

Confidential

Using the SDIO
Development Card #1

Confidential

CONTRIBUTORS

Written by Greg Wilson and Geoff Richmond
Engineering contributions by Geoff Richmond and Gary Stratton.

Copyright © 1996 - 2002, Palm, Inc. All rights reserved. This documentation may be printed and copied
solely for use in developing products for Palm OS software. In addition, two (2) copies of this documenta-
tion may be made for archival and backup purposes. Except for the foregoing, no part of this documenta-
tion may be reproduced or transmitted in any form or by any means or used to make any derivative work
(such as translation, transformation or adaptation) without express written consent from Palm, Inc.

Palm, Inc. reserves the right to revise this documentation and to make changes in content from time to
time without obligation on the part of Palm, Inc. to provide notification of such revision or changes.
PALM, INC. MAKES NO REPRESENTATIONS OR WARRANTIES THAT THE DOCUMENTATION IS
FREE OF ERRORS OR THAT THE DOCUMENTATION IS SUITABLE FOR YOUR USE. THE DOCUMEN-
TATION IS PROVIDED ON AN “AS IS” BASIS. PALM, INC. MAKES NO WARRANTIES, TERMS OR
CONDITIONS, EXPRESS OR IMPLIED, EITHER IN FACT OR BY OPERATION OF LAW, STATUTORY
OR OTHERWISE, INCLUDING WARRANTIES, TERMS, OR CONDITIONS OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND SATISFACTORY QUALITY.

TO THE FULL EXTENT ALLOWED BY LAW, PALM, INC. ALSO EXCLUDES FOR ITSELF AND ITS SUP-
PLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR TORT (INCLUDING NEGLIGENCE),
FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL, OR PUNITIVE DAMAGES OF
ANY KIND, OR FOR LOSS OF REVENUE OR PROFITS, LOSS OF BUSINESS, LOSS OF INFORMATION
OR DATA, OR OTHER FINANCIAL LOSS ARISING OUT OF OR IN CONNECTION WITH THIS DOCU-
MENTATION, EVEN IF PALM, INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Palm Computing, Palm OS, Graffiti, HotSync, and Palm Modem are registered trademarks, and Palm III,
Palm IIIe, Palm IIIx, Palm V, Palm Vx, Palm VII, Palm, Palm Powered, More connected., Simply Palm, the
Palm logo, Palm Computing platform logo, Palm III logo, Palm IIIx logo, Palm V logo, and HotSync logo
are trademarks of Palm, Inc. or its subsidiaries. All other product and brand names may be trademarks or
registered trademarks of their respective owners.

IF THIS DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE OTHER SOFTWARE AND
DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT TO THE LICENSE AGREEMENT AC-
COMPANYING THE COMPACT DISC.

Using the SDIO Development Card #1
February 1, 2002
You must be a Palm, Inc. PluggedIn program member
(http://www.palm.com/developers/) and an SD Card Association
member (http://www.sdcard.org/) to have this document.

For the latest version of this document logon to:
https://pluggedin.palm.com/

Palm, Inc.
5470 Great America Pkwy.
Santa Clara, CA 95052
USA
www.palm.com

Confidential

Using the SDIO Development Card #1

1

Using the SDIO

Development Card #1

This document is organized into the following sections:

• Introduction

• The Demonstration Application

• Card Design

• Microcontroller Software Driver

• CPLD Firmware Design

• Reprogramming the EDK Card

• Tracing SDIO Commands

• Design Tips and Tricks

Introduction

The SDIO Development Card #1 (hereinafter called the “EDK card”)
is a sample SDIO design demonstrating an SDIO interface to a
microcontroller. It is part of an Expansion Development Kit (EDK)
that allows hardware developers to experiment with SDIO
hardware and software for initial learning, evaluation and
experimentation purposes. The card includes a Microchip
PICMicro® FLASH microcontroller, on-board flash memory, and a
Xilinx® XPLA3 CPLD for maximum flexibility.

The EDK card comes pre-programmed as an SDIO card with one
function. Function 1 implements a thermometer and a general-
purpose LED. It also contains a CSA (Code Storage Area) that gets
mounted as a read-only file system on Palm OS 4.x.

This document explains the design and use of the EDK card, and
should serve as a valuable resource when developing hardware,
firmware and software for custom SDIO peripherals.

