note that
sdioFunc0 is reserved for the SD
Memory card slot driver and function 0.
See the description of SDIOSlotType
for the complete set of values that can
be supplied here.

autoRun Contains a description of the SD/MMC
memory card or SDIO card that is
currently inserted. See the description
of the AutoRunInfoType structure for
details.

SDIO Slot Driver
SDIO Slot Driver Functions

Developing SDIO Peripherals for Palm Handhelds 51

<-> callBackP Pointer to an SDIOCallbackType structure.
Before calling this function, set the
sdioSlotNum and callbackSelect fields.
Upon return, the callBackP and userDataP
fields point to the callback function and any
associated user data. Either or both of these
pointers can be NULL to indicate that there is no
associated callback function or that there is no
user data block.

Result errNone No error.

expErrCardNotPresent
There isn’t a card in the slot associated with the
specified slot driver.

expErrUnimplemented
The specified slot driver does not support
SDIO.

sysErrParamErr callBackP is invalid, or one of its fields is
invalid.

Comments Each callback selector for each card function slot, as well as the SD
Memory card slot, may have been assigned a separate callback
function. The following list of callback selectors details those
situations in which a particular callback function is called:

• sdioCallbackSelectInterruptSdCard: the
corresponding callback function is executed whenever the
SD card interrupts the handheld. The handheld enables the
SDIO interrupt whenever a valid
sdioCallbackSelectInterruptSdCard callback is set.
The callback function needs to reset the interrupt source to
prevent the interrupt callback from being called again.

• sdioCallbackSelectSleep and
sdioCallbackSelectAwake: the corresponding callback
functions are executed whenever the handheld is about to be
put to sleep or just after it wakes. These callback functions
are always called with interrupts disabled, and should be as
fast as possible.

SDIO Slot Driver
SDIO Slot Driver Functions

52 Developing SDIO Peripherals for Palm Handhelds

• sdioCallbackSelectPowerOn and
sdioCallbackSelectPowerOff: the corresponding
callback functions are executed when the SDIO card power is
turned on or is about to be turned off. Never call
SDIOSetPower while processing these functions in order to
turn an SDIO card function on or off.

• sdioCallbackSelectReset: the corresponding callback
function is executed whenever SDIOSetPower is called with
the powerP structure’s powerOnCard field set to
sdioCardWaitSdio. sdioCardWaitSdio is typically
used after the SDIO section has been reset by setting the RES
(I/O Card Reset) bit in the CCCR (Card Common Control
Registers).

• sdioCallbackSelectBitMode: the corresponding
callback function is executed whenever the bus width is
successfully changed with SDIOSetBitMode. Note that in
version 1.0 of the SDIO slot driver, this callback is never
executed because the bus is always one bit wide.

When a situation arises that causes one of the above callback
functions to be called, the corresponding callback for the SD
Memory card slot is generally the first one called, followed by the
corresponding callback functions for SDIO functions 1 through 7.
Because the SD Memory card slot and each SDIO card function slot
can have a separate callback function for each callback selector, each
callback function can limit itself to dealing with a single selector and
a single SDIO card function.

Callback function information is automatically erased after a card is
inserted or removed (before the card removal event). Because of
this, SDIOGetCallback can only be used when a card is in the SD
slot. To detect card removal, use the notification manager and
register for sysNotifyCardRemovedEvent.

SDIOGetCallback can safely be called from within an interrupt
service routine.

SDIO Slot Driver
SDIO Slot Driver Functions

Developing SDIO Peripherals for Palm Handhelds 53

New SDIOGetCardInfo

Purpose Return information about the SDIO card obtained with the SDIO
IO_QUERY command (ACMD57).

Prototype Err SDIOGetCardInfo (UInt16 slotLibRefNum,
SDIOCardInfoType *cardInfoP)

Parameters -> slotLibRefNum
Slot driver library reference number.

<- cardInfoP Pointer to an SDIOCardInfoType structure
into which the SDIO card information is placed.
See the Comments section, below, for a
complete description of the
SDIOCardInfoType structure.

Result errNone No error.

expErrCardNotPresent
There isn’t a card in the slot associated with the
specified slot driver.

expErrUnimplemented
The specified slot driver does not support
SDIO.

sysErrParamErr cardInfoP is invalid.

Comments Information about the SDIO card other than what is returned by this
function can be obtained through the use of the normal SDIO read
and write calls.

This function can safely be called from within an interrupt service
routine.

This function requires that an SDIO card be present in the slot. Note,
however, that information is cached in RAM.

SDIO Slot Driver
SDIO Slot Driver Functions

54 Developing SDIO Peripherals for Palm Handhelds

SDIOCardInfoType

This structure is used in conjunction with the SDIOGetCardInfo
function to return information about the SDIO card.

typedef struct {
UInt16 numberOfFunctions;
SDIOSDBitModeType bitMode;
SDIOBitsOfFileSystemType bitsOfFileSystem;
SDIOBitsOfStatusType bitsOfStatus;

} SDIOCardInfoType

Field Descriptions

SDIOBitsOfFileSystemType

Returned as part of an SDIOCardInfoType structure, each of the
bits that makes up SDIOBitsOfFileSystemType indicates
whether the corresponding function has a standard SDIO file
system. Note that this file system may or may not be mounted.

numberOfFunctions Number of SDIO functions on the card.
This field’s values range from 0 (no
functions) to 7.

bitMode The card’s current SDIO bit mode. See
the description of
SDIOSDBitModeType for this field’s
values.

bitsOfFileSystem Each bit in this field indicates whether
the corresponding function has a
standard SDIO file system. Note that
just because a function has a file system,
it does not mean that the file system is
mounted. See the description of
SDIOBitsOfFileSystemType for the
precise meaning of the bits that make
up this field.

bitsOfStatus Various status bits, as defined under
SDIOBitsOfStatusType.

