
SPT Terminal Series

System Software Manual

SPT Terminal Series
 System Software Manual

72E-56803-01
Revision A
May 2002

ii

© 2002 by Symbol Technologies, Inc. All rights reserved.

No part of this publication may be reproduced or used in any form, or by any electrical or
mechanical means, without permission in writing from Symbol. This includes electronic or
mechanical means, such as photocopying, recording, or information storage and retrieval
systems. The material in this manual is subject to change without notice.

The software is provided strictly on an �as is� basis. All software, including firmware,
furnished to the user is on a licensed basis. Symbol grants to the user a non-transferable
and non-exclusive license to use each software or firmware program delivered hereunder
(licensed program). Except as noted below, such license may not be assigned,
sublicensed, or otherwise transferred by the user without prior written consent of Symbol.
No right to copy a licensed program in whole or in part is granted, except as permitted under
copyright law. The user shall not modify, merge, or incorporate any form or portion of a
licensed program with other program material, create a derivative work from a licensed
program, or use a licensed program in a network without written permission from Symbol.
The user agrees to maintain Symbol�s copyright notice on the licensed programs delivered
hereunder, and to include the same on any authorized copies it makes, in whole or in part.
The user agrees not to decompile, disassemble, decode, or reverse engineer any licensed
program delivered to the user or any portion thereof.

Symbol reserves the right to make changes to any software or product to improve reliability,
function, or design.

Symbol does not assume any product liability arising out of, or in connection with, the
application or use of any product, circuit, or application described herein.

No license is granted, either expressly or by implication, estoppel, or otherwise under any
Symbol Technologies, Inc., intellectual property rights. An implied license only exists for
equipment, circuits, and subsystems contained in Symbol products.

Symbol, Spectrum One, and Spectrum24 are registered trademarks of Symbol
Technologies, Inc. Other product names mentioned in this manual may be trademarks or
registered trademarks of their respective companies and are hereby acknowledged.

Symbol Technologies, Inc.
One Symbol Plaza
Holtsville, New York 11742-1300
http://www.symbol.com

http://www.symbol.com

Contents

About This Guide
Chapter Descriptions . vii
Notational Conventions . viii
Related Documents . viii
Service Information . viii

Symbol Support Center . ix

Chapter 1. SPT Scanners
Section Descriptions . 1-1
Using the Scan Manager Shared Library. 1-2

Using the API . 1-2
Using the Scan Demo Application . 1-6

Scanner Commands . 1-6
Introduction. 1-6
Returned Status Definitions . 1-7
Scanner Commands. 1-8

Barcode Parameter Functions . 1-37
Introduction. 1-37
Returned Status Definitions . 1-37
Barcode Types . 1-38
Codabar Barcode Parameter Functions . 1-39
Code 32 Barcode Parameter Functions . 1-44
Code 39 Barcode Parameter Functions . 1-47
General Barcode Parameter Functions . 1-52
I 2 of 5 Barcode Parameter Functions . 1-63
MSI Plessey Barcode Parameter Functions. 1-66
UPC/EAN Barcode Parameter Functions. 1-71

Hardware Parameter Functions. 1-83
Introduction. 1-83
Returned Status Definitions . 1-83
iii

SPT Terminal Series System Software Manual
Hardware Parameter Functions. 1-84
Power Considerations. 1-118

scanBatteryErrorEvent. 1-118
Sudden Loss of Power. 1-118
Backlighting . 1-118
Other Power Notes . 1-119

Sample Scanning Application . 1-119
Writing the Code . 1-120

Chapter 2. MSR 3000
Section Descriptions . 2-2
MSR 3000 Features . 2-2

Library Globals. 2-5
Using The MSR Manager Shared Library . 2-7

Using the API . 2-7
MSR Commands. 2-8

Introduction . 2-8
Return Codes. 2-8
MSR 3000 Command Descriptions . 2-9
Application Templates . 2-44

MSR 3000 Configurator . 2-45
Introduction . 2-45
File menu commands. 2-45
View menu commands. 2-45
Help Menu Commands . 2-46
New Command (File Menu) . 2-47
Open Command (File Menu) . 2-48
Exit Command (File Menu) . 2-49
Toolbar Command (View Menu) . 2-50
Toolbar. 2-51
Status Bar Command (View Menu) . 2-52
Status Bar . 2-53
Help Topic Command (Help Menu) . 2-54
About Command (Help Menu) . 2-55
Context Help Command. 2-56
Scroll Bars . 2-57
Move Command (Control Menu) . 2-58
Size Command (Control Menu) . 2-59
Minimize Command (Control Menu) . 2-60
Maximize Command (Control Menu) . 2-61
Close Command (Control Menu) . 2-62
Configurator Properties Buttons. 2-63

Using the Configurator to Set the MSR 3000 . 2-63
iv

Contents
Introduction. 2-63
A Simple Application Program Sample . 2-68

Include Files . 2-68
PilotMain Routine . 2-69
AppStart Function. 2-71
MainFormHandleEvent Function . 2-73
AppStop Function . 2-79

Chapter 3. Printers for Palm Computing Platform
Introduction . 3-1

Application Programming Interface (API) . 3-2
API Architectural Overview. 3-2
Section Descriptions. 3-4
System Requirements . 3-4
Conventions Used in this Manual . 3-4

API Function Calls . 3-5
Introduction. 3-5
Returned Status Definitions . 3-5
Print Commands. 3-6
General Purpose Interface Functions. 3-7
High-level API Calls . 3-18
Lower-level API Calls . 3-26
Data Structures. 3-29

Sample Application . 3-32
Code Samples . 3-33

Chapter 4. Spectrum24
Introduction . 4-1
ESSID and BSSID . 4-1
Wired and Wireless Network Connections. 4-2

Spectrum24/NetLib Design and Implementation Considerations . 4-5
Spectrum24 Radio API . 4-8

The Programmer's Interface . 4-8
Spectrum24 Data Structures . 4-10
Spectrum24 Constants . 4-13
Spectrum24 Network Interface Settings . 4-14

Appendix A. ASCII Equivalents

Appendix B. Scan Manager Parameter Definitions
v

SPT Terminal Series System Software Manual
Appendix C. Data Editing Overview for Magnetic Stripe Reader
Introduction .C-1
Functions .C-1

Rearrange the Data .C-1
Insert Character Strings into the Output Data Record .C-1
Duplicate Fields .C-1
Select Output Fields .C-2
Output Method .C-2

Fields .C-2
Formulas .C-3
Added Field .C-3
Search Method .C-3
Operation .C-4

Appendix D. Common Magnetic Card Encoding Formats for MSR
Credit Card Format .D-1

Track1 Format:. .D-1
Track2 Format:. .D-2

California Driver�s License Format (DMV). .D-3
Track1 Format:. .D-3
Track2 Format:. .D-4
Track3 Format:. .D-5

Driver�s License Format Recommended by AAMVA .D-6
Track1 Format:. .D-6
Track2 Format:. .D-8
Track3 Format:. .D-10

Appendix E. Supported Printers
Variables in Printcap Strings. .E-2
Printing Rectangles. .E-3
Portable Label Printers .E-4
Commercial Printers .E-10
Using Forms with Legacy Printers .E-12

Writing the form to the printer .E-13

Glossary

Index

Feedback
vi

About This Guide

The SPT Terminal Series System Software Manual provides information necessary to
develop applications for Symbol SPT terminals.

Chapter Descriptions
Topics covered in this guide are as follows:

� Chapter 1, SPT Scanners, provides information for developers who want to create
scan-aware applications for the terminal. The chapter assumes that you are
familiar with the CodeWarrior development environment.

� Chapter 2, MSR 3000, provides information for use in developing applications to
enable magnetic stripe reading on the Symbol Technologies SPT Terminals.

� Chapter 3, Printers for Palm Computing Platform, is for developers who want to
create print applications for the Palm III or Symbol Palm Terminal (SPT). It
assumes that you are familiar with the CodeWarrior development environment.

� Chapter 4, Spectrum24, provides an overview of Spectrum24® wireless operation,
and information for developers about the Spectrum24 programming interface.

� Appendix A, ASCII Equivalents, contains a list of the scan value, hex value, full
ASCII code, and keystrokes for each barcode.

� Appendix B, Scan Manager Parameter Definitions, contains a list of the parameters
available to developers, and the parameter default values.

� Appendix C, Data Editing Overview for Magnetic Stripe Reader, describes the data
editing feature of the API, which allows you to edit the data which has been read
from a magnetic card before sending it to the application.

� Appendix D, Common Magnetic Card Encoding Formats for MSR, provides a
listing of the commonly used magnetic card formats for use in your application
development.
vii

SPT Terminal Series System Software Manual
� Appendix E, Supported Printers, contains a list of supported printer names and
models.

Notational Conventions
The following conventions are used in this document:

� Italics are used to highlight specific items in the general text, and to identify
chapters and sections in this and related documents.

� Bullets (�) indicate:
� action items
� lists of alternatives
� lists of required steps that are not necessarily sequential

� Sequential lists (e.g., those that describe step-by-step procedures) appear as
numbered lists.

Related Documents
� SPT 1800 Series Quick Reference Guide, p/n 72-51336-xx.
� SPT 1800 Series Product Reference Guide, p/n 72-51337-xx.
� Spectrum24 Site Survey Utility User Guide, p/n 72-39283-xx

Service Information
If you have a problem with your equipment, contact the Symbol Support Center for your
region. See page ix for contact information. Before calling, have the model number, serial
number, and several of your bar code symbols at hand.

Call the Support Center from a phone near the equipment so that the service person can
try to talk you through your problem. If the equipment is found to be working properly and
the problem is symbol readability, the Support Center will request samples of your bar
codes for analysis at our plant.

If your problem cannot be solved over the phone, you may need to return your equipment
for servicing. If that is necessary, you will be given specific directions.
viii

About This Guide
Note: Symbol Technologies is not responsible for any damages incurred
during shipment if the approved shipping container is not used.
Shipping the units improperly can possibly void the warranty. If the
original shipping container was not kept, contact Symbol to have
another sent to you.

Symbol Support Center
For service information, warranty information or technical assistance contact or call the
Symbol Support Center in:

United States 1
Symbol Technologies, Inc.
One Symbol Plaza
Holtsville, New York 11742-1300
1-800-653-5350

Canada
Symbol Technologies Canada, Inc.
2540 Matheson Boulevard East
Mississauga, Ontario, Canada L4W 4Z2
905-629-7226

United Kingdom
Symbol Technologies
Symbol Place
Winnersh Triangle, Berkshire RG41 5TP
United Kingdom
0800 328 2424 (Inside UK)
+44 118 945 7529 (Outside UK)

Asia/Pacific
Symbol Technologies Asia, Inc.
230 Victoria Street #04-05
Bugis Junction Office Tower
Singapore 188024
337-6588 (Inside Singapore)
+65-337-6588 (Outside Singapore)

Australia
Symbol Technologies Pty. Ltd.
432 St. Kilda Road
Melbourne, Victoria 3004
1-800-672-906 (Inside Australia)
+61-3-9866-6044 (Outside Australia)

Austria/Österreich
Symbol Technologies Austria GmbH
Prinz-Eugen Strasse 70 / 2.Haus
1040 Vienna, Austria
01-5055794-0 (Inside Austria)
+43-1-5055794-0 (Outside Austria)

Denmark/Danmark
Symbol Technologies AS
Dr. Neergaardsvej 3
2970 Hørsholm
7020-1718 (Inside Denmark)
+45-7020-1718 (Outside Denmark)

Europe/Mid-East Distributor Operations
Contact your local distributor or call
+44 118 945 7360
ix

SPT Terminal Series System Software Manual
Finland/Suomi
Oy Symbol Technologies
Kaupintie 8 A 6
FIN-00440 Helsinki, Finland
9 5407 580 (Inside Finland)
+358 9 5407 580 (Outside Finland)

France
Symbol Technologies France
Centre d'Affaire d'Antony
3 Rue de la Renaissance
92184 Antony Cedex, France
01-40-96-52-21 (Inside France)
+33-1-40-96-52-50 (Outside France)

Germany/Deutchland
Symbol Technologies GmbH
Waldstrasse 66
D-63128 Dietzenbach, Germany
6074-49020 (Inside Germany)
+49-6074-49020 (Outside Germany)

Italy/Italia
Symbol Technologies Italia S.R.L.
Via Cristoforo Columbo, 49
20090 Trezzano S/N Navigilo
Milano, Italy
2-484441 (Inside Italy)
+39-02-484441 (Outside Italy)

Latin America Sales Support
7900 Glades Road
Suite 340
Boca Raton, Florida 33434 USA
1-800-347-0178 (Inside United States)
+1-561-483-1275 (Outside United States)

Mexico/México
Symbol Technologies Mexico Ltd.
Torre Picasso
Boulevard Manuel Avila Camacho No 88
Lomas de Chapultepec CP 11000
Mexico City, DF, Mexico
5-520-1835 (Inside Mexico)
+52-5-520-1835 (Outside Mexico)

Netherlands/Nederland
Symbol Technologies
Kerkplein 2, 7051 CX
Postbus 24 7050 AA
Varsseveld, Netherlands
315-271700 (Inside Netherlands)
+31-315-271700 (Outside Netherlands)

Norway/Norge
Symbol�s registered and mailing address:
Symbol Technologies Norway
Hoybratenveien 35 C
N-1055 OSLO, Norway

Symbol�s repair depot and shipping address:
Symbol Technologies Norway
Enebakkveien 123
N-0680 OSLO, Norway

+47 2232 4375
x

About This Guide
If you purchased your Symbol product from a Symbol Business Partner, contact that
Business Partner for service.

For the latest version of this guide go to:http://www.symbol.com/manuals.

South Africa
Symbol Technologies Africa Inc.
Block B2
Rutherford Estate
1 Scott Street
Waverly 2090 Johannesburg
Republic of South Africa
11-809 5311 (Inside South Africa)
+27-11-809 5311 (Outside South Africa)

Spain/España
Symbol Technologies S.L.
C/ Peonias, 2
Edificio Piovera Azul
28042 Madrid, Spain
91 324 40 00 (Inside Spain)
+34 91 324 40 00 (Outside Spain)

Sweden/Sverige
�Letter� address:
Symbol Technologies AB
Box 1354
S-171 26 SOLNA
Sweden

Visit/shipping address:
Symbol Technologies AB
Solna Strandväg 78
S-171 54 SOLNA
Sweden

Switchboard: 08 445 29 00 (domestic)
Call Center: +46 8 445 29 29 (international)
Support E-Mail:
Sweden.Support@se.symbol.com
1Customer support is available 24 hours a day, 7 days a week.
xi

http://www.symbol.com/manuals

SPT Terminal Series System Software Manual
xii

Chapter 1
SPT Scanners

Section Descriptions
� Using the Scan Manager Shared Library�A high-level overview of the code that

creates a typical scanning application, and a description of a simple scanning
application that lists the function calls that should be included in a typical scanning
application.

� Scanner Commands�A list of the commands that operate the scanner.
� Barcode Parameter Functions�A list of the parameter functions that set the scan

parameters associated with specific types of barcodes.
� Hardware Parameter Functions�A list of the parameter functions that set the

parameters associated with the scanning hardware.
� Power Considerations�A description of how Scan Manager functions affect the

levels of power available to the scanner hardware.
� Sample Scanning Application�A demo application included with the Scan

Manager SDK that exercises nearly all of the API.
1-1

SPT Terminal Series System Software Manual
Using the Scan Manager Shared Library

Using the API
The Scan Manager software development kit (SDK) is used by third-party developers to
create scanner-enabled applications for the terminal. The Scan Manager shared library API
allow terminal applications to control and receive data from the scanner hardware.

A typical application uses the Scan Manager shared library to do the following, in the order
listed below:

1. Open the scanner.
2. Enable the scanner to initiate scans through either the hardware or the application.
3. Handle any decoded data or error messages received from the decoder.
4. Shut down the scanner.

Refer to Sample Scanning Application for a detailed walk-through of SScan, a sample
scanner-enabled application.

The following snippets of code are a simple construct of a typical third-party application:

#include "PalmOS.h" // all the system toolbox headers

#include <Menu.h>

...

...

#include "ScanMgrDef.h" // Scan Manager constant definitions

#include "ScanMgrStruct.h" // Scan Manager structure definitions

#include "ScanMgr.h" // Scan Manager API function definitions

...

#include "SscandemoRsc.h" // application resource defines

#include "Utils.h" // miscellaneous utility functions

#define SCANDATA_WIDTH 145

Boolean extend;

Int16 extenedDataLength
1-2

SPT Scanners
UInt32 PilotMain(UInt16 cmd, MemPtr cmdPBP, UInt16 launchFlags)

{

// Check for a normal launch.

if (cmd == sysAppLaunchCmdNormalLaunch)

{

Err error = STATUS_OK;

// Set up Scan Manager and the initial (Main) form.

StartApplication();

// Start up the event loop.

EventLoop();

// Close down Scan Manager, decoder

StopApplication();

}

return(0);

}

/***

 *

 * FUNCTION: StartApplication

 *

 * DESCRIPTION: This routine sets up the initial state of the

* application.
1-3

SPT Terminal Series System Software Manual
 *

***/

static void StartApplication(void)

{

Err error;

// Call up the main form.

FrmGotoForm(MainForm);

// Now, open the scan manager library

error = ScanOpenDecoder();

// Set decoder parameters we care about...

// enable scanning

ScanCmdScanEnable();

// allow software-triggered scans

ScanSetTriggeringModes(HOST);

// Enable any barcodes to be scanned

ScanSetBarcodeEnabled(barUPCA, true);

ScanSetBarcodeEnabled(barUPCE, true);

ScanSetBarcodeEnabled(barUPCE1, true);

ScanSetBarcodeEnabled(barEAN13, true);

ScanSetBarcodeEnabled(barEAN8, true);

ScanSetBarcodeEnabled(barBOOKLAND_EAN, true);

ScanSetBarcodeEnabled(barCOUPON, true);

// We've set our parameters...
1-4

SPT Scanners
// Now call "ScanCmdSendParams" to send them to the decoder

ScanCmdSendParams(No_Beep);

}

/***

 *

 * FUNCTION: StopApplication

 *

 * DESCRIPTION: This routine does any cleanup required, including

* shutting down the decoder and Scan Manager shared

* library.

 *

 ***/

static void StopApplication(void)

{

// Disable the scanner and Close Scan Manager shared library

ScanCmdScanDisable();

ScanCloseDecoder();

}

To start the scanner:

1. Call the ScanOpenDecoder() function to open the Scan Manager shared library,
and to initialize the scanner. You must call this function first, before any other
function in the shared library can be called.

2. Use the appropriate Scan Manager functions to set any of the other scanner
parameters, such as barcode formats. The specified parameters are only set
locally. To send the new parameters to the scanner, you must call
ScanCmdSendParams(). The new parameters remain in effect until you or
another application changes them, or ScanCmdParamDefaults() is called.

3. Call the ScanCmdScanEnable() function to allow scanning to be performed.
1-5

SPT Terminal Series System Software Manual
To set the scan trigger:

Call the ScanSetTriggeringModes() function to identify the type of trigger that will
initiate scans. The typical application passes this function to the LEVEL parameter.

To handle scanner data and errors:

1. In your event handling code, respond to any scanDecodeEvent by storing or
displaying the decoded data.

2. Respond to error conditions (such as scanBatteryErrorEvent) by alerting the user
or performing appropriate recovery routines.

To shut down the scanner:

1. Call the ScanCmdScanDisable() function to shut down the scanner.
2. Call the ScanCloseDecoder() function at the conclusion of the program. If you

don�t, you�ll get system errors and unexpected results.

Using the Scan Demo Application
Scan Demo is a demo application included with the Scan Manager shared library. Scan
Demo exercises nearly all of the API, and shows you how to:

� Use the API to set and get scanner parameters
� Handle decoded scanner data
� Handle scan errors and a low-battery condition

This demo application also allows you to use the terminal�s graphical interface to display
and change scanner settings. Refer to the Scan Manager library for the location of Scan
Demo.

Scanner Commands

Introduction
The Scan Manager API in this section give you commands to manipulate the scanner.
Using these commands, an application should perform the following functions:

� Enable or disable scanning
� Start a decode
� Turn the LED on or off
1-6

SPT Scanners
� Sound any of the defined beep patterns
� Set the scanner into �aim� (laser-pointer) mode
� Get version information for the various terminal software components

Returned Status Definitions
The scanner commands in this chapter may return one of the status codes described in
Table 1-1.

Table 1-1. Returned Status Codes

STATUS CODE DEFINITION

Any non-negative value
(0 to 32767)

Parameter value.

STATUS_OK The function�s parameters were verified. If a
function must wait for an ACK from the scanner,
STATUS_OK indicates that the ACK was received.

NOT_SUPPORTED The last packet received from the scanner
generated either a NAK_DENIED or
NAK_BAD_CONTEXT status. This usually
indicates that the specified parameter is not
supported by this scanner, or the scanner was
unable to comply with the request.

COMMUNICATIONS_ERROR Either a timeout condition or the maximum number
of retries (or both) occurred. The previous transmit
message was not verified through an ACK, and
therefore, is questionable.

BAD_PARAM One or more of the function call parameters
supplied by the user was not in the expected range.

BATCH_ERROR The limits of a batch function have been exceeded.
Unless otherwise indicated, functions that start with
ScanSet are responsible for generating a batch
command to establish scanner parameters. The
parameters are not sent to the scanner until the
ScanCmdSendParams function is called, at which
time a new batch is started.

ERROR_UNDEFINED An error condition exists that is not specifically
associated with the scanner or its communications.
1-7

SPT Terminal Series System Software Manual
Scanner Commands
Table 1-2 lists the scanner commands described in this chapter.

Table 1-2. Scanner Commands

FUNCTION PAGE

ScanCloseDecoder 1-9

ScanCmdAimOff 1-10

ScanCmdAimOn 1-11

ScanCmdBeep 1-12

ScanCmdGetAllParams 1-14

ScanCmdLedOff 1-15

ScanCmdLedOn 1-16

ScanCmdParamDefaults 1-17

ScanCmdScanDisable 1-18

ScanCmdScanEnable 1-19

ScanCmdSendParams 1-20

ScanCmdStartDecode 1-21

ScanCmdStopDecode 1-22

ScanCmdTrigSledOff 1-23

ScanCmdTrigSledOn 1-24

ScanGetAimMode 1-25

ScanGetDecodedData 1-26

ScanGetExtendedDecodedData 1-29

ScanGetDecoderVersion 1-30

ScanGetLedState 1-31

ScanGetScanEnabled 1-32

ScanGetScanManagerVersion 1-33

ScanGetScanPortDriverVersion 1-34

ScanGetTrigSledMode 1-35

Barcode Parameter Functions 1-37
1-8

SPT Scanners
ScanCloseDecoder

Purpose Closes the Scan Manager shared library and frees up system resources.

Prototype Int16 ScanCloseDecoder (void);

Returned Status Zero No errors closing shared library

Non-zero Error closing shared library

Comments Must be called by all applications that call the ScanOpenDecoder function.
Failure to do so will cause system errors and unpredictable results.

See Also ScanOpenDecoder
1-9

SPT Terminal Series System Software Manual
ScanCmdAimOff

Purpose Takes the scanner out of the �aim� mode (also known as �laser pointer�
mode).

Prototype Int16 ScanCmdAimOff (void);

Returned Status STATUS_OK

BAD_PARAM Error

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

See Also ScanCmdAimOn
1-10

SPT Scanners
ScanCmdAimOn

Purpose Places the scanner into its �aim� mode (also known as �laser pointer� mode).

Prototype Int16 ScanCmdAimOn (void);

Returned Status STATUS_OK

BAD_PARAM Error

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

Comments This function call only tells the scanner that you want to use the scanner laser
for aiming, not decoding. To execute the aim, the user must press the
scanner�s trigger, or a ScanCmdStartDecode command must be sent.

See Also ScanCmdAimOff
1-11

SPT Terminal Series System Software Manual
ScanCmdBeep

Purpose Executes the specified beep sequence.

Prototype Int16 ScanCmdBeep (BeepType beep);

Parameters -> beep Must be one of the following values

ONE_SHORT_HIGH
TWO_SHORT_HIGH
THREE_SHORT_HIGH
FOUR_SHORT_HIGH
FIVE_SHORT_HIGH

ONE_SHORT_LOW
TWO_SHORT_LOW
THREE_SHORT_LOW
FOUR_SHORT_LOW
FIVE_SHORT_LOW

ONE_LONG_HIGH
TWO_LONG_HIGH
THREE_LONG_HIGH
FOUR_LONG_HIGH
FIVE_LONG_HIGH

ONE_LONG_LOW
TWO_LONG_LOW
THREE_LONG_LOW
FOUR_LONG_LOW
FIVE_LONG_LOW

FAST_WARBLE
SLOW_WARBLE

MIX1
MIX2
MIX3
MIX4
1-12

SPT Scanners
DECODE_BEEP
BOOTUP_BEEP
PARAMETER_DEFAULTS_BEEP

Returned Status STATUS_OK

BAD_PARAM Error

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error
1-13

SPT Terminal Series System Software Manual
ScanCmdGetAllParams

Purpose Retrieves the current parameters from the scanner.

Prototype Int16 ScanCmdGetAllParams(UInt8 *ptr, UInt16 maxlength);

Parameters -> ptr[] Array where the scanner�s parameter
information is deposited.

-> maxlength Maximum size (in bytes) of the parameter
values stored in the ptr[] array.

Returned Status Number of bytes copied into ptr[].

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

Comments The location of the array where the parameters are stored begins with
ptr[0]. The parameters are returned as data pairs consisting of
(parameter_number and parameter_value). You must parse through
the data pairs and associate each parameter_number with a specific
scanner capability. If the number of bytes you specify in maxlength is less
than the number of scanner parameters retrieved, the remaining parameters
are lost. To make sure you retrieve all of the parameters, set MemPtr to at
least 256 bytes.
As you use ScanSet commands to set the decoder�s parameters, the new
parameters will not be reflected in the ptr[] array. You must update your
own parameter storage when you change parameters.
1-14

SPT Scanners
ScanCmdLedOff

Purpose Immediately turns off the scanner�s green LED.

Prototype Int16 ScanCmdLedOff (void);

Returned Status STATUS_OK

BAD_PARAM Error

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

See Also ScanCmdLedOn
1-15

SPT Terminal Series System Software Manual
ScanCmdLedOn

Purpose Immediately turns on the scanner�s green LED.

Prototype Int16 ScanCmdLedOn (void);

Returned Status STATUS_OK

BAD_PARAM Error

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

Comments The LED stays on until the ScanCmdLedOff command is sent.

See Also ScanCmdLedOff
1-16

SPT Scanners
ScanCmdParamDefaults

Purpose Sets all parameters to the factory-installed defaults.

Prototype Int16 ScanCmdParamDefaults (void);

Returned Status STATUS_OK

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error
1-17

SPT Terminal Series System Software Manual
ScanCmdScanDisable

Purpose Prevents the scanner from activating the laser when the trigger is pressed or
a ScanCmdStartDecode command is received.

Prototype Int16 ScanCmdScanDisable (void);

Returned Status STATUS_OK

BAD_PARAM Error

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

See Also ScanCmdScanEnable
1-18

SPT Scanners
ScanCmdScanEnable

Purpose Permits the scanner to activate the laser when the trigger is pressed or a
ScanCmdStartDecode command is received.

Prototype Int16 ScanCmdScanEnable (void);

Returned Status STATUS_OK

BAD_PARAM Error

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

See Also ScanCmdScanDisable
1-19

SPT Terminal Series System Software Manual
ScanCmdSendParams

Purpose Sends to the scanner any parameters changed by your application. Also can
initiate a beep when the parameters have been successfully changed.

Prototype Int16 ScanCmdSendParams(BeepType beep);

Parameters -> beep Set this parameter to one of the
BeepType values listed in the
ScanMgrDef.h header file. If you do not
want a beep, send the NO_BEEP
parameter.

Returned Status STATUS_OK

BAD_PARAM Error

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

Comments This function transmits the scanner parameter values set by other functions.
If you do not call ScanCmdSendParams after you have called all of your �set�
functions, the settings will not take effect.
The values you set are permanent and will persist until either the terminal is
reset or until you perform a ScanCmdParamDefaults command.
The beep parameter is the sound the beeper should make when the
parameters have been successfully changed.
1-20

SPT Scanners
ScanCmdStartDecode

Purpose Instructs the scanner to turn on the laser and begin decoding a barcode.

Prototype Int16 ScanCmdStartDecode (void);

Returned Status STATUS_OK

BAD_PARAM Error

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

Comments This command only initiates a scanning session if the trigger mode is set to
Host (see ScanGetTriggeringModes). If the scanner was previously set to aim
mode by the ScanCmdAimOn command, this command initiates a laser
pointer operation. The laser remains on for the value set in
ScanGetLaserOnTime x 10.

See Also ScanCmdStopDecode
1-21

SPT Terminal Series System Software Manual
ScanCmdStopDecode

Purpose Instructs the scanner to abort a decode attempt.

Prototype Int16 ScanCmdStopDecode (void);

Returned Status STATUS_OK

BAD_PARAM Error

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

See Also ScanCmdStartDecode
1-22

SPT Scanners
To scan bar codes using the Snap-on Trigger Sled:

1. Start your scanning application.
2. Enable the Trigger Sled through the API or through the Symbol Preference panel.
3. Aim the scanner at the bar code.
4. Press the trigger button on the Trigger Sled handle. Make sure the red scan beam

spans the entire bar code. The green scan LED lights and a beep sounds to
indicate a successful decode.

ScanCmdTrigSledOff

Purpose Disables Trigger Sled.

Prototype Int16 ScanCmdTrigSledOff ();

Returned Status STATUS_OK

NOT_SUPPORTED Error

Comments This function call disables the Trigger Sled.
SPT 1550 does not support Trigger Sled Mode.

See Also ScanCmdTrigSledOn
1-23

SPT Terminal Series System Software Manual
To scan bar codes using the Snap-on Trigger Sled:

1. Start your scanning application.
2. Enable the Trigger Sled through the API or through the Symbol Preference panel.
3. Aim the scanner at the bar code.
4. Press the trigger button on the Trigger Sled handle. Make sure the red scan beam

spans the entire bar code. The green scan LED lights and a beep sounds to
indicate a successful decode.

ScanCmdTrigSledOn

Purpose Enables Trigger Sled.

Prototype Int16 ScanCmdTrigSledOn();

Returned Status STATUS_OK

NOT_SUPPORTED Error

Comments This function call enables the Trigger Sled.
SPT 1550 does not support Trigger Sled Mode.

See Also ScanCmdTrigSledOff
1-24

SPT Scanners
ScanGetAimMode

Purpose Identifies whether the scanner is in �normal mode� or �aim� mode (for use as
a laser pointer).

Prototype Int16 ScanGetAimMode (void);

Returned Status Zero normal mode

Non-zero Aim mode

See Also ScanCmdAimOn

ScanCmdAimOff
1-25

SPT Terminal Series System Software Manual
ScanGetDecodedData

Purpose Retrieves the decoded data from the last scan. Also fills in the
DECODE_DATA_STRUCT structure with barcode type, length, and
checksum information.

Prototype Int16 ScanGetDecodedData (MESSAGE *ptr);

Parameters -> ptr A pointer to the user-allocated
DECODE_DATA_STRUCT where the
decoded data is to be placed.

-> ptr -> length Number of characters in the decoded
data string.

-> ptr -> data Contains the decoded data.

-> ptr -> data Start of the packet.

[ptr -> length Checksum.

-> ptr -> type The type of barcode that was decoded:
1-26

SPT Scanners
BCTYPE_NOT_APPLICABLE
BCTYPE_BOOKLAND_EAN
BCTYPE_COUPON_CODE
BCTYPE_CODABAR
BCTYPE_CODE32
BCTYPE_CODE39
BCTYPE_CODE39_FULL_ASCII
BCTYPE_CODE93
BCTYPE_CODE128
BCTYPE_D2OF5
BCTYPE_EAN8
BCTYPE_EAN8_2
SUPPLEMENTALS
BCTYPE_EAN8_5
SUPPLEMENTALS
BCTYPE_EAN13_5
SUPPLEMENTALS
BCTYPE_EAN13
BCTYPE_EAN13_2
SUPPLEMENTALS
BCTYPE_EAN128
BCTYPE_I2OF5
BCTYPE_IATA2OF5
BCTYPE_ISBT128
BCTYPE_MSI_PLESSEY
BCTYPE_TRIOPTIC_CODE39
BCTYPE_UPCA
BCTYPE_UPCA_2
SUPPLEMENTALS
BCTYPE_UPCA_5
SUPPLEMENTALS
BCTYPE_UPCE0
BCTYPE_UPCE0_2
SUPPLEMENTALS
BCTYPE_UPCE0_5
SUPPLEMENTALS
BCTYPE_UPCE1
BCTYPE_UPCE1_2
SUPPLEMENTALS
BCTYPE_UPCE1_5
SUPPLEMENTALS
1-27

SPT Terminal Series System Software Manual
Returned Status STATUS_OK

BAD_PARAM Error

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

Comments Typically, an application calls this function in response to an
EVENT_DECODE_DATA type of event.

See Also ScanGetExtendedDecodedData
1-28

SPT Scanners
ScanGetExtendedDecodedData

Purpose Retrieves the decoded data larger than 255 bytes (multipacket data) from the
last scan.

Prototype Int16 ScanGetExtendedDecodedData (Int16 length, Int16
*type. UInt8 *extendedData);

Parameters length passed to the function by the application,
and is the size of the buffer pointed to by
*buf.

extendedData pointer to the buffer to place the decoded
data.

type pointer to an int, and will contain the bar
code type after the API is successfully
called.

Returned Status STATUS_OK

BAD_PARAM Error

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

Comments Typically, an application calls this function in response to an
EVENT_DECODE_DATA type of event and when extended data flag is set to
indicate that extended data has been decoded. The length of the data is also
sent out from the scanner manager to the application. Note that scan angle
selection is not supported and ScanCmdAimOn is not supported.

See Also ScanGetDecodedData
1-29

SPT Terminal Series System Software Manual
ScanGetDecoderVersion

Purpose Retrieves the ASCII revision string of the scanner�s decode software. Also
copies the string to a user-specified location.

Prototype Int16 ScanGetDecoderVersion (Char* ptr, UInt16
max_length);

Parameters -> ptr A pointer to a user-allocated char array.
This function places the revision into the
array, null terminated.

-> max_length Maximum number of characters to be
copied to ptr[].

Returned Status Length of the revision string.

BAD_PARAM Error

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

Comments The application should call this function after receiving a
REVISION_REPLY_EVENT.
1-30

SPT Scanners
ScanGetLedState

Purpose Indicates whether the green LED is currently on or off.

Prototype Int16 ScanGetLedState (void);

Returned Status Zero OFF

Non-zero ON

See Also ScanCmdLedOff

ScanCmdLedOn
1-31

SPT Terminal Series System Software Manual
ScanGetScanEnabled

Purpose Indicates whether the scanner is currently enabled.

Prototype Int16 ScanGetScanEnabled (void);

Returned Status Zero DISABLED

Non-zero ENABLED

See Also ScanCmdScanEnable

ScanCmdScanDisable
1-32

SPT Scanners
ScanGetScanManagerVersion

Purpose Copies the ASCII version string for the Scan Manager software into a user-
specified location.

Prototype Int16 ScanGetScanManagerVersion (Char* ptr, UInt16
max_length);

Parameters -> ptr A pointer to a user-allocated char array.
This function places the version into the
array, null terminated.

-> max_length Maximum number of characters to be
copied to ptr[].

Returned Status Length of the revision string.

NOT_SUPPORTED Error

See Also ScanGetScanPortDriverVersion
1-33

SPT Terminal Series System Software Manual
ScanGetScanPortDriverVersion

Purpose Copies the ASCII version string for the scan port driver software into a user-
specified location.

Prototype Int16 ScanGetScanPortDriverVersion (Char* ptr, UInt16
max_length);

Parameters -> ptr A pointer to a user-allocated char array.
This function places the version into the
array, null terminated.

-> max_length Maximum number of characters to be
copied to ptr[].

Returned Status Length of the revision string.