Using the SDIO Development Card #1

Introduction

2

 Using the SDIO Development Card #1

Confidential

IMPORTANT:

The EDK card should only be used in a static—
safe environment. The card’s exposed electronics can expose the
internal components of the host Palm handheld to potentially

damaging static charge.

EDK Card Features

The EDK card features the following:

• SDIO interface

• PICMicro FLASH microcontroller for communicating with
the SD host and interfacing to the I/O functions and memory

• Xilinx CPLD (Complex Programmable Logic Device) that
provides address controller and serial I/O functions

• Flash ROM containing the SDIO CSA data and any drivers,
applications, or data required by any card-resident Palm OS
software

• LED for output display

• SPST push button switch for simple user input

• Temperature sensor IC

• EIA-232 serial interface

• MPLAB® ICD programmer interface for programming the
PICMicro microcontroller

• JTAG programmer interface for programming the CPLD

Figure 1 points out the various interfaces on the EDK card.

Using the SDIO Development Card #1

Introduction

Confidential

Using the SDIO Development Card #1

3

Figure 1 EDK card interfaces

Terms Used

This document assumes that the reader is familiar with the
following terms:

Handheld

: The Palm device to which the peripheral interfaces.

CPLD Programmer
interface (J2)

Microchip ICD
Programmer interface

SDIO Interface

LED Push Button

EIA-232 serial
port

External Power
interface (see note) CPLD GPIO

interface

Note

: External power
should never be ap-
plied to the EDK Card
when it is inserted in
an SDIO host such as
a Palm handheld.

CSA Bus
interface

Using the SDIO Development Card #1

The Demonstration Application

4

 Using the SDIO Development Card #1

Confidential

EDK

: Expansion Development Kit. The hardware available for
purchase from the Palm Expansion Parts Store.

HDK

: Hardware Development Kit. Electrical interface
specifications, environmental specs, 2D drawings, 3D CAD models,
and a list of vendor contacts needed to design and build an SDIO
peripheral.

Host

: A device capable of interfacing with SDIO cards as an SDIO
host (master), such as a Palm handheld.

SD

: Secure Digital.

SDIO

: An extension to the SD specification enabling I/O
functionality using the SD interface in a SD-derived form-factor.

SDK

: Software Development Kit.

Slot Driver

: A driver for the Palm handheld that controls the
handheld’s expansion slots. This driver is in turn controlled by the
Palm OS Expansion Manager.

Other Useful Documentation

SDIO peripheral developers will find the following documents
useful:

•

SD Memory Card Specifications

, available from the SD Card
Association.

•

SDIO Specification Version 1.0

, available from the SD Card
Association

•

Developing SDIO Peripherals for Palm Handhelds

, available as
part of the Palm SDIO SDK. It can be downloaded from the
PluggedIn Program.

The Demonstration Application

The EDK card comes pre-programmed with a simple demonstration
application that exercises the EDK card’s temperature sensor and
LED. The source code and CodeWarrior project used to construct
this demonstration application is included as part of the Palm SDIO
EDK. It can be found in the

/Software/EDKDemo

 folder.

Using the SDIO Development Card #1

Card Design

Confidential

Using the SDIO Development Card #1

5

Launching the Demonstration Application

To launch the demonstration program, simply insert the EDK
card—with components up and edge contacts toward you

1

—into
the SD slot on a Palm handheld that supports SDIO attachments

2

.
Upon insertion, the EDK card’s LED will light to indicate that
power has been applied to the EDK card and the microcontroller is
functioning. After a slight delay during which the card is identified
and the on-board program is transferred to the handheld, the SDIO
demonstration application will launch.

If the demonstration application fails to launch, verify that your
handheld is running Palm OS 4.0 or greater. If the handheld is
running Palm OS 4.0, also verify that the SDIO slot driver, named

SlotDriver:SDIO-sdsd

, is installed in RAM. (Starting with Palm
OS 4.1 this slot driver doesn’t need to be installed separately.)
Finally, verify that you haven’t installed a custom slot driver: the
EDK card is only certified to work with Palm’s SDIO slot driver.

Card Design

The primary objective of the EDK card is to provide SDIO hardware
and software developers with a sample SDIO design using a
microcontroller as the interface to the SDIO slot. The interface is
flexible enough to be adapted to other designs using different
microcontrollers.