SDIO Slot Driver
SDIO Slot Driver Functions

Developing SDIO Peripherals for Palm Handhelds 55

typedef UInt16 SDIOBitsOfFileSystemType

The following constant values have been defined for this type:

SDIOBitsOfStatusType

Returned as part of an SDIOCardInfoType structure, each of the
bits that makes up SDIOBitsOfStatusType indicates various
status information about the SDIO card.

typedef UInt16 SDIOBitsOfStatusType;

The following constant values have been defined for this type:

Constant Value Description

sdioBitsOfFileSystemMemory 0x0001 This card has a standard SDIO file
system in the SD Memory section.

sdioBitsOfFileSystemFunction1 0x0002 This card has a standard SDIO file
system in function 1.

sdioBitsOfFileSystemFunction2 0x0004 This card has a standard SDIO file
system in function 2.

sdioBitsOfFileSystemFunction3 0x0008 This card has a standard SDIO file
system in function 3.

sdioBitsOfFileSystemFunction4 0x0010 This card has a standard SDIO file
system in function 4.

sdioBitsOfFileSystemFunction5 0x0020 This card has a standard SDIO file
system in function 5.

sdioBitsOfFileSystemFunction6 0x0040 This card has a standard SDIO file
system in function 6.

sdioBitsOfFileSystemFunction7 0x0080 This card has a standard SDIO file
system in function 7.

SDIO Slot Driver
SDIO Slot Driver Functions

56 Developing SDIO Peripherals for Palm Handhelds

See Also SDIOSetBitMode, SDIOGetSlotInfo, SDIOAPIVersion

Constant Value Description

sdioBitsOfStatusDriverHandled
Memory

0x0001 This card has an Auto Run
function driver in the SD Memory
section.

sdioBitsOfStatusDriverHandled
Func1

0x0002 This card has an Auto Run
function driver in function 1.

sdioBitsOfStatusDriverHandled
Func2

0x0004 This card has an Auto Run
function driver in function 2.

sdioBitsOfStatusDriverHandled
Func3

0x0008 This card has an Auto Run
function driver in function 3.

sdioBitsOfStatusDriverHandled
Func4

0x0010 This card has an Auto Run
function driver in function 4.

sdioBitsOfStatusDriverHandled
Func5

0x0020 This card has an Auto Run
function driver in function 5.

sdioBitsOfStatusDriverHandled
Func6

0x0040 This card has an Auto Run
function driver in function 6.

sdioBitsOfStatusDriverHandled
Func7

0x0080 This card has an Auto Run
function driver in function 7.

sdioBitsOfStatusWriteProtectT
ab

0x0100 The write protect tab on the card
indicates that this card is write
protected

SDIO Slot Driver
SDIO Slot Driver Functions

Developing SDIO Peripherals for Palm Handhelds 57

New SDIOGetCurrentLimit

Purpose Get the maximum peak current allotted to one of the SDIO card’s
functions.

Prototype Err SDIOGetCurrentLimit (UInt16 slotLibRefNum,
SDIOCurrentLimitType *currentLimitP)

Parameters -> slotLibRefNum
Slot driver library reference number.

<-> currentLimitP
Pointer to an SDIOCurrentLimitType structure.
Before calling SDIOGetCurrentLimit, set
this structure’s slotFuncNum field to a valid
slot driver function number. Upon return, the
uaMaximum field contains the specified
function’s maximum peak current in micro-
amps.

Result errNone No error.

expErrCardNotPresent
There isn’t a card in the slot associated with the
specified slot driver.

expErrUnimplemented
The specified slot driver does not support
SDIO.

sysErrParamErr currentLimitP is invalid, or one of
currentLimitP’s fields is invalid.

Comments You use SDIOGetCurrentLimit, SDIOSetCurrentLimit, and
SDIORemainingCurrentLimit to ensure that the total of all
function hardware that is active never exceeds the SDIO
specification maximum of 200ma. These three functions do not
detect or limit current draw, check the battery level, or reflect how
much energy the battery has left; you simply use them to manage
the current limit values supplied using SDIOSetCurrentLimit. It

SDIO Slot Driver
SDIO Slot Driver Functions

58 Developing SDIO Peripherals for Palm Handhelds

is up to the writer of the SDIO slot driver to both supply the proper
current limit values and to use SDIOGetCurrentLimit and
SDIORemainingCurrentLimit appropriately so that the total
active SDIO card functions do not draw more current than the
handheld’s power source can provide.

When a card is removed, all allocations of current are set to zero.
Because of this, in order to operate properly this function requires
an SDIO card in the slot.

This function can safely be called from within an interrupt service
routine.

New SDIOGetPower

Purpose Determine whether an SD card function is currently powered on or
off.

Prototype Err SDIOGetPower (UInt16 slotLibRefNum,
SDIOPowerType *powerP)

Parameters -> slotLibRefNum
Slot driver library reference number.

<-> powerP Pointer to an SDIOPowerType structure.
Before calling SDIOGetPower set this
structure’s sdioSlotNum field to the SDIO
card function, and upon return the value of this
structure’s powerOnCard field indicates
whether or not the SD card function is turned
on.

Result errNone No error.

expErrCardNotPresent
There isn’t a card in the slot associated with the
specified slot driver.

SDIO Slot Driver
SDIO Slot Driver Functions

Developing SDIO Peripherals for Palm Handhelds 59

expErrUnimplemented
The specified slot driver does not support
SDIO.

sysErrParamErr powerP is invalid.

Comments This function does not check the battery level, since turning on the
SDIO card might lockout the handheld. It also does not check SDIO
card function current limits. A card must be present in the SD slot in
order to use this function, however.

This function can safely be called from within an interrupt service
routine.

See Also SDIOGetAutoPowerOff, SDIOGetCurrentLimit,
SDIOGetCardInfo, SDIOSetPower

New SDIOGetSlotInfo

Purpose Obtain the slot driver reference number, the slot driver library
reference number, and the volume reference number for the
associated file system, if any, for one of the SDIO functions or for the
SD Memory card slot driver.

Prototype Err SDIOGetSlotInfo (UInt16 slotLibRefNum,
SDIOSlotInfoType *slotInfoP)

Parameters -> slotLibRefNum
Slot driver library reference number.

SDIO Slot Driver
SDIO Slot Driver Functions

60 Developing SDIO Peripherals for Palm Handhelds

<-> slotInfoP Pointer to an SDIOSlotInfoType structure.
Before calling this function, set the
sdioSlotNum field to indicate the function for
which the slot driver information is needed.
Upon return, the slotLibRefNum,
slotRefNum, and volRefNum fields are set as
described in the description of the
SDIOSlotInfoType structure in the
Comments section, below.