NOT_SUPPORTED Error

See Also ScanGetScanManagerVersion
1-34

SPT Scanners
ScanGetTrigSledMode

Purpose Identifies whether the Trigger Sled Mode is enabled or not.

Prototype Int16 ScanGetTrigSledMode();

Returned Status Zero Disabled

Non-zero Enabled

Comments SPT 1550 does not support Trigger Sled Mode.

See Also ScanCmdTrigSledOff, ScanCmdTrigSledOn
1-35

SPT Terminal Series System Software Manual
ScanOpenDecoder

Purpose Loads and initializes the Scan Manager shared library, and initializes the
scanner.

Prototype Int16 ScanOpenDecoder (void);

Returned Status DECODER_ALREADY_OPEN�The function was previously called without a
corresponding call to the ScanCloseDecoder function.

STATUS_OK

Comments Must be called by all applications before any of the other functions in the Scan
Manager shared library can be used. Also include a call to the
ScanCloseDecoder function.

See Also ScanCloseDecoder
1-36

SPT Scanners
Barcode Parameter Functions

Introduction
The Scan Manager functions described in this chapter give you the ability to control how
the scanner handles various types of barcodes. These functions allow your application to
control the following types of settings:

� Which specific barcode types will be decoded
� Which specific barcode lengths will be decoded
� Which conversions will be performed on the decoded data
� Whether to decode Universal Product Code (UPC) preamble and supplemental

data
� How many times a barcode is to be scanned to ensure an accurate decode

(redundancy)

The Scan Manager software places events into your application�s event queue to notify you
of pertinent scanner events. The following scanner events, at a minimum, should be
handled by your application:

� Decode Event
� Scanning Error

Returned Status Definitions
The function calls listed in this chapter may return one of the status codes described in
Table 1-3.

Table 1-3. Returned Status Codes

STATUS CODE DEFINITION

Any non-negative value
(0 to 32767)

Parameter value.

STATUS_OK The function�s parameters were verified. If a
function must wait for an ACK from the scanner,
STATUS_OK indicates that the ACK was received.
1-37

SPT Terminal Series System Software Manual
Barcode Types
Table 1-4 lists the barcode types that can be enabled by the parameter functions in this
chapter.

NOT_SUPPORTED The last packet received from the scanner
generated either a NAK_DENIED or
NAK_BAD_CONTEXT status. This usually
indicates that the specified parameter is not
supported by this scanner, or the scanner was
unable to comply with the request.

COMMUNICATIONS_ERROR Either a timeout condition or the maximum number
of retries (or both) occurred. The previous transmit
message was not verified through an ACK, and
therefore, is questionable.

BAD_PARAM One or more of the function call parameters
supplied by the user was not in the expected range.

BATCH_ERROR The limits of a batch function have been exceeded.
Unless otherwise indicated, functions that start with
ScanSet are responsible for generating a batch
command to establish scanner parameters. The
parameters are not sent to the scanner until the
ScanCmdSendParams function is called, at which
time a new batch is started.

ERROR_UNDEFINED An error condition exists that is not specifically
associated with the scanner or its communications.

Table 1-4. Barcode Types

BARCODE TYPE PAGE

Codabar Barcode Parameter Functions 1-39

Code 32 Barcode Parameter Functions 1-44

Code 39 Barcode Parameter Functions 1-47

General Barcode Parameter Functions 1-52

I 2 of 5 Barcode Parameter Functions 1-63

Table 1-3. Returned Status Codes

STATUS CODE DEFINITION
1-38

SPT Scanners
The actual parameter functions for each barcode type are listed in the appropriate section.

Codabar Barcode Parameter Functions
Table 1-5 lists the Codabar barcode parameter functions described in this section.

MSI Plessey Barcode Parameter Functions 1-66

UPC/EAN Barcode Parameter Functions 1-71

Table 1-5. Codabar Barcode Parameter Functions

PARAMETER FUNCTION PAGE

ScanGetClsiEditing 1-40

ScanGetNotisEditing 1-41

ScanSetClsiEditing 1-42

ScanSetNotisEditing 1-43

Table 1-4. Barcode Types (continued)

BARCODE TYPE PAGE
1-39

SPT Terminal Series System Software Manual
ScanGetClsiEditing

Purpose Identifies whether the start and stop characters are being stripped from a 14-
character Codabar symbol, and a space is being inserted after the first, fifth,
and tenth characters.

Prototype int ScanGetClsiEditing (void);

Returned Status Zero DISABLE

>Zero ENABLE

COMMUNICATIONS_ERROR if an error occurs

NOT_SUPPORTED if an error occurs

See Also ScanSetClsiEditing
1-40

SPT Scanners
ScanGetNotisEditing

Purpose Identifies whether the start and stop characters are being stripped from a 14-
character Codabar symbol.

Prototype int ScanGetNotisEditing (void);

Returned Status Zero DISABLE

>Zero ENABLE

COMMUNICATIONS_ERROR if an error occurs

NOT_SUPPORTED if an error occurs

See Also ScanSetNotisEditing
1-41

SPT Terminal Series System Software Manual
ScanSetClsiEditing

Purpose When enabled, strips the start and stop characters from a 14-character
Codabar symbol, and inserts a space after the first, fifth, and tenth characters.

Prototype int ScanSetClsiEditing (Boolean bEnable);

Parameters -> bEnable Must be one of the following values:
True = ENABLE
False = DISABLE

Returned Status STATUS_OK

>BAD_PARAM Error

BATCH_ERROR Error

See Also ScanGetNotisEditing
1-42

SPT Scanners
ScanSetNotisEditing

Purpose When enabled, strips the start and stop characters from a 14-character
Codabar symbol.

Prototype int ScanSetNotisEditing (Boolean bEnable);

Parameters -> bEnable Must be one of the following values:
True = ENABLE
False = DISABLE

Returned Status STATUS_OK

>BAD_PARAM Error

BATCH_ERROR Error

See Also ScanGetNotisEditing
1-43

SPT Terminal Series System Software Manual
Code 32 Barcode Parameter Functions
Table 1-6 lists the Code 32 barcode parameter functions described in this section.

Table 1-6. Code 32 Barcode Parameter Functions

PARAMETER FUNCTION PAGE

ScanGetCode32Prefix 1-45

ScanSetCode32Prefix 1-46
1-44

SPT Scanners
ScanGetCode32Prefix

Purpose Identifies whether the character �A� is being appended to the beginning of
decode data that is in Code 32 format.

Prototype Int16 ScanGetCode32Prefix (void);

Returned Status Zero DISABLE

>Zero ENABLE

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

See Also ScanSetCode32Prefix
1-45

SPT Terminal Series System Software Manual
ScanSetCode32Prefix

Purpose Determines whether the character �A� is to be appended to the beginning of
decode data that is in Code 32 format.

Prototype Int16 ScanSetCode32Prefix (Boolean bEnable);

Parameters -> bEnable Must be one of the following values:
True = ENABLE
False = DISABLE

Returned Status STATUS_OK

BAD_PARAM Error

BATCH_ERROR Error

See Also ScanGetCode32Prefix
1-46

SPT Scanners
Code 39 Barcode Parameter Functions
Table 1-7 lists the Code 39 barcode parameter functions described in this section.

Table 1-7. Code 39 Barcode Parameter Functions

PARAMETER FUNCTION PAGE

ScanGetCode39CheckDigitVerification 1-48

ScanGetCode39FullAscii 1-49

ScanSetCode39CheckDigitVerification 1-50

ScanSetCode39FullAscii 1-51
1-47

SPT Terminal Series System Software Manual
ScanGetCode39CheckDigitVerification

Purpose Identifies whether a Code 39 symbol is complying with specified algorithms.

Prototype Int16 ScanGetCode39CheckDigitVerification (void);

Returned Status ENABLE

DISABLE

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

See Also ScanSetCode39CheckDigitVerification
1-48

SPT Scanners
ScanGetCode39FullAscii

Purpose Identifies whether an ASCII character code is being assigned to letters,
punctuation marks, numerals, and most keyboard control keystrokes.

Prototype Int16 ScanGetCode39FullAscii (void);

Returned Status Zero DISABLE

>Zero ENABLE

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

See Also ScanSetCode39FullAscii
1-49

SPT Terminal Series System Software Manual
ScanSetCode39CheckDigitVerification

Purpose Determines whether a Code 39 symbol is to comply with specified algorithms.

Prototype Int16 ScanSetCode39CheckDigitVerification (
UInt16 check_digit);

Parameters -> check_digit Must be onf of the following values:
ENABLE
DISABLE

Returned Status STATUS_OK

BAD_PARAM Error

BATCH_ERROR Error

Comments Only those Code 39 symbols that include a modulo 43 check digit are
decoded when this parameter is enabled.

See Also ScanGetCode39CheckDigitVerification
1-50

SPT Scanners
ScanSetCode39FullAscii

Purpose Determines whether an ASCII character code is to be assigned to letters,
punctuation marks, numerals, and most keyboard control keystrokes.

Prototype Int16 ScanSetCode39FullAscii (Boolean bEnable);

Parameters -> full_ascii Must be onf of the following values:
True = ENABLE
False = DISABLE

Returned Status STATUS_OK

BAD_PARAM Error

BATCH_ERROR Error

Comments Code 39 Full ASCII interprets the barcode special character ($ + % /)
preceding a Code 39 character, and assigns an ASCII character value to the
pair. For example, when Code 39 Full ASCII is enabled and a +B is scanned,
it is interpreted as b; %J as 7; and $H emulates the keystroke BACKSPACE.
Scanning ABC$M outputs the keystroke equivalent of ABC ENTER.
Do not enable Code 39 Full ASCII and Trioptic Code 39 at the same time.

See Also ScanGetCode39FullAscii
1-51

SPT Terminal Series System Software Manual
General Barcode Parameter Functions
Table 1-8 lists the general barcode parameter functions described in this section.

Table 1-8. General Barcode Parameter Functions

PARAMETER FUNCTION PAGE

ScanGetBarcodeEnabled 1-53

ScanGetBarcodeLengths 1-54

ScanGetConvert 1-56

ScanGetTransmitCheckDigit 1-57

ScanSetBarcodeEnabled 1-58

ScanSetBarcodeLengths 1-59

ScanSetConvert 1-61

ScanSetTransmitCheckDigit 1-62
1-52

SPT Scanners
ScanGetBarcodeEnabled

Purpose Determines whether the specified barcode type is currently enabled for
decoding.

Prototype Int16 ScanGetBarcodeEnabled (BarType barcodeType);

Returned Status The enabled state of the specified barcode type:

Zero=DISABLE
>zero=ENABLE
barBOOKLAND_EAN
barCODABAR
barCODE39
barCODE93
barCODE128
barCOUPON
barD2OF5
barEAN8
barEAN13
barI2OF5
barISBT128
barMSI_PLESSEY
barTRIOPTICCODE39
barUCC_EAN128
barUPCA
barUPCE
barUPCE1

COMMUNICATION_ERROR Error

NOT_SUPPORTED Error

See Also ScanSetBarcodeEnabled
1-53

SPT Terminal Series System Software Manual
ScanGetBarcodeLengths

Purpose Identifies the number of human-readable symbols in the specified format that
are being decoded.

Prototype Int16 ScanGetBarcodeLengths (
BarType barcodeType,
UInt16* pLengthType,
UInt16* pLength1,
UInt16* pLength2);

Returned Status barcodeType will be filled with one of the following values:

barCODABAR
barCODE39
barCODE93
barD25
barI2of5
barMSI_PLESSEY

pLengthType will be filled with one of the following values:

ONE_DISCRETE_LENGTH
TWO_DISCRETE_LENGTHS
LENGTH_WITHIN_RANGE
ANY_LENGTH
If applicable, pLength1 will be used to return length1.
If applicable, pLength2 will be used to return length2.

STATUS_OK

BAD_PARAM Error

BATCH_ERROR Error
1-54

SPT Scanners
COMMUNICATION_ERROR Error

NOT_SUPPORTED Error

Comments If pLengthType is ONE_DISCRETE_LENGTH, ignore the value returned in
pLength2. If pLengthType is ANY_LENGTH, ignore the values returned in
pLength1 and pLength2.

See Also ScanSetBarcodeLengths
1-55

SPT Terminal Series System Software Manual
ScanGetConvert

Purpose Identifies whether decoded data is being converted to the specified format
before transmission.

Prototype Int16 ScanGetConvert (ConvertType conversion);

Parameters -> conversion Must be one of the following values:
UPCEtoUPCA
UPCE1toUPCA
EAN8toEAN13
CODE39toCODE32
I2OF5toEAN13

Returned Status Zero DISABLE

>Zero ENABLE

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

See Also ScanSetConvert
1-56

SPT Scanners
ScanGetTransmitCheckDigit

Purpose Identifies whether the specified code is being transmitted with a check digit.

Prototype Int16 ScanGetTransmitCheckDigit (barType barcodeType);

Parameters -> barcodeType Must be one of the following values:
barUPCA
barUPCE
barUPCE1
barCODE39
barI2OF5
barMSI_PLESSEY

Returned Status The barcode format specified in the
ScanSetTransmitCheckDigit function call.

TRANSMIT_CHECK_DIGIT

DO_NOT_TRANSMIT_CHECK_DIGIT

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

See Also ScanSetTransmitCheckDigit
1-57

SPT Terminal Series System Software Manual
ScanSetBarcodeEnabled

Purpose Dictates whether the specified barcode type is to be enabled for decoding.

Prototype Int16 ScanSetBarcodeEnabled (BarType barcodeType, Boolean
bEnable);

Parameters -> barcodeType Must be one of the following values:
barBOOKLAND_EAN
barCODABAR
barCODE39
barCODE93
barCODE128
barD2OF5
barEAN8
barEAN13
barI2OF5
barISBT128
barMSI_PLESSEY
barTRIOPTICCODE39
barUCC_EAN128
barUPCA
barUPCE
barUPCEANCOUPONCODE
barUPCE1

-> bEnable Must be one of the following values:
True=ENABLE
False=DISABLE

Returned Status STATUS_OK

BAD_PARAM Error

BATCH_ERROR Error

See Also ScanGetBarcodeEnabled
1-58

SPT Scanners
ScanSetBarcodeLengths

Purpose Determines the number of human-readable symbols in the specified format
that are to be decoded.

Prototype Int16 ScanSetBarcodeLengths (
BarType barcodeType,
UInt16 lengthType,
UInt16 length1,
UInt16 length2);

Parameters -> barcodeType Must be one of the following values:
barCODABAR
barCODE39
barCODE93
barD25
barI2of5
barMSI_PLESSEY

-> lengthType Must be one of the following values:
ONE_DISCRETE_LENGTH
TWO_DISCRETE_LENGTHS
LENGTH_WITHIN_RANGE
ANY_LENGTH

-> length1, length2 The discrete lengths you wish to decode,
or the range of barcode lengths you wish
to decode. These lengths are ignored if
the ANY_LENGTH parameter is set.

Returned Status STATUS_OK
1-59

SPT Terminal Series System Software Manual
BAD_PARAM Error

BATCH_ERROR Error

Comments The number of human-readable characters in the specified barcode format
(including check digits) that are to be decoded may be set for:

� One discrete length: Decode only those codes that contain a
selected length. For example, if you select
ONE_DISCRETE_LENGTH and pass a length value of 14, only the
barcode symbols containing 14 characters are decoded. Codes that
contain two discrete lengths (length2) are ignored.

� Two discrete lengths: Decode only those codes that contain two
selected lengths. For example, if you select
TWO_DISCRETE_LENGTHS and pass length values of 2 and 14,
only the barcode symbols containing 2 or 14 characters are
decoded.

� Lengths within a specified range: Decode those codes that contain
a specified range of characters. If you select
LENGTH_WITHIN_RANGE and pass length values of 4 and 12, only
the barcode symbols containing between 4 and 12 characters are
decoded.

� Any length: Decode specified barcode symbols containing any
number of characters. The length values that you pass are ignored.
Codes that contain one discreet length or two discreet lengths are
ignored.
If Code 39 Full ASCII is enabled, try to use the
LENGTH_WITHIN_RANGE or ANY_LENGTH options.

See Also ScanGetBarcodeLengths
1-60

SPT Scanners
ScanSetConvert

Purpose Converts decoded data to the specified format before transmission.

Prototype Int16 ScanSetConvert (ConvertType conversion,Boolean
bEnable);

Parameters -> conversion Must be one of the following values:
UPCEtoUPCA
UPCE1toUPCA
EAN8toEAN13
CODE39toCODE32
I2OF5toEAN13

-> bEnable Must be one of the following values:
True=ENABLE
False=DISABLE

Returned Status STATUS_OK

BAD_PARAM Error

BATCH_ERROR Error

Comments Converting UPC-E to UPC-A�To transmit UPC-E (zero suppressed)
decoded data, select DISABLE. After being converted, the data follows UPC-
A format conventions, and is affected by UPC-A programming selections
(such as preamble, check digit).
Converting UPC-E1 to UPC-A�To transmit UPC-E1 (zero suppressed)
decoded data, select DISABLE. After being converted, the data follows UPC-
A format conventions and is affected by UPC-A programming selections
(such as, preamble or check digit).
Converting EAN-8 to EAN-13�When EAN Zero Extend is disabled, this
parameter has no effect on barcode data.
Converting I 2 of 5 to EAN-13�The I 2 of 5 code must be enabled, one length
must be set to 14, and the code must have a leading zero and a valid EAN-
13 check digit.

See Also ScanGetConvert
1-61

SPT Terminal Series System Software Manual
ScanSetTransmitCheckDigit

Purpose Determines whether the specified code is to be transmitted with a check digit.

Prototype Int16 ScanSetTransmitCheckDigit (
BarType barcodeType,
UInt16 check_digit);

Parameters -> barcodeType Must be one of the following values:
barUPCA
barUPCE
barUPCE1
barCODE39
barI2OF5
barMSI_PLESSEY

-> check_digit Must be one of the following values:
TRANSMIT_CHECK_DIGIT
DO_NOT_TRANSMIT_CHECK_DIGIT

Returned Status STATUS_OK

BAD_PARAM Error

BATCH_ERROR Error

Comments Check digits are used by the scanner to validate that the correct data has
been decoded. In UPC code, the check digit�s value is based on the other data
in the barcode.

See Also ScanGetTransmitCheckDigit
1-62

SPT Scanners
I 2 of 5 Barcode Parameter Functions
Table 1-9 lists the I 2 of 5 barcode parameter functions described in this section.

Table 1-9. I 2 of 5 Barcode Parameter Functions

PARAMETER FUNCTION PAGE

ScanGetI2of5CheckDigitVerification 1-64

ScanSetI2of5CheckDigitVerification 1-65
1-63

SPT Terminal Series System Software Manual
ScanGetI2of5CheckDigitVerification

Purpose Identifies whether an I 2 of 5 symbol is complying with specified algorithms.

Prototype Int16 ScanGetI2of5CheckDigitVerification (void);

Returned Status DISABLE

OPCC_CHECK_DIGIT

USS_CHECK_DIGIT

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

See Also ScanSetI2of5CheckDigitVerification
1-64

SPT Scanners
ScanSetI2of5CheckDigitVerification

Purpose Determines whether an I 2 of 5 symbol is to comply with specified algorithms.

Prototype Int16 ScanSetI2of5CheckDigitVerification (UInt16
check_digit);

Parameters -> check_digit Must be onf of the following values:
DISABLE
USS_CHECK_DIGIT
OPCC_CHECK_DIGIT

Returned Status STATUS_OK

BAD_PARAM Error

BATCH_ERROR Error

Comments The I 2 of 5 symbol must comply with one of the following algorithms:
� Optical Product Code Council (OPCC)
� Uniform Symbology Specification (USS)

See Also ScanGetI2of5CheckDigitVerification
1-65

SPT Terminal Series System Software Manual
MSI Plessey Barcode Parameter Functions
Table 1-10 lists the MSI Plessey barcode parameter functions described in this section.

Table 1-10. MSI Plessey Barcode Parameter Functions

PARAMETER FUNCTION PAGE

ScanGetMsiPlesseyCheckDigit Algorithm 1-67

ScanGetMsiPlesseyCheckDigits 1-68

ScanSetMsiPlesseyCheckDigit Algorithm 1-69

ScanSetMsiPlesseyCheckDigits 1-70
1-66

SPT Scanners
ScanGetMsiPlesseyCheckDigit Algorithm

Purpose Determines whether MSI Plessey-encoded symbols with two check digits are
being verified a second time before being transmitted.

Prototype Int16 ScanGetMsiPlesseyCheckDigitAlgorithm (void);

Returned Status MOD10_MOD11

MOD10_MOD10

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

See Also ScanSetMsiPlesseyCheckDigit Algorithm
1-67

SPT Terminal Series System Software Manual
ScanGetMsiPlesseyCheckDigits

Purpose Determines the number of check digits that are being inserted at the end of
MSI Plessey-encoded data.

Prototype Int16 ScanGetMsiPlesseyCheckDigits (void);

Returned Status ONE_CHECK_DIGIT

TWO_CHECK_DIGITS

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

See Also UPC/EAN Barcode Parameter Functions
1-68

SPT Scanners
ScanSetMsiPlesseyCheckDigit Algorithm

Purpose Determines whether MSI Plessey-encoded symbols with two check digits are
to be verified a second time before being transmitted.

Prototype Int16 ScanSetMsiPlesseyCheckDigitAlgorithm (
UInt16 algorithm);

Parameters -> algorithm Must be onf of the following values:
MOD10_MOD11
MOD10_MOD10

Returned Status STATUS_OK

BAD_PARAM Error

BATCH_ERROR Error

See Also ScanGetMsiPlesseyCheckDigit Algorithm
1-69

SPT Terminal Series System Software Manual
ScanSetMsiPlesseyCheckDigits

Purpose Determines the number of check digits that are to be inserted at the end of
MSI Plessey-encoded data.

Prototype Int16 ScanSetMsiPlesseyCheckDigits (UInt16 check_digits);

Parameters -> check_digits Must be onf of the following values:
ONE_CHECK_DIGIT
TWO_CHECK_DIGITS

Returned Status STATUS_OK

BAD_PARAM Error

BATCH_ERROR Error

Comments The check digits at the end of the barcode verify the integrity of the data. At
least one check digit is always required. Check digits are not automatically
transmitted with the data.

See Also ScanGetMsiPlesseyCheckDigits
1-70

SPT Scanners
UPC/EAN Barcode Parameter Functions
Table 1-11 lists the UPC/EAN (European Article Numbering) barcode parameter functions
described in this section:

Table 1-11. UPC/EAN Barcode Parameter Functions

PARAMETER FUNCTION PAGE

ScanGetDecodeUpcEanRedundancy 1-72

ScanGetDecodeUpcEanSupplementals 1-73

ScanGetEanZeroExtend 1-74

ScanGetUpcEanSecurityLevel 1-75

ScanGetUpcPreamble 1-76

ScanSetDecodeUpcEanRedundancy 1-77

ScanSetDecodeUpcEanSupplementals 1-78

ScanSetEanZeroExtend 1-79

ScanSetUpcEanSecurityLevel 1-80

ScanSetUpcPreamble 1-82
1-71

SPT Terminal Series System Software Manual
ScanGetDecodeUpcEanRedundancy

Purpose When the autodiscriminate UPC/EAN supplementals parameter is selected in
the ScanSetDecodeUpcEanRedundancy function, it identifies the number of
times a symbol without supplementals is decoded before being transmitted.

Prototype Int16 ScanGetDecodeUpcEanRedundancy (void);

Returned Status Integer in the range [0...20].

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

See Also ScanGetDecodeUpcEanRedundancy
1-72

SPT Scanners
ScanGetDecodeUpcEanSupplementals

Purpose Identifies how UPC or EAN code that includes supplemental characters is
being decoded.

Prototype Int16 ScanGetDecodeUpcEanSupplementals (void);

Returned Status DECODE_SUPPLEMENTALS

IGNORE_SUPPLEMENTALS

AUTODISCRIMINATE_SUPPLEMENTALS

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

See Also ScanSetDecodeUpcEanSupplementals
1-73

SPT Terminal Series System Software Manual
ScanGetEanZeroExtend

Purpose Determines whether five leading zeros are being added to decoded EAN-8
symbols.

Prototype Int16 ScanGetEanZeroExtend (void);

Returned Status Zero DISABLE

>Zero ENABLE

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

See Also ScanSetEanZeroExtend
1-74

SPT Scanners
ScanGetUpcEanSecurityLevel

Purpose Identifies the number of times the barcode is scanned before being decoded.

Prototype Int16 ScanGetUpcEanSecurityLevel (void);

Returned Status SECURITY_LEVEL0

SECURITY_LEVEL1

SECURITY_LEVEL2

SECURITY_LEVEL3

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

See Also ScanSetUpcEanSecurityLevel
1-75

SPT Terminal Series System Software Manual
ScanGetUpcPreamble

Purpose Identifies whether the specified UPC code is being transmitted with lead-in
characters.

Prototype Int16 ScanGetUpcPreamble (BarType barcodeType);

Parameters -> barcodeType Must be one of the following values:
barUPCA
barUPCE
barUPCE1

Returned Status One of the following values:
NO_PREAMBLE
SYSTEM_CHARACTER
SYSTEM_CHARACTER_COUNTRY_CODE

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

See Also ScanSetUpcPreamble
1-76

SPT Scanners
ScanSetDecodeUpcEanRedundancy

Purpose With the autodiscriminate UPC/EAN supplementals option selected, it adjusts
the number of times a symbol without supplementals is to be decoded before
being transmitted.

Prototype Int16 ScanSetDecodeUpcEanRedundancy (
UInt16 supplemental_redundancy);

Parameters -> supplemental_redundancy Must be an integer in the range
[2...20].

Returned Status STATUS_OK

BAD_PARAM Error

BATCH_ERROR Error

Comments The range is from two to 20 times. Five or above is recommended when
decoding a mix of UPC/EAN symbols with and without supplementals, and
the autodiscriminate option is selected.

See Also ScanGetDecodeUpcEanRedundancy
1-77

SPT Terminal Series System Software Manual
ScanSetDecodeUpcEanSupplementals

Purpose Determines how UPC or EAN code that includes supplemental characters is
to be decoded.

Prototype Int16 ScanSetDecodeUpcEanSupplementals (UInt16
supplementals);

Parameters -> supplementals Must be one of the following values:
DECODE_SUPPLEMENTALS
IGNORE_SUPPLEMENTALS
AUTODISCRIMINATE_
SUPPLEMENTALS

Returned Status STATUS_OK

BAD_PARAM Error

BATCH_ERROR Error

Comments Supplementals are two or five characters added to code according to specific
format conventions (for example, UPC A+2, UPC E+2, EAN 8+2). Three
options are available:

� If you select the decode_supplementals parameter, UPC/EAN
symbols that don�t have supplemental characters are not decoded.

� If you select the ignore_supplementals parameter, UPC/EAN
symbols that have supplemental characters are decoded, and the
supplemental characters are ignored.

� If you select the autodiscriminate_supplementals parameter, you
can adjust the number of times a symbol is scanned to ensure that
both the barcode and the supplementals are correctly decoded. If
you use autodiscriminate, consider setting redundancy to greater
than five.

See Also ScanGetDecodeUpcEanSupplementals
1-78

SPT Scanners
ScanSetEanZeroExtend

Purpose When enabled, adds five leading zeros to decoded EAN-8 symbols.

Prototype Int16 ScanSetEanZeroExtend (Boolean bEnable);

Parameters -> bEnable Must be one of the following values:
True=ENABLE
False=DISABLE

Returned Status STATUS_OK

BAD_PARAM Error

BATCH_ERROR Error

Comments This function call makes EAN-8 symbols compatible to EAN-13 symbols.

See Also ScanGetUpcEanSecurityLevel
1-79

SPT Terminal Series System Software Manual
ScanSetUpcEanSecurityLevel

Purpose Selects the number of times the barcode is to be scanned before being
decoded.

Prototype Int16 ScanSetUpcEanSecurityLevel (UInt16 security_level);

Parameters -> security_level Must be one of the following values:
SECURITY_LEVEL0
SECURITY_LEVEL1
SECURITY_LEVEL2
SECURITY_LEVEL3

Returned Status STATUS_OK
1-80

SPT Scanners
BAD_PARAM Error

BATCH_ERROR Error

Comments The SPT scanner offers four levels of decoding security for UPC/EAN
barcodes. Security levels determine the number of times linear barcodes
(such as Code 39 or I 2 of 5) are scanned before being decoded. Higher
security levels are needed for decreasing barcode quality. Data must be
decoded the same twice in a row for the scan to be considered good. As
security levels increase, the scanner�s aggressiveness decreases, so be sure
to choose only that level of security necessary for any given application.

� Security Level 0�The default setting. Allows the scanner to operate
in its most aggressive state, while providing sufficient security for
decoding in-spec barcodes.

� Security Level 1�As barcode quality levels diminish, certain
characters (1, 2, 7, or 8) become prone to misdecodes. Select this
security level if you are experiencing misdecodes because of poorly
printed barcodes, and the misdecodes are limited to these
characters.

� Security Level 2�Select this security level if you are experiencing
misdecodes of poorly printed barcodes, and the misdecodes are not
limited to characters 1, 2, 7, or 8.

� Security Level 3�Select this security level if you have tried Security
Level 2 and are still experiencing misdecodes. This security level
significantly impairs the decoding ability of the scanner. If this level
of security is necessary, try to improve the barcode�s quality.

See Also ScanGetUpcEanSecurityLevel
1-81

SPT Terminal Series System Software Manual
ScanSetUpcPreamble

Purpose Determines whether the specified UPC code is to be transmitted with lead-in
characters.

Prototype Int16 ScanSetUpcPreamble (BarType barcodeType,Int16
preamble);

Parameters -> barcodeType Must be one of the following values:
barUPCA
barUPCE
barUPCE1

-> preamble Must be one of the following values:
NO_PREAMBLE
SYSTEM_CHARACTER
SYSTEM_CHARACTER_COUNTRY_CODE

Returned Status STATUS_OK

BAD_PARAM Error

BATCH_ERROR Error

Comments Three options are given for transmitting lead-in characters (preamble) added
to UPC-A symbols:

� Transmit system character only
� Transmit system character and country code (�0� for USA)
� Do not transmit the preamble

The preamble is considered part of the symbol.

See Also ScanGetUpcPreamble
1-82

SPT Scanners
Hardware Parameter Functions

Introduction
The Scan Manager functions in this section give you ability to set up the scanner. With
these functions, an application can perform the following:

� Set scan angle and aim duration
� Set triggering mode
� Set beep durations and frequencies
� Set redundancy and security levels
� Identify and manipulate barcode data

Returned Status Definitions
The hardware parameter functions may return one of the status codes described in Table
1-12.

Table 1-12. Returned Status Codes

STATUS CODE DEFINITION

Any non-negative value
(0 to 32767)

Parameter value.

STATUS_OK The function�s parameters were verified. If a
function must wait for an ACK from the scanner,
STATUS_OK indicates that the ACK was received.

NOT_SUPPORTED The last packet received from the scanner
generated either a NAK_DENIED or
NAK_BAD_CONTEXT status. This usually
indicates that the specified parameter is not
supported by this scanner, or the scanner was
unable to comply with the request.

COMMUNICATIONS_ERROR Either a timeout condition or the maximum number
of retries (or both) occurred. The previous transmit
message was not verified through an ACK, and
therefore, is questionable.

BAD_PARAM One or more of the function call parameters
supplied by the user was not in the expected range.
1-83

SPT Terminal Series System Software Manual
Hardware Parameter Functions
Table 1-13 lists the hardware parameter functions described in this chapter.

BATCH_ERROR The limits of a batch function have been exceeded.
Unless otherwise indicated, functions that start with
ScanSet are responsible for generating a batch
command to establish scanner parameters. The
parameters are not sent to the scanner until the
ScanCmdSendParams function is called, at which
time a new batch is started.

ERROR_UNDEFINED An error condition exists that is not specifically
associated with the scanner or its communications.

Table 1-13. Hardware Parameter Functions

PARAMETER FUNCTION PAGE

ScanGetAimDuration 1-86

ScanGetBeepAfterGoodDecode 1-87

ScanGetBeepDuration 1-88

ScanGetBeepFrequency 1-89

ScanGetBidirectionalRedundancy 1-90

ScanGetDecodeLedOnTime 1-91

ScanGetLaserOnTime 1-92

ScanGetLinearCodeTypeSecurityLevel 1-93

ScanGetPrefixSuffixValues 1-94

ScanGetAngle 1-95

ScanGetScanDataTransmissionFormat 1-96

ScanGetTransmitCodeIdCharacter 1-97

ScanGetTriggeringModes 1-98

ScanIsPalmSymbolUnit 1-99

Table 1-12. Returned Status Codes (continued)

STATUS CODE DEFINITION
1-84

SPT Scanners
ScanSetAimDuration 1-100

ScanSetAngle 1-101

ScanSetBeepAfterGoodDecode 1-102

ScanSetBeepDuration 1-103

ScanSetBeepFrequency 1-104

ScanSetBidirectionalRedundancy 1-105

ScanSetDecodeLedOnTime 1-106

ScanSetLaserOnTime 1-107

ScanSetLinearCodeTypeSecurityLevel 1-108

ScanSetPrefixSuffixValues 1-110

ScanSetScanDataTransmissionFormat 1-111

ScanSetTransmitCodeIdCharacter 1-112

ScanSetTriggeringModes 1-117

Table 1-13. Hardware Parameter Functions (continued)

PARAMETER FUNCTION PAGE
1-85

SPT Terminal Series System Software Manual
ScanGetAimDuration

Purpose Identifies the amount of time the aiming pattern is seen before a scan begins.

Prototype Int16 ScanGetAimDuration (void);

Returned Status Integer in the range [0...99], representing a time period of 0.0 to 9.9 seconds,
in 0.1-second increments.

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

See Also ScanGetAimDuration
1-86

SPT Scanners
ScanGetBeepAfterGoodDecode

Purpose Identifies whether the unit has been set to beep after a good decode.

Prototype Int16 ScanGetBeepAfterGoodDecode (void);

Returned Status Zero DISABLE

> Zero ENABLE

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

See Also ScanSetBeepAfterGoodDecode
1-87

SPT Terminal Series System Software Manual
ScanGetBeepDuration

Purpose Identifies the duration of the beep for the specified beep types.

Prototype Int16 ScanGetBeepDuration (DurationType type);

Parameters -> type Must be one of the following values:
DECODE
SHORT
MEDIUM
LONG

Returned Status STATUS_OK

See Also ScanSetBeepDuration
1-88

SPT Scanners
ScanGetBeepFrequency

Purpose Gets the frequency of the beeper for the specified beep types.

Prototype Int16 ScanGetBeepFrequency (FrequencyType beep_type);

Parameters -> beep_type Must be one of the following values:
DECODE
LOW
MEDIUM
HIGH

Returned Status STATUS_OK

See Also ScanSetBeepFrequency
1-89

SPT Terminal Series System Software Manual
ScanGetBidirectionalRedundancy

Purpose Identifies whether a barcode must be successfully scanned in both directions
before being decoded.

Prototype Int16 ScanGetBidirectionalRedundancy (void);

Returned Status ENABLE

DISABLE

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

See Also ScanSetBidirectionalRedundancy
1-90

SPT Scanners
ScanGetDecodeLedOnTime

Purpose Identifies the amount of time the LED is to be turned on when a successful
scan is performed.

Prototype Int16 ScanGetDecodeLedOnTime (void);

Returned Status Integer in the range [0...100], representing a time period of 0.0 to 10.0
seconds, in 0.1-second increments.

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

See Also ScanSetDecodeLedOnTime
1-91

SPT Terminal Series System Software Manual
ScanGetLaserOnTime

Purpose Identifies the maximum scanner processing time allowed during a scan.

Prototype Int16 ScanGetLaserOnTime (void);

Returned Status Integer in the range [5...99], representing a time period of 0.5 to 9.9 seconds,
in 0.1-second increments.

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

See Also ScanSetLaserOnTime
1-92

SPT Scanners
ScanGetLinearCodeTypeSecurityLevel

Purpose Identifies the number of times the barcode is scanned before being decoded.