Design Requirements

The

SDIO Specification

 details the system design requirements of
SDIO cards and SDIO hosts. While the specification includes
powerful features designed to allow for high-bandwidth
communications with a host, multiple functions to operate
simultaneously, and for secure data transfer, the requirements for a
typical SDIO design compatible with Palm handhelds are usually

1. This orientation is correct for Palm’s m500, m505, and m125 handhelds; other de-
vices may require a different orientation.

2. Note that the handheld must be running Palm OS 4.0 or greater, and must have
the SDIO slot driver installed, either in RAM or in ROM.

Using the SDIO Development Card #1

Card Design

6

 Using the SDIO Development Card #1

Confidential

far simpler. The EDK card is designed to demonstrate the most
common features of a Palm compatible SDIO solution. In addition,
it offers the developer a flexible environment for prototyping and
experimentation.

The EDK card addresses the following design requirements:

• Powered by the SDIO slot

• 128K flash RAM for code storage of autorun application(s)

• Supports SPI mode

• Generates SDIO interrupts

• Programmer interface connectors for PIC Programmer and
JTAG Programmer

• Supports IO_SEND_OP_COND command/response
(CMD5/R4)

• Supports IO_RW_DIRECT command/response (CMD52/
R5)

• Supports RAW (Read after Write) IO_RW_DIRECT

• Supports IO_RW_EXTENDED command/response
(CMD53/R5)

• Embedded I/O Code Storage Area (CSA)

• Power-on reset

Command Set

The EDK card supports the following SDIO commands:

Table 1 Supported SDIO commands

Command Name Description

CMD0 GO_IDLE_STATE Resets card and switches to SPI mode

CMD5 IO_QUERY Send I/O card data to host

CMD52 IO_RW_DIRECT Single byte function access command

CMD53 IO_RW_EXTENDED Multiple byte function access command

CMD59 CRC_ON_OFF Turns the CRC on or off

Using the SDIO Development Card #1

Card Design

Confidential

Using the SDIO Development Card #1

7

The EDK card does not support the following SDIO operations:

• SDIO Suspend/Resume operation

• SDIO Read Wait operation

• SDIO RW Extended Block operation in “infinite block
transfer” mode

Principal Hardware Components

The EDK card has been developed to allow for in-circuit
programming of the microcontroller and the CPLD components,
thereby reducing development time and expense, and allowing the
flexibility of upgrades to firmware and software. The
microcontroller and CPLD components used in this design were
chosen because of the added benefit of free development tools.
These include software design, test, simulation, and programming
tools.

Microcontroller

The EDK card was implemented using a PICmicro FLASH
microcontroller (MCU) from Microchip Technology Inc. This
microcontroller was selected for the following reasons:

• Simple, inexpensive programming interface

• Free development tools available

• Low-voltage (3.3 V) operation

• Built-in SPI port, UART, and 10-bit A/D converter

• On-chip flash memory for easy prototyping and updates in
the field

Using the PICStart Plus Development Programmer and a
programming cable, the PIC16LF877 microcontroller can be
programmed using any PC with a serial interface. Programming
software for the microcontroller is available at http://
www.microchip.com/.

CPLD

The CPLD chosen for the EDK card is a Xilinx CoolRunner XPLA3-
series XCR3128XL CPLD. This component offers low power, a
relatively large capacity, free development tools, the ability to

Using the SDIO Development Card #1

Card Design

8

 Using the SDIO Development Card #1

Confidential

program in-circuit, and is available in a low-height Chip-Scale
(0.8mm pitch BGA-type) package.

Using the Xilinx Parallel Download Cable III and the programming
software available from Xilinx at http://www.xilinx.com/

3

, the
CPLD can be programmed on the EDK card directly from any PC.
Any JEDEC file that targets the XCR3128XL can be downloaded to
the EDK card in this manner.

Flash ROM

The flash ROM chosen for the SDIO Reference Design is an AMD
AM29LV001B 3 volt flash. This component offers low power, 3 volt
programming.

LED

A user-programmable LED is connected directly to a Port A pin on
the microcontroller.

SPST Switch

An SPST push button switch is included for simple user input. The
switch is connected directly to a Port B pin on the microcontroller.

Schematic

Figure 2 presents the EDK card schematic.