Result errNone No error.

expErrUnimplemented
The specified slot driver does not support
SDIO.

sysErrParamErr slotInfoP is invalid.

Comments This function does not require that an SDIO card be present in the
slot.

This function can safely be called from within an interrupt service
routine.

SDIOSlotInfoType

This structure is used with SDIOGetSlotInfo to obtain
information about a specific SDIO function’s slot driver.

typedef struct {
SDIOSlotType sdioSlotNum;
UInt16 volRefNum;
UInt16 slotLibRefNum;
UInt16 slotRefNum;

} SDIOSlotInfoType

SDIO Slot Driver
SDIO Slot Driver Functions

Developing SDIO Peripherals for Palm Handhelds 61

Field Descriptions

See Also SDIOGetCardInfo, SDIOAPIVersion

New SDIORemainingCurrentLimit

Purpose Get the remaining current for the entire SDIO card.

Prototype Err SDIORemainingCurrentLimit
(UInt16 slotLibRefNum,
SDIOCurrentLimitType *currentLimitP)

Parameters -> slotLibRefNum
Slot driver library reference number.

sdioSlotNum The ID of the SDIO card function in the
current slot driver about which slot
library information is desired. See the
description of SDIOSlotType for the
complete set of values that can be
supplied here.

volRefNum The volume reference number for the
mounted file system, if there is one, or
vfsInvalidVolRef if there is no
mounted file system for the specified
SDIO card function.

slotLibRefNum The slot library reference number for
the specified SDIO card function.

slotRefNum The slot reference number for the
specified SDIO card function, if there is
one, or expInvalidSlotRefNum if
there isn’t.

SDIO Slot Driver
SDIO Slot Driver Functions

62 Developing SDIO Peripherals for Palm Handhelds

<- currentLimitP
Pointer to an SDIOCurrentLimitType structure.
Upon return, the uaMaximum field indicates
how much current, in micro-amps, remains un-
allocated by the SDIO card’s functions. Note
that the slotFuncNum field isn’t used when
calling this function.

Result errNone No error.

expErrCardNotPresent
There isn’t a card in the slot associated with the
specified slot driver.

expErrUnimplemented
The specified slot driver does not support
SDIO.

sysErrParamErr currentLimitP is invalid, or one of
currentLimitP’s fields is invalid.

Comments You use SDIOGetCurrentLimit, SDIOSetCurrentLimit, and
SDIORemainingCurrentLimit to ensure that the total of all
function hardware that is active never exceeds the SDIO
specification maximum of 200ma. These three functions do not
detect or limit current draw, check the battery level, or reflect how
much energy the battery has left; you simply use them to manage
the current limit values supplied using SDIOSetCurrentLimit. It
is up to the writer of the SDIO slot driver to both supply the proper
current limit values and to use SDIOGetCurrentLimit and
SDIORemainingCurrentLimit appropriately so that the total
active SDIO card functions do not draw more current than the
handheld’s power source can provide.

When a card is removed, all allocations of current are set to zero.
Because of this, in order to operate properly this function requires
an SDIO card in the slot.

This function can safely be called from within an interrupt service
routine.

SDIO Slot Driver
SDIO Slot Driver Functions

Developing SDIO Peripherals for Palm Handhelds 63

New SDIORWDirect

Purpose Read or write a single byte to any I/O function, including the
common I/O area (CIA), at any address using CMD52
(IO_RW_DIRECT).

Prototype Err SDIORWDirect (UInt16 slotLibRefNum,
SDIORWDirectType *directP)

Parameters -> slotLibRefNum
Slot driver library reference number.

<-> directP Pointer to an SDIORWDirectType structure
which describes the read or write operation.
See the Comments section, below, for a
description of the SDIORWDirectType
structure.

Result errNone No error.

expErrCardBadSector
The SDIO memory could not be read or
written.

expErrCardNotPresent
There isn’t a card in the slot associated with the
specified slot driver.

expErrUnimplemented
The specified slot driver does not support
SDIO.

expErrUnsupportedOperation
The SDIO card does not support the specified
SDIO card function.

sysErrParamErr directP is invalid, or one of its fields is
invalid.

Comments This function is commonly used to initialize registers or monitor
status values for I/O functions. This function requires that an SDIO

SDIO Slot Driver
SDIO Slot Driver Functions

64 Developing SDIO Peripherals for Palm Handhelds

card be present in the slot. The card will be turned on and accessed.
See the SDIO specification for the SDIO registers that can be read or
written.

NOTE: The write protect tab on the SD card is ignored by the
SDIO slot driver. Issuing a write request with this function always
causes the write command to be sent to the card.

This function can safely be called from within an interrupt service
routine.

SDIORWDirectType

This structure is used with SDIORWDirect and encapsulates the
read or write operation.

typedef struct {
 SDIOSlotType requestingFunc;
 SDIORWModeType mode;
 SDIOFuncType funcNum;
 UInt32 byteAddress;
 UInt8 byteData;
} SDIORWDirectType

SDIO Slot Driver
SDIO Slot Driver Functions

Developing SDIO Peripherals for Palm Handhelds 65

Field Descriptions

See Also SDIORWExtendedBlock, SDIORWExtendedByte

New SDIORWExtendedBlock

Purpose Read or write multiple blocks of a specified size to any I/O
function, including the the common I/O area (CIA), at any address
using the optional block mode of CMD53 (IO_RW_EXTENDED).

Prototype Err SDIORWExtendedBlock (UInt16 slotLibRefNum,
SDIORWExtendedBlockType *extendedBlockP)

Parameters -> slotLibRefNum
Slot driver library reference number.

requestingFunc The number of the SDIO card function
making the read or write request. This
is the function that will be turned on.

mode The operation to be performed: write,
read, or write followed by read. See
SDIORWModeType for a list of
operations.

funcNum The number of the function within the
I/O card to be read or written. Function
0 selects the common I/O area (CIA).

byteAddress The address of the byte inside of the
selected SDIO card function’s register
space that will be read or written. There
are 17 bits of address available, so the
byte must be located within the first
128K addresses of that function.

byteData For a direct write command, the byte
that will be written. For a direct read
command, the byte read is stored here.