Prototype Int16 ScanGetLinearCodeTypeSecurityLevel (void);

Returned Status SECURITY_LEVEL1
SECURITY_LEVEL2
SECURITY_LEVEL3
SECURITY_LEVEL4

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

See Also Comment for ScanSetPrefixSuffixValues
1-93

SPT Terminal Series System Software Manual
ScanGetPrefixSuffixValues

Purpose Identifies any prefix or suffixes appended to the scanned data.

Prototype Int16 ScanGetPrefixSuffixValues (
Char* pPrefix,
Char* pSuffix_1,
Char* pSuffix_2);

Returned Status MemPtr[0] returns prefix
MemPtr[1] returns suffix_1
MemPtr[2] returns suffix_2

STATUS_OK

BAD_PARAM

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

See Also ScanSetPrefixSuffixValues for prefix/suffix values
1-94

SPT Scanners
ScanGetAngle

Purpose Identifies the scanner�s field of view.

Prototype Int16 ScanGetAngle (void);

Returned Status SCAN_ANGLE_WIDE

SCAN_ANGLE_NARROW

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

See Also ScanSetAngle
1-95

SPT Terminal Series System Software Manual
ScanGetScanDataTransmissionFormat

Purpose Identifies the scan data transmission format.

Prototype Int16 ScanGetScanDataTransmissionFormat (void);

Returned Status DATA_AS_IS
DATA_SUFFIX1
DATA_SUFFIX2
DATA_SUFFIX1_SUFFIX2
PREFIX_DATA
PREFIX_DATA_SUFFIX1
PREFIX_DATA_SUFFIX2
PREFIX_DATA_SUFFIX1_SUFFIX2

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

See Also ScanSetScanDataTransmissionFormat
1-96

SPT Scanners
ScanGetTransmitCodeIdCharacter

Purpose Determines whether a character has been selected to identify the scanned
barcode�s code type and the method selected.

Prototype Int16 ScanGetTransmitCodeIdCharacter (void);

Returned Status AIM_CODE_ID_CHARACTER
DISABLE
SYMBOL_CODE_ID_CHARACTER

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

See Also ScanSetTransmitCodeIdCharacter
1-97

SPT Terminal Series System Software Manual
ScanGetTriggeringModes

Purpose Identifies the type of scan engine trigger.

Prototype Int16 ScanGetTriggeringModes (void);

Returned Status HOST
LEVEL
PULSE

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

See Also ScanSetTriggeringModes
1-98

SPT Scanners
ScanIsPalmSymbolUnit

Purpose Identifies whether the application is running on an SPT device (Palm
organizer with scanner hardware and software).

Prototype Int16 ScanIsPalmSymbolUnit (void);

Returned Status Zero Unit is not an SPT device

Non-zero Unit is an SPT device

COMMUNICATIONS_ERROR Error

NOT_SUPPORTED Error

Comments Use this call when your software needs to run on both an unmodified Palm III
device and an SPT device.
1-99

SPT Terminal Series System Software Manual
ScanSetAimDuration

Purpose Sets the amount of time the aiming pattern is to be seen before a scan begins.

Prototype Int16 ScanSetAimDuration (UInt16 aim_duration);

Parameters -> aim_duration Must be an integer in the range [0...99],
representing a time period of 0.0 to 9.9 seconds.

Returned Status STATUS_OK

BAD_PARAM Error

BATCH_ERROR Error

Comments This function is invoked when the trigger is pressed or a
ScanCmdStartDecodecommand is received. This function call does not apply
to the aim signal or to the ScanCmdAimOn command.
The aim_duration parameter is programmable in 0.1-second increments. If a
value of 0 is set for aim_duration, the aim pattern is disabled.

See Also ScanGetAimDuration
1-100

SPT Scanners
ScanSetAngle

Purpose Sets the scanner�s field of view.

Prototype Int16 ScanSetAngle (UInt16 scanner_angle);

Parameters -> scanner_angle Must be one of the following values:
SCAN_ANGLE_WIDE
SCAN_ANGLE_NARROW

Returned Status STATUS_OK

BAD_PARAM Error

BATCH_ERROR Error

Comments A SCAN_ANGLE_WIDE field of view allows the scanner to decode more
barcode characters at the same time.

See Also ScanGetAngle
1-101

SPT Terminal Series System Software Manual
ScanSetBeepAfterGoodDecode

Purpose Determines whether the unit is to beep after a good decode.

Prototype Int16 ScanSetBeepAfterGoodDecode (Boolean bEnableBeep);

Parameters -> bEnableBeep Must be one of the following values:
True=ENABLE
False=DISABLE

Returned Status STATUS_OK

BAD_PARAM Error

BATCH_ERROR Error

Comments When bEnableBeep is disabled, the beep still operates during parameter
menu scanning, and indicates error conditions.

See Also ScanGetBeepAfterGoodDecode
1-102

SPT Scanners
ScanSetBeepDuration

Purpose Sets the duration of the beep for the specified beep types.

Prototype Int16 ScanSetBeepDuration (
DurationType type,
Int16 beep_duration);

Parameters -> type Must be one of the following values:
DECODE
SHORT
MEDIUM
LONG

-> beep_duration A numeric beep length in milliseconds (ms).

Returned Status STATUS_OK

BAD_PARAM Error

Comments Default durations are:
Decode
Short
Medium
Long

90 ms
70 ms
90 ms
240 ms

The acceptable range for any of these durations is 0 to 10,000 ms.

See Also ScanGetBeepDuration
1-103

SPT Terminal Series System Software Manual
ScanSetBeepFrequency

Purpose Sets the frequency of the beeper for the specified beep types.

Prototype Int16 ScanSetBeepFrequency (
FrequencyType type,
Int16 beep_freq);

Parameters -> type Must be one of the following values:
DECODE FREQUENCY
LOW FREQUENCY
MEDIUM FREQUENCY
HIGH FREQUENCY

-> beep_freq A numeric beep frequency in hertz (Hz).

Returned Status STATUS_OK

BAD_PARAM Error

Comments Default durations are:
Decode frequency
Low frequency
Medium frequency
High frequency

3000 Hz
1500 Hz
3000 Hz
7500 Hz

The acceptable range for any of these frequencies is 0 to 15,000 Hz.

See Also ScanGetBeepFrequency
1-104

SPT Scanners
ScanSetBidirectionalRedundancy

Purpose Requires that a barcode be successfully scanned in both directions before
being decoded.

Prototype Int16 ScanSetBidirectionalRedundancy (UInt16 redundancy);

Parameters -> redundancy Must be one of the following values:
ENABLE
DISABLE

-> beep_freq A numeric beep frequency in hertz (Hz).

Returned Status STATUS_OK

BAD_PARAM Error

BATCH_ERROR Error

Comments This parameter is only valid when the ScanSetPrefixSuffixValues function call
has been enabled.

See Also ScanGetBidirectionalRedundancy
1-105

SPT Terminal Series System Software Manual
ScanSetDecodeLedOnTime

Purpose Sets the amount of time the LED will be turned on when a successful scan is
performcd.

Prototype Int16 ScanSetDecodeLedOnTime (UInt16 led_on_time);

Parameters -> led_on_time Must be an integer in the range [0...99],
representing a time period of 0.0 to 9.9 seconds.

Returned Status STATUS_OK

BAD_PARAM Error

BATCH_ERROR Error

Comments If a value of 0 is set for led_on_time, the LED will not be turned on. The
led_on_time parameter is programmable in 0.1-second increments.

See Also ScanGetDecodeLedOnTime
1-106

SPT Scanners
ScanSetLaserOnTime

Purpose Sets the maximum scanner processing time to be allowed during a scan.

Prototype Int16 ScanSetLaserOnTime (UInt16 laser_on_time);

Parameters -> led_on_time Must be an integer in the range [5...99],
representing a time period of 0.5 to 9.9 seconds.

Returned Status STATUS_OK

BAD_PARAM Error

BATCH_ERROR Error

Comments Your application should use the hardware trigger, instead of the
ScanCmdStartDecode command, to initiate a scan. However, if the scanner
was previously set to laser pointer mode by the ScanCmdAimOn command
and the laser is activated by the ScanCmdStartDecode command, the laser
remains on for laser_on_time x 10 seconds.
The laser_on_time parameter is programmable in 0.1-second increments.

See Also ScanGetLaserOnTime
1-107

SPT Terminal Series System Software Manual
ScanSetLinearCodeTypeSecurityLevel

Purpose Selects the number of times the barcode is to be scanned before being
decoded.

Prototype Int16 ScanSetLinearCodeTypeSecurityLevel (UInt16
security_level);

Parameters -> security_level Must be one of the following values:
SECURITY_LEVEL1
SECURITY_LEVEL2
SECURITY_LEVEL3
SECURITY_LEVEL4

Returned Status STATUS_OK

BAD_PARAM Error

BATCH_ERROR Error

Comments Security levels determine the number of times linear barcodes (such as Code
39 or I 2 of 5) are scanned before being decoded.
Security levels do not apply to code 128 function calls.
Higher security levels are needed for decreasing barcode quality. As security
levels increase, the scanner�s aggressiveness decreases, so be sure to
choose only that level of security necessary for any given application.
Linear Security Level 1: The following code types must be successfully read
twice before being decoded:

CODE TYPE
Codabar
MSI Plessey
D 2 of 5
I 2 of 5

LENGTH
All
4 or less
8 or less
8 or less

Linear Security Level 2: The following code types must be successfully read
twice before being decoded:
1-108

SPT Scanners
CODE TYPE
All

LENGTH
All

Linear Security Level 3: Code types other than the following must be
successfully read twice before being decoded. The following codes must be
read three times:

CODE TYPE
MSI Plessey
D 2 of 5
I 2 of 5

LENGTH
4 or less
8 or less
8 or less

Linear Security Level 4: The following code types must be successfully read
three times before being decoded:

CODE TYPE
All

LENGTH
All

See Also ScanGetLinearCodeTypeSecurityLevel
1-109

SPT Terminal Series System Software Manual
ScanSetPrefixSuffixValues

Purpose Appends a prefix or one or two suffixes to scanned data.

Prototype Int16 ScanSetPrefixSuffixValues (
Int8 prefix, Int8 suffix_1,
Int8 suffix_2);

Parameters -> prefix

suffix_1

suffix_2

The desired ASCII values.

Returned Status STATUS_OK

BAD_PARAM Error

BATCH_ERROR Error

Comments Before setting the prefix/suffix values, set the Scan Data Transmission
Format.

See Also ScanGetPrefixSuffixValues
ScanSetScanDataTransmissionFormat
Appendix A, ASCII Equivalents for prefix/suffix values
1-110

SPT Scanners
ScanSetScanDataTransmissionFormat

Purpose Changes the scan data transmission format.

Prototype Int16 ScanSetScanDataTransmissionFormat (
UInt16 transmission_format);

Parameters -> transmission_format Must be one of the following values:
DATA_AS_IS
DATA_SUFFIX1
DATA_SUFFIX_2
DATA_SUFFIX1_
SUFFIX2
PREFIX_DATA
PREFIX_DATA_SUFFIX1
PREFIX_DATA_SUFFIX2
PREFIX_DATA_SUFFIX1_
SUFFIX2

Returned Status STATUS_OK

BAD_PARAM Error

BATCH_ERROR Error

See Also ScanGetScanDataTransmissionFormat
1-111

SPT Terminal Series System Software Manual
ScanSetTransmitCodeIdCharacter

Purpose Selects a character that identifies the scanned barcode�s code type.

Prototype Int16 ScanSetTransmitCodeIdCharacter (UInt16 code_id);

Parameters -> code_id Must be one of the following values:
SYMBOL_CODE_ID_CHARACTER
AIM-CODE_ID_CHARACTER_DISABLE

Returned Status STATUS_OK

BAD_PARAM Error

BATCH_ERROR Error

Comments The code ID character is useful when the scanner is decoding more than one
code type. The code ID character is inserted between the prefix and the
decoded symbol.
The user may select:

� No code ID character
� Symbol Code ID character
� AIM Code ID character

The Symbol Code ID characters are listed and defined in Table 1-14.

The definitions for each AIM Code ID character contains a three-character
string (in the format]cm). These characters are defined in Table 1-15.

The Code characters are listed in Table 1-16.

The Modifier characters are listed in Table 1-17.

See Also ScanGetTransmitCodeIdCharacter
1-112

SPT Scanners
Table 1-14. Symbol Code ID Characters

CODE DEFINITION

A UPC-A, UPC-E, UPC-E1, EAN-8, EAN-13

B Code 39, Code 32

C Codabar

D Code 128 or ISBT 128

E Code 93

F Interleaved 2 of 5

G Discrete 2 of 5 or Discrete 2 of 5 IATA

J MSI Plessey

K UCC/EAN-128

L Bookland EAN

M Trioptic Code 39

N Coupon Code

Table 1-15. AIM Code ID Characters

CODE DEFINITION REFER TO

] Flag character (ASCII 93) N/A

c Code character Table 1-16

m Modifier character Table 1-17

Table 1-16. Code Characters

CODE DEFINITION

A Code 39, Code 32

C Code 128 or ISBT 128

E UPC-A, UPC-E, UPC-E1, EAN-8,
EAN-13, UCC/EAN-128

F Codabar

G Code 93
1-113

SPT Terminal Series System Software Manual
I Interleaved 2 of 5

M MSI Plessey

S Discrete 2 of 5 and Discrete 2 of 5 IATA

X Bookland EAN, Trioptic Code 39, Coupon
Code

Table 1-17. Modifier Characters

BARCODE
TYPE

MODIFIER
CHAR OPTION EXAMPLE

Code 39 0 Decoder has not checked any
check characters or performed a
full ASCII processing

A full ASCII barcode with check
character W, A+I+MI+D+W, is
transmitted as]A7AimId

1 Decoder has checked one check
character

3 Decoder has checked and
stripped one check character

4 Decoder has performed a full
ASCII character conversion

5 Decoder has performed a full
ASCII character conversion and
checked one check character

7 Decoder has performed a full
ASCII character conversion, and
checked and stripped one check
character

Trioptic Code
39

0 No options A Trioptic barcode 412356 is
transmitted as]X0412356

Code 128 0 Standard data packet with no
function code 1 character in the
first symbol position

A Code 128 barcode with a
function code 1 character in the
first position, FNCI AimId, is
transmitted with an AIM ID of
]C1

Table 1-16. Code Characters (continued)

CODE DEFINITION
1-114

SPT Scanners
Code 128
(cont�d)

1 Function code 1 character in the
first symbol position

2 Function code 1 character in the
second symbol position

I 2 of 5 0 No check digit processing An I 2 of 5 barcode 4123
without a check digit being
checked is transmitted as
]I04123

1 Decoder has checked the check
digit

3 Decoder has stripped the check
digit before transmission

Codabar 0 No check digit processing A Codabar barcode 4123
without a check digit being
checked is transmitted as
]F04123

1 Decoder has checked the check
digit

3 Decoder has stripped the check
digit before transmission

Code 93 0 No options A Code 93 barcode
012345678905 is transmitted
as]G0012345678905

MSI Plessey 0 Single check digit checked An MSI Plessey barcode 4123
with a single check digit
checked is transmitted as
]M04123

1 Two check digits checked

2 Single check digit checked and
stripped before transmission

Table 1-17. Modifier Characters (continued)

BARCODE
TYPE

MODIFIER
CHAR OPTION EXAMPLE
1-115

SPT Terminal Series System Software Manual
3 Two check digits checked and
stripped before transmission

D 2 of 5 0 No options A D 2 of 5 barcode 4123 is
transmitted as]S04123

UPC/EAN 0 Standard packet in full EAN
country code format: 13 digits for
UPC-A and UPC-E (not including
supplemental data)

A UPC-A barcode
012345678905 is transmitted
as]E0012345678905

1 Two-digit supplemental data only

2 Five-digit supplemental data only

4 EAN-8 data packet

Bookland EAN 0 No options, always transmit 0 A Bookland barcode
123456789X is transmitted as
]X0123456789X

Table 1-17. Modifier Characters (continued)

BARCODE
TYPE

MODIFIER
CHAR OPTION EXAMPLE
1-116

SPT Scanners
ScanSetTriggeringModes

Purpose Sets the type of scan engine trigger.

Prototype Int16 ScanSetTriggeringModes (UInt16 triggering_mode);

Parameters -> triggering_mode Must be one of the following values:
LEVEL�Only the terminal Scan trigger
initiates the scan; the laser is turned off
when the trigger is released or the decode
was good.
PULSE�Only the terminal Scan trigger
initiates the scan; the laser is turned off
when the value set in
ScanSetLaserOnTime is reached or when
the decode was good.
HOST�The terminal Scan trigger or the
application�s ScanCmdStartDecode
command initiates the scan; the laser is
turned off when the trigger is released, or
when the value set in
ScanSetLaserOnTime is reached, the
ScanCmdStopDecode command is called,
or the decode was good.

Returned Status STATUS_OK

BAD_PARAM Error

BATCH_ERROR Error

Comments If the scanner was previously set to aim mode by the ScanCmdAimOn
command, each mode functions as described above, except the laser will be
on for the value set in ScanSetLaserOnTime x 10, and decoding is disabled.

See Also ScanGetTriggeringModes
ScanSetLaserOnTime
ScanCmdStartDecode
ScanCmdStopDecode
ScanCmdAimOn
1-117

SPT Terminal Series System Software Manual
Power Considerations
The power-consumption characteristics of the SPT device are different than those of a
normal Palm III device, and it is important to keep this in mind when writing your application.
The normal low-battery alert is displayed whenever the battery voltage falls below the
acceptable operating level. However, a scan operation requires a different power
threshold. When battery levels fall below this threshold (approximately 2.3 volts) an
attempted scan will fail, and the scanner is disabled. Your application must alert the end-
user in this situation, explaining why the scan failed, and directing them to install fresh
batteries.

scanBatteryErrorEvent
Your code needs to handle the scanBatteryErrorEvent. The Scan Manager
application generates this event whenever it detects the low-battery condition. Consult one
of the two sample programs (ScanDemo or SScan) for an example of how to handle this
event. Be sure to catch this event in all of your event handlers that might be in effect when
a scan operation is attempted. For example, the ScanDemo program catches the
scanBatteryErrorEvent in ApplicationHandleEvent so that it is handled in
whatever form being displayed.

Sudden Loss of Power
If the terminal is put into sleep mode (through the unit�s on/off button) while a scan-aware
application is running, the state of the scanner will be preserved when the unit is turned
back on. If the terminal is put into sleep mode while a scan is in progress, the scan will be
aborted before the unit goes to sleep.

If the end-user removes the batteries while a scan-aware application is running (and the
unit is not in sleep mode), Scan Manager removes power to the scanner and tries to
maintain its current settings. However, this is not recommended, and you may see
unpredictable results.

Backlighting
If your application controls or relies on the Palm device�s backlighting feature, be aware that
Scan Manager turns backlighting off at the outset of a scan operation. It also restores
backlighting after the scan is completed.
1-118

SPT Scanners
Other Power Notes
Certain decoder settings affect power consumption, and therefore affect battery life. The
�laser pointer� mode set in ScanCmdAimOn draws a lot of power. Selecting pulse mode
rather then trigger mode generally draws more power. Also, increasing values from the
defaults for the following increases power consumption somewhat:

� LaserOnTime
� DecodeLedTime
� DecodeBeepDuration
� AimDuration

The scanner draws no power until ScanOpenDecoder() is called. It stops drawing power
when ScanDecoderClose() is called. Therefore, if you need the scanner�s capabilities
only during certain portions of your application, you may want to issue the
ScanOpenDecoder call before you enter that portion of the application, and
ScanCloseDecoder when you exit that portion of the application. For example, you may
need the scanner for entering data in fields on only one form of your application.

To avoid excessive voltage draw, the Scan Manager software puts the terminal into sleep
mode while the laser is on. You should be careful to preserve this functionality. For this
reason, it is recommended that you do not pass a timeout value to �EvtGetEvent.� (For
example, do not generate a nilEvent every few milliseconds in a scanning situation). Doing
so could cause the terminal to come out of sleep mode at one of your timeout intervals while
the laser is firing.

Finally, to reduce instantaneous power draw, your application should avoid opening the IR
Exchange Manager or HotSync port while the scanner is open.

Sample Scanning Application
The Scan Manager application described in this chapter is called SScan. It is a sample
scan-aware application that demonstrates the basics of building a scan-aware application.
The sections in this chapter describe, at a high level, the components in the Sscan
application. The Scan Manager library also includes a detailed application, called Scan
Demo, that exercises nearly all of the API. Refer to the Scan Manager library for the
location of Scan Demo.
1-119

SPT Terminal Series System Software Manual
Writing the Code

Include Files
The following three #include statements provide you with the Scan Manager interface
definitions, including the API functions, constants, and data structures.

#include "ScanMgrDef.h"// Scan Manager constant definitions

#include "ScanMgrStruct.h"// Scan Manager structure definitions

#include "ScanMgr.h" // Scan Manager API function definitions

PilotMain Routine
The PilotMain function is a standard Palm organizer application. It contains the code for
handling a normal application launch (sysAppLaunchCmdNormalLaunch) by calling
three other functions: StartApplication, EventLoop, and StopApplication.

/***
 *
 * FUNCTION: PilotMain
 *
 * DESCRIPTION: This function is the equivalent of a main()
* function in standard C. It is called by the
* Emulator to begin execution of this application.

 *
 * PARAMETERS: cmd - command specifying how to launch the
* application.

 * cmdPBP - parameter block for the command.
 * launchFlags - flags used to configure the launch.
 *
 * RETURNED: Any applicable error code.
 *
***/
UInt32 PilotMain(UInt16 cmd, MemPtr cmdPBP, UInt16 launchFlags)
{

// Check for a normal launch.
if (cmd == sysAppLaunchCmdNormalLaunch)
1-120

SPT Scanners
{
Err error = STATUS_OK;

// Set up Scan Manager and the initial (Main) form.
StartApplication();

// Start up the event loop.
EventLoop();

// Close down Scan Manager, decoder
StopApplication();

}

return(0);
}

The StartApplication Function
Sscan�s StartApplication function demonstrates what you need to do at the outset of
your program to properly initialize the scanner.

The first thing the StartApplication function does is call ScanIsPalmSymbolUnit,
which tells the application whether it is running on a device that contains scanner hardware
and software. This function is useful when your application needs to run on both an
unmodified Palm III device and on a SPT device. Based on the result of this call, you can
continue either as a normal application or as a scan-aware application.

Before calling any other Scan Manager library function, you must call ScanOpenDecoder.
This function:

� Loads the Scan Manager shared library
� Powers on the decoder
� Initiates communication between the application and the scanner unit

Be sure to check the return value of the ScanOpenDecoder call. If it does not return a
value of STATUS_OK, do not proceed with other Scan Manager calls.

If your application successfully performs ScanOpenDecoder, you may configure the
decoder to suit your application�s needs. This could involve enabling the scanner, setting
the trigger mode, and enabling the appropriate barcode types. The Sscan application
enables the scanner by calling ScanCmdScanEnable.
1-121

SPT Terminal Series System Software Manual
Next, it calls the ScanSetTriggeringModes function with a parameter of HOST to
configure the triggering mode so that software-initiated scanning can be performed. Finally,
several UPC and EAN barcode types (or symbologies) are enabled by the function
ScanSetBarcodeEnabled.

For these parameters to actually take effect, you must call the ScanCmdSendParams
function. All ScanSet... functions must be set with this function call. You only need to call
ScanCmdSendParams once, after you have set all of your parameters.

NOTE: You are not required to call ScanCmdSendParams after you call other
ScanCmd... functions, such as ScanCmdScanEnable. ScanCmd... functions take
effect automatically.
1-122

SPT Scanners
/***
 *
 * FUNCTION: StartApplication
 *
 * DESCRIPTION: This routine sets up the initial state of the
* application. Set the Main Form as the initial form

to display. Checks to make sure we’re running on
Symbol hardware, then calls ScanOpenDecoder to
initialize the Scan Manager. If successful, then we
proceed with setting decoder parameters that we care
about for this application. ScanCmdSendParams is
called to send our params to the decoder.

 *
 * PARAMETERS: None.
 *
 * RETURNED: Nothing.
 *
***/
static void StartApplication(void)
{

Err error;

// Call up the main form.
FrmGotoForm(MainForm);

// Make sure we’re running on Symbol hardware before
attempting to

// open the decoder or call any other Scan Manager functions.
if (ScanIsPalmSymbolUnit())
{

// Now, open the scan manager library
error = ScanOpenDecoder();

if (!error)
{

// Set decoder parameters we care about...
ScanCmdScanEnable(); // enable scanning
1-123

SPT Terminal Series System Software Manual
ScanSetTriggeringModes(HOST); //allow software-
triggered scans (from our Scan button)

ScanSetBarcodeEnabled(barUPCA, true); // Enable any
barcodes to be scanned

ScanSetBarcodeEnabled(barUPCE, true);
ScanSetBarcodeEnabled(barUPCE1, true);
ScanSetBarcodeEnabled(barEAN13, true);
ScanSetBarcodeEnabled(barEAN8, true);
ScanSetBarcodeEnabled(barBOOKLAND_EAN, true);
ScanSetBarcodeEnabled(barCOUPON, true);

// We've set our parameters...
// Call "ScanCmdSendParams" to send them to the decoder
ScanCmdSendParams(No_Beep);

}
}

The MainFormHandleEvent Function
After calling StartApplication, PilotMain calls EventLoop, which initiates the
standard event-processing routine familiar to Palm organizer application developers. From
the standpoint of scan-aware application developers, the most interesting code in Sscan is
the MainFormHandleEvent function, which is the event handler for Sscan's main form.

/***
 *
 * FUNCTION: MainFormHandleEvent
 *
 * DESCRIPTION: Handles processing of events for the Main Form.

The following events are handled:
frmOpenEvent and menuEvent - standard handling
scanDecodeEvent - indicates that a scan was

completed
scanBatteryErrorEvent - indicates batteries too

low to scan
ctlSelectEvent - for Scan button on the main form

 * PARAMETERS: event - the most recent event.
 *
 * RETURNED: True if the event is handled, false otherwise.
 *
1-124

SPT Scanners
***/
static Boolean MainFormHandleEvent(EventPtr event)
{

Boolean bHandled = false;
UInt16 extendedDataFlag;

switch(event->eType)
{

case frmOpenEvent:
MainFormOnInit();
bHandled = true;
break;

case menuEvent:
MainFormHandleMenu(event->data.menu.itemID);
bHandled = true;
break;

case scanDecodeEvent:
// A decode has been performed.
// Use the decoder API to get the decoder data
into our memory
// Get barcode parameters from the registers
extendedDataFlag= ((ScanEventPtr)event)
->scanData.scanGen.data1;
extendedDataLength =
(Int16)(((ScanEventPtr)event) -
>scanData.scanGen.data2);

extend = extendedDataFlag & EXTENDED_DATA_FLAG;

OnDecoderData();

bHandled = true;
break;

case scanBatteryErrorEvent:
{

Char szTemp[10];
StrIToA(szTemp, ((ScanEventPtr)event)
1-125

SPT Terminal Series System Software Manual
->scanData.batteryError.batteryLevel);
FrmCustomAlert(BatteryErrorAlert, szTemp, NULL,

NULL);
bHandled=true;
break;

}

case ctlSelectEvent:
{

if (ScanIsPalmSymbolUnit())
{

// Scan Button
if (event->data.ctlEnter.controlID ==

MainSCANButton)
{

ScanCmdStartDecode();
bHandled = true;

}
}

 break;
}

case fldChangedEvent;
UpdateScrollbar();
bHandled = true;
break;

case sclRepeatEvent:
ScrollLines(event->data.sclRepeat.newvalue - event ->
data.sclRepeat.value, false);
break;

case keyDownEvent;
{

if (event->data.keyDown.chr ==pageUpChr) {
PageScroll (winUp);
bHandled = true;

}else if (event->data.keyDown.chr ==pageDownChr) {
PageScroll (winDown);
bHandled = true;

}
break;
1-126

SPT Scanners
{

} //end switch

return(bHandled);
}

1-127

SPT Terminal Series System Software Manual
/***
 *
 * FUNCTION: MainFormOnInit
 *
 * DESCRIPTION: This routine sets up the initial state of the main
* form

 *
 * PARAMETERS: None.
 *
 * RETURNED: Nothing.
 *
***/
static void MainFormOnInit()
{

FormPtr pForm = FrmGetActiveForm();
if(pForm)
{

// initialize the barcode type and barcode data fields
SetFieldText(MainBarTypeField, "No Data", 20, false);
SetFieldText(MainScandataField, "No Data", 80, false);
FrmDrawForm(pForm);

}
}

/***
 *
 * FUNCTION: MainFormHandleMenu
 *
 * DESCRIPTION: This routine handles menu selections off of the
* main form

 *
 * PARAMETERS: None.
 *
 * RETURNED: Nothing.
 *
***/

void MainFormHandleMenu(UInt16 menuSel)
{

switch(menuSel)
1-128

SPT Scanners
{
// Options menu
case OptionsResetDefaults:

if (ScanIsPalmSymbolUnit()) {
ScanCmdScanDisable();

if (ScanCmdParamDefaults () ==Status_OK)
ScanCmdScanEnable ();
//enable scanning

}
break;

case OptionsAbout:
OnAbout();
break;

}
}

/***
 *
 * FUNCTION: OnDecoderData
 *
 * DESCRIPTION: Called when the app receives a scanDecodeEvent,

which signals that a decode operation has been
completed. Calls the Scan Manager function
“ScanGetDecodedData” to get the scan data and
barcode type from the last scan. Fills in the
controls on the main form that display this
imformation.

 *
* RETURNED: True if the event is handled, false otherwise.
 *
***/

Boolean OnDecoderData()
{

static Char BarTypeStr[80]=" ";
MESSAGE decodeDataMsg;
Int16 status;
MemHandle hExtendedData;
1-129

SPT Terminal Series System Software Manual
UInt8 *pExtendedData;
Int16 extendedDataType;
UInt16 numlines;
if (extend) {

hExtendedData = MemHandleNew (extendedDataLength);
pExtendedData = (UInt8 *) MemHandleLock
(hExtendedData);
status = ScanGetExtendedDecodedData
(extendedDataLength, &extendedDataType,
pExtendedData);

}
else {

status = ScanGetDecodedData (&decodeDataMsg);
extendedDataType = decodeDataMsg.type
extendedDataLength = decodeDataMsg.length;
hExtendedData = MemHandleNew (extendedDataLength +1)
pExtendedData = (UInt8 *) MemHandleLock

(hExtendedData);
pExtendedData [extendedDataLength] = ‘\0’;
MemMove (&pExtendedData [0], &decodeDataMsg.data [0],

extendedDataLength+1);
}
if (status == STATUS_OK) // if we successfully got the decode

// data from the API...
FieldPTR pField;
//call a function to translate barcode type into a
//string, and display it
ScanGetBarTypeStr (extendedDataType, BarTypeStr, 30);
//in Utils.c
SetFieldText (MainBarTypeField, BarTypeStr, 30, true);

//Check to see if this scan was a “No Read Data”
//(indicated by type of zero)
if (extendedDataType ==0)
{

SetFieldText (MainScandataField, “No Scan”, 30,
true);

}
else
{

1-130

SPT Scanners
// Place the barcode data into the field and
//display
/*Set up data display field to display the
memory*/

pField =(FieldPtr)GetObjectPtr(MainScandataField);

pField->attr.editable =true;
FldDelete (pField, 0, FldGetTextLength (pField));
//clear out old data

if (extendedDataLength -> FldGetMaxChars (pField))
FldSetMaxChars (pField, extendedDataLength);

FldEraseField (pField);//hide field so we don’t see the
//data scroll in

FldInsert(pField, (char*) (&pExtendedData [0],
extendedDataLength);

//move to top of scroll bar
numlines = FldCalcFieldHeight ((char*)&pExtendedData
[0], SCANDATA_WIDTH);
ScrollLines (-numlines, false);//scroll to top of data
FldDrawField(pField); // show field
pField->attr.editable = false;
}

}
UpdateScrollbar();

MemHandleUnlock (hExtendedData);
MemHandleFree (hExtendedData);

return(0);
}

MainFormHandleEvent handles five specific events. Most are standard Palm events that
are probably already familiar to you. However, two are events that scan-aware applications
will need to handle.

� scanDecodeEvent is a special event issued by the Scan Manager software to
your application. It signals to your code that a scan (either successful or
1-131

SPT Terminal Series System Software Manual
unsuccessful) has been completed. In response to the scanDecodeEvent, you
can call the ScanGetDecodedData Scan Manager function, which gives you the
results from the most recent scan. This is illustrated in the OnDecoderData
function shown previously.

� scanBatteryErrorEvent is another special event issued by Scan Manager to
your application. You receive this event whenever a scan operation fails because
of low battery levels. When this condition occurs, the scanner is disabled until the
batteries are replaced or recharged. Because of this, and because this condition
occurs sooner than the normal low-battery warning of a Palm organizer, it is
important that you execute some code to alert end-users. The Sscan application
does this by issuing an alert.

� frmOpenEvent is a standard event that most Palm organizer developers are
familiar with. Sscan calls MainFormOnInit to initialize and draw the main form.

� menuEvent is another standard Palm event. The menuEvent code in Sscan
allows you to issue a decoder command to reset all of the decoder parameters to
their defaults. It also allows you to display an About form with all of the version
information for your SPT scanner software.

� ctlSelectEvent is an event received by the application in response to the user
pushing a button. In Sscan, it is in response to the �Scan� button on the main form.
Upon receiving this event, a scan is initiated by calling the ScanCmdStartDecode
Scan Manager API function.

The StopApplication Function
The StopApplication function is called at the conclusion of PilotMain. This function
first uses ScanIsPalmSymbolUnit to make sure the application is running on an SPT
device. We recommend this check only if your software might be running on both
unmodified Palm III devices and SPT devices. If Sscan is running on an SPT device, we
call ScanCmdScanDisable to disable scanning. This is not required, merely suggested.

Finally, you must call the ScanCloseDecoder function before exiting your program. This
function powers down the decoder and closes the Scan Manager shared library. Failure to
call ScanCloseDecoder can cause unpredictable system problems.
1-132

SPT Scanners
/***
 *
 * FUNCTION: StopApplication
 *
 * DESCRIPTION: This routine does any cleanup required, including
* shutting down the decoder and Scan Manager shared
* library.
 *
 * PARAMETERS: None.
 *
 * RETURNED: Nothing.
 *
***/

static void StopApplication(void)
{

if (ScanIsPalmSymbolUnit())
{

// Disable the scanner and Close Scan Manager shared
library

ScanCmdScanDisable();
ScanCloseDecoder();

}
}

1-133

SPT Terminal Series System Software Manual
1-134

Chapter 2
MSR 3000

The MSR 3000 chapter provides information for use in developing applications to enable
magnetic stripe reading on the Symbol Palm Terminals.

The MSR 3000 is an external Magnetic Card Reader for the SPT. The Software
Development System enables application software developers to easily use and control all
the basic and advanced functions of the MSR 3000.

The Software Development System consists of two parts:

Configurator: Provides an easy-to-use graphical user interface (GUI)
for selecting features and setting up the MSR 3000. It
runs under Windows 95, 98 and Windows NT 4.0 or
above.

MSR Manager Shared Library A �C� library of all the functions to use and control the
MSR 3000. The parameters of the library functions can
be generated by the MSR 3000 Configurator, or defined
directly by the developer.

This chapter describes both of these tools in detail.

This chapter assumes that you are familiar with the CodeWarrior� for Palm OS
development environment.
2-1

SPT Terminal Series System Software Manual
Section Descriptions
� Using The MSR Manager Shared Library, describes the use of the API, which

enables applications on the SPT terminal to control and receive data from the MSR
3000.

� MSR Commands, describes each API command in detail.
� MSR 3000 Configurator, describes the use of the Configurator, a windows-based

tool which enables the developer to easily set up the MSR for use with the API.
� Using the Configurator to Set the MSR 3000, describes how to use the

Configurator tool to generate a header file and combine the header file with the
application running on the SPT terminal.

� A Simple Application Program Sample, provides an easy to follow application
program to use as a reference in your application development.