SDIO Slot Driver
SDIO Slot Driver Functions

66 Developing SDIO Peripherals for Palm Handhelds

<-> extendedBlockP
Pointer to an SDIORWExtendedBlockType
structure which describes the read or write
operation. See the Comments section, below,
for a description of the
SDIORWExtendedBlockType structure.

Result errNone No error.

expErrCardBadSector
The SDIO memory could not be read or
written.

expErrCardNotPresent
There isn’t a card in the slot associated with the
specified slot driver.

expErrUnimplemented
The specified slot driver does not support
SDIO.

expErrUnsupportedOperation
The SDIO card does not support the specified
SDIO card function.

sysErrParamErr extendedBlockP is invalid, or one of its fields
is invalid.

Comments A given SDIO card may or may not support
SDIORWExtendedBlock; the SDIO specification doesn’t require it.
Verify that the card supports block operations by checking the SMB
(Card Supports MBIO) bit in the CCCR (Card Common Control
Registers). This SDIO slot driver does not support the “infinite”
mode (which is normally indicated by setting the block count to
zero). See the SDIO specification for the SDIO registers that can be
read or written.

This function is commonly used to initialize registers or monitor
status values for I/O functions. This function requires that an SDIO
card be present in the slot. The card will be turned on and accessed.

SDIO Slot Driver
SDIO Slot Driver Functions

Developing SDIO Peripherals for Palm Handhelds 67

NOTE: The write protect tab on the SD card is ignored by the
SDIO slot driver. Issuing a write request with this function always
causes the write command to be sent to the card.

This function can safely be called from within an interrupt service
routine.

SDIORWExtendedBlockType

This structure is used with SDIORWExtendedBlock and
encapsulates the read or write operation.

typedef struct {
 SDIOSlotType requestingFunc;
 SDIORWModeType mode;
 SDIOFuncType funcNum;
 UInt32 byteAddress;
 MemPtr bufferP;
 UInt16 numBlocks;
 UInt16 ioBlockSize;
} SDIORWExtendedBlockType

SDIO Slot Driver
SDIO Slot Driver Functions

68 Developing SDIO Peripherals for Palm Handhelds

Field Descriptions

See Also SDIORWDirect, SDIORWExtendedByte

requestingFunc The number of the SDIO card function
making the read or write request. This
is the function that will be turned on.

mode The operation to be performed. See
SDIORWModeType for a list of
operations.

funcNum The number of the function within the
I/O card to be read or written. Function
0 selects the common I/O area (CIA).

byteAddress The address of the first byte inside of
the selected SDIO card function’s
register space that will be read or
written. There are 17 bits of address
available, so the byte must be located
within the first 128K addresses of that
function.

bufferP For an extended write command, a
pointer to the data that will be written.
For an extended read command, the
data read is stored in the indicated
buffer.

numBlocks The number of blocks to transfer, up to
511. A value of 0 indicates that the block
transfer should go on until explicitly
stopped, but that mode is not
supported by this SDIO slot driver.

ioBlockSize The size of each block to be transferred.
This value should range from 1 to 2048;
all other values are illegal.

SDIO Slot Driver
SDIO Slot Driver Functions

Developing SDIO Peripherals for Palm Handhelds 69

New SDIORWExtendedByte

Purpose Read or write multiple bytes to any I/O function, including the the
common I/O area (CIA), at any address using the byte mode of
CMD53 (IO_RW_EXTENDED).

Prototype Err SDIORWExtendedByte (UInt16 slotLibRefNum,
SDIORWExtendedByteType *extendedByteP)

Parameters -> slotLibRefNum
Slot driver library reference number.

<-> extendedByteP
Pointer to an SDIORWExtendedByteType
structure which describes the read or write
operation. See the Comments section, below,
for a description of the
SDIORWExtendedByteType structure.

Result errNone No error.

expErrCardBadSector
The SDIO memory could not be read or
written.

expErrCardNotPresent
There isn’t a card in the slot associated with the
specified slot driver.

expErrUnimplemented
The specified slot driver does not support
SDIO.

expErrUnsupportedOperation
The SDIO card does not support the specified
SDIO card function.

sysErrParamErr extendedByteP is invalid, or one of its fields
is invalid.

SDIO Slot Driver
SDIO Slot Driver Functions

70 Developing SDIO Peripherals for Palm Handhelds

Comments This function is commonly used to initialize registers or monitor
status values for I/O functions. This function requires that an SDIO
card be present in the slot. The card will be turned on and accessed.
See the SDIO specification for the SDIO registers that can be read or
written.

NOTE: The write protect tab on the SD card is ignored by the
SDIO slot driver. Issuing a write request with this function always
causes the write command to be sent to the card.

This function can safely be called from within an interrupt service
routine.

SDIORWExtendedByteType

This structure is used with SDIORWExtendedByte and
encapsulates the read or write operation.

typedef struct {
 SDIOSlotType requestingFunc;
 SDIORWModeType mode;
 SDIOFuncType funcNum;
 UInt32 byteAddress;
 MemPtr bufferP;
 UInt16 numBytes;
} SDIORWExtendedByteType

SDIO Slot Driver
SDIO Slot Driver Functions

Developing SDIO Peripherals for Palm Handhelds 71

Field Descriptions

See Also SDIORWDirect, SDIORWExtendedBlock

requestingFunc The number of the SDIO card function
making the read or write request. This
is the function that will be turned on.

mode The operation to be performed. See
SDIORWModeType for a list of
operations.

funcNum The number of the function within the
I/O card to be read or written. Function
0 selects the common I/O area (CIA).

byteAddress The address of the first byte inside of
the selected SDIO card function’s
register space that will be read or
written. There are 17 bits of address
available, so the byte must be located
within the first 128K addresses of that
function.

bufferP For an extended write command, a
pointer to the data that will be written.
For an extended read command, the
data read is stored in the indicated
buffer.

numBytes The number of bytes to transfer, up to
512. A numBytes value of either 512 or
0 indicates that 512 bytes are to be
transferred.

SDIO Slot Driver
SDIO Slot Driver Functions

72 Developing SDIO Peripherals for Palm Handhelds

New SDIOSetAutoPowerOff

Purpose Alter the auto-power-off settings for the SD slot.

Prototype Err SDIOSetAutoPowerOff (UInt16 slotLibRefNum,
SDIOAutoPowerOffType *autoP)

Parameters -> slotLibRefNum
Slot driver library reference number.

-> autoP Pointer to an SDIOAutoPowerOffType
structure which specifies the auto-power-off
settings for the SD slot. Before calling
SDIOSetAutoPowerOff, set this structure’s
sdioSlotNum field to indicate the current slot
driver function number, and set the
ticksTillOff field to the desired number of
system ticks until the slot is turned off (a value
of zero disables auto-off). Set the sleepPower
field to sdioCardPowerOff to turn the slot off
after the specified period of time.

Result errNone No error.

expErrCardNotPresent
There isn’t a card in the slot associated with the
specified slot driver.

expErrUnimplemented (or any other error)
The specified slot driver does not support
SDIO.

sysErrParamErr autoP is invalid, or one of the fields of autoP
is invalid.

Comments This function requires that an SDIO card be present in the slot, since
these settings are erased when an SDIO card is removed. Note that
every time a card is inserted into the SD slot, the auto-power-off
time is set to 15 seconds.

SDIO Slot Driver
SDIO Slot Driver Functions

Developing SDIO Peripherals for Palm Handhelds 73

When the handheld awakes from sleep mode, it doesn’t turn the
card on. Only when there is a request to access the card does it turn
the card on.

This function only works with SDIO cards; it cannot be used when a
memory card is in the slot.

This function can safely be called from within an interrupt service
routine.

See Also SDIOSetPower, SDIOGetAutoPowerOff

New SDIOSetBitMode

Purpose Change the bus width.

Prototype Err SDIOSetBitMode (UInt16 slotLibRefNum,
SDIOSDBitModeRequestType *bitModeRequestP)

Parameters -> slotLibRefNum
Slot driver library reference number.

<-> bitModeRequestP
Pointer to an SDIOSDBitModeRequestType
structure which indicates which function is
making the request, and which bit mode to set.
See the Comments section, below, for a
complete description of the
SDIOSDBitModeRequestType structure.

Result errNone No error.

expErrCardNotPresent
There isn’t a card in the slot associated with the
specified slot driver.

expErrUnimplemented
The specified slot driver does not support
SDIO.

SDIO Slot Driver
SDIO Slot Driver Functions

74 Developing SDIO Peripherals for Palm Handhelds

expErrUnsupportedOperation
The SDIO card does not support the requested
bit mode.

sysErrParamErr bitModeRequestP is invalid.

Comments Set the bit mode after the card has been inserted but before setting
any callbacks. Be sure to check the value returned from this
function: due to hardware constraints, this command can be
rejected, returning expErrUnsupportedOperation.

The current bit mode can be obtained with a call to
SDIOGetCardInfo.

This function requires that an SDIO card be present in the slot, and
it may turn on and access the card.

This function can safely be called from within an interrupt service
routine.

SDIOSDBitModeRequestType

This structure is passed to the SDIOSetBitMode function and both
specifies the function making the request and the SDIO bit mode
that is to be set.

typedef struct {
SDIOSlotType requestingFunc;
SDIOSDBitModeType bitMode;

} SDIOSDBitModeRequestType;

Field Descriptions

See Also SDIOGetCardInfo

requestingFunc The number of the function making this
request. See SDIOSlotType for the set
of values to which this can be set.

bitMode The requested SDIO bit mode. See
SDIOSDBitModeType for the bit
modes that can be requested.

SDIO Slot Driver
SDIO Slot Driver Functions

Developing SDIO Peripherals for Palm Handhelds 75

New SDIOSetCallback

Purpose Set pointers to an SDIO card function’s callback routine and
associated data.

Prototype Err SDIOSetCallback (UInt16 slotLibRefNum,
SDIOCallbackType *callBackP)

Parameters -> slotLibRefNum
Slot driver library reference number.

-> callBackP Pointer to an SDIOCallbackType structure.
Before calling this function, set each of this
structure’s fields.

Result errNone No error.

expErrCardNotPresent
There isn’t a card in the slot associated with the
specified slot driver.

expErrUnimplemented
The specified slot driver does not support
SDIO.

sysErrParamErr callBackP is invalid, or one of its fields is
invalid.

Comments You can assign a separate callback function to each callback selector
for each card function slot as well as the SD Memory card slot. The
following list of callback selectors details those situations in which a
particular callback function is called:

• sdioCallbackSelectInterruptSdCard: the
corresponding callback function is executed whenever the
SD card interrupts the handheld. The handheld enables the
SDIO interrupt whenever a valid
sdioCallbackSelectInterruptSdCard callback is set.
The callback function needs to reset the interrupt source to
prevent the interrupt callback from being called again.

SDIO Slot Driver
SDIO Slot Driver Functions

76 Developing SDIO Peripherals for Palm Handhelds

• sdioCallbackSelectSleep and
sdioCallbackSelectAwake: the corresponding callback
functions are executed whenever the handheld is about to be
put to sleep or just after it wakes. These callback functions
are always called with interrupts disabled, and should be as
fast as possible.

• sdioCallbackSelectPowerOn and
sdioCallbackSelectPowerOff: the corresponding
callback functions are executed when the SDIO card power is
turned on or is about to be turned off. Never call
SDIOSetPower while processing these functions in order to
turn an SDIO card function on or off.

• sdioCallbackSelectReset: the corresponding callback
function is executed whenever SDIOSetPower is called with
the powerP structure’s powerOnCard field set to
sdioCardWaitSdio. sdioCardWaitSdio is typically
used after the SDIO section has been reset by setting the RES
(I/O Card Reset) bit in the CCCR (Card Common Control
Registers).

• sdioCallbackSelectBitMode: the corresponding
callback function is executed whenever the bus width is
successfully changed with SDIOSetBitMode. Note that in
version 1.0 of the SDIO slot driver, this callback is never
executed because the bus is always one bit wide.