MSR 3000 Features
All features of the MSR 3000 can be configured with the configurator tool or directly via the
shared library interface. The Configurator creates a CodeWarrior include file for the
selected MSR 3000 settings, and the application developer can then use the include file
and call MsrSendSet() function to set up MSR 3000. See MSR 3000 Configurator for
details.

Buffer Mode
Two Buffer Modes are supported on the MSR 3000:

� Unbuffered ModeMSR 3000 sends data as soon as the data is available. When
using the unbuffered mode, the application program needs to be ready to receive
data.

� Buffered Mode The application program first sends an �Arm to Read� command to
enable the magstripe reading. The user swipes a card, the decoded data is stored
in the MSR 3000 data buffer and the MSR 3000 is disarmed. The application
program then sends a �Get Trackx� command to retrieve the data from the buffer.
All setting functions names MsrSetXxx disarm the current read. An application
must issue an �Arm to Read again before swiping a card.

If an application is designed to control the card swipe and card data read by itself, then the
application developer should use buffered mode. Otherwise, unbuffered mode is
recommended.
2-2

MSR 3000
Terminator/Pre-amble/Post-amble
If Data Edit is disabled, simple message formatting can be done using the Terminator, the
Pre-amble and the Post-amble features. This allows a user-definable character string(s) to
be added to the data returned by the MSR 3000. Pre-amble is added to the beginning of
the data, post-amble is added to the end of data and terminator, and the terminator is added
to the end of data. A formatted message block would have the following arrangement:

{Pre-amble}{Message Data}{Terminator}{Post-amble}

LRC Character
LRC is a check character following the end sentinel in an magnetic stripe card. This option
allows the MSR 3000 to be set to either send or not send the LRC character.

Track Selection
There is a maximum of three tracks on a magnetic stripe card which contain encoded data.
This feature allows you to specify which track(s) to read.

Track Separator
This option allows the application to select the character used to separate data decoded by
multiple track magnetic stripe readers. The Track Separator can be any ASCII character.

Data Edit
The MSR 3000 has very strong Data Editing features. The basic concept is to extract only
the data fields (such as Name, Account Number. EXP Date, Address, Age, etc.) required
by the application program. MSR 3000 then sends these fields in the order specified by the
application program. The application developer does not need to have any knowledge of
the specific magstripe format. The application developer can use the configurator tool to
make their selections. The Configurator creates a header file for all the data edit
commands. These features make the high-level application software development a lot
easier. See Appendix C, Data Editing Overview for Magnetic Stripe Reader for detail.

Special Magnetic Card Format Support
To support special magnetic card formats, the MSR 3000 provides two unique features; the
Generic Decoder and the Raw Decoder.

Generic Decoder
The Generic Decoder supports a flexible magnetic card format structure. The Generic
Decoder can handle special requirements encoded by the ISO standard 5 or 7 bit data
2-3

SPT Terminal Series System Software Manual
formats and is more efficient than the raw data decoder. which should support most other
special requirements.

The developer can define the following parameters for each track in the generic decoder:

� Bit Format: 5 bits with parity or 7 bits with parity
� Start Sentinel
� End Sentinel
� Special reserved characters. Using this feature the developer can redefine the

character for any position in the ISO 7 bits or 5 bits character set table. The
maximum number of reserved characters is six.

Raw Data Decoder
The Raw Data Decoder sends magnetic data in raw data format so the application program
can perform complicated decoding. With this feature, raw data, which are bit level data in
the card, can be sent to the application program for further processing. Two ASCII
characters represent each raw data byte: the first ASCII character is for the high digit of the
hex code, and the second ASCII character is for the low digit of the hex code. For example,
the two ASCII characters �4� and �1� represent raw data 41h (01000001).

Track selection is invalid for the raw data decoder; that is, all encoded data of three tracks
in the card is sent.

Track identification is sent before data message for each track, when decoder mode is Raw
Data Decoder. Track 1 identification is hex 01, track 2 identification is hex 02 and track 3
identification is hex 03.
2-4

MSR 3000
Library Globals
// maximum characters in a card

#define MAX_CARD_DATA 400

// maximum characters for pre-amble and post-amble

#define MAX_PRE_POST_SIZE 10

// maximum added field number

#define MAX_AFLD_NUM 6

// maximum added field length

#define MAX_AFLD_LEN 6

// maximum data edit send command number

#define MAX_SCMD_NUM 4

// maximum length in a data edit send command

#define MAX_SCMD_LEN 40

// maximum characters in whole data edit send command

#define MAX_SCMD_CHAR 110

// maximum flexible field number

#define MAX_FFLD_NUM 16

// maximum length in a flexible field setting command

#define MAX_FFLD_LEN 20

// maximum characters in whole flexible field setting command

#define MAX_FFLD_CHAR 60

// maximum reserved character to define

#define MAX_RES_CHAR_NUM 6

// maximum track number
2-5

SPT Terminal Series System Software Manual
#define MAX_TRACK_NUM 3

// characters for track format

#define TRACK_FORMAT_LEN 5

// structure of reserved character

typedef struct ReservedChar {

Byte format;

char SR_Bits;

char SR_Chars;

} ReservedChar;

Typedef struct MSR_Setting {

Byte Buffer_mode;

Byte Terminator;

char Preamble[MAX_PRE_POST_SIZE+1];

char Postamble[MAX_PRE_POST_SIZE+1];

Byte Track_selection;

Byte Track_separator;

Byte LRC_setting;

Byte Data_edit_setting;

Byte Decoder_mode;

Byte Track_format[MAX_TRACK_NUM][TRACK_FORMAT_LEN];

ReservedChar Reserved_chars[MAX_RES_CHAR_NUM];
2-6

MSR 3000
char Added_field[MAX_AFLD_NUM][MAX_AFLD_LEN+1];

char Send_cmd[MAX_SCMD_NUM][MAX_SCMD_LEN];

char Flexible_field[MAX_FFLD_NUM][MAX_FFLD_LEN]

} MSR_Setting;

typedef MSRSetting* MSRSetting_Ptr;

typedef char * MSRCardInfo_Ptr;

typedef ReservedChar *ReservedChar_Ptr;

Using The MSR Manager Shared Library

Using the API
The MSR Manager shared library API allows SPT application programs to control and
receive data from the MSR 3000 Magnetic Stripe Reader.

A typical application program uses the MSR Manager shared library to do the following:

� Open the MSR
� Set the MSR
� Handle MSR data or error messages received from the MSR 3000 MSR.
� Close the MSR.

See A Simple Application Program Sample for a detailed walk-through of a simple MSR
application program.

Using the MSR Demo Application Program
MSR Demo is a demo application program included with the MSR Manager shared library.
It includes all of the API, and demonstrates:

� Using the API to set and get MSR 3000 parameters
� Handling MSR data
2-7

SPT Terminal Series System Software Manual
� Handling errors.
This demo application program also uses the SPT graphic interface to display and change
MSR 3000 settings.

MSR Commands

Introduction
The MSR Manager API provides commands to manipulate the MSR 3000.

Return Codes
The MSR commands may return one of the following status codes.

Status Code Meaning Suggested Action

MsrMgrNormal Normal

MsrMgrErrGlobal Global parameter error, library
global variable error on SPT.

Reset SPT.

MsrMgrErrParam Invalid parameter in function. Check the parameters.

MsrMgrErrNotOpen Shared library is not open. Open the library before invoke any
function call.

MsrMgrErrStillOpen From MSRLibClose() if the library
is still open by others.

MsrMgrErrMemory SPT memory error occurred. Reset SPT.

MsrMgrErrSize Card information from MSR 3000
MSR overflow.

Check the card and application.
Information in a card should not
exceed MAX_CARD_DATA (400
(105 for track1, 64 for track2 and
109 for track3) characters, and
application should read card
information after receiving a
MsrDataReadyEvt.

MsrMgrErrNAK Firmware NAK answer, MSR 3000
reports wrong command was
received

 check the command or function.

MsrMgrErrTimeout Waiting timeout. check the connection between
SPT and MSR 3000.
2-8

MSR 3000
MSR 3000 Command Descriptions

MSR Event
MsrDataReadyEvt � this event will be received by an application to indicate that there is
data ready to receive from the MSR 3000.

Note: This command is available in unbuffered mode only.

MsrMgrErrROM MSR 3000 ROM check error. replace MSR 3000 unit.

MsrMgrErrRAM MSR 3000 RAM check error. reset MSR 3000.

MsrMgrErrEEPROM MSR 3000 EEPROM check error. reset MSR 3000.

MsrMgrErrRes Error response from MSR 3000. reset MSR 3000.

MsrMgrErrChecksum Check sum error. Reset MSR 3000.

MsrMgrBadRead Read was failed on selected tracks
and buffered mode only.

Swipe the card again and check
card format.

MsrMgrLowBattery Battery voltage is too low to enable
MSR 3000.

Recharge SPT battery.

MsrMgrNoData No data for selected tracks on
buffered mode.

serErrBadPort Cradle port does not exist. Check Palm and its OS.

serErrTimeOut Unable to send or receive data
within the specified timeout period.

Check the connection between the
SPT and MSR 3000.

serErrAlreadyOpen SPT Cradle port already has an
installed foreground owner.

Check the application.

memErrNotEnoughSpace No enough memory available on
the SPT.

Reset SPT.

Status Code Meaning Suggested Action
2-9

SPT Terminal Series System Software Manual
MsrOpen

Purpose Load and initialize the MSR 3000 Manager Library, and return the versions of
the shared library and the MSR 3000 attached.

Prototype Err MsrOpen (UInt refNum, unsigned long *msrVerP, unsigned
long *libVerP)

Parameters refNum library reference number from SysLibLoad or
SysLibFind

MsrVerP pointer to a MSR 3000 version number

LibVerP pointer to a shared library version number

Return MsrMgrNormal open successful

MsrMgrErrGlobal global parameter error

MsrMgrErrMemory memory error occurred

MsrMgrErrNAK firmware NAK answer

MsrMgrLowBattery battery voltage too low to enable MSR 3000

MsrMgrErrRes error response from MSR 3000 MSR

serErrTimeOut handshake timeout

serErrBadPort port does not exist

serErrAlreadyOpen port was open
2-10

MSR 3000
MemErrNotEnoughSpace insufficient memory

Comments This is first library function to be called by the application program. This
function creates and initializes library globals, and enable power to the MSR.
Default serial port settings are set to MSR. It also tests communication with
the MSR and gets the version number of the MSR 3000.
This function takes approximately 1 second.
As this function controls power to the MSR 3000, care should be taken with
its use. To conserve batteries, we recommend opening the MSR only when
serviced, and closing it when not needed. This must balanced with the 1
second it takes to open the MSR 3000.
Version number follows the system versioning scheme; 0xMMmfsbbb, where
MM is major version, m is minor version, f is bug fix, s is stage: 3-release,2-
beta,1-alpha,0-development, bbb is build number for non-releases.
e.g. V1.12b3 would be 0x01122003, V2.00a2 would be 0x02001002 and
V1.01 would be 0x01013000.

Example error = MsrOpen(GMsrMgrLibRefNum, &versionNo, &libversion);

See Also MsrClose
2-11

SPT Terminal Series System Software Manual
MsrClose

Purpose Close the MSR Manager Library, and free resources.

Prototype Err MsrClose (UInt refNum)

Parameters refNum library reference number

Return MsrMgrNormal close successful

MsrMgrErrGlobal global parameter error

MsrMgrErrMemory memory error occurred

SerErrBadPort this port does not exist

Comments Frees the library globals and removes power to MSR.

Example error = MsrClose(GMsrMgrLibRefNum);

See Also MsrOpen
2-12

MSR 3000
MsrSetDefault

Purpose Set MSR 3000 with default settings.

Prototype Err MsrSetDefault (UInt refNum)

Parameters refNum library reference number from SysLibLoad or
SysLibFind

Return MsrMgrNormal setting successful.

MsrMgrErrNAK firmware NAK answer.

serErrTimeOut handshake timeout.

serErrBadPort this port does not exist.

Comments Sets MSR with following default values:

Buffer Mode
Terminator
Preamble
Postamble
Track Selection
Track Separator
LRC
Data Edit Setting

Unbuffered
CR/LF
None
None
All Three Tracks
CR
Do Not Send LRC
Disabled

Example error = MsrSetDefault(GMsrMgrLibRefNum);

See Also MsrClose
2-13

SPT Terminal Series System Software Manual
MsrGetSetting

Purpose Get MSR current settings from MSR 3000.

Prototype Err MsrGetSetting (UInt refNum, MSR_Setting *userMSRP)

Parameters refNum library reference number

userMSRP pointer to a variable for user MSR setting

Return MsrMgrNormal get current setting successful.

MsrMgrErrNAK firmware NAK answer.

MsrMgrErrRes error response from MSR 3000.

serErrTimeOut handshake timeout.

serErrBadPort this port does not exist.

Comments Gets MSR current settings from MSR 3000.

Example error = MsrGetSetting(GMsrMgrLibRefNum, &appSetting);

See Also MsrSendSetting
2-14

MSR 3000
MsrSendSetting

Purpose Send user settings to the MSR 3000.

Prototype Err MsrSendSetting (UInt refNum, MSR_Setting userMSRP)

Parameters refNum library reference number

userMSR variable for user MSR setting

Return MsrMgrNormal send user setting successful.

MsrMgrErrNAK firmware NAK answer.

MsrMgrErrRes error response from MSR 3000.

serErrTimeOut handshake timeout.

serErrBadPort this port does not exist.

Comments Sends user setting to MSR 3000.

Example error = MsrSendSetting(GMsrMgrLibRefNum,
user_MsrSetting);

See Also MsrGetSetting
2-15

SPT Terminal Series System Software Manual
MsrGetVersion

Purpose Get MSR 3000 and software library version.

Prototype Err MsrGetVersion (UInt refNum, unsigned long *msrVerP,
unsigned long *libVerP)

Parameters refNum library reference number

msrVerP pointer to MSR 3000 version

libVerP pointer to MSR shared software library

Return MsrMgrNormal get status successful.

MsrMgrErrNAK firmware NAK answer.

MsrMgrErrRes error response from MSR 3000.

serErrTimeOut handshake timeout.

serErrBadPort this port does not exist.

Comments Gets versions of the MSR 3000 and MSR shared software library. Version
number follows the system versioning scheme. 0xMMmfsbbb, where MM is
major version, m is minor version, f is bug fix, s is stage: 3-release,2-beta,1-
alpha,0-development, bbb is build number for non-releases.
e.g. V1.12b3 would be 0x01122003, V2.00a2 would be 0x02001002 and
V1.01 would be 0x01013000.

Example error = MsrGetVersions(GmsrMgrLibRefNum, &msrVer,
&libVer);

See Also MsrOpen
MsrGetStatus
2-16

MSR 3000
MsrGetStatus

Purpose Get status of last magnetic stripe read.

Prototype Err MsrGetStatus (UInt refNum, BytePtr statusP)

Parameters refNum library reference number

StatusP pointer to MSR status

Return MsrMgrNormal get status successful.

MsrMgrErrNAK firmware NAK answer.

MsrMgrErrRes error response from MSR 3000.

serErrTimeOut handshake timeout.

serErrBadPort this port does not exist.

Comments Gets MSR status of last swipe. Status byte format is as the following:

Bit5 1: track3 decoding was successful
0: error

Bit4 1: track2 decoding was successful
0: error

Bit3 1: track1 decoding was successful
0: error

Bit2 1: track3 has sampling data
0: error

Bit1 1: track2 has sampling data
0: error
2-17

SPT Terminal Series System Software Manual
Bit0 1: track3 has sampling data
0: error

Flag for decoding is effective only when corresponding sampling was
successful.

Example error = MsrGetStatus(GmsrMgrLibRefNum, &status);

See Also MsrSelfDiagnose
2-18

MSR 3000
MsrSelfDiagnose

Purpose Initiate MSR 3000 self test and return results.

Prototype Err MsrSelfDiagnose (UInt refNum)

Parameters refNum library reference number

Return MsrMgrNormal self diagnose successful.

MsrMgrErrNAK firmware NAK answer.

MsrMgrErrRes error response from MSR 3000.

MsrMgrErrROM ROM error.

MsrMgrErrRAM RAM error.

MsrMgrErrEEPROM EEPROM error.

serErrTimeOut handshake timeout.

serErrBadPort this port does not exist.

Comments Starts MSR self-diagnostic test and returns check result. It takes
approximately 2 seconds.

Example error = MsrSelfDiagnose(GMsrMgrLibRefNum);

See Also MsrGetStatus
2-19

SPT Terminal Series System Software Manual
MsrSetBufferMode

Purpose Set buffer mode of MSR 3000.

Prototype Err MsrSetBufferMode (UInt refNum, Byte mode)

Parameters refNum library reference number

mode buffer Mode to set MSR

Return MsrMgrNormal set buffer mode successful.

MsrMgrErrParam not allowed mode value.

MsrMgrErrNAK firmware NAK answer.

MsrMgrErrRes error response from MSR 3000.

serErrTimeOut handshake timeout.

serErrBadPort this port does not exist.

Comments Set Unbuffered Mode or Buffered Mode. Mode should be one of the following:
� MsrBufferedMode
� MsrUnbufferedMode

Example error = MsrSetBufferMode(GmsrMgrLibRefNum,
MsrUnbufferedMode);

See Also MsrGetSetting
2-20

MSR 3000
MsrArmtoRead

Purpose Enable MSR to be ready for a card swipe in buffered mode.

Prototype Err MsrArmtoRead (UInt refNum)

Parameters refNum library reference number

Return MsrMgrNormal arm to read successful.

MsrMgrErrParam mode neither Unbuffered nor Buffered mode.

MsrMgrErrNAK firmware NAK answer.

MsrMgrErrRes error response from MSR 3000.

serErrTimeOut handshake timeout.

serErrBadPort this port does not exist.

Comments Clears the buffer in the MSR and enables the MSR to be ready for a card
swipe. This function is for the Buffered Mode only.

Example error = MsrArmtoRead(GmsrMgrLibRefNum);

See Also MsrGetSetting
2-21

SPT Terminal Series System Software Manual
MsrSetTerminator

Purpose Set terminator setting to MSR 3000.

Prototype Err MsrSetTerminator (UInt refNum, Byte setting)

Parameters refNum library reference number

setting terminator to set MSR

Return MsrMgrNormal set terminator successful.

MsrMgrErrParam not allowed setting value.

MsrMgrErrNAK firmware NAK answer.

MsrMgrErrRes error response from MSR 3000.

serErrTimeOut handshake timeout.

serErrBadPort this port does not exist.

Comments The Terminator is a designated character which comes at the end of the last
track of data, to separate card reads. This function set CR/LF, CR, LF or None
as terminator.
The setting should be one of the following:

� MsrTerminatorCRLF
� MsrTerminatorCR
� MsrTerminatorLF
� MsrTerminatorNone

Example error = MsrSetTerminator(GmsrMgrLibRefNum,
MsrTerminatorCRLF);

See Also MsrGetSetting
2-22

MSR 3000
MsrSetPreamble

Purpose Set a preamble to MSR 3000.

Prototype Err MsrSetPreamble (UInt refNum, char *setting)

Parameters refNum library reference number

setting preamble string to set MSR 3000 MSR.

Return MsrMgrNormal set preamble successful.

MsrMgrErrParam string too long.

MsrMgrErrNAK firmware NAK answer.

MsrMgrErrRes error response from MSR 3000.

serErrTimeOut handshake timeout.

serErrBadPort this port does not exist.

Comments Sets preamble string. String should less than MAX_PRE_POST_SIZE.

Example error = MsrSetPreamble(GmsrMgrLibRefNum, “preamble\n”);

See Also MsrGetSetting
MsrSetPostamble
2-23

SPT Terminal Series System Software Manual
MsrSetPostamble

Purpose Set a postamble to MSR 3000.

Prototype Err MsrSetPostamble (UInt refNum, char *setting)

Parameters refNum library reference number

setting postamble string to set MSR 3000 MSR.

Return MsrMgrNormal set postamble successful.

MsrMgrErrParam string too long.

MsrMgrErrNAK firmware NAK answer.

MsrMgrErrRes error response from MSR 3000.

serErrTimeOut handshake timeout.

serErrBadPort this port does not exist.

Comments Sets postamble string. String should less than MAX_PRE_POST_SIZE.

Example error = MsrSetPostamble(GmsrMgrLibRefNum, “postamble\n”);

See Also MsrGetSetting
2-24

MSR 3000
MsrSetTrackSelection

Purpose Select tracks to be decoded to MSR 3000.

Prototype Err MsrSetTrackSelection (UInt refNum, Byte setting)

Parameters refNum library reference number

setting tracks information to get from MSR

Return MsrMgrNormal set track selection successful.

MsrMgrErrParam not allowed mode value.

MsrMgrErrNAK firmware NAK answer.

MsrMgrErrRes error response from MSR 3000.

serErrTimeOut handshake timeout.

serErrBadPort this port does not exist.

Comments Sets tracks to be decoded to the MSR 3000. Setting should be one of the
following:
MsrAnyTrack
MsrTrack1Only
MsrTrack2Only
MsrTrack3Only
MsrTrack1Track2
MsrTrack1Track3
MsrTrack2Track3
MsrAllThreeTracks

Example error = MsrSetTrackSelection(GmsrMgrLibRefNum,
MsrAnyTrack);

See Also MsrGetSetting
2-25

SPT Terminal Series System Software Manual
MsrSetTrackSeparator

Purpose Send track separator to MSR 3000.

Prototype Err MsrSetTrackSeparator (UInt refNum, Byte setting)

Parameters refNum library reference number

setting separator for tracks to set MSR

Return MsrMgrNormal set track separator successful.

MsrMgrErrNAK firmware NAK answer.

MsrMgrErrRes error response from MSR 3000.

serErrTimeOut handshake timeout.

serErrBadPort this port does not exist.

Comments Track separator is a designated character which separates data tracks.

Example error = MsrSetTrackSeparator(GmsrMgrLibRefNum, ‘\n’);

See Also MsrGetSetting
2-26

MSR 3000
MsrSetLRC

Purpose Send LRC mode to MSR 3000.

Prototype Err MsrSetLRC(UInt refNum, Byte setting)

Parameters refNum library reference number

setting LRC mode to set MSR

Return MsrMgrNormal set LRC successful.

MsrMgrErrParam added string too long.

MsrMgrErrNAK firmware NAK answer.

MsrMgrErrRes error response from MSR 3000.

serErrTimeOut handshake timeout.

serErrBadPort this port does not exist.

Comments LRC is a check character following the end sentinel. The setting should be
one of the following:
MsrSendLRC
MsrNoLRC

Example error = MsrSetLRC(GmsrMgrLibRefNum, MsrNoLRC);

See Also MsrGetSetting
2-27

SPT Terminal Series System Software Manual
sMsrSetDataEdit

Purpose Send data edit mode.

Prototype Err MsrSetDataEdit (UInt refNum, Byte mode)

Parameters refNum library reference number

mode Data edit mode to set MSR

Return MsrMgrNormal set data edit successful.

MsrMgrErrParam not allowed mode value.

MsrMgrErrNAK firmware NAK answer.

MsrMgrErrRes error response from MSR 3000.

serErrTimeOut handshake timeout.

serErrBadPort this port does not exist.

Comments Sets data edit mode. Mode should be one of the following:
MsrDisbaleDataEdit
MsrDataEditMatch
MsrDataEditUnmatch

Example error = MsrSetDataEdit(GmsrMgrLibRefNum,
MsrDisableDataEdit);

See Also MsrGetSetting
2-28

MSR 3000
MsrSetAddedField

Purpose Set added fields to MSR 3000.

Prototype Err MsrSetAddedField (UInt refNum,
char setting[MAX_AFLD_NUM] [MAX_AFLD_LEN+1])

Parameters refNum library reference number

setting added fields strings to set MSR 3000 MSR.

Return MsrMgrNormal set added fields successful.

MsrMgrErrParam string too long.

MsrMgrErrNAK firmware NAK answer.

MsrMgrErrRes error response from MSR 3000.

serErrTimeOut handshake timeout.

serErrBadPort this port does not exist.

Comments Set added fields strings for data edit. String should less than
MAX_AFLD_LEN.

Example “fld1”, “fld2\n”, {0x0A, 0x00}, “”};

error = MsrSetAddedField(GmsrMgrLibRefNum, addedField);

See Also MsrGetSetting
2-29

SPT Terminal Series System Software Manual
MsrSetDataEditSend

Purpose Set data edit send commands to MSR 3000.

Prototype Err MsrSetDataEditSend (UInt refNum,
char setting[MAX_SCMD_NUM] [MAX_SCMD_LEN)

Parameters refNum library reference number

setting send command setting for data edit.

Return MsrMgrNormal set added fields successful.

MsrMgrErrParam wrong send command.

MsrMgrErrNAK firmware NAK answer.

MsrMgrErrRes error response from MSR 3000.

serErrTimeOut handshake timeout.

serErrBadPort this port does not exist.

Comments Set data edit send commands.
setting is [ccsmd] [dmvsmd][aamvasmd] [flexsmd]
ccsmd = {field_len}{Hex E0}{field}[{field}] {Hex FF}...,
default is {Hex 00}{Hex FF}
dmvsmd = {field_len}{Hex E1}{field}[{field}]{Hex FF}...,
default is {Hex 00}{Hex FF}
aamvasmd = {field_len}{Hex E2}{field}[{field}]{Hex FF}...,
default is {Hex 00}{Hex FF}
flexsmd = {field_len}{Hex E3}{field}[{field}]{Hex FF}...,
default is {Hex 00}{Hex FF}
field_len is the number of bytes from {Hex Ex} to the {field} before {Hex FF}.
field is a one byte field identifier. The highest three bits are used to identify the
track number, and the lowest 5 bits is a unique field number.
2-30

MSR 3000
track7,track6,track5
000
001
010
011
111
1xx

Track number
Added field number
Track1 field number
Track2 field number
Track3 field number
11111 (Successive field)
xxxxx (Reserved)

The valid field number for Credit Card on track1 and track2 is 0~9, 0~6. And
there is no valid field number on track3.
The valid field number for California Driver License Card on each track is 0~7,
0~7 and 0~19.
The valid field number for AAMVA Card on each track is 0~6, 0~8 and 0~17.
The valid field number for added field is 0~5.
The valid field number for flexible field is 0~15.
The successive symbol 0xFF is a �~� symbol, so user need not write
successive field one by one.

Example char scmd [MAX_SCMD_NUM][MAX_SCMD_LEN] = {

{0x00, 0xFF},

{0x00, 0xFF},

{0x00, 0xFF},

{0x00, 0xFF}};

error = MsrSetDataEditSend(GmsrMgrLibRefNum, scmd);

See Also MsrGetSetting
2-31

SPT Terminal Series System Software Manual
MsrSetFlexibleField

Purpose Set added fields to MSR 3000.

Prototype Err MsrSetFlexibleField (UInt refNum,
char setting[MAX_FFLD_NUM] [MAX_FFLD_LEN)

Parameters refNum library reference number

setting flexible field setting to set MSR 3000.

Return MsrMgrNormal set flexible fields successful.

MsrMgrErrParam wrong setting of flexible field.

MsrMgrErrNAK firmware NAK answer.

MsrMgrErrRes error response from MSR 3000.

serErrTimeOut handshake timeout.
2-32

MSR 3000
serErrBadPort this port does not exist.

Comments Sets flexible fields for data edit.
<Flexible_Field> is [length_match][string_match][search_before]
[search_between][search_after]�
length_match = {field_len} {hex F0} {track_no} {minimum length} {maximum
length}
string_match = {field_len} {hex F1} {track_no}, {offset} {string_len} {string}
search_before = {field_len} {hex F2} {track_no}, {field_no} {times} {string_len}
{string}
search_between = {field_len} {hex F3} {track_no} {field_no} {times1}
{string1_len} {string1} {times2} {string2_len} {string2}
search_after ={field_len} {hex F4} {track_no} { field_no} {times1} {offset}
{length2} {length1} {string1}
track_no = High three bits of the byte, 001*****|010*****|011*****
field_no = Low five bits of the byte, ***00000~***11111
field_len is the number of bytes from {Hex Fx} to the end of command.
field is a one byte field identifier. The highest three bits are used to identify the
track number, and the lowest 5 bits is a unique field number.
If FlexFld[0][0] is 0, then MsrSetFlexibleField() means clear all flexible field.

Example char flexFld [MAX_FFLD_NUM][MAX_FFLD_LEN] = {{0x00}};
error = MsrSetFlexibleField(GmsrMgrLibRefNum, flexFld);

See Also MsrGetSetting
2-33

SPT Terminal Series System Software Manual
MsrGetDataBuffer

Purpose Request card data information for the Buffered Mode.

Prototype Err MsrGetDataBuffer (UInt refNum, MSRCardInfo_Ptr
userCardInfoP, Byte get_Type)

Parameters refNum library reference number

UserCardInfoP pointer to variable for user Card information

get_Type Type to get data

Return MsrMgrNormal No bad read and at least one good read on
the selected track.

MsrMgrErrParam wrong setting of flexible field.

MsrMgrErrNAK firmware NAK answer.

MsrMgrErrRes error response from MSR 3000, or call
MSRGetDataBuffer without �Arm To Read� or
�Have not swiped a card yet�.

MsrMgrBadRead bad read on any one of selected track.

MsrMgrNoData no card data at all selected tracks

serErrTimeOut handshake timeout.
2-34

MSR 3000
serErrBadPort cradle port does not exist

Comments Request card data Information. This function is for the Buffered Mode only.
get_Type should be one of the following:

� MsrGetAllTracks
� MsrGetTrack1
� MsrGetTrack2
� MsrGetTrack3

Application should call MsrArmtoRead() first, before swiping a card and call
MsrGetDataBuffer() to get the card information. MsrReadMsrBuffer() itself will
issue a MsrArmtoRead(), wait a specified time for user to swipe a card and
then get the card information. If the SPT goes to sleep before calling
MsrGetDataBuffer(), the data buffer is lost.

Example error = MsrGetDataBuffer(GmsrMgrLibRefNum, buff,
MsrGetAllTracks);

See Also MsrReadMSRBuffer
MsrReadMSRUnbuffer
2-35

SPT Terminal Series System Software Manual
MsrReadMSRBuffer

Purpose Request Card Information until receiving data or time out.

Prototype Err MsrReadMSRBuffer (UInt refNum, MSRCardInfo_Ptr
userCardInfoP,UInt waitTime)

Parameters refNum library reference number

UserCardInfoP pointer to variable for user Card information

waitTime timeout in 100ms units

Return MsrMgrNormal No bad read and at least one good read on
the selected track.

MsrMgrErrParam wrong setting of flexible field.

MsrMgrErrNAK firmware NAK answer.

MsrMgrErrRes error response from MSR 3000.

MsrMgrBadRead Bad read on any one of selected tracks.

MsrMgrNoData No card data at all selected tracks.

serErrTimeOut handshake timeout.
2-36

MSR 3000
serErrBadPort this port does not exist.

Comments Issues �Arm to Read�, then requests card information until receiving data or
time out. This function is for the Buffered Mode only.
Application should call MsrArmtoRead() first, before swipe a card and call
MsrGetDataBuffer() to get the card information. MsrReadMsrBuffer() itself will
issue a MsrArmtoRead(), wait a specified time for user to swipe a card and
then get the card information.

Example error = MsrReadMSRBuffer(GmsrMgrLibRefNum, buff, 20);
// request and read card information, timeout is 2 seconds

See Also MsrGetDataBuffer
MsrReadMSRUnbuffer
2-37

SPT Terminal Series System Software Manual
MsrReadMSRUnbuffer

Purpose Request card data Information for the unuffered mode.

Prototype Err MsrReadMSRUnbuffer (UInt refNum, MSRCardInfo_Ptr
userCardInfoP)

Parameters refNum library reference number

UserCardInfoP pointer to variable for user card information

Return MsrMgrNormal No error occurred during get.

MsrMgrErrParam wrong setting of flexible field.

MsrMgrErrNAK firmware NAK answer.

MsrMgrErrRes error response from MSR 3000.

serErrTimeOut handshake timeout.

serErrBadPort this port does not exist.

Comments Requests card data information. This function is for the unbuffered mode only.

Example error = MsrReadMSRUnuffer(GmsrMgrLibRefNum, buff);

See Also MsrReadMSRBuffer
MsrReadMSRBuffer
2-38

MSR 3000
MsrSetDecoderMode

Purpose Set the decoder mode for the MSR 3000.

Prototype Err MsrSetDecoderMode(UInt refNum, Byte mode)

Parameters refNum library reference number

mode decoder mode

Return MsrMgrNormal No error occurred during get.

MsrMgrErrParam wrong setting of flexible field.

MsrMgrErrNAK firmware NAK answer.

MsrMgrErrRes error response from MSR 3000.

serErrTimeOut handshake timeout.

serErrBadPort this port does not exist.

Comments Sets the decoder mode for the MSR 3000. Mode should be one of the
following:

MsrNormalDecoder Standard Decoder for ISO, DMV, AAMVA formats

MsrGenericDecoder Generic Decoder

MsrRawDataDecoder Raw Data Decoder

Example error = MsrSetDecoderMode(GmsrMgrLibRefNum, MsrNormalDecoder);

See Also MsrSetTrackFormat
MsrSetReservedChar
2-39

SPT Terminal Series System Software Manual
MsrSetTrackFormat

Purpose Set the parameters for the Generic Decoder, such as the Bit Format, Start and
End Sentinel.

Prototype Err MsrSetTrackFormat(Uint refNum, Byte track_ID,
Byte format, Byte SS_Bits, Byte SS_ASCII,
Byte ES_Bits, Byte ES_ASCII)

Parameters refNum library reference number

track_ID Track to be set

format Bit Format

SS_Bits The bit pattern of Start Sentinel for track 1

SS-ASCII The ASCII character of Start Sentinel for track 1

ES-Bits The bit pattern of End Sentinel for track 1

ES-ASCII The ASCII character of End Sentinel for track 1

Return MsrMgrNormal No error occurred during get.

MsrMgrErrParam wrong setting of flexible field.

MsrMgrErrNAK firmware NAK answer.

MsrMgrErrRes error response from MSR 3000.

serErrTimeOut handshake timeout.

serErrBadPort this port does not exist.

Comments Sets the parameters for the Generic Decoder, such as the Bit Format, Start
and End Sentinel.
track_Id should be one of the following:
2-40

MSR 3000
MsrTrack1Format
MsrTrack2Format
MsrTrack3Format

Track 1
Track 2
Track 3

The format should be one of the following:

Msr5BitsFormat
Msr7BitsFormat

5 bits with parity
7 bits with parity

Example error = MsrSetTrackFormat(GmsrMgrLibRefNum, MsrTrack1Format,
Msr7BitsFormat, 0x51, �%�, 0x7C, �?�);

See Also MsrSetDecoderMode
MsrSetReservedChar
2-41

SPT Terminal Series System Software Manual
MsrSetReservedChar

Purpose Set Special Reserved Characters for Generic Decoder only. Generic Decoder
is based on ISO standard 5 or 7 bits encoded format. This command can be
used to redefine the character in any position of ISO standard 5 or 7 bits
coded character set.

Prototype Err MsrSetReservedChar(Uint refNum, ReservedChar *
setting)

Parameters refNum library reference number

setting a set of reserved character to set

Return MsrMgrNormal No error occurred during setting.

MsrMgrErrParam wrong setting of flexible field.

MsrMgrErrNAK firmware NAK answer.

MsrMgrErrRes error response from MSR 3000.

serErrTimeOut handshake timeout.

serErrBadPort this port does not exist.

Comments Sets Special Reserved Characters.
Up to MAX_RES_CHAR_NUM characters can be set. Be sure to set format
of last character to NULL.
The following is the structure defintion for special reserved character.

Typedef struct ReservedChar {

Byte format;

char SR_Bits;

char SR_Chars;
2-42

MSR 3000
} ReservedCharSetting;

format:
SR-Bits:
SR-ASCII:

bit format of a special reserved character
The bit pattern of a special reserved character
The ASCII character of a special reserved character

Example error = MsrSetReservedChar(GmsrMgrLibRefNum, setting);

See Also MsrSetDecoderMode
MsrSetTrackFormat
2-43

SPT Terminal Series System Software Manual
Application Templates
The MSR Manager Shared Library is designed to be very easy to use. It also provides
flexibility for developers who want to have maximum control. The following are some
templates for different application needs.

If the developer needs an application to handle card data as soon as it arrives, then using
Unbuffered mode is recommended.

Unbuffered Mode, Simple Application
The application typically follows this template:

1. MsrOpen()
2. Prompt user to swipe a card.
3. Call MsrReadMSRUnbuffer(), when a msrDataReadyKey keyDown event is

received.
4. MsrClose()

If the developer needs an application to control the card swipe and card data read by itself,
then using Buffered mode is recommended.

Buffered Mode, Simple Application
The application typically follows this template:

1. MsrOpen()
2. Prompt user to swipe a card.
3. MsrReadMSRBuffer(), if return code indicates No-Data, loop back to 3. or prompt

user.
4. MsrClose()

Buffered Mode, Maximum Control
The application typically follows this template:

1. MsrOpen()
2. MsrArmtoRead()
3. Prompt user to swipe a card.
4. Perform other tasks until the application is ready to receive card data.
5. MsrGetDataBuffer(), if return code indicates No-Data, loop back to 5. or other

process.
6. MsrClose().
2-44

MSR 3000
MSR 3000 Configurator

Introduction
The MSR 3000 Configurator Program is a Windows application program. The Configurator
provides an easy to use graphic user interface for selecting features and setup the MSR
3000. The Configurator generates a header file with all the settings. The MSR Manager
Shared Library supports the application program with this header file included.

File menu commands
The File menu offers the following commands:

View menu commands
The View menu offers the following commands:

New Creates a new configuration file.

Open Opens an existing configuration file.

Exit Exits MSR 3000 Configurator.

Toolbar Shows or hides the toolbar.

Status Bar Shows or hides the status bar.
2-45

SPT Terminal Series System Software Manual
Help Menu Commands
The Help menu offers the following commands, which provide assistance with this
application:

Help Topics Displays an index of help topics for selection.

About Displays the version number of this application.
2-46

MSR 3000
New Command (File Menu)
Use this command to create a new file in MSR 3000 Configurator.

Use the Open command to open an existing file.

Shortcuts
Toolbar:

Keys: CTRL+N
2-47

SPT Terminal Series System Software Manual
Open Command (File Menu)
Use this command to open an existing file in a new window.

Use the New command to create a new file.

Shortcuts
Toolbar:

Keys: CTRL+O

File Open Dialog Box
The following options allow you to specify which file to open:

File Name: Type or select the filename you want to open. This box lists files with
the extension you select in the List Files of Type box.

List Files of Type: Select the type of file you want to open:*.fig

Drives: Select the drive in which MSR 3000 Configurator stores the file that
you want to open.

Directories: Select the directory in which MSR 3000 Configurator stores the file
that you want to open.
2-48

MSR 3000
Exit Command (File Menu)
Use this command to end your MSR 3000 Configurator session. The MSR 3000
Configurator prompts you to save files with unsaved changes.

Shortcuts
Mouse: Double-click the MSR 3000 Configurator's Control menu button in the

upper left-hand corner of the screen.

Keys: ALT+F4
2-49

SPT Terminal Series System Software Manual
Toolbar Command (View Menu)
Use this command to display and hide the Toolbar, which includes buttons for some of the
most common commands in MSR 3000 Configurator, such as File Open. A check mark
appears next to the toolbar menu item when the Toolbar is displayed.

See Toolbar on page 2-51 for help on using the toolbar.
2-50

MSR 3000
Toolbar
The toolbar is displayed across the top of the MSR 3000 Configurator�s window, below the
menu bar. The toolbar provides quick mouse access to many tools used in MSR 3000
Configurator.

To hide or display the Toolbar, choose Toolbar from the View menu (ALT, V, T).

Click: To:

Create a new file

Open an existing file.

Open the Help Topics screen, which allows you to
search for information about the Configurator.
2-51

SPT Terminal Series System Software Manual
Status Bar Command (View Menu)
Use this command to display and hide the Status Bar, which describes the action to be
executed by the selected menu item or depressed toolbar button, and keyboard latch state.
A check mark appears next to the menu item when the Status Bar is displayed.

See Status Bar on page 2-53 for help on using the status bar.
2-52

MSR 3000
Status Bar

The status bar is displayed at the bottom of the MSR 3000 Configurator window. To display
or hide the status bar, use the Status Bar command in the View menu.

The left area of the status bar describes actions of menu items as you use the arrow keys
to navigate through menus. This area similarly shows messages that describe the actions
of toolbar buttons as you press them, before releasing them. If, after viewing the
description of the toolbar button command, you wish not to execute the command, then
release the mouse button while the pointer is off the toolbar button.

The right areas of the status bar indicate which of the following keys are latched down:

Indicator Description

CAP The Caps Lock key is latched down.

NUM The Num Lock key is latched down.

SCRL The Scroll Lock key is latched down.
2-53

SPT Terminal Series System Software Manual
Help Topic Command (Help Menu)
Use this command to display the Help Index Contents screen. From the Index Contents
screen, you can jump to step-by-step instructions for using MSR 3000 Configurator and
various types of reference information.

Once you open Help, you can click the Contents button whenever you want to return to the
Index screen.There are two other search options within the help application. You can
search for information via an alphabetic index of topics by selecting the Index command, or
you can enter search criteria using the Find command.
2-54

MSR 3000
About Command (Help Menu)
Use this command to display the copyright notice and version number of your copy of MSR
3000 Configurator.
2-55

SPT Terminal Series System Software Manual
Context Help Command
Use the Context Help command to obtain help on the MSR 3000 Configurator. The Help
topic for the item you selected displays.

Shortcut
Keys: SHIFT+F1

Title Bar
�MSR 3000 Configurator� displays in the title bar.

The title bar is located along the top of a window. It contains the name of the application
and document.

To move the window, drag the title bar. Note: You can also move dialog boxes by dragging
their title bars.

A title bar may contain the following elements:

� Application Control-menu button
� Document Control-menu button
� Maximize button
� Minimize button
� Name of the application
� Name of the document
� Restore button
2-56

MSR 3000
Scroll Bars
Displayed at the right and bottom edges of the document window. The scroll boxes inside
the scroll bars indicate your vertical and horizontal location in the document. You can use
the mouse to scroll to other parts of the document.

Restore Command (Control menu)
Use this command to return the active window to its size and position before you chose the
Maximize or Minimize command.
2-57

SPT Terminal Series System Software Manual
Move Command (Control Menu)
Use this command to display a four-headed arrow so you can move the active window or
dialog box with the arrow keys.

Note: This command is unavailable if you maximize the window.

Shortcut
Keys: CTRL+F7
2-58

MSR 3000
Size Command (Control Menu)
Use this command to display a four-headed arrow so you can size the active window with
the arrow keys.

After the pointer changes to the four-headed arrow:

1. Press one of the DIRECTION keys (left, right, up, or down arrow key) to move the
pointer to the border you want to move.

2. Press a DIRECTION key to move the border.
3. Press ENTER when the window is the size you want.

Note: This command is unavailable if you maximize the window.

Shortcut
Mouse: Drag the size bars at the corners or edges of the window.
2-59

SPT Terminal Series System Software Manual
Minimize Command (Control Menu)
Use this command to reduce the MSR 3000 Configurator window to an icon.

Shortcut
Mouse: Click the minimize icon on the title bar.

Keys: ALT+F9
2-60

MSR 3000
Maximize Command (Control Menu)
Use this command to enlarge the active window to fill the available space.

Shortcut
Mouse: Click the maximize icon on the title bar; or double-click the title bar.

Keys: CTRL+F10 enlarges a document window.
2-61

SPT Terminal Series System Software Manual
Close Command (Control Menu)
Use this command to close the MSR 3000 Configurator.

Double-clicking the Control-menu box is the same as choosing the Close command.

Shortcuts
Keys: ALT+F4 closes the application window
2-62

MSR 3000
Configurator Properties Buttons
There are four buttons which appear on each screen within the configurator.

Save Config Button
Use this button to save the active configuration file to its current name and directory. When
you save a file for the first time, MSR 3000 Configurator displays the Save As dialog box
so you can name your file.

File Save As dialog box
The following options allow you to specify the name and location of the file you're about to
save:

File Name: Type a new filename to save a file with a different name. A filename can
contain up to eight characters and an extension of up to three characters.
MSR 3000 Configurator adds the extension you specify in the Save File As
Type box.

Drives: Select the drive in which you want to store the document.

Directories: Select the directory in which you want to store the document.

Close Button
Use this button to close the MSR 3000 Configurator Properties dialog. If you didn�t save,
the current settings changed will lost.

Default All Button
Use this button to restore all configuration settings to their default values.

Help Button
Use this button to display detailed help information about the fields on the screen.

Using the Configurator to Set the MSR 3000

Introduction
The Configurator is a Windows GUI utility. It helps the application developer to do MSR
3000 configuration and be aware of MSR 3000 setting structure. The Configurator can
2-63

SPT Terminal Series System Software Manual
create a CodeWarrior include file for selected MSR 3000 setting, and the application
developer can use the include file and call MsrSendSet() function to set up the MSR 3000.

MSR Setting Structure
typedef struct ReservedChar {

Byte format;

char SR_Bits;

char SR_Chars;

} ReservedChar;

Typedef struct MSR_Setting {

Byte Buffer_mode;

Byte Terminator;

char Preamble[MAX_PRE_POST_SIZE+1];

char Postamble[MAX_PRE_POST_SIZE+1];

Byte Track_selection;

Byte Track_separator;

Byte LRC_setting;

Byte Data_edit_setting;

Byte Decoder_mode;

Byte Track_format[MAX_TRACK_NUM][TRACK_FORMAT_LEN];

ReservedChar Reserved_chars[MAX_RES_CHAR_NUM];

char Added_field[MAX_AFLD_NUM][MAX_AFLD_LEN+1];

char Send_cmd[MAX_SCMD_NUM][MAX_SCMD_LEN];

char Flexible_field[MAX_FFLD_NUM][MAX_FFLD_LEN]

} MSR_Setting;
2-64

MSR 3000
MSR Constant
#define LF 0x0A

#define CR 0x0D

#define DC1 0X11

#define DC3 0X13

#define MsrUnbufferedMode '0'

#define MsrBufferedMode '1'

#define MsrArmtoReadMode '0'

#define MsrClearBufferMode '1'

#define MsrLEDOff '0'

#define MsrLEDOn '1'

#define MsrLEDBlink '2'

#define MsrTerminatorCRLF '0'

#define MsrTerminatorCR '1'

#define MsrTerminatorLF '2'

#define MsrTerminatorNone '3'

#define MsrAnyTrack 0

#define MsrTrack1Only 1

#define MsrTrack2Only 2

#define MsrTrack1Track2 3

#define MsrTrack3Only 4

#define MsrTrack1Track3 5

#define MsrTrack2Track3 6

#define MsrAllThreeTracks 7
2-65

SPT Terminal Series System Software Manual
#define MsrNoLRC '0'

#define MsrSendLRC '1'

#define MsrDisableDataEdit '0'

#define MsrDataEditMatch '1'

#define MsrDataEditUnmatch '3'

#define MsrGetAllTracks '0'

#define MsrGetTrack1 '1'

#define MsrGetTrack2 '2'

#define MsrGetTrack3 '3'

Include File Format Created by Configurator

MSRSetting user_MsrSetting = {

MsrBufferedMode,

MsrTerminatorCRLF,

 �Preamble\n�,

�Postamble\n�,

MsrAnyTrack,

CR,

MsrSendLRC,

MsrDisableDataEdit,

{�addf1�,�addf2�,�addf3�, ��, ��,��},

{{0x08, 0xE0, �},{0x10, 0xE1, �},{0X06, 0XE2, },{NULL}},

{{0XF0, �},{0XF1, �}�}

}

2-66

MSR 3000
Generating an Include File by Configurator
1. In the File Menu, Click New to display the MSR Configurator Properties screen.
2. On the MSR Configurator Properties screen, select all fields, as described in

Appendix C, Data Editing Overview for Magnetic Stripe Reader.
3. Click the �Save Config� button to display a �Save As� dialog box.
4. Change directory to where the file should be saved.
5. Type the file name in the �File Name� edit box. The default extension of the file is

�.h�.
6. Press the �Save� button to save the file or the �Cancel� button exit without saving.

Setting the MSR 3000 with the Configurator
1. Create a include file by Configurator to a specified setting, actually it define a static

variable user_MsrSetting.
2. Include this include file in the application program.
3. Call SysLibFind(MsrMgrLibName, &GMsrMgrLibRefNum) and/or

SysLibLoad(MsrMgrLibTypeID, MsrMgrLibCreatorID, &GMsrMgrLibRefNum) to
load library and get library reference number GmsrMgrLibRefNum.

4. Call MsrOpen(GMsrMgrLibRefNum, &msrVer, &libVer) to open MSR shared
library.

5. Call MsrSendSetting(GMsrMgrLibRefNum, user_MsrSetting) to set MSR 3000.
6. Call MsrClose(GmsrMgrLibRefNum) to close the library.
7. Call SysLibRemove(GMsrMgrLibRefNum) to remove library from memory.
2-67

SPT Terminal Series System Software Manual
A Simple Application Program Sample

Include Files
The following #include statement provides MSR Manager interface definitions.

� #include "MsrMgrLib.h"
2-68

MSR 3000
PilotMain Routine
The PilotMain function is a standard Palm orginizer application. If the launch code is
sysAppLaunchCmdNormalLaunch, the application program will do initialization in AppStart
and an run event loop until it closes the application program. At this point, the application
program will be terminated by AppStop.

/***

 *

 * FUNCTION: PilotMain

 *

 * DESCRIPTION: This is the main entry point for the application program.

 *

 * PARAMETERS: cmd - word value specifying the launch code.

 * cmdPB - pointer to a structure that is associated with the launch code.

 * launchFlags - word value providing extra information about the launch.

 * RETURNED: Result of launch

 *

 * REVISION HISTORY:

 *

 *

 ***/

static DWord PilotMain(Word cmd, Ptr cmdPBP, Word launchFlags)

{

Err error;

FormPtr frmP;

switch (cmd)
2-69

SPT Terminal Series System Software Manual
{

case sysAppLaunchCmdNormalLaunch:

error = AppStart();

if (error) {

AppStop();

return error;

}

frmP = FrmInitForm(MSRInfoForm);

FrmDoDialog(frmP);

// Delete the info form.

 FrmDeleteForm(frmP);

FrmGotoForm(MainForm);

AppEventLoop();

AppStop();

default:

break;

}

return 0;

}

2-70

MSR 3000
AppStart Function
The AppStart function shows what you need to do to initialize the MSR. This function:

� Loads the MSR Manager shared library.
� Powers on the MSR.
� Initiates communication between the application program and MSR 3000.
� Allocates a global handle for card data to display.

/***
 *
 * FUNCTION: AppStart
 *
 * DESCRIPTION: Initialize Application program.
 *
 * PARAMETERS: nothing
 *
 * RETURNED: Err value 0 if nothing went wrong
 *
 * REVISION HISTORY:
 *
 *

 ***/

static Err AppStart(void)

{

Err error;

VoidHand gH;

MSRLibGlobals_Ptr gP;

SysLibTblEntryPtr libEntryP;

unsigned long versionNo;

// Load the MSR library

error = SysLibFind(MsrMgrLibName, &GMsrMgrLibRefNum);
2-71

SPT Terminal Series System Software Manual
if (error) {

// to load MSR library

error = SysLibLoad(MsrMgrLibTypeID, MsrMgrLibCreatorID, &GMsrMgrLibRefNum);

}

if (error == MsrMgrNormal) {

error = MsrOpen(GMsrMgrLibRefNum, &versionNo);

if (error != MsrMgrNormal) {

FormPtrfrmP;

frmP = FrmInitForm(NoMSRForm);

FrmDoDialog(frmP);

// Delete the info form.

 FrmDeleteForm(frmP);

 //MsrClose(GMsrMgrLibRefNum);

return (error);

 }

};

// Allocate a new memory chunk that will contain received string.

newHandle = MemHandleNew(MAX_CARD_DATA);

return (MsrMgrNormal);

}

2-72

MSR 3000
MainFormHandleEvent Function
PilotMain calls EventLoop after calling AppStart. The MainFormHandleEvent function is an
event handler for main form. It deals with following events.

� FrmLoadEvent: Initialize and load Main Form
� FrmOpenEvent: Draw the main Form
� FrmCloseEvent: Close the main Form
� MenuEvent: Open the About Form
� KeyDownEvent with MsrDataReadyEve: call RS232_Receive to read card data

and display it.

/***
 *
 * FUNCTION: MainFormHandleEvent
 *
 * DESCRIPTION: This routine is the event handler for the
 * "MainForm" of this application program.
 *
 * PARAMETERS: eventP - a pointer to an EventType structure
 *
 * RETURNED: true if the event has handle and should not be passed
 * to a higher level handler.
 *
 * REVISION HISTORY:
 *
 *
 ***/

static Boolean MainFormHandleEvent(EventPtr eventP)

{

 Boolean handled = false;

 FormPtr frmP;

 Err error;

FieldPtr fld;
2-73

SPT Terminal Series System Software Manual
switch (eventP->eType)

{

case menuEvent:

switch (eventP->data.menu.itemID)

{

case MainOptionsAboutMSRSample:

// Load the info form, then display it.

MenuEraseStatus (CurrentMenu);

// Clear the Main form.

frmP = FrmInitForm(MSRInfoForm);

FrmDoDialog(frmP);

// Delete the info form.

 FrmDeleteForm(frmP);

handled = true;

break;

}

break;

case frmLoadEvent:

FrmInitForm(MainForm);

handled = true;

break;
2-74

MSR 3000
case frmOpenEvent:

frmP = FrmGetActiveForm();

FrmDrawForm(frmP);

handled = true;

break;

case frmCloseEvent:

frmP = FrmGetActiveForm();

fld = GetObjectPtr(MainCardInfoField);

FldSetTextHandle(fld, NULL);

frmP = FrmGetActiveForm();

FrmEraseForm(frmP);

FrmDeleteForm(frmP);

handled = true;

break;

 case ctlSelectEvent: // A control button was pressed and released.

break;

case keyDownEvent:

if ((eventP->data.keyDown.chr==msrDataReadyKey)) {

handled=true;

error = MSR_Receive();
2-75

SPT Terminal Series System Software Manual
}

break;

default:

break;

}

return handled;

}

2-76

MSR 3000
/***
 *
 * FUNCTION: MSR_Receive
 *
 * DESCRIPTION: This routine is check RS232 Port
 * and display received data on DataInfo field
 *
 * PARAMETERS: frmP - a pointer to Main Form
 *
 * RETURNED: true if no error occured.
 *
 * REVISION HISTORY:
 *
 *
 ***/

static UInt MSR_Receive()

{

FieldPtr fld;

Err error;

unsigned short numReceived;

CharPtr newText;

// get Field pointer

fld = GetObjectPtr(MainCardInfoField);

// RS232 receive

// get a card data time out is 500 ms

error = MsrReadMSRUnbuffer(GMsrMgrLibRefNum, buff);

if (error)

return (error);

numReceived = StrLen(buff);
2-77

SPT Terminal Series System Software Manual
if (numReceived){

// Lock down the handle and get a pointer to the memory chunk.

newText = MemHandleLock(newHandle);

// clear screen

*newText = NULL;

FldSetTextHandle(fld, newHandle);

FldDrawField(fld);

// Copy the data from the RS232 to the new memory chunk.

if (numReceived && (numReceived<MAX_CARD_DATA)) {

StrCopy(newText, buff);

}

// Unlock the new memory chunk.

MemHandleUnlock(newHandle);

// Set the field's text to the data in the new memory chunk.

FldSetTextHandle(fld, newHandle);

FldDrawField(fld);

}

return (MsrMgrNormal);

}

2-78

MSR 3000
AppStop Function
The AppStop function is called at the end of PilotMain. It

� Closes the MSR Manager shared library
� Powers off the MSR
� Frees the global handle for card data to display

/***
 *
 * FUNCTION: AppStop
 *
 * DESCRIPTION: Save the current state of the application program.
 *
 * PARAMETERS: nothing
 *
 * RETURNED: nothing
 *
 * REVISION HISTORY:
 *
 *
 ***/

static void AppStop(void)

{

Err error;

// close MSR manager library

error = MsrClose(GMsrMgrLibRefNum);

// Uninstall the MSR Manager library

if (!GMsrMgrLibWasPreLoaded && GMsrMgrLibRefNum != sysInvalidRefNum)

{

error = SysLibRemove(GMsrMgrLibRefNum);
2-79

SPT Terminal Series System Software Manual
ErrFatalDisplayIf(error, "error uninstalling MSR Manager library.");

GMsrMgrLibRefNum = sysInvalidRefNum;

}

// Free a memory chunk

if (newHandle)

MemHandleFree(newHandle);

}

2-80

Chapter 3
Printers for Palm Computing Platform

Introduction
This introduction contains an overview of the Printer Software Manual for the Palm
Computing Platform and provides a list of the appropriate reference documents and
conventions. This chapter is for developers who want to create print applications for the
Palm III or Symbol Palm Terminal (SPT) and it assumes that you are familiar with the
CodeWarrior development environment.

The Printer Software Manual for the Palm Computing Platform is part of the Symbol
Software Development Kit (SDK). Developers can use the SDK to create print applications
that use the Palm III and SPT transports (serial port, infrared) to send data from the
handheld device to the supported printers listed in the following table.

See Appendix E, Supported Printers for a list of supported printer names and models.

Commercial Printers Portable Label Printers

PCL Comtec

PostScript Monarch

O�Neil

Symbol

Zebra
3-1

SPT Terminal Series System Software Manual
Application Programming Interface (API)
The Symbol printer API has four main features:

� The ability to handle the Palm�s multiple communication transports, such as the
IrDA port and the RS232 serial port. This feature simplifies applications that use
printing, because they do not need to deal with the specifics of each transport.

� High-level text and graphics functions that shield the developer from the details and
the escape sequences that must be used to print text and graphics.

� A generic write function that passes the data directly to the printer with no filtering
or formatting.

� A set of interfaces for a printer capability database. A printer capability database is
similar to a UNIX printcap file. The API provides printcap information for all
supported printer types; the Symbol Print API calls retrieve specific printcap
information and use it to communicate with a printer. The API can also return
printcap information to the application. The printcap file can be expanded for other
types of printers.

This API works with other Palm APIs and libraries, such as the Symbol Scanner API, and
fits seamlessly into a full-feature printer API that supports JetSend, PCL, and PostScript
drivers.

API Architectural Overview
The printer API is a shared library that accesses a printer capability (printcap) database.
The printcap database contains:

Printer transport parameters�Transport parameters include parity, baud rate, stop bits,
and so on. These parameters will vary from printer to printer, based on which transports are
supported. For example, an IR-based printer entry will specify baud rate, while a serial
printer will specify baud rate, stop bits, and parity settings.

Printer-specific commands�Each printer has unique commands for such operations as
resetting the printer, querying the status of a printer, and initializing the printer. These
printer-specific commands have been included in the printcap database, so that developers
don�t have to know the specific commands for the different printers.

The printcap database is distributed with the printer API. The printers that are currently
supported by the printcap database is listed in the Appendix; this list is expected to grow
rapidly, and updates to the printcap database can be obtained from Symbol Technology's
web site at:

http://devzone.symbol.com
3-2

Printers for Palm Computing Platform
Figure 3-1 on page 3-3 shows an architectural overview of the printer API and its associated
printcap database.

Figure 3-1. Printer API Interfaces

The Symbol printer API architecture provides an interface between your application and the
supported transport mechanisms on the Palm device. Currently, two printer transports are
supported: IR and serial.

The printer library uses the printcap database to communicate with the desired printer. The
printcap database converts generic commands, such as �reset,� into printer-specific strings
that each printer can understand.

Your application can also communicate with a printer that is not included in the printcap
database. When you use the ptOpenPrinter function call, you need only set the printer
model name to �Unknown,� and the printer shared library will not query the printcap
database for information. Instead, it is up to you as the developer to provide the parameters.
For instance, to reset the printer, the ptResetPrinter function call is used, but you would
be required to provide the reset string to be sent to the printer.

Printer API

Serial
Port

IrDA
Port

Printcap
File

Application
Serial
printer

IR-based
printer
3-3

SPT Terminal Series System Software Manual
Section Descriptions
API Function Calls�Description of each function call in the API. These calls are divided
into the following sections:

� General Purpose Interface Functions
� High-level API Calls
� Lower-level API Calls

Also included are definitions of the external data structures and enumerated types used by
the Symbol Printer API.

Sample Application�An example application that uses some of the function calls available
in the API.

System Requirements

Conventions Used in this Manual
This guide uses the following typographical conventions.

Hardware requirements: Palm III or SPT

Software requirements: Palm OS 3.0 or greater
HotSync 2.0 or greater

This style Is used for . . .

Fixed width font Code elements such as functions, structures, fields, and
bitfields

-> Input

Blue Hyperlinks

Italics Emphasis (for other elements)
3-4

Printers for Palm Computing Platform
API Function Calls

Introduction
The functions described in this chapter allow you to send text and simple graphic data from
a Palm III device or SPT to a supported printer.

Returned Status Definitions
The printer commands in this chapter may return one or more of the status codes described
below.

STATUS CODE DEFINITION

PTStatusAlreadyOpen The printer is already open.

PTStatusAlreadyConnect A connection has already been made to the printer.

PTStatusBadParameter One of the parameters of the function call was
incorrect.

PTStatusErrLine When using the serial transport, a failure occurred
during the SerReceive application call.

PTStatusFail The function call failed.

PTStatusIrBindFailed When using the IR transport, a failure occurred
during the IrBind application call.

PTStatusIrConnectFailed When using the IR transport, a failure occurred
during the IrConnectReq application call.

PTStatusIrConnectLapFailed When using the IR transport, a failure occurred
during the IrConnectLap application call.

PTStatusIrDiscoverFail When using the IR transport, a failure occurred
during the IrDiscoveryReq application call.

PTStatusIrNoDeviceFound When using the IR transport, no device was found
during the IrDiscoveryReq application call.

PTStatusIrQueryFailed When using the IR transport, a failure occurred
during the IrIASQuery application call.

PTStatusNoMemory No dynamic heap space is available to hold library
data.

PTStatusNotOpen Tried to use or close a port that was not open.
3-5

SPT Terminal Series System Software Manual
These status codes are also defined in the ptPrint.h files included with the SDK.

Print Commands
The calls in the API provide three types of functions:

Also included in this chapter are descriptions of the external data structures and
enumerated types used by the Symbol Printer API.

PTStatusOK The function call was successfully executed.

PTStatusPrintCapFailed The function call tried to access a printcap entry
that doesn�t exist.

PTStatusPrinterNotFound The target printer is not defined in the printcap
database.

PTStatusRomIncompatible The Palm OS version must be 3.0 or greater.

PTStatusTimeOut A timeout occurred while waiting for data from the
printer.

PTStatusTransportNotAvail The requested transport (serial port, IrDa) is not
available.

FUNCTION TYPE PURPOSE PAGE

General Purpose Interface Functions Control the printer�s operation. 3-7

High-level API Calls Print text and simple graphics. 3-18

Lower-level API Calls Retrieve printcap entries and send
user-formatted data to the printer.

3-26

Data Structures 3-29

STATUS CODE DEFINITION
3-6

Printers for Palm Computing Platform
General Purpose Interface Functions
The general purpose interface function calls tell the printer to do the following:

� Open
� Close
� Connect
� Disconnect
� Initialize
� Reset
� Get the printer�s status

The calls included in this section are:

FUNCTION PAGE

ptClosePrinter 3-8

ptConnectPrinter 3-9

ptDisconnectPrinter 3-11

ptInitPrinter 3-12

ptOpenPrinter 3-13

ptPrintApiVersion 3-15

ptQueryPrinter 3-16

ptResetPrinter 3-17
3-7

SPT Terminal Series System Software Manual
ptClosePrinter

Purpose Cleans up and closes the shared library.

Prototype PTStatus ptClosePrinter ();

Returned Status PTStatusOK The function call was successfully executed.

PTStatusNotOpen Tried to use or close a port that was not open.

Comments Call ptClosePrinter after the printing is completed.

See Also ptOpenPrinter
3-8

Printers for Palm Computing Platform
ptConnectPrinter

Purpose Establishes a connection to the printer using the serial port or an IR
connection.

Prototype PTStatus ptConnectPrinter (CharPtr printerName);

Parameters -> printerName Name of printer; used for future
transports other than serial or IR.

Returned Status PTStatusOK The function call was successfully
executed.

PTStatusNotOpen Tried to use or close a port that was
not open.

PTStatusBadParameter Serial only. One of the parameters of
the function call was incorrect.

PTStatusFail IrDa only. The function call failed.

PTStatusTransportNotAvail The requested transport (serial port,
IrDa) is not available.

PTStatusAlreadyConnect A connection has already been made
to the printer.

PTStatusNoMemory No dynamic heap space is available
to hold library data.

PTStatusIrConnectFailed When using the IR transport, a failure
occurred during the IrConnectReq
application call.

PTStatusTimeOut IrDa only. A timeout occurred while
waiting for data from the printer.
3-9

SPT Terminal Series System Software Manual
PTStatusIrNoDeviceFound IrDa only. When using the IR
transport, no device was found during
the IrDiscoveryReq application call.

PTStatusIrDiscoverFail IrDa only. When using the IR
transport, a failure occurred during
the IrDiscoveryReq application call.

PTStatusIrConnectFailed IrDa only. When using the IR
transport, a failure occurred during
the IrConnectReq application call.

PTStatusIrConnectLapFailed IrDa only. When using the IR
transport, a failure occurred during
the IrConnectLap application call.

PTStatusIrQueryFailed IrDa only. When using the IR
transport, a failure occurred during
the IrIASQuery application call.

Comments For serial and IR transports, set printerName to NULL.
To save battery power on the handheld device, be sure to disconnect the
printer (by calling ptDisconnectPrinter) after your application has successfully
printed the data. This is especially important if your application is using the
serial port. However, you do not need to close the printer until the application
is finished.

See Also ptClosePrinter
3-10

Printers for Palm Computing Platform
ptDisconnectPrinter

Purpose Disconnects the printer.

Prototype PTStatus ptDisconnectPrinter ();

Returned Status PTStatusOK The function call was successfully executed.

PTStatusNotOpen Tried to use or close a port that was not open.

Comments This function call closes the port for the serial transport. If the printer is
connected through IR, the IR connection is disconnected.
To save battery power on the handheld device, use this function call to
disconnect the printer after your application has successfully printed the data.
This is especially important if your application is using the serial port.
However, you do not need to close the printer until the application is finished.

See Also ptConnectPrinter
ptClosePrinter
3-11

SPT Terminal Series System Software Manual
ptInitPrinter

Purpose Initializes the printer.

Prototype PTStatus ptInitPrinter (VoidPtr initPtr, ULong length);

Parameters -> initPtr Pointer to the string sent as the initialization to
the printer. If the initialization string is NULL, the
�is� (initialization string) value is taken from the
printcap database and sent to the printer.

-> length Length of initialization string.

Returned Status PTStatusOK The function call was successfully executed.

PTStatusNotOpen Tried to use or close a port that was not open.

Comments The initialization string is a set of hexadecimal bytes sent to the printer to
initialize it. If a printcap entry exists for the attached printer, the default
initialization for the printer will already exist in the database, and this
argument can be set to NULL. An error is returned if a printcap entry does not
exist for the destination printer and the initPtr argument is NULL.
This function call overrides any existing initialization settings.

See Also ptResetPrinter
3-12

Printers for Palm Computing Platform
ptOpenPrinter

Purpose Opens and initializes the shared library.

Prototype PTStatus ptOpenPrinter(CharPtr printerModel,
PTTransports transport,
PTConnectSettingsPtr connectSettings);

Parameters -> printerModel Model of the printer to be opened.
References printcap information.

-> transport The transport type.

-> connectSettings Contains information for baud rate, parity
settings, stop bits, and handshaking. This
information can overwrite connection
settings in the printcap database.

Returned Status PTStatusOK The function call was successfully
executed.

PTStatusAlreadyOpen The printer is already open.

PTStatusRomIncompatible The Palm OS version must be 3.0 or
greater.

PTStatusNoMemory No dynamic heap space is available to
hold library data.

PTStatusPrinterNotFound The target printer is not defined in the
printcap database.
3-13

SPT Terminal Series System Software Manual
PTStatusIrBindFailed IrDa only. When using the IR transport, a
failure occurred during the IrBind
application call.

PTStatusTimeOut IrDa only. A timeout occurred while
waiting for data from the printer.

Comments To use the printcap database default connection settings, set connectSettings
to NULL. If the printer is connected using IR, only the baud rate applies.
The ptConnectSettings structure is documented in the Data Structures
section at the end of this chapter. It is also included in the ptPrint.h file.

See Also ptClosePrinter
3-14

Printers for Palm Computing Platform
ptPrintApiVersion

Purpose Returns the version number of the Printer Library.

Prototype PTStatus ptPrintApiVersion (CharPtr ptr, Int len);

Parameters -> ptr Pointer to the character buffer in which the
version number will be placed.

-> len Size of the character buffer.

Returned Status PTStatusOK The function call was successfully executed.

PTStatusNotOpen The application must first call ptOpenPrinter
before using this function.

PTStatusFail The ptr parameter is invalid.

Comments In version 1.0, the buffer must be 12 characters long, as the return string is
�ptPrint 1.0.�
You must open the printer library before making this function call. You can
close the library after the call.
3-15

SPT Terminal Series System Software Manual
ptQueryPrinter

Purpose Queries the printer condition.

Prototype PTStatus ptQueryPrinter (VoidPtr queryPtr, ULong length,
VoidPtr queryResPtr, uLong queryResLen);

Parameters -> queryPtr Pointer to the memory used to send the query to
the printer. If it is NULL, the �qs� (query string)
value from the printcap database entry for this
printer is used.

-> length Length of query data to be sent to the printer.

-> queryResPtr Pointer to the memory used to hold any response
from the query. This buffer is provided and
released by the application.

-> queryResLen Length of the query response buffer pointed to by
queryResPtr.

Returned Status PTStatusOK The function call was successfully executed.

PTStatusErrLine Serial only. When using the serial transport, a
failure occurred during the SerReceive
application call.

PTStatusNotOpen Tried to use or close a port that was not open.

PTStatusTimeOut IrDa only. A timeout occurred while waiting for
data from the printer.

Comments The data referenced by queryPtr is a set of hexadecimal bytes that represents
the printer-specific query command. The data is sent to the printer to query its
status. The response is then placed into the memory allocated by the
application, pointed to by queryResPtr.
An error is returned to the calling application if a printcap entry for the
destination printer does not exist and the queryPtr argument is NULL.
3-16

Printers for Palm Computing Platform
ptResetPrinter

Purpose Resets the printer.

Prototype PTStatus ptResetPrinter (VoidPtr resetPtr, ULong length);

Parameters -> resetPtr Pointer to data that is sent to the printer; this data
is used to reset the printer. If it is NULL, the �rs�
(reset string) value from the printcap database
entry for this printer is used.

-> length Length of reset string.

Returned Status PTStatusOK The function call was successfully executed.

PTStatusNotOpen Tried to use or close a port that was not open.

Comments The reset string is a set of hexadecimal bytes sent to the printer to reset it. An
error is returned if a printcap entry does not exist for the destination printer
and the resetPtr argument is NULL.

See Also ptInitPrinter
3-17

SPT Terminal Series System Software Manual
High-level API Calls
The high-level API calls send commands to the printer to print the following:

� Text
� Simple graphics

The calls included in this section are:

The high-level API calls rely on the presence of a print buffer that is allocated by calling the
ptStartPrintBuffer function. Each call to ptLineToBuffer, ptRectToBuffer,
and ptTextToBuffer adds commands to the print buffer. Calling
ptPrintPrintBuffer sends the commands to the printer and frees the print buffer
memory.

FUNCTION PAGE

ptLineToBuffer 3-19

ptPrintPrintBuffer 3-20

ptRectToBuffer 3-21

ptResetPrintBuffer 3-22

ptSetFont 3-23

ptStartPrintBuffer 3-24

ptTextToBuffer 3-25
3-18

Printers for Palm Computing Platform
ptLineToBuffer

Purpose Adds the print line command to the buffer.