When a situation arises that causes one of the above callback
functions to be called, the corresponding callback for the SD
Memory card slot is generally the first one called, followed by the
corresponding callback functions for SDIO functions 1 through 7.
Because the SD Memory card slot and each SDIO card function slot
can have a separate callback function for each callback selector, each
callback function can limit itself to dealing with a single selector and
a single SDIO card function.

If you use any of these callbacks, you may not have control of the
user interface or access to your variables. Make any necessary data
available to your callback function through the use of userDataP.
Be sure to lock memory for your callback functions and variables.

Callback functions must be interrupt-safe: they should only call
interrupt-safe functions. Your callback functions can be called from
within an interrupt service routine, and interrupts can occur at any

SDIO Slot Driver
SDIO Slot Driver Functions

Developing SDIO Peripherals for Palm Handhelds 77

time. The interrupt can even generate a wakeup event if the
handheld is asleep and power to the card is still on. As with an
interrupt service routine, your callback functions can only call a
limited set of system functions and must execute quickly. Your
callback functions do have access to any slot driver functions
accessible through the SlotCustomControl function.

Callback function information is automatically erased after a card is
inserted or removed (before the card removal event). Because of
this, SDIOSetCallback can only be used when a card is in the SD
slot. To detect card removal, use the notification manager and
register for sysNotifyCardRemovedEvent.

SDIOSetCallback can safely be called from within an interrupt
service routine.

New SDIOSetCurrentLimit

Purpose Set the maximum peak current needed by one of the SDIO card’s
functions.

Prototype Err SDIOSetCurrentLimit (UInt16 slotLibRefNum,
SDIOCurrentLimitType *currentLimitP)

Parameters -> slotLibRefNum
Slot driver library reference number.

-> currentLimitP
Pointer to an SDIOCurrentLimitType structure.
Before calling SDIOSetCurrentLimit, set
this structure’s slotFuncNum field to a valid
slot driver function number, and set the
uaMaximum field to the maximum peak
current, in micro-amps, required by the
function indicated by slotFuncNum.

Result errNone No error.

SDIO Slot Driver
SDIO Slot Driver Functions

78 Developing SDIO Peripherals for Palm Handhelds

expErrCardNotPresent
There isn’t a card in the slot associated with the
specified slot driver.

expErrUnimplemented
The specified slot driver does not support
SDIO.

sysErrParamErr currentLimitP is invalid, or one of
currentLimitP’s fields is invalid.

Comments You use SDIOGetCurrentLimit, SDIOSetCurrentLimit, and
SDIORemainingCurrentLimit to ensure that the total of all
function hardware that is active never exceeds the SDIO
specification maximum of 200ma. These three functions do not
detect or limit current draw, check the battery level, or reflect how
much energy the battery has left; you simply use them to manage
the current limit values supplied using SDIOSetCurrentLimit. It
is up to the writer of the SDIO slot driver to both supply the proper
current limit values and to use SDIOGetCurrentLimit and
SDIORemainingCurrentLimit appropriately so that the total
active SDIO card functions do not draw more current than the
handheld’s power source can provide.

Note that this function doesn’t write the supplied peak current
value to the card; it only sets the value in RAM.

When a card is removed, all allocations of current are set to zero.
Because of this, in order to operate properly this function requires
an SDIO card in the slot.

This function can safely be called from within an interrupt service
routine.

SDIO Slot Driver
SDIO Slot Driver Functions

Developing SDIO Peripherals for Palm Handhelds 79

New SDIOSetPower

Purpose Turns an SDIO card function on or off.

Prototype Err SDIOSetPower (UInt16 slotLibRefNum,
SDIOPowerType *powerP)

Parameters -> slotLibRefNum
Slot driver library reference number.

-> powerP Pointer to an SDIOPowerType structure.
Before calling SDIOSetPower set this
structure’s sdioSlotNum field to indicate the
SDIO card function to be turned on or off, and
set the powerOnCard field to one of the values
defined for SDIOCardPowerType.

Result errNone No error.

expErrCardBadSector
The card could not be initialized.

expErrCardNotPresent
There isn’t a card in the slot associated with the
specified slot driver.

expErrUnimplemented
The specified slot driver does not support
SDIO.

sysErrParamErr powerP is invalid.

Comments When used to turn an SDIO card function on, SDIOSetPower if
necessary, sets the power and bus signals such that the entire slot is
turned on: power is applied to the card and the data bus is ready to
transmit or receive commands. When used to turn an SDIO card
function off, power is removed from the card and the data bus is set
to a low power state if no other functions are on. Note that when the
card is turned off, SDIO interrupts cannot occur.

SDIO Slot Driver
SDIO Slot Driver Functions

80 Developing SDIO Peripherals for Palm Handhelds

SDIOSetPower requires that an SDIO card be present in the slot.
Turning on power causes the card to be accessed, for initialization.

This function can safely be called from within an interrupt service
routine. However, you should not call SDIOSetPower from your
sdioCallbackSelectPowerOn or
sdioCallbackSelectPowerOff callback functions.

See Also SDIOSetAutoPowerOff, SDIOSetCurrentLimit,
SDIOGetPower

New SDIOTupleWalk

Purpose Search an SDIO card function’s Card Information Structure (CIS) for
a particular data block (tuple) and return the contents of the data
block.

Prototype Err SDIOTupleWalk (UInt16 slotLibRefNum,
SDIOTupleType *tupleP)

Parameters -> slotLibRefNum
Slot driver library reference number.

-> tupleP Pointer to an SDIOTupleType structure which
identifies the tuple to be located and indicates
where the results should be placed. See the
Comments section, below, for a description of
the SDIOTupleType structure.

Result errNone No error.

expErrCardBadSector
The SDIO card’s function memory could not be
read or the requested tuple was not found

expErrCardNotPresent
There isn’t a card in the slot associated with the
specified slot driver.

SDIO Slot Driver
SDIO Slot Driver Functions

Developing SDIO Peripherals for Palm Handhelds 81

expErrUnimplemented
The specified slot driver does not support
SDIO.

expErrUnsupportedOperation
The SDIO card does not support the specified
SDIO card function.

sysErrParamErr tupleP is invalid, or one of its fields is invalid.