Prototype PTStatus ptLineToBuffer (UInt xStart, UInt yStart,
UInt xEnd, UInt yEnd,UInt lineThickness);

Parameters -> xStart X-coordinate of line start point.

-> yStart Y-coordinate of line start point.

-> xEnd X-coordinate of line end point.

-> yEnd Y-coordinate of line end point.

-> lineThickness Thickness of the line to be drawn (dots).

Returned Status PTStatusOK The function call was successfully executed.

PTStatusFail The function call failed.

PTStatusNoMemory No dynamic heap space is available to hold
library data.

PTStatusPrintCapFa
iled

The function call tried to access a printcap entry
that doesn�t exist.

Comments ptLineToBuffer determines which command sequence from the printcap
database is needed to print a simple line on a specific printer. It adds the
command to the allocated buffer and includes logic to expand the buffer size
if it is not large enough to hold the command and the line.
Refer to the printer documentation for a definition of the start and end points.

See Also ptTextToBuffer
ptRectToBuffer
3-19

SPT Terminal Series System Software Manual
ptPrintPrintBuffer

Purpose Prints the data residing in the print buffer, then frees the memory in the print
buffer.

Prototype PTStatus ptPrintPrintBuffer (CharPtr printerName);

Parameters -> printerName Name of printer; used for future transports other
than serial or IR.

Returned Status PTStatusOK The function call was successfully executed.

PTStatusFail The function call failed.

PTStatusNoMemory No dynamic heap space is available to hold
library data.

PTStatusPrintCapFa
iled

The function call tried to access a printcap entry
that doesn�t exist.

Comments For serial and IR transports, set printerName to NULL.
To save battery power on the handheld device, be sure to disconnect the
printer (by calling ptDisconnectPrinter) after your application has successfully
printed the data. This is especially important if your application is using the
serial port. However, you do not need to close the printer until the application
is finished.
After the print buffer has been sent to the printer, the print buffer memory is
freed.
3-20

Printers for Palm Computing Platform
ptRectToBuffer

Purpose Adds the print rectangle command to the buffer.

Prototype PTStatus ptRectToBuffer (UInt xTopLeft, UInt yTopLeft,
UInt xBottomRight,
UInt yBottomRight,
UInt lineThickness);

Parameters -> xTopLeft X-coordinate of rectangle top left point.

-> yTopLeft Y-coordinate of rectangle top left point.

-> xBottomRight X-coordinate of rectangle bottom right point.

-> yBottomRight Y-coordinate of rectangle bottom right point.

-> lineThickness Thickness of the lines of the rectangle (dots).

Returned Status PTStatusOK The function call was successfully executed.

PTStatusFail The function call failed.

PTStatusNoMemory No dynamic heap space is available to hold
library data.

PTStatusPrintCapFa
iled

The function call tried to access a printcap entry
that doesn�t exist.

Comments ptRectToBuffer determines which command sequence from the printcap
database is needed to print a rectangle on a specific printer. It adds the
command to the allocated buffer and includes logic to expand the buffer size
if it is not large enough to hold the command and the rectangle.

See Also ptLineToBuffer
ptTextToBuffer
3-21

SPT Terminal Series System Software Manual
ptResetPrintBuffer

Purpose Frees the print buffer memory.

Prototype PTStatus ptResetPrintBuffer ()

Returned Status PTStatusOK The function call was successfully executed.

PTStatusFail The function call failed.

PTStatusNoMemory No dynamic heap space is available to hold
library data.

PTStatusPrintCapFa
iled

The function call tried to access a printcap entry
that doesn�t exist.

Comments This function call performs the same function as ptPrintPrintBuffer, except it
doesn�t print the data in the print buffer.
3-22

Printers for Palm Computing Platform
ptSetFont

Purpose Sets the printer�s typeface and type size.

Prototype PTStatus ptSetFont (CharPtr fontBuffPtr);

Parameters -> fontBuffPtr Contains information about the font the user
would like to set.

Returned Status PTStatusOK The function call was successfully executed.

PTStatusFail The function call failed.

PTStatusNoMemory No dynamic heap space is available to hold
library data.

PTStatusPrintCapFa
iled

The function call tried to access a printcap entry
that doesn�t exist.

Comments The format of fontBuffPtr is:;;
The printer API parses the fontBuffPtr string to get the font type, width, and
length. When text is printed, the API substitutes the variable data for the font.
If a printer doesn�t require the font width, you can leave that variable blank by
providing only ;;
You must include both semicolons between and so
the printer API recognizes that the variable is missing.
3-23

SPT Terminal Series System Software Manual
ptStartPrintBuffer

Purpose Sets the printer library�s initial buffer size.

Prototype PTStatus ptStartPrintBuffer (ULong size);

Parameters -> size Length of the initial buffer.

Returned Status PTStatusOK The function call was successfully
executed.

PTStatusFail The function call failed.

PTStatusNoMemory No dynamic heap space is available to hold
library data.

PTStatusPrintCapFailed The function call tried to access a printcap
entry that doesn�t exist.

See Also ptTextToBuffer
ptLineToBuffer
ptRectToBuffer
ptPrintPrintBuffer
3-24

Printers for Palm Computing Platform
ptTextToBuffer

Purpose Adds the print text command to the buffer.

Prototype PTStatus ptTextToBuffer (UInt xStart, UInt y Start,
CharPtr pText);

Parameters -> xStart Beginning X-coordinate of print data.

-> yStart Beginning Y-coordinate of print data.

-> pText Pointer to text that will be printed.

Returned Status PTStatusOK The function call was successfully executed.

PTStatusFail The function call failed.

PTStatusNoMemory No dynamic heap space is available to hold
library data.

PTStatusPrintCapFa
iled

The function call tried to access a printcap entry
that doesn�t exist.

Comments ptTextToBuffer determines which command sequence from the printcap
database is needed to print text on a specific printer. It adds the command and
the text to the allocated buffer. ptTextToBuffer includes logic to expand the
size of the buffer if it is not large enough to hold the command and the text.

See Also ptLineToBuffer
ptRectToBuffer
3-25

SPT Terminal Series System Software Manual
Lower-level API Calls
The lower-level API calls do the following:

� Retrieve printcap entries
� Send user-formatted data to the printer

The calls included in this section are:

FUNCTION PAGE

ptQueryPrintCap 3-27

ptWritePrinter 3-28
3-26

Printers for Palm Computing Platform
ptQueryPrintCap

Purpose Queries the printcap database for the given token.

Prototype PTStatus ptQueryPrintCap (CharPtr query,
VoidPtr queryResPtr,
ULong queryResLen);

Parameters -> query Pointer to the memory used to find the value in
the printcap entry for the open printer.

-> queryResPtr Pointer to the memory used to hold any response
from the query.

-> queryResLen Maximum length of the query response.

Returned Status PTStatusOK The function call was successfully executed.

PTStatusNotOpen Tried to use or close a port that was not open.

Comments After querying the printcap database, the queryResPtr buffer is filled in with
the query results. Some special characters will be represented by
hexadecimal bytes. For example, ESC will be converted to the hexadecimal
value 0x1B. Other escape character conversions are also supported, such as
ALT, CTRL, Newline, and Carriage Return.
3-27

SPT Terminal Series System Software Manual
ptWritePrinter

Purpose Writes data to the printer.

Prototype PTStatus ptWritePrinter (VoidPtr buffer, ULong length);

Parameters -> buffer Pointer to the data to send to the printer.

-> length Length of the data to be written.

Returned Status PTStatusOK The function call was successfully executed.

PTStatusNotOpen Tried to use or close a port that was not open.

PTStatusTimeOut A timeout occurred while waiting for data from
the printer.

Comments To successfully use this function call, you must be familiar with the destination
printer language.
The content of the buffer is provided by the developer; the assumption is that
the contents are well-formatted for the destination printer. With ptWritePrinter,
the developer can communicate directly with the printer.
The ptWritePrinter function call can be used to print barcodes, text, and
simple graphics on legacy printers, which rely on forms.
Contact the printer manufacturer for proper formatting for printer commands.
3-28

Printers for Palm Computing Platform
Data Structures
This section defines the data structures and enumerated types used by the printer API as
noted in the following table.

EXTERNAL DATA STRUCTURE PAGE

Printcap Database 3-30

PTConnectSettings 3-30

PTStatus 3-31

PTTransports 3-31
3-29

SPT Terminal Series System Software Manual
Printcap Database
The printcap database is an ASCII-based, token=value file structure that describes the
characteristics of each supported printer. This structure is owned by Symbol Technologies
and the printer manufacturers. Entries to this database will be updated by Symbol, and will
be made available on their website at:

http://devzone.symbol.com

PTConnectSettings
The PTConnectSettings structure represents the serial or IrDA setting information.

typedef struct tagPTConnectSettings {

ULong baudRate; // baud rate
ULong timeOut; // time out in System Ticks
ULong flags; // transport flags; see SerialMgr.h
UInt recvBufSize; // receive buffer size

} PTConnectSettings;
typedef PTConnectSettings * PTConnectSettingsPtr;

Available serial port baud rates for connectSettings are 9600, 14400, 19200, 38400,
57600, and 115200. The available flags in the SerialMgr.h file are:

#define serSettingsFlagStopBitsM 0x00000001 // mask for stop bits field

#define serSettingsFlagStopBits1 0x00000000 // 1 stop bits

#define serSettingsFlagStopBits2 0x00000001 // 2 stop bits

#define serSettingsFlagParityOnM 0x00000002 // mask for parity on

#define serSettingsFlagParityEvenM 0x00000004 // mask for parity even

Available IR baud rates for connectSettings are 9600, 57600, and 115200. Refer to the
Irlib.h file for a list of available flags for this structure.
3-30

Printers for Palm Computing Platform
PTStatus
PTStatus represents the possible status values from the printer API to the application.

typedef enum
{

PTStatusAlreadyOpen,
PTStatusAlreadyConnect,
PTStatusBadParameter,
PTStatusErrLine,
PTStatusFail,
PTStatusIrBindFailed,
PTStatusIrConnectFailed,
PTStatusIrConnectLapFailed,
PTStatusIrDiscoverFail,
PTStatusIrNoDeviceFound,
PTStatusIrQueryFailed,
PTStatusNoMemory,
PTStatusNotOpen,
PTStatusPrinterNotFound,
PTStatusRomIncompatible,
PTStatusTimeOut,
PTStatusTransportNotAvail,

} PTStatus;

PTTransports
PTTransports represents the possible transports.

typedef enum
{

PTSerial,
PTIr,
PTTransportMax,

} PTTransports;
3-31

SPT Terminal Series System Software Manual
Sample Application
The Symbol Printer API includes a simple example of a print application. This application
is a single screen, and its source code serves as an example of how to use the print library.
In the sample application, you choose the transport method, either serial or IR, and then
choose one of the printers listed on the right of the screen. Nine buttons are listed in the
COMMAND popup menu at the bottom left of the screen; their functionality is listed below.

OPEN button�When you tap the OPEN button, the printer library opens, is loaded into
memory, and initialized. The printcap database opens, and the entry for the chosen printer
is found.

CLOSE button�To close the printer library, tap the CLOSE button. If you have not already
opened the print library, an error message displays.

FORM button�When you tap the FORM button, a canned form is loaded onto the specified
printer. If you have not opened the printer library, an error message displays, telling you to
do so. If the form has already been downloaded to the printer, it should still be memory-
resident, and you do not need to download it again. This button uses the low-level API calls
to print.

DATA button�To print the form on the attached printer, tap the DATA button. If you have
not opened the print library, an error message displays, telling you to do so. This button
uses the low-level API to print.

QUERY PRINTER button�To view a list of printer status parameters, tap the QUERY PRINTER
button. A popup window opens. Tap the OK button to close the popup.

INIT PRINTER button�To initialize the selected printer, tap the PRINTER INIT button.

RESET PRINTER button�To reset the selected printer, tap the RESET PRINTER button.

API VERSION button�To determine the version number of the print library, tap the API
VERSION button. If you have not already opened the print library, an error may be displayed.

HIGH LEVEL API button�To print text or a simple graphic using the high-level API calls, tap
the HIGH LEVEL API button. The high-level API functions are supported on all of the printers
listed in the sample application, except Monarch. Before using the high-level API calls, you
must tap the OPEN button to open the printer. Be sure to CLOSE the printer after the data
has been printed.

Six buttons are listed in the PrintCap Query popup menu at the bottom right of the
screen; tap the appropriate button to display the printcap entry for the following:
3-32

Printers for Palm Computing Platform
� Baud Rate
� Stop Bit
� Parity
� Query Value
� Init Value
� Reset Value

To display a printcap entry, you must select both a TRANSPORT and a PRINTER, and the
printer library must be opened.

Code Samples
For your application to print data using the Symbol print API, it must first accomplish several
important steps. The following sections present some examples of how to do this. Please
use the example print application as well.

Opening the Print Library
The first step in using the printer API is to open and initialize the library; this is done with
the ptOpenPrinter function call. In this call, you must specify the printer model name and
the transport mechanism. Below is an example of the code needed for the Comtec RP3
printer.
3-33

SPT Terminal Series System Software Manual
Err error;
Boolean retval = FALSE;
PTConnectSettingsPtr pSettings = NULL;

error = ptOpenPrinter("Oneil", PTSerial, pSettings);
if (error != PTStatusOK)
{

ErrNonFatalDisplayIf(error,
"Cannot open print library or find ONeil printcap entry");
return retval;

}

If you are using a printer that is not included in the printcap database, specify �Unknown�
as your printer model name, as shown below.
Err error;
Boolean retval = FALSE;
PTConnectSettings cSettings;

// specify connection settings
cSettings.baudRate = PTDefaultSerBaudRate;
cSettings.timeOut = PTDefaultSerTimeout;
cSettings.flags = PTDefaultSerFlags;
cSettings.recvBufSize = PTDefaultSerRecvBuf;

// connect to serial printer
error = ptOpenPrinter("Unknown", PTSerial, &cSettings);
if (error != PTStatusOK)
{

ErrNonFatalDisplayIf(error,
"Cannot initialize print library");
return retval;

}

Similarly, if you are printing with a PostScript printer, specify it as your printer model name
in the ptOpenPrinter function call.
Err error;
Boolean retval = FALSE;
PTConnectSettingsPtr pSettings = NULL;
3-34

Printers for Palm Computing Platform
error = ptOpenPrinter("Postscript", PTSerial, pSettings);
if (error != PTStatusOK)
{

ErrNonFatalDisplayIf(error,
"Cannot open print library or find Postscript printcap entry");
return retval;

}

Connecting to the Printer
The second step in using the printer API is to connect to the printer; this is done with the
ptConnectPrinter function call. In this call, the library searches for the printer and
makes either a serial or IR connection, depending on the transport that you specified in the
ptOpenPrinter function call.

The printer name parameter has been reserved for use with future transport types. It is not
used or recognized if the transport type is serial or IR.

Err error;
Boolean retval = FALSE;
CharPtr printerName = NULL;

error = ptConnectPrinter(printerName);
if (error != PTStatusOK)
{

ErrNonFatalDisplayIf(error, "Could not connect printer");
ptClosePrinter();
return retval;

}

Querying the Printer
To get the printer�s status, you can query the printer with the ptQueryPrinter function
call. This requires that you have already issued the ptOpenPrinter call and the
ptConnectPrinter, and that a valid connection to the printer exists. The example below
assumes that you have connected to a printer that has a valid printcap entry; in this case,
you do not need to provide a query string, since it is already in the printcap database.

#define StatusBuffLen 256

Err error;
Boolean retval = FALSE;
VoidPtr queryPtr = NULL;
Byte statusBuffer[StatusBuffLen];
3-35

SPT Terminal Series System Software Manual
error = ptQueryPrinter(queryPtr, (ULong) 0, &statusBuffer,
(ULong) StatusBuffLen);

if (error != PTStatusOK)
{

ErrNonFatalDisplayIf(error, "Could not query the printer");
ptClosePrinter();
return retval;

}

In the second query example, let's assume that we've already connected to an �Unknown�
printer that doesn't have a printcap entry. In this case, we would have to provide a query
string that the printer can understand.
#define StatusBuffLen 256

Err error;
Boolean retval = FALSE;
CharPtr queryString = "QUERY"; // made-up query string

// for Unknown printer
Byte statusBuffer[StatusBuffLen];

error = ptQueryPrinter(queryString,
(ULong) (StrLen(queryString)),
&statusBuffer,
(ULong) StatusBuffLen);

if (error != PTStatusOK)
{

ErrNonFatalDisplayIf(error, "Could not query the printer");

ptClosePrinter();

return retval;
}

As the code example above illustrates, after you connect to an �Unknown� printer, you must
supply commands that your printer understands for the following function calls:

� ptQueryPrinter
� ptInitPrinter
� ptResetPrinter

If you do not provide the custom commands for the query, initialization, or reset function
calls, they will fail.
3-36

Printers for Palm Computing Platform
Writing Data to the Printer
There are two ways of writing to the printer. You can either use the high-level API calls or
you can use the low-level ptWritePrinter function call. If you use ptWritePrinter, the
data you send to the printer must be well-formed for the specific printer.

The high-level API calls are designed so that you can use the same set of calls for multiple
printers. The functions take the input parameters and ensure that the data destined for the
printer is well-formed for the specific printer.

Using the Low-Level API
If you have created a custom label or custom form for the printer, you can simply send the
form data to the printer using the ptWritePrinter function call. In the example below,
the form data has been statically included in the C-code. (This form data is customized for
the Comtec RP3 printer.)

Err error;
Boolean retval = FALSE;
CharPtr pForm = "! DF SHELF.FMT\r\n" \

"! 0 200 230 230 1\r\n" \
"BOX 100 100 480 210 1\r\n" \
"CENTER\r\n" \
"TEXT 4 3 0 15 " "\\\\\r\n" \
"TEXT 4 0 0 95 " "\\\\\r\n" \
"BARCODE UPCA 1 1 40 0 145 " "\\\\\r\n" \
"TEXT 7 0 0 185 " "\\\\\r\n" \
"FORM\r\n" \
"PRINT\r\n";

CharPtr pData = "! UF SHELF.FMT\r\n" \
"$99.99\r\n" \
"SWEATSHIRT\r\n" \
"40123456784\r\n" \
"40123456784\r\n";

// download the form to the printer
error = ptWritePrinter(pForm, StrLen(pForm));
if (error != PTStatusOK)
{

ErrNonFatalDisplayIf(error, "Form download failed");
ptClosePrinter();
return retval;

}

3-37

SPT Terminal Series System Software Manual
// write the data to the printer
error = ptWritePrinter(pData, StrLen(pData));
if (error != PTStatusOK)
{

ErrNonFatalDisplayIf(error, "Write failed");
ptClosePrinter();
return retval;

}

Using the High-Level API
If you would like to write data to the printer using the high-level API, you must use a series
of function calls to set up the print buffer, format the output, and send the resulting print
buffer to the printer. For example:

// initialize the print buffer with a starting length
PTStatus status;
status = ptStartPrintBuffer(256);
if (PTStatusOK != status)

return status;

// format some text
status = ptTextToBuffer(0, 30, "This is some sample text");
if (PTStatusOK != status)
{

ptResetPrintBuffer();
return status;

}

// format a line, y = 50, xStart=0, xEnd=120
status = ptLineToBuffer(0, 50, 120, 50);
if (PTStatusOK != status)
{

ptResetPrintBuffer();
return status;

}

3-38

Printers for Palm Computing Platform
// format a rectangle
// xStart, yStart = (20, 215)
// xEnd, yEnd = (200, 280)
// thickness = 4 dots
status = ptRectToBuffer(20, 215, 200, 280, 4);
if (PTStatusOK != status)
{

ptResetPrintBuffer();
return status;

}

// write the print buffer to the printer
status = ptPrintPrintBuffer(NULL);
if (PTStatusOK != status)
{

ptResetPrintBuffer();
return status;

}

Disconnecting the Printer and Closing the Library
In your application, once you're done with the printing operation, disconnect the printer and
close the print library.

Err error;

// Disconnect the printer
error = ptDisconnectPrinter();

// Close the printer
error = ptClosePrinter();

If your application could print data at various times, you should call
ptDisconnectPrinter to disconnect the printer between print jobs; however, you do not
need to close the printer each time (by using the ptClosePrinter call).

If you do not disconnect the printer between print jobs, you leave the serial port or IR
connection open, and the battery on the Palm or SPT device could drain quickly.
3-39

SPT Terminal Series System Software Manual
3-40

Chapter 4
Spectrum24

Introduction
This chapter provides an overview of Spectrum24® wireless operation, as well as
information about the Spectrum24 programming interface.

Caution
The API detailed in this chapter is supported by Palm OS v4.1 Symbol
Terminals only.

ESSID and BSSID
ESSID and BSSID are names used by Spectrum24 terminal (mobile Spectrum24® units)
radios to connect with 802.11 protocol enabled access points using the same names (the
Spectrum24 terminal is 802.11 enabled). ESSID is the local radio network's name and is
used by both access points and Spectrum24 terminals to identify members of the network.
An ESSID name is mandatory for 802.11 operation. Only units that have the proper ESSID
are allowed on the network. ESSID is valid throughout the RF network, so Spectrum24
terminal's that roam can stay connected to the network throughout an installation.

Note: ESSID is a character string of up to 32 bytes in length. Do not
programmatically set a string to non-printable characters, because it
will be hard to decode that string later if it is forgotten.
4-1

SPT Terminal Series System Software Manual
BSSID is the 6-byte MAC address of a particular access point. BSSID can limit network
accessibility to specific access points in the attempt to load balance a LAN, or to keep
specific operations in one area. Note that each Spectrum24 terminal also has its own
BSSID.

Wired and Wireless Network Connections
At the highest level of network communications, applications exchange data messages.
These messages are often sent from one computer to another, along with system control
messages. The transfer medium can be a physical connection (wire, fiber), open-air (radio,
IR), or a combination of the two.

Every device in a totally wired network can always communicate with all other devices in
the network, as long as the devices are turned on and the wiring connecting them is intact.
Most standard communication protocol stacks assume that the messages always get
through because they are written to depend on the intact wired connection. When a
message is sent, the sending device starts a time-out counter and waits for a reply from the
receiving device. If the time-out expires, the original message can be retransmitted and the
time-out restarted. This retransmit process could continue indefinitely, but it is usually
performed fewer than five times. If the last retransmit times out, an error condition is
returned to the application indicating that the connection was lost. At that point, an error
message is usually displayed and the application is aborted because the wire is assumed
to be broken.

In a wireless network, where devices can be moved around, the device may not be able to
maintain the connection to the network. This could be a normal occurrence, as when a
device is taken from one building to another and is temporarily out of the network�s range.
Ideally, the connection between the application in the Spectrum24 terminal and the
application in the network�s host computer remains intact. When the terminal gets back in
range, the operation should resume. However, if the protocol stack (written for a wired
network) times out because it does not get an ACK message from the receiving device, the
connection is usually assumed to be broken; an error code is returned to the application,
and the application is aborted. In a wireless environment, this should not happen. Software
in a wireless environment should at least detect an out-of-range condition and not push
messages onto the transport layer until the Spectrum24 terminal is back in range. If
detection is not possible, applications should be designed to either recover from the out-of-
range condition (rather than abort) or use transport layers that are tolerant of a protracted
inability to communicate. If tolerant transport layers are not available, set the time-out or
retransmit parameters to their maximum so that the occasional out-of-range condition does
not abort the application as soon as this condition starts.
4-2

Spectrum24
Figure 1-1 shows how an application interfaces with the Spectrum24 terminal�s PalmOS
NetLib API functions.

Note: NetLib is a wrapper around the IP stack and is used by Spectrum24
terminal applications to send and receive data. For a detailed
description of NetLib, see the standard Palm Programming
documentation.
4-3

SPT Terminal Series System Software Manual
Figure 4-1. Spectrum24 Interfaces

S24 Network Application

Network
Run-Tim e
Library

NetLib API

Net Protocol S tack

Prefs
Database

S24 Preferences
Panel P lug-In S24

Com ponents

Driver

NetLib Interface

Firm ware API Host

802.11 Firm w are

Spectrum 24 R adio

Palm O S Environm ent

Radio Tx/Rx

External
AP

Reset Application
4-4

Spectrum24
Spectrum24/NetLib Design and Implementation
Considerations

Feature Limitations for this Model
The following list describes features not supported:

� Spectrum24 terminals support only the IEEE 802.11 protocol.
� 802.1 header message formats are not supported.
� Mobile IP is not supported.
� Multicast messages are not supported.

General Application Design Considerations
Applications running on a local radio network (LRN) must be able to handle the following
adverse conditions:

� Long delays caused by congestion (other Spectrum24 communications) of the
LRN and by the Spectrum24 terminal roaming in and out of the LRN's range

� Long delays in the wired network responses
� High TCP retry timeouts, which might cause the socket to close and lose the

network connection
� Slow connection or re-connection to the host application server
� RF transmissions being locked out by aggressive user scanning operations.

Turning the Spectrum24 Radio Interface On and Off
When an application calls the NetLibOpen command (see the standard Palm Programming
documentation), NetLib interfaces to the Spectrum24 Radio Driver which powers up the
radio, and initializes and configures the radio for RF transmissions. The Spectrum24 driver
powers off the radio when an application calls the NetLibClose command.

NetLib Interface UI
When initializing, the network interface on the Spectrum24 terminal displays three windows
that contain the following status information about the RF network connection:

� Associating with ESSID <essid>
� Binding (getting an IP address from the DHCP server)
� Connected
4-5

SPT Terminal Series System Software Manual
One key status indicator is association with an access point. Your application can determine
through a Spectrum24 API (netIFSettingS24AssociationStatus on page 4-20) whether or
not the Spectrum24 terminal is associated to an access point. Ideally, your application
should display a dialog or other indication when the Spectrum24 terminal radio loses
association with an AP for a period of time.

Note: Situations where the UI does not go beyond the associating stage
usually imply a failure to connect to an access point. Stopping at the
binding stage indicates a problem negotiating an IP address through
the DHCP process.

Roaming/Unassociation Condition
A Spectrum24 terminal unassociates with an access point when the Spectrum24 terminal
radio is out of range or is in the process of associating with another access point. If an
application tries to transfer data while the radio is unassociated with an access point, the
data and perhaps the network connection may be lost. The application should not attempt
to transmit data until the association is reacquired.

Applications can use a Spectrum24 API (netIFSettingS24AssociationStatus on page 4-20)
to get the current AP association status before sending data through NetLib calls.

Note: A user interface should display if the Spectrum24 terminal is
unassociated for more than a few seconds to notify the operator to
return to the network and display the reason the application is on
hold. Do not display the out-of-range UI on the first unassociation;
give the terminal a chance to re-associate.
4-6

Spectrum24
Power Management
Power management functionality is integrated into the radio driver and network interface.
The power management implementation integrates features provided in the Spectrum24
terminal Palm OS (auto-off timer, power key on/off, dead battery level, and low battery
level), Spectrum24 radio firmware (sleep, host power-down), and the Spectrum24
hardware interface controller application-specific integrated circuit (ASIC) (VCC on/off).

To maximize battery life on the Spectrum24 terminal, the Spectrum24 driver automatically
tries to keep the radio operating in the most energy efficient manner.

Note: It is the application�s responsibility to re-establish the connections to
the host. Socket connections must be re-established through NetLib
using the NetLibConnectionRefresh() function call.

NetLibConnectionRefresh()
Power-off conditions cause the MAC-layer (radio) to go down while NetLib stays open.
Calls to NetLibConnectionRefresh() ensure that the MAC-layer is up. If an application has
not been closed and NetLib is still open, the application should call
NetLibConnectionRefresh() before each socket operation and Spectrum24 API call. This
causes the Spectrum24 driver to either restart or resume the Spectrum24 terminal radio. It
also causes reassociation to an AP.
4-7

SPT Terminal Series System Software Manual
Spectrum24 Radio API

Caution
This API is supported by Palm OS v4.1 Symbol Terminals only.

The Programmer's Interface
This section describes the Spectrum24 Radio API that developers can use for Spectrum24
radio terminals. Using this API, an application can control some of the Spectrum24
terminal's radio behavior and gather information about its radio settings. The API lets the
application configure such items as the radio's ESSID string, and read items such as the
current radio association status.

Spectrum24 is a network interface that abstracts the low-level networking protocols, much
like SLIP or PPP. In Palm OS, the network library configuration is structured so that network
interface specific settings, called IF settings, can be specified for each network interface
independently. NetLibIFSettingGet() and NetLibIFSettingSet() calls set and retrieve these
IF settings.

The Spectrum24 Radio API is a set of Spectrum24 network interface specific settings, such
as the radio's ESSID string (netIFSettingS24EssID on page 4-16) or the current radio
association status with an access point (netIFSettingS24AssociationStatus on page 4-20).

To use the Spectrum24 Radio API in your application:

1. Include the S24API.h header file in your application.
2. Obtain the PalmOS net library's reference number.
3. Call NetLibIFSettingGet() or NetLibIFSettingSet() with the following parameters:

� libRefNum Reference number of the net library obtained in step 2
� ifCreator Creator of the Spectrum24 network interface; netIFCreatorS24
� ifInstance Instance number of the Spectrum24 network interface;

netIFInstanceS24
� setting Setting to retrieve or set; one of the s24NetIFSettings constants
� valueP Buffer pointer for the retrieved or set value of the setting
� valueLenP Buffer size for the retrieved or set value of the setting
4-8

Spectrum24
Note: Applications are not required to configure any of the radio settings
using this API. By default, the Spectrum24 terminal radio initializes
and connects to the Spectrum24 network based on the preferences
set in the Spectrum24 Network Preference Panel on your terminal.

The rest of this chapter covers:

� Spectrum24 Data Structures on page 4-10
� Spectrum24 Constants on page 4-13
� Spectrum24 Network Interface Settings on page 4-14

For more information on the PalmOS Net Library, see the Network Communication chapter
in the Palm OS Programmer's Companion, vol. II, Communications.

For more information on the NetLibIFSettingGet() and NetLibIFSettingSet() PalmOS API
functions, see the Net Library Functions section of the Net Library chapter in the Palm OS
Programmer's API Reference, Part III: Communications.
4-9

SPT Terminal Series System Software Manual
Spectrum24 Data Structures

S24UserNetworkPrefs
These preferences can be get or set by calling NetLibIFSettingGet() and
NetLibIFSettingSet() functions with netIFSettingS24Preferences on page 4-26. They are
also changeable in the Spectrum24 Network Preference Panel in your terminal.

struct
{

Char szESSID[S24_ESS_ID_LENGTH + 1];
Boolean bShowESSID;
Boolean bUseDHCP;
Boolean bEnableDNS
NetIPAddr addrStaticIP;
NetIPAddr addrSubnetMask;
NetIPAddr addrGateway;
NetIPAddr addrPrimaryDNS;
NetIPAddr addrSecondaryDNS;
Char szHostName[S24_HOST_NAME_LEN];
Char szDomainName[S24_DOMAIN_NAME_LEN];

} S24UserNetworkPrefs;

Field Descriptions

szESSID ESS ID to use when associating.

bShowESSID Show/Hide ESS ID string on association screen.

bUseDHCP Enable or disable DHCP.

bEnableDNS Enable or disable DNS.

addrStaticIP Static IP of the Spectrum24 device. Only used if DHCP is disabled.

addrSubnetMask Subnet mask for the Spectrum24 device. Only used if DHCP is
disabled.

addrGateway Gateway used by the Spectrum24 device. Only used if DHCP is
disabled.
4-10

Spectrum24

addrPrimaryDNS Primary DNS used by the Spectrum24 device. Only used if DHCP is
disabled.

addrSecondaryDNS Secondary DNS used by the Spectrum24 device. Only used if DHCP
is disabled.

szHostName Host name of the Spectrum24 device.

szDomainName Domain name of the Spectrum24 device.
4-11

SPT Terminal Series System Software Manual
S24MKKCallsign
MKK call sign data structure (for Japanese radio configuration only).

The MKK call sign buffer is structured as follows: The first byte is a flag byte. The following
15 bytes are the preamble, the frame delimiter, and the encoded MKK serial number.

struct
{

Boolean valid;
UInt8 callsign[S24_MKK_CALLSIGN_LEN];

} S24MKKCallsign;

Field Descriptions

S24IFSetting
I/F setting structure, used to pass complex data structures to NetLibIFSettingGet() and
NetLibIFSettingSet() functions.

struct
{

UInt16 option;
MemPtr buffer;

} S24IFSetting;

Field Descriptions

valid Valid flag

callsign Call sign data

option I/F setting, i.e., specific Spectrum24 preference

buffer Pointer to data being get or set
4-12

Spectrum24
Spectrum24 Constants

S24PreferenceType
Following is a list of Spectrum24 network preferences.

netIFCreatorS24 Creator ID of the Spectrum24 network interface passed to
NetLibIFSettingGet() and NetLibIFSettingSet() functions.

netIFInstanceS24 Instance of the Spectrum24 network interface passed to
NetLibIFSettingGet() and NetLibIFSettingSet() functions.

Table 4-1. Spectrum24 Network Preferences

Preference Data Type Description

s24PrefESSID Char[S24_ESS_ID_LENGTH + 1] ESS ID to use when
associating

s24PrefShowESSID Boolean Show ESS ID string on
association screen

s24PrefUseDHCP Boolean Enable DHCP

s24PrefEnableDNS Boolean Enable DNS

s24PrefStaticIP NetIPAddr Static IP of the Spectrum24
device

s24PrefSubnetMask NetIPAddr Subnet mask for the
Spectrum24 device

s24PrefGateway NetIPAddr Gateway used by the
Spectrum24 device

s24PrefPrimaryDNS NetIPAddr Primary DNS used by the
Spectrum24 device

s24PrefSecondaryDNS NetIPAddr Secondary device used by
the Spectrum24 device

s24PrefHostName Char[S24_HOST_NAME_LEN] Host name of the
Spectrum24 device

s24PrefDomainName Char[S24_DOMAIN_NAME_LEN] Domain name of the
Spectrum24 device
4-13

SPT Terminal Series System Software Manual
Spectrum24 Network Interface Settings

Table 4-2. Spectrum24 Network Interface Settings

Setting Name Page Number

netIFSettingS24Device 4-15

netIFSettingS24EssID 4-16

netIFSettingS24AccessPointBSSID 4-18

netIFSettingS24DriverVersion 4-19

netIFSettingS24AssociationStatus 4-20

netIFSettingS24MKKCallsign 4-22

netIFSettingS24CountryText 4-23

netIFSettingS24FirmwareVersion 4-24

netIFSettingS24FirwareDate 4-25

netIFSettingS24Preferences 4-26
4-14

Spectrum24
Code Sample
#include <PalmOS.h>

#include <NetMgr.h>

#include "S24API.h"

...

UInt16 netLibRef;

UInt16 valueLen;

Boolean bS24Device;

Err err;

/* Obtain network library reference number */

err = SysLibFind("Net.lib", &netLibRef);

...

/* Is this an S24 device? */

valueLen = sizeof(bS24Device);

err = NetLibIFSettingGet(netLibRef, netIFCreatorS24, netIFInstanceS24,

netIFSettingS24Device, &bS24Device, &valueLen);

netIFSettingS24Device

Description Allows application to ensure that it is running on a Spectrum24 radio
terminal.

Data Type Boolean

Comments This is a read only setting.
4-15

SPT Terminal Series System Software Manual
Code Sample
#include <PalmOS.h>

#include <NetMgr.h>

#include "S24API.h"

...

UInt16 netLibRef;

UInt16 valueLen;

Char szESSID[S24_ESS_ID_LENGTH + 1];

Char szNewESSID[S24_ESS_ID_LENGTH + 1] = "NEW_ESSID";

Err err;

/* Obtain network library reference number */

err = SysLibFind("Net.lib", &netLibRef);

...

/* Get current ESSID */

valueLen = sizeof(szESSID);

err = NetLibIFSettingGet(netLibRef, netIFCreatorS24, netIFInstanceS24,

 netIFSettingS24EssID, &szESSID, &valueLen);

...

netIFSettingS24EssID

Description Allows the application to get or set the Spectrum24 radio�s ESS_ID
string.

Data Type Char[S24_ESS_ID_LENGTH + 1]

Comments The ESS_ID identifies the network that the Spectrum24 radio is a
member of.
Changes made with this setting occur immediately and only affect the
current conection. This setting does not change the corresponding
Spectrum24 preference setting.
4-16

Spectrum24
/* Set new ESSID */

valueLen = sizeof(szNewESSID);

err = NetLibIFSettingSet(netLibRef, netIFCreatorS24, netIFInstanceS24,

 netIFSettingS24EssID, &szNewESSID, valueLen);
4-17

SPT Terminal Series System Software Manual
Code Sample
#include <PalmOS.h>

#include <NetMgr.h>

#include "S24API.h"

...

UInt16 netLibRef;

UInt16 valueLen;

UInt8 byApBSSID[S24_BSS_ID_LENGTH];

Err err;

/* Obtain network library reference number */

err = SysLibFind("Net.lib", &netLibRef);

...

/* Get BSSID of our Access Point */

valueLen = sizeof(byApBSSID);

err = NetLibIFSettingGet(netLibRef, netIFCreatorS24, netIFInstanceS24,

netIFSettingS24AccessPointBSSID, &byApBSSID,
&valueLen);

netIFSettingS24AccessPointBSSID

Description Retrieves the BSS_ID (MAC address) of the access point to which
the Spectrum24 radio is associated.

Data Type UInt8[S24_BSS_ID_LENGTH]

Comments This is a read only setting.
4-18

Spectrum24
Code Sample
#include <PalmOS.h>

#include <NetMgr.h>

#include "S24API.h"

...

UInt16 netLibRef;

UInt16 valueLen;

Char szDriverVer[S24_VER_STRING_LEN];

Err err;

/* Obtain network library reference number */

err = SysLibFind("Net.lib", &netLibRef);

...

/* Get driver version */

valueLen = sizeof(szDriverVer);

err = NetLibIFSettingGet(netLibRef, netIFCreatorS24, netIFInstanceS24,

 netIFSettingS24DriverVersion, &szDriverVer, &valueLen);

netIFSettingS24DriverVersion

Description Retrieves the version number of the Spectrum24 driver.

Data Type Char[S24_VER_STRING_LEN]

Comments This is a read only setting.
4-19

SPT Terminal Series System Software Manual
netIFSettingS24AssociationStatus

Description Retrieves the Spectrum24 radio�s current association status.

Data Type Boolean

Comments This is a read only setting.
This setting determines whether the Spectrum24 radio is able to
communicate with an access point (AP). Reasons why a Spectrum24
radio cannot associate with an AP include:

� The Spectrum24 radio is out of range of any APs in the local
radio network (LRN) defined by the ESSID.

� The LRN is down.
� The Spectrum24 radio is in the process of switching to

another AP (roaming) and will reassociate quickly.
If a Spectrum24 radio becomes associated with an AP, do not assume
the Spectrum24 radio will continue communicating with the LRN
because one of the above conditions may occur. Therefore, if the
Spectrum24 radio becomes unassociated with an AP, the application
should stop sending data messages on the stack (NetLib) while the
radio waits for reassociation. This helps prevent errors due to a
transport process timing out a message.
The application may also put up a user interface message when
unassociated for a period of time. Do not put up this message the first
time the unit is unassociated; allow some time to reassociate.
4-20

Spectrum24
Code Sample
#include <PalmOS.h>

#include <NetMgr.h>

#include "S24API.h"

...

UInt16 netLibRef;

UInt16 valueLen;

Boolean bAssociated;

Err err;

/* Obtain network library reference number */

err = SysLibFind("Net.lib", &netLibRef);

...

/* Get association status */

valueLen = sizeof(bAssociated);

err = NetLibIFSettingGet(netLibRef, netIFCreatorS24, netIFInstanceS24,

netIFSettingS24AssociationStatus, &bAssociated,
&valueLen);
4-21

SPT Terminal Series System Software Manual
Code Sample
#include <PalmOS.h>

#include <NetMgr.h>

#include "S24API.h"

...

UInt16 netLibRef;

UInt16 valueLen;

S24MKKCallsign callsign;

Err err;

/* Obtain network library reference number */

err = SysLibFind("Net.lib", &netLibRef);

...

/* Get MKK callsign */

valueLen = sizeof(callsign);

err = NetLibIFSettingGet(netLibRef, netIFCreatorS24, netIFInstanceS24,

netIFSettingS24MKKCallsign, &callsign, &valueLen);

netIFSettingS24MKKCallsign

Description Retrieves the MKK call sign bytes for Spectrum24 radios programmed
for Japanese configuration.

Data Type S24MKKCallsign (see S24MKKCallsign on page 4-12 for definition)

Comments This is a read only setting.
This setting call returns meaningful information only for Spectrum24
radios programmed for Japanese configuration. Other country
configurations return zeros.
4-22

Spectrum24
Code Sample
#include <PalmOS.h>

#include <NetMgr.h>

#include "S24API.h"

...

UInt16 netLibRef;

UInt16 valueLen;

Char szCountryText[S24_COUNTRY_TEXT_LEN];

Err err;

/* Obtain network library reference number */

err = SysLibFind("Net.lib", &netLibRef);

...

/* Get country text */

valueLen = sizeof(szCountryText);

err = NetLibIFSettingGet(netLibRef, netIFCreatorS24, netIFInstanceS24,

 netIFSettingS24CountryText, &szCountryText, &valueLen);

netIFSettingS24CountryText

Description Retrieves the Spectrum24 radio�s country code string.

Data Type Char[S24_COUNTRY_TEXT_LEN]

Comments This is a read only setting.
Country code is a factory setting, and it is used by the Spectrum24
radio�s firmware to program the radio hardware to operate within a
particular country�s regulations.
4-23

SPT Terminal Series System Software Manual
Code Sample
#include <PalmOS.h>

#include <NetMgr.h>

#include "S24API.h"

...

UInt16 netLibRef;

UInt16 valueLen;

Char szFWVer[S24_VER_STRING_LEN];

Err err;

/* Obtain network library reference number */

err = SysLibFind("Net.lib", &netLibRef);

...

/* Get adapter firmware version */

valueLen = sizeof(szFWVer);

err = NetLibIFSettingGet(netLibRef, netIFCreatorS24, netIFInstanceS24,

 netIFSettingS24FirmwareVersion, &szFWVer, &valueLen);

netIFSettingS24FirmwareVersion

Description Retrieves the version number of the Spectrum24�s RF firmware.

Data Type Char[S24_VER_STRING_LEN]

Comments This is a read only setting.
4-24

Spectrum24
Code Sample
#include <PalmOS.h>

#include <NetMgr.h>

#include "S24API.h"

...

UInt16 netLibRef;

UInt16 valueLen;

Char szFWDate[S24_VER_STRING_LEN];

Err err;

/* Obtain network library reference number */

err = SysLibFind("Net.lib", &netLibRef);

...

/* Get adapter firmware date */

valueLen = sizeof(szFWDate);

err = NetLibIFSettingGet(netLibRef, netIFCreatorS24, netIFInstanceS24,

 netIFSettingS24FirmwareDate, &szFWDate, &valueLen);

netIFSettingS24FirwareDate

Description Retrieves the date of the Spectrum24 RF firmware.

Data Type Char[S24_VER_STRING_LEN]

Comments This is a read only setting.
4-25

SPT Terminal Series System Software Manual
Code Sample - s24PrefESSID preference
#include <PalmOS.h>

#include <NetMgr.h>

#include "S24API.h"

...

UInt16 netLibRef;

UInt16 valueLen;

S24IFSetting ifSetting;

S24UserNetworkPrefs prefs;

Char szNewESSID[S24_ESS_ID_LENGTH + 1] = "NEW_ESSID";

Err err;

/* Obtain network library reference number */

err = SysLibFind("Net.lib", &netLibRef);

...

/* Get current ESSID from S24 preferences */

ifSetting.option = s24PrefESSID;

ifSetting.buffer = prefs.szESSID;

valueLen = sizeof(prefs.szESSID);

netIFSettingS24Preferences

Description Allows applications to get or set the Spectrum24 radio�s network
preferences.

Data Type See Table 4-1 on page 4-13 for data types of individual preferences

Comments The S24UserNetworkPrefs preferences structure can be used as a
template when using the netIFSettingS24Preferences setting.
Changes made using this setting do not take place immediately, but
occur the next time NetLibOpen() is called. These changes are saved
in Spectrum24 preferences database on the terminal until a hard reset
is performed.
4-26

Spectrum24
err = NetLibIFSettingGet(netLibRef, netIFCreatorS24, netIFInstanceS24,

netIFSettingS24Preferences, &ifSetting, &valueLen);

...

/* Set new ESSID in S24 preferences */

ifSetting.option = s24PrefESSID;

ifSetting.buffer = szNewESSID;

valueLen = sizeof(szNewESSID);

err = NetLibIFSettingSet(netLibRef, netIFCreatorS24, netIFInstanceS24,

netIFSettingS24Preferences, &ifSetting, valueLen);
4-27

SPT Terminal Series System Software Manual
4-28

Appendix A
ASCII Equivalents

Table A-1 contains the ASCII equivalents for adding prefix and suffix values to scanned
data. See ScanGetPrefixSuffixValues and ScanSetPrefixSuffixValues.

Table A-1. ASCII Equivalents

Scan
Value

Hex
Value

Full ASCII Code
39
Encode Character

Keystrok
e

1000 00h %U CTRL+2

1001 01h $A CTRL+A

1002 02h $B CTRL+B

1003 03h $C CTRL+C

1004 04h $D CTRL+D

1005 05h $E CTRL+E

1006 06h $F CTRL+F

1007 07h $G CTRL+G

1008 08h $H CTRL+H

1009 09h $I CTRL+I

1010 0Ah $J CTRL+J

1011 0Bh $K CTRL+K

1012 0Ch $L CTRL+L
A-1

SPT Terminal Series System Software Manual
1013 0Dh $M CTRL+M

1014 0Eh $N CTRL+N

1015 0Fh $O CTRL+O

1016 10h $P CTRL+P

1017 11h $Q CTRL+Q

1018 12h $R CTRL+R

1019 13h $S CTRL+S

1020 14h $T CTRL+T

1021 15h $U CTRL+U

1022 16h $V CTRL+V

1023 17h $W CTRL+W

1024 18h $X CTRL+X

1025 19h $Y CTRL+Y

1026 1Ah $Z CTRL+Z

1027 1Bh %A CTRL+[

1028 1Ch %B CTRL+\

1029 1Dh %C CTRL+]

1030 1Eh %D CTRL+6

1031 1Fh %E CTRL+-

1032 20h Space Space

1033 21h /A !

1034 22h /B �

1035 23h /C #

1036 24h /D $

1037 25h /E %

Table A-1. ASCII Equivalents (Continued)

Scan
Value

Hex
Value

Full ASCII Code
39
Encode Character

Keystrok
e

A-2

ASCII Equivalents
1038 26h /F &

1039 27h /G �

1040 28h /H (

1041 29h /I)

1042 2Ah /J *

1043 2Bh /K +

1044 2Ch /L ,

1045 2Dh � �

1046 2Eh . .

1047 2Fh / /

1048 30h 0 0

1049 31h 1 1

1050 32h 2 2

1051 33h 3 3

1052 34h 4 4

1053 35h 5 5

1054 36h 6 6

1055 37h 7 7

1056 38h 8 8

1057 39h 9 9

1058 3Ah /Z :

1059 3Bh %F ;

1060 3Ch %G <

1061 3Dh %H =

1062 3Eh %I >

Table A-1. ASCII Equivalents (Continued)

Scan
Value

Hex
Value

Full ASCII Code
39
Encode Character

Keystrok
e

A-3

SPT Terminal Series System Software Manual
1063 3Fh %J ?

1064 40h %V @

1065 41h A A

1066 42h B B

1067 43h C C

1068 44h D D

1069 45h E E

1070 46h F F

1071 47h G G

1072 48h H H

1073 49h I I

1074 4Ah J J

1075 4Bh K K

1076 4Ch L L

1077 4Dh M M

1078 4Eh N N

1079 4Fh O O

1080 50h P P

1081 51h Q Q

1082 52h R R

1083 53h S S

1084 54h T T

1085 55h U U

1086 56h V V

1087 57h W W

Table A-1. ASCII Equivalents (Continued)

Scan
Value

Hex
Value

Full ASCII Code
39
Encode Character

Keystrok
e

A-4

ASCII Equivalents
1088 58h X X

1089 59h Y Y

1090 5Ah Z Z

1091 5Bh %K [

1092 5Ch %L \

1093 5Dh %M]

1094 5Eh %N ^

1095 5Fh %O _

1096 60h %W �

1097 61h +A a

1098 62h +B b

1099 63h +C c

1100 64h +D d

1101 65h +E e

1102 66h +F f

1103 67h +G g

1104 68h +H h

1105 69h +I i

1106 6Ah +J j

1107 6Bh +K k

1108 6Ch +L l

1109 6Dh +M m

1110 6Eh +N n

1111 6Fh +O o

1112 70h +P p

Table A-1. ASCII Equivalents (Continued)

Scan
Value

Hex
Value

Full ASCII Code
39
Encode Character

Keystrok
e

A-5

SPT Terminal Series System Software Manual
1113 71h +Q q

1114 72h +R r

1115 73h +S s

1116 74h +T t

1117 75h +U u

1118 76h +V v

1119 77h +W w

1120 78h +X x

1121 79h +Y y

1122 7Ah +Z z

1123 7Bh %P {

1124 7Ch %Q |

1125 7Dh %R }

1126 7Eh %S ~

1127 7Fh Undefined

Table A-1. ASCII Equivalents (Continued)

Scan
Value

Hex
Value

Full ASCII Code
39
Encode Character

Keystrok
e

A-6

Appendix B
Scan Manager Parameter Definitions

Table B-1 lists the parameters available in the Scan Manager shared library. The
information in this table includes parameter name, the terminal default setting, and the
acceptable values.

Table B-1. Scan Manager Parameter Definitions

PARAMETER
DEFAULT
SETTING

ACCEPTABLE
VALUES

ParamDefaults All defaults

BeepFrequency Decode 3000 Hz 0 - 15,000 Hz

Low 1500 Hz

Medium 3000 Hz

High 7500 Hz

BeepDuration Decode 90 ms 0 - 10,000 ms

Short 70 ms

Medium 90 ms

Long 240 ms

LaserOnTime 3.0 seconds 0 - 10

AimDuration 0.0 seconds

TriggeringModes Level Level, Pulse, Host

BeepAfterGoodDecode Enable Enable, Disable
B-1

SPT Terminal Series System Software Manual
LinearCodeTypeSecurityLevel Security_Level1 Level1 - Level4

BidirectionalRedundancy Disable

BarcodeEnabled UPC-A Enable

UPC-E Enable

UPC-E1 Disable

EAN-8 Enable

EAN-13 Enable

Bookland EAN Disable

Code 128 Enable

UCC/EAN-128 Enable

ISBT 128 Enable

Code 39 Enable

Trioptic Code 39 Disable

Code 93 Disable

I2of5 Enable

D2of5 Disable

Codabar Disable

MSI Plessey Disable

DecodeUpcEanSupplementals Ignore

DecodeUpcEanRedundancy 7 2-20

TransmitCheckDigit UPC-A Enable

UPC-E Enable

UPC-E1 Enable

Code 39 Disable

I2of5 Disable

MSI Plessey Disable

Table B-1. Scan Manager Parameter Definitions (continued)

PARAMETER
DEFAULT
SETTING

ACCEPTABLE
VALUES
B-2

Scan Manager Parameter Definitions
UpcPreamble UPC-A System character

UPC-E System character

UPC-E1 System character

Convert UPC-E to A Disable

UPC-E1 to A Disable

EAN-8 to EAN-13 Type is EAN-13

Code 39 to Code
32

Disable

I2of5 to EAN-13 Disable

EanZeroExtend Disable

UpcEanSecurityLevel 0 Level 1 - Level 4

Code32Prefix Disable

BarcodeLengths Code 39 2-32

Code 93 4-55

I2of5 14

D2of5 12

Codabar 5-55

BarcodeLengths
(cont�d)

MSI Plessey 6-55

Code39CheckDigitVerification Disable

Code39FullAscii Disable

I2of5CheckDigitVerification Disable

ClsiEditing Disable

NotisEditing Disable

MsiPlesseyCheckDigits One One, Two

MsiPlesseyCheckDigitAlgorithm Mod 10/Mod 10

Table B-1. Scan Manager Parameter Definitions (continued)

PARAMETER
DEFAULT
SETTING

ACCEPTABLE
VALUES
B-3

SPT Terminal Series System Software Manual
TransmitCodeIdCharacter None

PrefixSuffixValues Prefix Null

Suffix 1 LF

Suffix 2 CR

ScanDataTransmissionFormat Data as is

ScanAngle Wide Wide, Narrow

DecodeLedOnTime 3 seconds 0 - 99

Table B-1. Scan Manager Parameter Definitions (continued)

PARAMETER
DEFAULT
SETTING

ACCEPTABLE
VALUES
B-4

Appendix C
Data Editing Overview for
Magnetic Stripe Reader

Introduction
The data editing feature allows you to edit the data that has been read from a magnetically
encoded card before data is transmitted to the application software. The application
software translates the information into the exact format expected by the application
software.

Functions
The following functions can be performed on the data input record:

Rearrange the Data
The fields, within a track, created by established standards, can be transmitted to the
application software in any order desired, regardless of the order in which they occurred in
the card track.

Insert Character Strings into the Output Data Record
Character Strings can be defined and inserted at any place in the data output record.

Duplicate Fields
Fields, within a track, can be transmitted to the application software as many times as
desired and in any order.
C-1

SPT Terminal Series System Software Manual
Select Output Fields
Fields, within a track, can be selected for output or not selected for output.

Output Method
[Matched or Unmatched] If matched, MSR 3000 does not send data that does not match
the data edit formula. Otherwise, all data that does not match the data edit formula is sent.

Fields
The data editing concept is based upon fields. The standard field location, length, and
content are determined by Standards. The field standards for ISO Credit Cards, California
driver�s licenses, and AAMVA driver�s licenses are listed in Appendix A. By separating the
input data record into small blocks(fields), each block can then be treated separately.
Additional fields can also be added to the record in any position, allowing specific functions,
such as carriage returns. The fields are identified by field number starting with the character
�a� up to �z�, in the order they were created, starting with the predetermined fields in the
standard and adding any newly created fields, allowing as many as 26 fields per track to be
defined. These fields are then sent to the application software in the order in which the user
specifies.

For example, if the input data record is in the Credit Card Format for Track2:

;1234567890123456=9912xxxxxxx?c

Field id a[b]c[d][e]fg

and your application software is expecting the data to be in the following format:

9912<CR>

1234567890123456<CR>

then we must break the input data record into fields, select only the desired fields, reverse
the order they are sent to the application software, create a new field<CR> and insert it after
each field.

We do this by using the defined fields and adding a new field:

Field b = 1234567890123456

Field d = 9912
C-2

Data Editing Overview for Magnetic Stripe Reader
Added Field a = <CR>

And sending {Field d}{Added Field a}{Field b}{Added Field a}

Formulas
A set of instructions to edit data is referred to as a data editing �formula�. The MSR 3000
supports four types of formulas:

� Credit Card
� California driver�s license
� AAMVA driver�s license
� Customized Format.

The user can either define four types of formula or only one formula each time. At the same
time, the MSR 3000 can only keep one Credit Card, California driver�s licenses, AAMVA
driver�s licenses and customized format.

If the input data matches the format (Credit Card, Driver�s License, etc.) of the formula, then
it will apply the data editing functions and output the reformatted data to the application
software. If the input data does not match the criteria spelled out in the first formula, then
the match criteria of the second formula is applied. This process continues for each of the
successive formulas until a match is found. If no match is found to any of the formulas
programmed into the MSR 3000, then either nothing or the unedited data record is
transmitted to the application software, according to the Data Edit Mode setting.

Added Field
An output field is created containing the character string. Up to 6 fields can be defined. The
maximum characters of each field is 6.

Search Method
When working with a customer-defined format which is not Credit Card, DMV or AAMVA
format, the MSR 3000 supports the following five methods:

Length Match: The card data on the specified track has to meet the minimum and
maximum length requirements.

String Match: The card data on the specified track has to include the specified string
in the specified position.

Search Before: Generate a new field, which contains the whole message data before
matching the specified string for specified times on the specified track.
C-3

SPT Terminal Series System Software Manual
Search Between: Generate a new field, which contains the whole message data
between the matches of the two specified strings for specified
times on the specified track.

Search After: Generate a new field, which contains the message data with the
specified length at a specified offset after matching the specified
string for a specified times on the specified track.

Operation
The data editing of the magnetic stripe is based on fields divided for a format. By separating
the input data into fields, each field can be transmitted separately. Additional fields can also
be added, allowing specific functions, such as carriage returns to be inserted at any place
in data transmitted to the application.

The following includes the all operations performed on the formula:

Add Formula - To add a formula:

1. Set the data edit to �enable�.
2. Select one of the data formats, such as �Credit Card�.
3. Select the tracks that you want to transmit the data to the application.

Default is track1, track2 and track3 selected.
C-4

Data Editing Overview for Magnetic Stripe Reader
4. Press the Add button to display the dialogue box with the selected data format
fields. For example, the Credit Card Format.
C-5

SPT Terminal Series System Software Manual
5. In this dialog box , check the fields you want transmitted to the application in track1,
track2 and track3. The fields selected display in the Track Selected Fields for each
track.

6. If you click the new field button, you can input characters in new filed dialog box to
get the new field, you can put this field in any place of output data.

7. In the Track�Selected-Field pull-down list, which lists the all fields selected in this
track, select the fields to generate fields sequence which are then displayed in the
Fields Sent Sequence edit box. The fields will be sent to the application according
to this sequence.

8. Press OK to save the formula, or Cancel button to exit without saving.
C-6

Data Editing Overview for Magnetic Stripe Reader
Example

Data Edit : Enable; Data Format: Credit Card;

Track Selection: track1 and track2;

Input Data :

 %B4000111222333^SMITH/JOHN R.DR^930458799999?C

 Field No. Field Name Field Value

 (a) Start Sentinel %
C-7

SPT Terminal Series System Software Manual
 (b) Format Code B

 (c) Account Code 4000111222333

 (d) Separator ̂

 (e) Cardholder Name Smith/John R. DR

 (f) Separator ^

 (g) Expiration Date 9304

 (h) Optional Data 58799999

 (i) End Sentinel ?

 (j) LRC C

;4000111222333=9304587999990000000000000?C

 (a) Start Sentinel ;

 (b) Account Code 4000111222333

 (c) Separator =

 (d) Expiration Date 9304

 (e) optional Data 587999990000000000000

 (f) End Sentinel ?

 (g) LRC C

If you want to send the start sentinel, cardholder name and expiration date in track1; and
the start sentinel, account code and end sentinel in track2, you should select fields (a), (e),
(g) in track1 and field (a), (b), (f) in track2. If you need a new field with value �+� in track1,
press the new field button and key in �+� in edit box. Now you have field (a),(e),(g) in track1
and (a),(b),(f) in track2. The added field is �+� .

 Track1:

 Field (a) = %

 Field (e) = Smith/John R. DR

 Field (g) = 9304
C-8

Data Editing Overview for Magnetic Stripe Reader
Track2:

 Field (a) = ;

 Field (b) = 4000111222333

 Field (f) = ?

Added Field: �+�

Track1 fields selected are (a)(e)(g);

Track2 fields selected are (a)(b)(f);

If you want to send the expiration date before cardholder name and add a new field to use as a separator, go to
the combo box and generate the sequence (1a)(0a)(1g)(0a)(1e), so you get the formula in the list box:

 Credit Card: (1a)(0a)(1g)(0a)(1e)(2a)(2b)(2f)

The output data should be:

 Track1:

 %+9304+Smith/John R. DR

 Track2:

 ;4000111222333?

Track1 and track2 output data will be transmitted to application.

Edit Formula - To edit the formula selected in the formula list box:

1. Enable data editing.
2. Press the Edit button, which shows the dialogue box with data format of the

selected formula in the formula list box.
3. In this dialog box , select the fields to be transmitted to the application in track1,

track2 and track3. The selected fields are displayed in the Track Selected Fields
for each track.

4. If you click the new field button, you can input characters in new field dialog box to
get the new field, you can put this field in any place of output data.

5. In the Track�Selected-Field pull-down list, which lists the all fields selected in this
track, select the fields to generate fields sequence which are then displayed in the
Fields Sent Sequence edit box. The fields will be sent to the application according
to this sequence.
C-9

SPT Terminal Series System Software Manual
6. Press OK to save the formula, or Cancel button to exit without saving.

Example
Enable data editing. If the formula �Credit Card : (1a)(0a)(1g)(0a)(1e)(2a)(2b)(2f)� is selected, Press the Edit
button the Credit Card format dialog box will show. (a)(e)(g) in track1 and (a)(b)(f) in track2 were selected.

Track1 fields selected are (a)(e)(g);

Track2 fields selected are (a)(b)(f);

If you want send cardholder name before expiration date ,select the (a)(e)(g) sequentially in the track1 sequence
sent combo box.

Track1 sequence sent is changed to (a)(e)(g);

Press the OK button you will get the new formula in the list box of the MSR Edit
C-10

Data Editing Overview for Magnetic Stripe Reader
dialog-box.

 Credit Card : (1a)(1e)(1g)(2a)(2b)(2f)

The output is

 Track1:

 %Smith/John R. DR9304

 Track2:

 ;4000111222333?

Delete Formula - To Delete a formula:

1. Enable data editing.
2. Select a formula you want to delete, then press the Delete button. This formula is

deleted from the formula list box.
Clear Formulas - To Delete all formulas:

1. Enable data editing.
2. Press the Clear button. All formulas are deleted from the formula list box.

New Field - To add new fields:

1. Click the New Field button.
2. Type in the string in the Input Added Field, or, if you want to input a non-printable

character, you can use the non-printable character pull-down list to select the non-
printable character.

3. Press Add button to append the new field to the added fields list. Press Delete
button to delete the selected field from the added fields list.

Press OK to accept, or press Cancel to exit without saving changes.
C-11

SPT Terminal Series System Software Manual
Note: The maximum number of new fields is 6, the maximum number of
characters for each field is 6.
C-12

Data Editing Overview for Magnetic Stripe Reader
Customized Format
To create a customized format:

1. On the MSR Configurator Properties screen, select the Others option in the Data
Format Group..
C-13

SPT Terminal Series System Software Manual
2. Click the Add Button to display the customized field defined dialog box.

3. Define the length limit and match string for different tracks, if desired.
4. Select a value from the Flexible Field No pull-down menu.
5. Select a value from the Track No. pull-down menu.
6. Select one of the three search methods.
7. Select from customized fields list and added fields list to generate the fields sent

sequence.
8. Press OK to accept the new formula for the customized format(others), Press

Cancel to exit without saving changes.
C-14

Data Editing Overview for Magnetic Stripe Reader
The MSR Configurator Properties screen redisplays, with the new custom formula listed in
the formula list box.
C-15

SPT Terminal Series System Software Manual
C-16

Appendix D
Common Magnetic Card Encoding Formats

for MSR

Credit Card Format

Track1 Format:

Field No. Element/Definition Size

A Start Sentinel 1

Always "%"

B Format Code 1

Always "B"

C Account Code 13 or16

13 or 16 characters

D Separator 1

Always "^"

E Cardholder Name variable
D-1

SPT Terminal Series System Software Manual
Track2 Format:

F Separator 1

Always "^"

G Expiration Date 4

4 Digits, YYMM Format

H Optional Discretionary Data variable

I End Sentinel 1

Always "?"

J LRC 1

Field No. Element/Definition Size

A Start Sentinel 1

Always ";"

B Account Code 13or16

13 or 16 characters

C Separator 1

Always "="

D Expiration Date 4

4 Digits, YYMM Format

E Optional Discretionary Data variable

F End Sentinel 1

Always "?"

G LRC 1
D-2

Common Magnetic Card Encoding Formats for MSR
California Driver�s License Format (DMV)

Track1 Format:

Field No. Element/Definition Size

A Start Sentinel 05 1

B Format Type 1

C=Commercial

S=Salesperson

D=Driver

I=Identification

R=Senior Citizen

C Name Line1 29

D Name Line2 29

E Address Line 29

F City 13

G End Sentinel(1fh) 1

H LRC 1
D-3

SPT Terminal Series System Software Manual
Track2 Format:

Field No. Element/Definition Size

A Start Sentinel 05 1

B IDENTIFICATION NUMBER

• ANSI User ID 6

• DL/ID Alpha translated 2

• 7 position DL/ID number 7

• Check digit 1

C Field Separator 1

D Expiration Date 4

E Field Separator 1

F Discretionary Data Field contains eight
position Birth Date

8

G End Sentinel (1 fh) 1

H LRC 1
D-4

Common Magnetic Card Encoding Formats for MSR
Track3 Format:

Field No. Element/Definition Size

A Start Sentinel 05 1

B Class 4

C Endorsements 4

D State Code 2

E Zip Code 9

F Sex 1

G Hair 3

H Eyes 3

I Height 3

J Weight 3

K Restrictions 10

L Issue Date 8

M Office 3

N Employee ID 2

O LRE ID 2

P Fee Due Year 4

Q Address Line2 28

R Reserved Space 11

S End Sentinel 1

T LRC 1
D-5

SPT Terminal Series System Software Manual
Driver�s License Format Recommended by AAMVA

Track1 Format:

Field No. Element/Definition Size

A Start Sentinel 1

 this character must be used at the

beginning of the track.

B State or Province(addressee) 2

(Mailing or Residential code)

 this field will use the ANSI D-20 standard

C City 13

 this field should be truncated with a field

separator^ if less than13 characters long. If

a field separator ^ is used, the "NAME" field

follows immediately.

 EXAMPLE: Bear^

D Name 35

 this field should be truncated with a field

separator^ if less than 35 characters long. If

a field separator is used, the "ADDRESS"

field follows immediately. The $ symbol is to

be used as a delimiter, between names.
D-6

Common Magnetic Card Encoding Formats for MSR
 EXAMPLE: Roe$Cheryal$A^

EXAMPLE using "city and Name"

 Bear^Roe$Cheryal$A^

at this point a total of 19 bytes have been

used, allowing the remainder to be used for

the address.

E Address 29

 this field has a minimum length of 29

which can be exceeded when utilizing the

space from either the city and/or name field.

The $ symbol can be used as a delimiter of

multiple address lines.

EXAMPLE using the City, Name, Address

 Combination: Bear^Roe$Cheryal

 $A^123 Something St^

F End Sentinel 1

 this character must be the next to the last

character of the track.

G LRC 1

 this character must be used at the end of

the track.
D-7

SPT Terminal Series System Software Manual
Track2 Format:

Field No. Element/Definition Size

A Start Sentinel 1

this character must be used at the

beginning of the track.

B ANSI User Code 1

this field is assigned by ANSI for the

utilization of Track2

C ANSI User ID 5

this field is the assigned identification

number from ISO(International Standards

Organization).

D Jurisdiction ID/DL Number 14

this field is used to represent the ID/DL

number assigned by each jurisdiction. If

less than 13 bytes are used the field is

truncated by a field separator character

(binary bit string 1101). If 13 bytes are used

the field separator character MUST appear

in the 14th position. Overflow can be

accommodated in the field number 7. It is

essential that all users refer to the
D-8

Common Magnetic Card Encoding Formats for MSR
Guidelines which follow.

E Expiration Date 4

this field will be represented in the following

format YYMM. This meets the ISO standard

F Birthdate 8

this field will be represented in the ANSI

D-20 Standard YYYYMMDD.

G Remainder of Jurisdictional ID/DL # 5

this field is used to handle the overflow

from the jurisdiction ID/DL field. Refer to the

Guidelines.

H End Sentinel 1

this character must be the next to the last

character of the track.

I LRC 1

this character must be used at the end of

the track.
D-9

SPT Terminal Series System Software Manual
Track3 Format:

Field No. Element/Definition Size

A Start Sentinel 1

this character must be used at the beginning

of the track.

B Template Version # 1

1 byte table, value 01-63, this field will be

used to store the magnetic stripe version

being used. It will be necessary to register

the use with AAMVA. Refer to the Guidelines.

C Security Version #. 1

1 byte table, value 00-63, this field will be

used to store the magnetic security version

used. 00 represents security is not used.

Refer to the Guidelines.

D Postal Code 11

this field will be used to store an 11 position

Zip Code or the Canadian postal code. 11

Alphanumeric digits will soon be required to

meet postal standards growth. Left justified

with spaces filled. Use no hyphens.

E Class 2
D-10

Common Magnetic Card Encoding Formats for MSR
this field will be alphanumeric and will

represent the type of license. Use ANSI D-20

codes as modified for CDLIS.

F Restrictions 10

this field will be alphanumeric and will use

the ANSI D20 standard.

G Endorsements 4

this field will be alphanumeric and will use the

ANSI D-20 standard.

H Sex 1

represent as alphanumeric

I Height 3

represented as numeric. See ANSI D-20

J Weight 3

represented as numeric. See ANSI D-20

K Hair Color 3

represented as alphanumeric. See ANSI D-20

L Eye Color 3

represented as alphanumeric. See ANSI D-20

M ID#
this field can be utilized by each jurisdiction

10

as needed, but if used it will be necessary

to register the use with AAMVA
D-11

SPT Terminal Series System Software Manual
N Reserved Space 16

this field can be utilized by each jurisdiction

as needed, but if used it will be necessary

to register the use with AAMVA

O Error Correction 6

this field can be utilized by jurisdiction,

but is not a mandatory field. Refer to the

Guidelines, Appendix "D" for specific use.

P Security 5

this field for use of each jurisdiction. Refer to

the Guidelines.

Q End Sentinel 1

this character must be the next to the last

character for the track.

R LRC 1

this character must be used at the end of

the track.
D-12

Appendix E
Supported Printers

This Appendix lists the information that is currently maintained in the printcap database. It
is subject to change, and will in fact change rapidly as Symbol supports additional printers.
Current versions of the printcap database can be obtained from Symbol Technology's web
site at:

http://devzone.symbol.com

The first piece of information you need is the printer model name. For instance, if you are
working with the ONeil printer, you need to provide the string �ONeil� as the printer model
in the ptOpenPrinter function call. If you are working with the Paxar Monarch 9490
printer, you need to provide either the string �Paxar Monarch 9490� or �Monarch 9490.�

To use the Symbol PGP1000 or the Zebra EPLII, use the string �Eltron� as the printer model
in the ptOpenPrinter function call.

Additional information in the printcap database is also listed here. Under each supported
printer model name is a list of fields that are included in the printcap database. The format
of each piece of information in the printcap database is a token=value pair. For instance, to
retrieve the reset string for the RP3 printer, you would provide �rs� as the query parameter
in the ptQueryPrintCap function call.

The abbreviations used in the tables that follow are:

� br=baud rate
� sb=stop bits
� pr=parity
� is=initialization string
� rs=reset string
E-1

SPT Terminal Series System Software Manual
� qs=query string
� fD=default font
� f1...fn=other available fonts
� bi=high-level API init
� bt=text command
� bl=line command
� bb=rectangle (box)
� be=high-level API end

Variables in Printcap Strings
The following table lists the definitions of the variables found in the printcap strings for the
supported printers. The high-level function calls substitute these variables with the
appropriate arguments.

Variable Definition

%s text string

%t thickness

%L text length

%x xStart coordinate

%y yStart coordinate

%X xEnd coordinate

%Y yEnd coordinate

%l horizontal length (xEnd - xStart)

%H vertical height (yEnd - yStart)

%B Line extension ([xEnd - xStart] + thickness)
See the section that follows.

%f font name

%h font height

%w font width
E-2

Supported Printers
Printing Rectangles

Note: The information in this section applies ONLY to printers that do not print
rectangles. These printers create a rectangle by drawing four separate
lines.