Comments This function requires that an SDIO card be present in the slot. The
card will be turned on and accessed.

This function can safely be called from within an interrupt service
routine.

SDIOTupleType

This structure is used with SDIOTupleWalk and both identifies the
data block (tuple) to be located and indicates where the search
results should be placed.

typedef struct {
 SDIOSlotType requestingFunc;
 SDIOFuncType funcNum;
 UInt8 tupleToFind;
 MemPtr bufferP;
 UInt16 bufferSizeOf;
} SDIOTupleType

Field Descriptions

requestingFunc The number of the SDIO card function
making the read or write request. This
is the function that will be turned on.

funcNum The number of the function within the
I/O card to be searched. Function 0
selects the common I/O area (CIA).

tupleToFind The tuple code that identifies the
desired data block.

SDIO Slot Driver
Application-Defined Functions

82 Developing SDIO Peripherals for Palm Handhelds

Application-Defined Functions

New SDIOCallbackPtr

Purpose Perform driver-specific processing when one of the following
occurs:

• the SDIO interrupt is received

• the handheld is going to sleep or has just awakened

• the SDIO card was just turned off or on

• the SDIO card was just reset

• the bus width changed

Which of the above events causes a given callback function to be
called, if any, depends on what was passed to SDIOSetCallback.

Prototype typedef Err (*SDIOCallbackPtr)
(SDIOSlotType sdioSlotNum, void *userDataP)

Parameters -> sdioSlotNum
The ID of the SDIO card function in the current
slot driver that generated the callback. See the
description of SDIOSlotType for the complete
set of values that can be supplied here.

bufferP Pointer to a buffer into which the
contents of the tuple are placed.

bufferSizeOf The size of the supplied buffer. This
buffer should be large enough to
contain the entire tuple (including bytes
for the tuple code and the tuple body
size). According to the SDIO
specification, a tuple is never larger 257
bytes.

SDIO Slot Driver
Application-Defined Functions

Developing SDIO Peripherals for Palm Handhelds 83

-> userDataP Pointer to a block of user data specified when
the callback was set up using
SDIOSetCallback.

Result Return errNone if the callback function executed properly, or any
other value if an error occurred during the processing of the
callback.

Comments In your callback function you may not have control of the user
interface or access to your variables. Any necessary data should be
made available to your callback function through the use of
userDataP. Be sure to keep memory for your callback functions
and variables locked from the time you set up the callback function
to the time when it can no longer be called.

Callback function information is automatically erased after a card is
inserted or removed (before the card removal event). To detect card
removal, use the notification manager and register for
sysNotifyCardRemovedEvent.

Your callback functions can be called from within an interrupt
service routine, and interrupts can occur at any time. The interrupt
can even generate a wakeup event if the handheld is asleep and
power to the card is still on. As with an interrupt service routine,
your callback functions can only call a limited set of system
functions (those that are interrupt-safe) and must execute quickly.
Your callback functions do have access to any slot driver functions
accessible through the SlotCustomControl function.

SDIO Slot Driver
Application-Defined Functions

84 Developing SDIO Peripherals for Palm Handhelds

Developing SDIO Peripherals for Palm Handhelds 85

Index

A
application termination 12
applications

developing 3
sample 5

architecture, software 5
auto power off 9, 19
auto run 12
auto run notifications 13
AutoRunInfoType 13
awake callback function 10

B
battery level 9

C
callbacks 10

awake 10
interrupt 10
power on and off 10
sleep 10

card
determining control of 13

card insertion 6, 19
card removal

detecting 8
CISTPL_FUNCID tuple 19
clock frequencies 19
combo card 7
command tracing 20

and card identification 18
and USB 21
disabling 21
viewing trace output 21, 22

CSA memory
accessing 7
mounting 6
structure of 7, 19

current draw, limiting 9
current limits 9

and card removal 9

D
debug slot driver 18

debugging 18, 20
documentation

additional 3
SDK 4

E
EDK 3, 17
Expansion Manager 6
Expansion Parts Store 3, 17

F
FAT file system

and CSA memory 7
file systems, number of 18
forever mode 8
functions, callback 10

H
hardware

developing SDIO peripheral 16
power restrictions 17
specifications 17

hardware, sample 17
HDK 3
header files

SDIO slot driver 5

I
identifying and initializing an SDIO card 18
insertion

and file system mounting 6
and identification 19
and interrupts 11
auto run 12
notification of 7
sample code 14
sequence of events 13

installing the SDIO slot driver 17
Internet library 23
interrupts

and card insertion 11
callback function 10
enabling and disabling 11
handling 10

86 Developing SDIO Peripherals for Palm Handhelds

M
managing power 8
Metrowerks debugger 22
mounting of volumes 7
MultiMediaCard Association 4

N
Notification Manager 8
notifications 13

auto run 13
card insertion and removal 7, 8
details 13
unregistering 12

P
Palm Debugger 21
Palm OS

and SDIO slot driver 5
supported versions 5

Plugged In program 20
PluggedIn program

website 3, 17
power

auto-off 19
callback functions 10
controlling to card functions 9

power management 8
power on 8
prototyping hardware 17

R
Read Wait operation 8
removal

and power management 9
notification of 7

removing the SDIO slot driver 18
resume operation 8
RW Extended Block operation 8

S
sample applications

Palm-provided 5
SDDbgTrace 20

SD 1-bit and 4-bit mode 17
SD Card Association 4
SD memory

mounting 6
SD Memory Card Specifications 4, 19
SDDbgTrace sample application 20
SDIO card

clock frequency 19
combo 7
controlling power to 8
debugging 20
developing hardware 16
identification 19
initialization 19
power restrictions 17

SDIO Card Specification 4, 18, 19
SDIO slot driver 7

adherence to specifications 4
debug version 18, 20
installation of 17
relationship to Palm OS 5
removal of 18