To construct a rectangle, the printer draws four lines, using the following beginning and
ending points:

A B

D C

When a line is printed, the beginning and ending coordinates correspond to the line�s top
or bottom left corner. However, the line�s thickness is not taken into account, and the lines
therefore may not line up properly. (Notice how line DC extends only to the left side of line
BC.) To compensate for the line�s thickness, an additional variable, %B, has been defined
that adds the line�s thickness to the ending coordinates. (For example, in the illustration
above, %B would add the thickness of line BC to the ending coordinate of line DC.)
E-3

SPT Terminal Series System Software Manual
Portable Label Printers
Printer model name: Comtec
Comtec printcap tokens and associated values:

Comtec has no initialization string (�is�).

All supported Comtec printers understand the same printer language.

Token Token description String Value

br Baud rate 19200

sb Stop bits 1

pr Parity n

rs Reset string <ESC>N

qs Query string <ESC>v

fD Default font; Comtec font #7, size=0
(char height = 24 pixels)

7;0

f1 Other available font; Comtec font #4,
size=0 (height = 47 pixels)

4;0

bi High-level API init ! 0 200 200 500 1\r\nSETFF 25 2.5\r\n

bt Text command TEXT %f %w %x %y %s\r\n

bl Line command LINE %x %y %X %Y %t\r\n

bb Rectangle (box) BOX %x %y %X %Y %t\r\n

be High-level API end FORM\r\nPRINT\r\n
E-4

Supported Printers
Printer model name: Eltron
Eltron printcap tokens and associated values:

Eltron has no initialization string (�is�) or query string (�qs�).

All supported Eltron printers understand the same printer language.

Token Token description String Value

rs Reset string <CTRL>@

br Baud rate 9600

sb Stop bits 1

pr Parity n

fD Default font; Eltron font
#2, 16.9 cpi, 7 pt.

2;1;1

f1 Other available font;
Eltron font #3, 14.5 cpi, 10
pt.

3;1;1

bi High-level API init \r\nN\r\n

bt Text command A%x,%y,0,%f,%w,%h,N,"%s"\r\n

bl Line command LO%x,%y,%l,%t\r\n

bb Rectangle (box) LO%x,%y,%t,%H\r\nLO%X,%y,%t,%H\r\nLO%x,%y,%l,%
t\r\nLO%x,%Y,%B,%t\r\n

be High-level API end P1\r\n
E-5

SPT Terminal Series System Software Manual
Printer model name: Paxar Monarch 9490
Monarch 9490

Monarch 9490 printcap tokens and associated values:

Monarch printers do not support the high-level function calls and the associated tokens:

� Default font (�fD�)
� Other available font (�f1�)
� High-level API init (�bi�)
� Text command (�bt�)
� Line command (�bl�)
� High-level API end (�be�)

Token Token description String Value

br Baud rate 9600

sb Stop bits 1

pr Parity n

is Initialization string <CTRL>ER{I,E,"~123~044~034~124~125~126~094","
",""|}\<CTRL>ER

rs Reset string <CTRL>PR

qs Query string 005
E-6

Supported Printers
Printer model name: ONeil
ONeil printcap tokens and associated values:

ONeil has no initialization string (�is�).

All supported ONeil printers understand the same printer language.

Token Token description String Value

br Baud rate 9600

sb Stop bits 1

pr Parity n

rs Reset string <ESC>+{RE!}

qs Query string <ESC>+{IR?}

fD Default font; MicroFlash font
204 (MF204) (20.4 CPI, 224
characters block normal)

MF204;1;1

f1 Other available font;
MicroFlash font 102
(MF102) (10.2 cpi, 223
characters medium block
bold)

MF102;1;1

bi High-level API init <ESC>EZ\r\n{PRINT\:\r\n

bt Text command @%y,%x\:%f,HMULT%h,VMULT%w|%s|\r\n

bl Line command @%y,%x\:HLINE, length %l, thick %t|\r\n

bb Rectangle (box) @%y,%x\:T, L %l, T %t|\r\n@%y,%X\:V, L %H, T
%t|\r\n@%y,%x\:V, L %H, T %t|\r\n@%Y,%x\:T, L %B, T
%t|\r\n:\

be High-level API end } \r\n{AHEAD\:200} \r\n
E-7

SPT Terminal Series System Software Manual
Printer model name: Symbol (PGP 1000)
Symbol printcap tokens and associated values:

Symbol PGP 1000 has no initialization string (�is�) or query string (�qs�).

Token Token description String Value

rs Reset string <CTRL>@

br Baud rate 9600

sb Stop bits 1

pr Parity n

fD Default font; Symbol PGP
1000 font #2, 16.9 cpi, 7
pt.

2;1;1

f1 Other available font;
Symbol PGP 1000 font
#3, 14.5 cpi, 10 pt.

3;1;1

bi High-level API init \r\nN\r\n

bt Text command A%x,%y,0,%f,%w,%h,N,"%s"\r\n

bl Line command LO%x,%y,%l,%t\r\n

bb Rectangle (box) LO%x,%y,%t,%H\r\nLO%X,%y,%t,%H\r\nLO%x,%y,%l,%
t\r\nLO%x,%Y,%B,%t\r\n

be High-level API end P1\r\n
E-8

Supported Printers
Printer model name: Zebra (EPL II)
Zebra printcap tokens and associated values:

Zebra EPL II has no initialization string (�is�) or query string (�qs�).

All supported Zebra EPL II printers understand the same printer language (EPL II).

Token Token description String Value

rs Reset string <CTRL>@

br Baud rate 9600

sb Stop bits 1

pr Parity n

fD Default font; Zebra EPL II
font #2, 16.9 cpi, 7 pt.

2;1;1

f1 Other available font;
Zebra EPL II font #3, 14.5
cpi, 10 pt.

3;1;1

bi High-level API init \r\nN\r\n

bt Text command A%x,%y,0,%f,%w,%h,N,"%s"\r\n

bl Line command LO%x,%y,%l,%t\r\n

bb Rectangle (box) LO%x,%y,%t,%H\r\nLO%X,%y,%t,%H\r\nLO%x,%y,%l,%
t\r\nLO%x,%Y,%B,%t\r\n

be High-level API end P1\r\n
E-9

SPT Terminal Series System Software Manual
Commercial Printers
Printer model name: PCL
PCL printcap tokens and associated values:

The PCL language does not define an initialization string (�is�) or query string (�qs�); these
are specific to each printer. If you call ptInitPrinter or ptQueryPrinter and don�t
specify an initialization string or query string, you will get a ptStatusFail error message.

Token Token description String Value

rs Reset string <ESC>E

br Baud rate 9600

sb Stop bits 1

pr Parity n

fD Default font; Times Roman,
10 pt.

<ESC>(s1p10v0s5t0B

f1 Other available font; Times
Roman, 12 pt.

<ESC>(s1p12v0s5t0B

f2 Other available font; Times
Roman, 12 pt., bold

<ESC>(s1p12v0s5t3B

bi High-level API init <ESC>\\\%0A\n %f

bt Text command %f <ESC>*p%xx%yY\n <ESC>&p%LX%s\n

bl Line command <ESC>*p%xx%yY\n <ESC>*r1A
<ESC>*c%la%tb0P\n <ESC>*rB\n

bb Rectangle (box) <ESC>*r0A\n <ESC>*t75R\n
<ESC>*p%xx%yY\n <ESC>*c%la%tb0P\n
<ESC>*rB\n\ <ESC>*r0A\n <ESC>*t75R\n
<ESC>*p%Xx%yY\n <ESC>*c%ta%Hb0P\n
<ESC>*rB\n\ <ESC>*r0A\n <ESC>*t75R\n
<ESC>*p%xx%yY\n <ESC>*c%ta%Hb0P\n
<ESC>*rB\n\ <ESC>*r0A\n <ESC>*t75R\n
<ESC>*p%xx%YY\n <ESC>*c%Ba%tb0P\n
<ESC>*rB\n

be High-level API end <ESC>&l0H\n
E-10

Supported Printers
Printer model name: Postscript
Postscript printcap tokens and associated values:

The Postscript language does not define an initialization string (�is�), reset string (�rs�), or
query string (�qs�); these are specific to each printer. If you call ptInitPrinter,
ptResetPrinter, or ptQueryPrinter and don�t specify an initialization string, reset string,
or query string, you will get a ptStatusFail error message.

Token Token description String Value

br Baud rate 9600

sb Stop bits 1

pr Parity n

fD Default font; Times Roman,
12 pt.

Times-Roman findfont\r\n
12 scalefont\r\nsetfont\r\n

f1 Other available font;
Courier, 12 pt.

Courier findfont\r\n12 scalefont\r\nsetfont\r\n

bi High-level API init \\%!\r\n%f\r\n\/pageheight 792 def/r/n\/fontheight 12
def\/cord { fontheight add } def/r/n

bt Text command %f\r\n newpath\r\n %x pageheight %y cord sub
moveto\r\n (%s) show\r\n

bl Line command newpath\r\n %x pageheight %y sub moveto\r\n %t
setlinewidth\r\n %X pageheight %Y sub lineto\r\n
closepath\r\n stroke\r\n

bb Rectangle (box) newpath\r\n %x pageheight %y sub moveto\r\n %t
setlinewidth\r\n %X pageheight %y sub lineto\r\n %X
pageheight %Y sub lineto\r\n %x pageheight %Y sub
lineto\r\n closepath\r\n stroke\r\n

be High-level API end showpage\r\n
E-11

SPT Terminal Series System Software Manual
Using Forms with Legacy Printers
Many of the legacy printers support custom labels or forms. Typically a form can be
designed with a specific size and format and with different objects included, such as bar
code fields, text, and simple graphics. To create a form, you must refer to the
documentation that is distributed by each printer manufacturer. Once a form is created, it
can be downloaded to a printer; then variable data can be sent to the printer to �fill out� the
form. A good use of this technology would be in a vertical application, where the same type
of form or label is printed repeatedly but with different data each time.

A form is a series of commands to the printer. We've provided an example below that is
specific for the Comtec RP3 printer:

"! UTILITIES\r\n" \
"IN-MILLIMETERS\r\n" \
"SETFF 25 2.5\r\n" \
"PRINT\r\n" \
"! DF SHELF.FMT\r\n" \
"! 0 200 200 210 1\r\n" \
"BOX 100 100 480 210 1\r\n" \
"CENTER\r\n" \
"TEXT 4 3 0 15 " "\\\\\r\n" \
"TEXT 4 0 0 95 " "\\\\\r\n" \
"BARCODE UPCA 1 1 40 0 145 " "\\\\\r\n" \
"TEXT 7 0 0 185 " "\\\\\r\n" \
"FORM\r\n" \
"PRINT\r\n";
(In this example, �\n� represents a newline character, and the backslash �\� character is a
continuation character, so the form can be spread out over several lines.) The example
above prints out a barcode, a price, and a description on the Comtec RP3 printer.

Also, some printer manufacturers allow you to design forms on your desktop PC. Some of
the design tools will product text-based files. If they do, you can simply copy the text to your
Palm application source code (either as a static string or as a string resource in
Constructor).
E-12

Supported Printers
Writing the form to the printer
Once the form data has been included into your application as a string, it's simple to get a
pointer to your string. The string (which is really an entire form layout) can then be written
directly to the printer, using the ptWritePrinter function call.

If the ptWritePrinter function returns with no error, you can assume that the form has
been loaded onto your printer, and it's now a matter of writing variable data to the printer.
This variable data can also be written to the printer using the ptWritePrinter function
call.
E-13

SPT Terminal Series System Software Manual
E-14

Glossary

Access Point A device that provides transparent access between Ethernet wired
networks and IEEE 802.11 interoperable radio-equipped mobile units
(MUs) like Symbol�s hand-held computers. The mobile unit may roam
among the APs in the same subnet while maintaining a continuous,
seamless connection to the wired network. Refer to Subnet.

AP See Access Point.

Application
Programming
Interface (API)

An interface by means of which one software component communicates
with or controls another. Usually used to refer to services provided by one
software component to another, usually via software interrupts or function
calls

Autodiscrimination The ability of an interface controller to determine the code type of a
scanned bar code. After this determination is made, the information
content is decoded.

Bar The dark element in a printed bar code symbol.

Bar Code A pattern of variable-width bars and spaces which represents numeric or
alphanumeric data in machine-readable form. The general format of a bar
code symbol consists of a leading margin, start character, data or
message character, check character (if any), stop character, and trailing
margin. Within this framework, each recognizable symbology uses its own
unique format. See Symbology.

Bar Code Density The number of characters represented per unit of measurement
(e.g., characters per inch).

Bar Height The dimension of a bar measured perpendicular to the bar width.
Glossary-1

SPT Terminal Series System Software Manual
Bar Width Thickness of a bar measured from the edge closest to the symbol start
character to the trailing edge of the same bar.

Baud Rate A measure of the data flow or number of signaling events occurring per
second. When one bit is the standard "event," this is a measure of bits per
second (bps). For example, a baud rate of 50 means transmission of 50
bits of data per second.

Bit Binary digit. One bit is the basic unit of binary information. Generally, eight
consecutive bits compose one byte of data. The pattern of 0 and 1 values
within the byte determines its meaning.

Bits per Second
(bps)

Bits transmitted or received.

BSS_ID Basic Service Set ID (IEEE MAC address). See MAC Address.

Byte On an addressable boundary, eight adjacent binary digits (0 and 1)
combined in a pattern to represent a specific character or numeric value.
Bits are numbered from the right, 0 through 7, with bit 0 the low-order bit.
One byte in memory is used to store one ASCII character.

Character A pattern of bars and spaces which either directly represents data or
indicates a control function, such as a number, letter, punctuation mark, or
communications control contained in a message.

Character Set Those characters available for encoding in a particular bar code
symbology.

Check Digit A digit used to verify a correct symbol decode. The scanner inserts the
decoded data into an arithmetic formula and checks that the resulting
number matches the encoded check digit. Check digits are required for
UPC but are optional for other symbologies. Using check digits decreases
the chance of substitution errors when a symbol is decoded.

Codabar A discrete self-checking code with a character set consisting of digits 0 to
9 and six additional characters: (- $: / , +).

Code 128 A high density symbology which allows the controller to encode all 128
ASCII characters without adding extra symbol elements.
Glossary-2

Glossary
Code 3 of 9 (Code
39)

A versatile and widely used alphanumeric bar code symbology with a set
of 43 character types, including all uppercase letters, numerals from 0 to
9, and 7 special characters (- . / + % $ and space). The code name is
derived from the fact that 3 of 9 elements representing a character are
wide, while the remaining 6 are narrow.

Code 93 An industrial symbology compatible with Code 39 but offering a full
character ASCII set and a higher coding density than Code 39.

Code Length Number of data characters in a bar code between the start and stop
characters, not including those characters.

Continuous Code A bar code or symbol in which all spaces within the symbol are parts of
characters. There are no intercharacter gaps in a continuous code. The
absence of gaps allows for greater information density.

Cradle A cradle is used for charging the terminal battery and for communicating
with a host computer, and provides a storage place for the terminal when
not in use.

Data
Communications
Equipment (DCE)

A device (such as a modem) which is designed to attach directly to a DTE
(Data Terminal Equipment) device.

Data Terminal
Equipment (DTE)

A device (such as a terminal or printer) which is designed to attach directly
to a DCE (Data Communications Equipment) device.

DCE Refer to Data Communications Equipment.

Dead Zone An area within a scanner's field of view, in which specular reflection may
prevent a successful decode.

Decode To recognize a bar code symbology (e.g., Codabar, Code 128, Code 3 of
9, UPC/EAN, etc.) and analyze the content of the bar code scanned.

Decode Algorithm A decoding scheme that converts pulse widths into data representation of
the letters or numbers encoded within a bar code symbol.

Depth of Field The range between minimum and maximum distances at which a scanner
can read a symbol with a certain minimum element width.

Development Kits A set of software tools provided to customers to help them create
applications for their terminals.
Glossary-3

SPT Terminal Series System Software Manual
Direct Sequence Direct sequence spread spectrum is one of two approaches to spread
spectrum modulation for digital signal transmission over airwaves. In
direct sequence, data to be transmitted is divided into small pieces
allocated to a frequency channel across the spectrum. A data signal at the
point of transmission is combined with a higher data-rate bit sequence
(also known as a chipping code) that divides the data according to a
spreading ratio. The redundant chipping code helps the signal resist
interference and also enables the original data to be recovered if data bits
are damaged during transmission.

Discrete 2 of 5 A binary bar code symbology representing each character by a group of
five bars, two of which are wide. The location of wide bars in the group
determines which character is encoded; spaces are insignificant. Only
numeric characters (0 to 9) and START/STOP characters may be
encoded.

Discrete Code A bar code or symbol in which the spaces between characters
(intercharacter gaps) are not part of the code.

DTE Refer to Data Terminal Equipment.

EAN European Article Number. This European/International version of the UPC
provides its own coding format and symbology standards. Element
dimensions are specified metrically. EAN is used primarily in retail.

Element Generic term for a bar or space.

Encoded Area Total linear dimension occupied by all characters of a code pattern,
including start/stop characters and data.

ESS_ID Extended Service Set ID. 802.11 network name. Can be up to 32 ASCII
characters in length.

File Transfer
Protocol (FTP)

A TCP/IP application protocol governing file transfer via network or
telephone lines. Refer to TCP/IP.

Form A set of printer-specific commands that format a receipt or label. Refer to
the printer manufacturer�s documentation for more detailed information.

Frequency
Hopping

The use of a random sequence of frequency channels to achieve spread
spectrum compliance. Stations that use frequency hopping change their
communications frequency at regular intervals. A hopping sequence
determines the pattern at which frequencies are changed. Messages take
place within a hop. Refer to Hopping Sequence and Spread Spectrum.
Glossary-4

Glossary
FTP See File Transfer Protocol.

General purpose
printer interface
functions

A set of commands that control the basic operation of the printer, such as
opening the printer, initializing the printer, and closing the printer.

High-level printer
API calls

A set of commands to the printer to print text and simple graphics.

Hopping Sequence A set of random frequencies designed to minimize interference with other
sets of random frequencies. A hopping sequence determines the pattern
with which a station that uses frequency hopping changes its
communications frequency. Refer to Frequency Hopping.

Host A computer that serves other terminals in a network, providing services
such as network control, data base access, special programs, supervisory
programs, or programming languages.

Host Computer A computer that serves other terminals in a network, providing such
services as computation, database access, supervisory programs, and
network control.

IEC International Electrotechnical Commission. This international agency
regulates laser safety by specifying various laser operation classes based
on power output during operation.

IEC (825) Class 1 This is the lowest power IEC laser classification. Conformity is ensured
through a software restriction of 120 seconds of laser operation within any
1000 second window and an automatic laser shutdown if the scanner's
oscillating mirror fails.

Intercharacter Gap The space between two adjacent bar code characters in a discrete code.

Interleaved 2 of 5 A binary bar code symbology representing character pairs in groups of
five bars and five interleaved spaces. Interleaving provides for greater
information density. The location of wide elements (bar/spaces) within
each group determines which characters are encoded. This continuous
code type uses no intercharacter spaces. Only numeric (0 to 9) and
START/STOP characters may be encoded.

Interleaved Bar
Code

A bar code in which characters are paired together, using bars to
represent the first character and the intervening spaces to represent the
second.
Glossary-5

SPT Terminal Series System Software Manual
IP Internet Protocol.

LAN Local Area Network.

LASER Light Amplification by Stimulated Emission of Radiation. The laser is an
intense light source. Light from a laser is all the same frequency, unlike the
output of an incandescent bulb. Laser light is typically coherent and has a
high energy density.

LCD Refer to Liquid Crystal Display.

LED Refer to Light Emitting Diode.

LED Indicator A semiconductor diode (LED - Light Emitting Diode) used as an indicator,
often in digital displays. The semiconductor uses applied voltage to
produce light of a certain frequency determined by the semiconductor's
particular chemical composition.

Legacy printer A printer that uses printer-specific or proprietary control commands.
Compare with industry standard commands such as PCL or Postscript.

Light Emitting
Diode (LED)

A low power electronic light source commonly used as an indicator light.
Uses less power than incandescent light bulb but more than a Liquid
Crystal Display (LCD).

Liquid Crystal
Display (LCD)

A display that uses liquid crystal sealed between two glass plates. The
crystals are excited by precise electrical charges, causing them to reflect
light outside according to their bias. They use little electricity and react
relatively quickly. They require external light to reflect their information to
the user.

MAC Address MAC (Media Access Control) address is the Spectrum24 radio�s unique
hardware number. On an Ethernet LAN, it�s the same as the Ethernet
address.

Misread
(Misdecode)

A condition which occurs when the data output of a reader or interface
controller does not agree with the data encoded within a bar code symbol.

Nominal The exact (or ideal) intended value for a specified parameter. Tolerances
are specified as positive and negative deviations from this value.

Nominal Size Standard size for a bar code symbol. Most UPC/EAN codes are used over
a range of magnifications (e.g., from 0.80 to 2.00 of nominal).
Glossary-6

Glossary
Null Modem A special cable that allows direct connection of two DTE (Data Terminal
Equipment) devices by making each perceive the other as a DCE (Data
Communications Equipment) device.

PCL Printer Control Language. A language that enables application progams
to control various Hewlett-Packard printers.

Percent Decode The average probability that a single scan of a bar code would result in a
successful decode. In a well-designed bar code scanning system, that
probability should approach near 100%.

Postscript A programming language that describes the appearance of a printed
page.

Print Contrast
Signal (PCS)

Measurement of the contrast (brightness difference) between the bars and
spaces of a symbol. A minimum PCS value is needed for a bar code
symbol to be scannable. PCS = (RL - RD) / RL, where RL is the
reflectance factor of the background and RD the reflectance factor of the
dark bars.

Printcap database A database of printer capability and initialization information, such as baud
rates, stop bits, and reset commands.

Printer
initialization string

A printer-specific command that initializes or sets defaults for a printer.
Refer to the printer manufacturer�s documentation for more detailed
information.

Printer library A static body of compiled code, containing an API to interface with the
serial and IrDa ports of a Palm PDA. The library is linked with the
application.

Printer lower level
API calls

API calls that write directly to the printer.

Printer model The name of the printer in the printcap entry. For example, Comtec RP3.

Printer name Not currently used. Will be used to identify specific printers.

Programming
Mode

The state in which a scanner is configured for parameter values. See
SCANNING MODE.

Quiet Zone A clear space, containing no dark marks, which precedes the start
character of a bar code symbol and follows the stop character.
Glossary-7

SPT Terminal Series System Software Manual
Resolution The narrowest element dimension which is distinguished by a particular
reading device or printed with a particular device or method.

Roaming A condition in which a Spectrum24 radio associates from one AP to
another.

Router A device that connects networks and supports the required protocols for
packet filtering. Routers are typically used to extend the range of cabling
and to organize the topology of a network into subnets. Refer to Subnet.

Scan Area Area intended to contain a symbol.

Scanner An electronic device used to scan bar code symbols and produce a
digitized pattern that corresponds to the bars and spaces of the symbol.
Its three main components are:

1. Light source (laser or photoelectric cell) - illuminates a bar code.
2. Photodetector - registers the difference in reflected light (more light

reflected from spaces).
3. Signal conditioning circuit - transforms optical detector output into a

digitized bar pattern.

Scanning Mode The scanner is energized, programmed, and ready to read a bar code.

Scanning
Sequence

A method of programming or configuring parameters for a bar code
reading system by scanning bar code menus.

Self-Checking
Code

A symbology that uses a checking algorithm to detect encoding errors
within the characters of a bar code symbol.

Shared library A shared body of compiled code that resides on the Palm PDA. At run
time, this library is dynamically linked with the application.

Space The lighter element of a bar code formed by the background between
bars.

Spectrum24 Symbol�s spread spectrum cellular network.

Specular
Reflection

The mirror-like direct reflection of light from a surface, which can cause
difficulty decoding a bar code.
Glossary-8

Glossary
Spread Spectrum A technique for uniformly distributing the information content of a radio
signal over a frequency range larger than normally required for robust
transmission of data. Spreading the signal without adding additional
information adds significant redundancy, which allows the data to be
recovered in the presence of strong interfering signals such as noise and
jamming signals.
The primary advantage of spread spectrum technology is its ability to
provide robust communications in the presence of interfering signals.

Start/Stop
Character

A pattern of bars and spaces that provides the scanner with start and stop
reading instructions and scanning direction. The start and stop characters
are normally to the left and right margins of a horizontal code.

STEP Symbol Terminal Enabler Program.

Subnet A subset of nodes on a network that are serviced by the same router. Refer
to Router.

Symbol A scannable unit that encodes data within the conventions of a certain
symbology, usually including start/stop characters, quiet zones, data
characters, and check characters.

Symbol Aspect
Ratio

The ratio of symbol height to symbol width.

Symbol Height The distance between the outside edges of the quiet zones of the first row
and the last row.

Symbol Length Length of symbol measured from the beginning of the quiet zone (margin)
adjacent to the start character to the end of the quiet zone (margin)
adjacent to a stop character.

Symbology The set of structural rules and conventions used to represent data within
a particular bar code (e.g., UPC/EAN, Code 39, PDF417, etc.).

TCP/IP Refer to Transmission Control Protocol/Internet Protocol.

Terminal A Symbol portable computer product.

Tolerance Allowable deviation from the nominal bar or space width.
Glossary-9

SPT Terminal Series System Software Manual
Transmission
Control Protocol/
Internet Protocol
(TCP/IP)

A suite of the standard network protocols that were originally used in UNIX
environments but are now used in many others. The TCP governs
sequenced data; the IP governs packet forwarding. TCP/IP is the primary
protocol that defines the Internet.

UPC Universal Product Code. A relatively complex numeric symbology. Each
character consists of two bars and two spaces, each of which can be any
of four widths. The standard symbology for retail food packages in the
United States.
Glossary-10

Index
A
API Architectural Overview 3-2
API Function Calls 3-5
API Introduction 3-1, 4-1
Application Programming Interface (API) . . 3-2
ASCII Equivalents . A-1

B
Barcode Parameter Functions 1-37

Codabar . 1-39
Code 32 . 1-44
Code 39 . 1-47
I 2 of 5 . 1-63
MSI Plessey . 1-66
UPC/EAN . 1-71

BSSID . 4-1

C
Code Samples . 3-33
Commercial Printers E-10

PCL . E-10
Postscript . E-11

Connecting to the Printer 3-35
Conventions Used in this Manual 3-4

D
Data Editing Overview C-1
Data Structures . 3-29
Design Considerations 4-5
Disconnecting the Printer and Closing the

Library . 3-39
E
ESSID . 4-1

F
Feature Limitations 4-5

G
General Purpose Interface Functions 3-7

ptClosePrinter 3-8
ptConnectPrinter 3-9
ptDisconnectPrinter 3-11
ptInitPrinter . 3-12
ptOpenPrinter 3-13
ptPrintApiVersion 3-15
ptQueryPrinter 3-16
ptResetPrinter 3-17

H
Hardware Parameter Functions 1-84

ScanGetAngle 1-95
ScanGetBeepAfterGoodDecode 1-87
ScanGetBeepDuration 1-88
ScanGetBeepFrequency 1-89
ScanGetBidirectionalRedundancy . . 1-90
ScanGetDecodeLedOnTime 1-91
ScanGetLaserOnTime 1-92
ScanGetLinearCodeTypeSecurity

Level . 1-93
ScanGetPrefixSuffixValues 1-94
ScanGetScanDataTransmission

Format . 1-96
ScanGetTransmitCodeIdCharacter . 1-97
Index-1

SPT Terminal Series System Software Manual
ScanGetTriggeringModes 1-98
ScanIsPalmSymbolUnit 1-99
ScanSetAimDuration 1-100
ScanSetAngle 1-101
ScanSetBeepAfterGoodDecode . . . 1-102
ScanSetBeepDuration 1-103
ScanSetBeepFrequency 1-104
ScanSetBidirectionalRedundancy . . 1-105
ScanSetDecodeLedOnTime 1-106
ScanSetLaserOnTime 1-107
ScanSetLinearCodeTypeSecurity

Level . 1-108
ScanSetPrefixSuffixValues 1-110
ScanSetScanDataTransmission

Format 1-111
ScanSetTransmitCodeIdCharacter . 1-112
ScanSetTriggeringModes 1-117

High-level API Calls 3-18
ptLineToBuffer 3-19
ptPrintPrintBuffer 3-20
ptRectToBuffer 3-21
ptResetPrintBuffer 3-22
ptSetFont . 3-23
ptStartPrintBuffer 3-24
ptTextToBuffer 3-25

I
Information, Service viii

L
Library Interfaces

Spectrum24 . 4-4
Lower-level API Calls 3-26

ptQueryPrintCap 3-27
ptWritePrinter 3-28

M
Magnetic Card Encoding D-1
MSR Commands . 2-8

MSR Event . 2-9
MsrArmtoRead 2-21
MsrClose . 2-12

MsrGetDataBuffer 2-34
MsrGetSetting 2-14
MsrGetStatus 2-17
MsrGetVersion 2-16
MsrOpen . 2-10
MsrReadMSRBuffer 2-36
MsrReadMSRUnbuffer 2-38
MsrSelfDiagnose 2-19
MsrSendSetting 2-15
MsrSetAddedField 2-29
MsrSetBufferMode 2-20
MsrSetDataEdit 2-28
MsrSetDataEditSend 2-30
MsrSetDecoderMode 2-39
MsrSetDefault 2-13
MsrSetFlexibleField 2-32
MsrSetLRC . 2-27
MsrSetPreamble 2-23
MsrSetReservedChar 2-42
MsrSetTerminator 2-22
MsrSetTrackFormat 2-40
MsrSetTrackSelection 2-25
MsrSetTrackSeparator 2-26
MstSetPostamble 2-24

N
NetLib . 4-5
Network Connections 4-2
Notational Conventions viii

O
Opening the Print Library 3-33

P
Parameter Definitions B-1
Portable Label Printers E-4

Comtec .E-4
Eltron .E-5
ONeil .E-7
Paxar Monarch 9490 E-6
Symbol .E-8
Zebra .E-9
Index-2

Index
Power Management 4-7
Print Commands . 3-6
Printing Rectangles E-3

Q
Querying the Printer 3-35

R
Returned Status Definitions 3-5
Roaming . 4-6

S
Scanner Commands 1-8

ScamCmdAimOff 1-10
ScanCloseDecoder 1-9
ScanCmdAimOn 1-11
ScanCmdBeep 1-12
ScanCmdGetAllParams 1-14
ScanCmdLedOff 1-15
ScanCmdLedOn 1-16
ScanCmdParamDefaults 1-17
ScanCmdScanDisable 1-18
ScanCmdScanEnable 1-19
ScanCmdSendParams 1-20
ScanCmdStartDecode 1-21
ScanCmdStopDecode 1-22

ScanCmdTrigSledOff 1-23
ScanCmdTrigSledOn 1-24
ScanGetAimMode 1-25
ScanGetDecodedData 1-26
ScanGetDecoderVersion 1-30
ScanGetExtendedDecodedData 1-29
ScanGetLedState 1-31
ScanGetScanEnabled 1-32
ScanGetScanManagerVersion 1-33
ScanGetScanPortDriverVersion 1-34
ScanGetTrigSledMode 1-35
ScanOpenDecoder 1-36

Service Information viii
Spectrum24

Interfaces . 4-4
Spectrum24 Radio Interface 4-5
Supported Printers E-1
Symbol Support Center ix
System Requirements 3-4

U
Using Forms with Legacy Printers E-12

W
Writing Data to the Printer 3-37
Writing the form to the printer E-13
Index-3

SPT Terminal Series System Software Manual
Index-4

Tell Us What You Think...

We�d like to know what you think about this Manual. Please take a moment
to fill out this questionnaire and fax this form to: (631) 738-3318, or mail to:

Symbol Technologies, Inc.
One Symbol Plaza M/S B-4
Holtsville, NY 11742-1300
Attention: Technical Publications Manager

IMPORTANT: If you need product support, please call the appropriate
customer support number provided. Unfortunately, we cannot provide
customer support at the fax number above.

User�s Manual Title:___
(please include revision level)

How familiar were you with this product before using this manual?

Did this manual meet your needs? If not, please explain.

What topics need to be added to the index, if applicable?

What topics do you feel need to be better discussed? Please be specific.

What can we do to further improve our manuals?

Very familiar Slightly familiar Not at all familiar
Thank you for your input�We value your comments.

2

72E-56803-01
Revision A � May 2002

Symbol Technologies, Inc. One Symbol Plaza, Holtsville N.Y. 11742-1300
http://www.symbol.com/manuals

http://www.symbol.com/manuals

	Contents
	About This Guide
	Symbol Support Center

	Chapter 1 SPT Scanners
	Section Descriptions
	Using the Scan Manager Shared Library
	Using the API
	Using the Scan Demo Application

	Scanner Commands
	Introduction
	Returned Status Definitions
	Scanner Commands

	Barcode Parameter Functions
	Introduction
	Returned Status Definitions
	Barcode Types
	Codabar Barcode Parameter Functions
	Code 32 Barcode Parameter Functions
	Code 39 Barcode Parameter Functions
	General Barcode Parameter Functions
	I 2 of 5 Barcode Parameter Functions
	MSI Plessey Barcode Parameter Functions
	UPC/EAN Barcode Parameter Functions

	Hardware Parameter Functions
	Introduction
	Returned Status Definitions
	Hardware Parameter Functions

	Power Considerations
	scanBatteryErrorEvent
	Sudden Loss of Power
	Backlighting
	Other Power Notes

	Sample Scanning Application
	Writing the Code

	Chapter 2 MSR 3000
	Section Descriptions
	MSR 3000 Features
	Library Globals

	Using The MSR Manager Shared Library
	Using the API

	MSR Commands
	Introduction
	Return Codes
	MSR 3000 Command Descriptions
	Application Templates

	MSR 3000 Configurator
	Introduction
	File menu commands
	View menu commands
	Help Menu Commands
	New Command (File Menu)
	Open Command (File Menu)
	Exit Command (File Menu)
	Toolbar Command (View Menu)
	Toolbar
	Status Bar Command (View Menu)
	Status Bar
	Help Topic Command (Help Menu)
	About Command (Help Menu)
	Context Help Command
	Scroll Bars
	Move Command (Control Menu)
	Size Command (Control Menu)
	Minimize Command (Control Menu)
	Maximize Command (Control Menu)
	Close Command (Control Menu)
	Configurator Properties Buttons

	Using the Configurator to Set the MSR 3000
	Introduction

	A Simple Application Program Sample
	Include Files
	PilotMain Routine
	AppStart Function
	MainFormHandleEvent Function
	AppStop Function

	Chapter 3 Printers for Palm Computing Platform
	Introduction
	Application Programming Interface (API)
	API Architectural Overview
	Section Descriptions
	System Requirements
	Conventions Used in this Manual

	API Function Calls
	Introduction
	Returned Status Definitions
	Print Commands
	General Purpose Interface Functions
	High-level API Calls
	Lower-level API Calls
	Data Structures

	Sample Application
	Code Samples

	Chapter 4 Spectrum24
	Introduction
	ESSID and BSSID
	Wired and Wireless Network Connections
	Spectrum24/NetLib Design and Implementation Considerations

	Spectrum24 Radio API
	The Programmer's Interface
	Spectrum24 Data Structures
	Spectrum24 Constants
	Spectrum24 Network Interface Settings

	Appendix A ASCII Equivalents
	Appendix B Scan Manager Parameter Definitions
	Appendix C Data Editing Overview for Magnetic Stripe Reader
	Introduction
	Functions
	Rearrange the Data
	Insert Character Strings into the Output Data Record
	Duplicate Fields
	Select Output Fields
	Output Method

	Fields
	Formulas
	Added Field
	Search Method
	Operation

	Appendix D Common Magnetic Card Encoding Formats for MSR
	Credit Card Format
	Track1 Format:
	Track2 Format:

	California Driver’s License Format (DMV)
	Track1 Format:
	Track2 Format:
	Track3 Format:

	Driver’s License Format Recommended by AAMVA
	Track1 Format:
	Track2 Format:
	Track3 Format:

	Appendix E Supported Printers
	Variables in Printcap Strings
	Printing Rectangles
	Portable Label Printers
	Commercial Printers
	Using Forms with Legacy Printers
	Writing the form to the printer

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	U
	W

	Index