SDIOAccessDelay 40
SDIOAccessDelayType 41
SDIOAPIVersion 18, 42
SDIOAPIVersionType 42
SDIOAutoPowerOffType 32
SDIOAutoRunInfoType 50
SDIOBitsOfFileSystemType 54
SDIOBitsOfStatusType 55
SDIOCallbackPtr 82
sdioCallbackSelectAwake 10
sdioCallbackSelectInterruptSdCard 10
sdioCallbackSelectPowerOff 10
sdioCallbackSelectPowerOn 10
sdioCallbackSelectSleep 10
SDIOCallbackSelectType 33
SDIOCallbackType 32
SDIOCardInfoType 54
SDIOCardPowerType 34
SDIOCurrentLimitType 35
SDIODebugOptions 20, 42
SDIODebugOptionType 44
SDIODisableHandheldInterrupt 11, 45

Developing SDIO Peripherals for Palm Handhelds 87

SDIOEnableHandheldInterrupt 11, 46
SDIOFuncType 36
SDIOGetAutoPowerOff 10, 47
SDIOGetAutoRun 48
SDIOGetCallback 50
SDIOGetCardInfo 53
SDIOGetCurrentLimit 9, 57
SDIOGetPower 58
SDIOGetSlotInfo 59
SDIOPowerType 37
SDIORemainingCurrentLimit 9, 61
SDIORWDirect 63
SDIORWDirectType 64
SDIORWExtendedBlock 65
SDIORWExtendedBlockType 67
SDIORWExtendedByte 69
SDIORWExtendedByteType 70
SDIORWModeType 37
SDIOSDBitModeRequestType 74
SDIOSDBitModeType 38
SDIOSetAutoPowerOff 9, 19, 72
SDIOSetBitMode 73
SDIOSetCallback 10, 75
SDIOSetCurrentLimit 9
SDIOSetPower 8, 10, 79
SDIOSlotInfoType 60
SDIOSlotType 39
SDIOTupleType 81
SDIOTupleWalk 80
SDK

contents 5
documentation 4

sleep callback function 10
slot driver

verifying if SDIO-aware 18

version number 18
specifications

adherence to 4
and card initialization 18
SD, SDIO, and MMC 17

SPI mode 17
start.prc 13
supported OS versions 5
suspend operation 8
sysAppLaunchCmdCardLaunch 13
sysAppLaunchCmdNormalLaunch 13
sysFileApiCreatorSDIO 40
sysNotifyCardRemovedEvent 11
sysNotifyDriverSearch 13
SysNotifyParamType 13

T
tools 3
TPLFE_MAX_TRAN_SPEED byte 19
TPLFID_FUNCTION tuple 19
tracing

and USB 21
command 18, 20
disabling 21
viewing trace output 21, 22

V
VFS Manager 7

accessing CSA memory 7
restrictions on use 5
use of 6

Virtual File System Manager. See VFS Manager
volumes

mounting and unmounting 7

88 Developing SDIO Peripherals for Palm Handhelds

	Developing SDIO Peripherals for Palm Handhelds
	Table of Contents
	About This Document
	Additional Resources

	Developing SDIO Applications for Palm Handhelds
	Useful Information and Tools
	SD, SDIO, and MMC Specifications
	Palm OS SDK

	Software Architecture of an SDIO Application
	Expansion Manager
	VFS Manager
	SDIO Slot Driver
	Notification Manager

	Guidelines for SDIO Applications
	Power Management
	Turning on Card Functions
	Auto Power Off
	Callbacks

	Interrupt Handling
	Detecting Card Insertion and Removal
	Auto Run

	Developing the SDIO Peripheral
	EDK
	Specifications
	SPI Mode
	SDIO Slot Driver
	SDIO Card Initialization and Identification on Palm OS
	Identification
	Initialization

	CSA
	Debugging Your SDIO Card

	SDIO Slot Driver
	AutoRun Data Structures
	AutoRunInfoType
	Field Descriptions
	AutoRunMediaType
	AutoRunOemManufacturerType
	AutoRunOemProductIDType
	AutoRunFunctionNumType
	AutoRunFunctionStandardType
	AutoRunSourceType

	AutoRunSlotDriverType
	Field Descriptions

	AutoRun Constants
	Media Types
	autoRunMediaMMCmem
	autoRunMediaMMCrom
	autoRunMediaSDmem
	autoRunMediaSDrom
	autoRunMediaSDIO
	autoRunMediaPnps

	I/O Device Interface Codes
	sysNotifyDriverSearch

	SDIO Slot Driver Data Structures
	SDIOAutoPowerOffType
	Field Descriptions

	SDIOCallbackType
	Field Descriptions
	SDIOCallbackSelectType

	SDIOCardPowerType
	SDIOCurrentLimitType
	Field Descriptions

	SDIOFuncType
	SDIOPowerType
	Field Descriptions

	SDIORWModeType
	SDIOSDBitModeType
	SDIOSlotType

	SDIO Slot Driver Constants
	sysFileApiCreatorSDIO
	Number of Entries

	SDIO Slot Driver Functions
	New SDIOAccessDelay
	SDIOAccessDelayType

	New SDIOAPIVersion
	New SDIODebugOptions
	SDIODebugOptionType

	New SDIODisableHandheldInterrupt
	New SDIOEnableHandheldInterrupt
	New SDIOGetAutoPowerOff
	New SDIOGetAutoRun
	SDIOAutoRunInfoType
	Field Descriptions

	New SDIOGetCallback
	New SDIOGetCardInfo
	SDIOCardInfoType
	Field Descriptions
	SDIOBitsOfFileSystemType
	SDIOBitsOfStatusType

	New SDIOGetCurrentLimit
	New SDIOGetPower
	New SDIOGetSlotInfo
	SDIOSlotInfoType
	Field Descriptions

	New SDIORemainingCurrentLimit
	New SDIORWDirect
	SDIORWDirectType
	Field Descriptions

	New SDIORWExtendedBlock
	SDIORWExtendedBlockType
	Field Descriptions

	New SDIORWExtendedByte
	SDIORWExtendedByteType
	Field Descriptions

	New SDIOSetAutoPowerOff
	New SDIOSetBitMode
	SDIOSDBitModeRequestType
	Field Descriptions

	New SDIOSetCallback
	New SDIOSetCurrentLimit
	New SDIOSetPower
	New SDIOTupleWalk
	SDIOTupleType
	Field Descriptions

	Application-Defined Functions
	New SDIOCallbackPtr

	Index