3. Click on Products, then on Design Tools, then, in the left-hand frame, on Free ISE
WebPACK.

Using the SDIO Development Card #1

Card Design

Confidential

Using the SDIO Development Card #1

9

Figure 2 SDIO Development Card #1 Rev. B schematic

Using the SDIO Development Card #1

Card Design

10

 Using the SDIO Development Card #1

Confidential

Parts List

Table 2 lists the parts used in the construction of the EDK card.

Table 2 Parts List

Designator Value Package

C1 2 pF Surface Mount Capacitor C0603

C2-C10 0.1 uF Surface Mount Capacitor C0603

C17 0.01 uF Surface Mount Capacitor C0603

C18 0.1 uF Surface Mount Capacitor C0603

C19-C20 0.01 uF Surface Mount Capacitor C0603

D1 D10BQ015SMB Schottky Diode SMB

D2 QTLP652C4 LED Diode Green

U1 PIC16LF877L Microcontroller PLCC-44

U2 AM29LV001BJ 1-Megabit Flash
Memory

PLCC32R

U3 XCR3128XL-VQ100 CPLD VQFP100

U4 AD22103KR Low Voltage Temperature
Sensor

SO8

U5 MAX3386E RS232 Transceiver TSSOP20

U6-U7 SRV05-4 Rail Clamp Low Capacitance
Diode Array

SOT-23

J1 PINHD-1X2 1x2 0.1" Header 1X02

J2 PINHD-1X6 1x6 0.1" Header 1X06

J3 Low-profile, through-hole, side entry
PCB modular jack 6-6

J4 PINHD-2x7 2x7 0.1” Header 2x07

S1 SPST SMD Switch

J7 DB-9 Plug

Using the SDIO Development Card #1

Microcontroller Software Driver

Confidential

Using the SDIO Development Card #1

11

Microcontroller Software Driver

Memory Structure

The EDK card memory structure is composed of four areas defining
the mandatory memory-areas and register-sets defined in the SDIO
1.0 specification, as well as the optional CSA memory area. The EDK
card design includes 8 KB of on-chip flash memory in the PIC
microcontroller, and 128 KB of external flash memory. The on-chip
flash memory is used for program storage, while the external flash
memory is used primarily for CSA storage.

Table 3 illustrates the memory map of the EDK card.

R1-R2 4.7K ohm Surface Mount Resistor R0603

R3 1K ohm Surface Mount Resistor R0603

R4-R7 10K ohm Surface Mount Resistor R0603

R8 10 ohm Surface Mount Resistor R0603

R10-R11 470 ohm Surface Mount Resistor R0603

R12 10K ohm Surface Mount Resistor R0603

Table 2 Parts List (continued)

Designator Value Package

Table 3 EDK card memory map

Location Address Range Name Description

Microcontroller General
Purpose Register

0x1A0 – 0x1BF CCCR Card Common Control
Register (32 bytes)

Microcontroller General
Purpose Register

0x1C0 – 0x1DF FBR Function Basic Registers (32
bytes per function)

Using the SDIO Development Card #1
Microcontroller Software Driver

12 Using the SDIO Development Card #1 Confidential

Program Area
The program area extends from 0x0000h to 0x17FF, enabling up to 6
KB of program storage. The memory layout is standard for a PIC
microcontroller.

CCCR Area
The Card Common Control Register Area is described in the SDIO
Specification. This area is used to query the card’s capabilities and to
control basic card services.

According to the SDIO Specification, the CCCR is logically addressed
as memory locations 0x00 – 0xFF. In this design, the CCCR
physically resides in the microcontroller general register memory
space from locations 0x1A0 – 0x1BF. The firmware in the EDK card
maps logical memory addresses to the physical memory locations.

Table 4 shows the mapping from SDIO logical addresses to physical
memory locations for the CCCR Area.

Microcontroller
Program Memory

0x1800 – 0x1FFF
(Program Memory)

CIS Card Information Structure
(Tuple Structures)

External Flash Memory 0x00000 – 0x1FFFF CSA Function 1 Code Storage
Area.

Table 3 EDK card memory map (continued)

Location Address Range Name Description

Address Range Name

0x00 – 0x03 Reset vector

0x04 – 0x1F Interrupt handler

0x20 – 0x0FF Page 0 subroutines

0x100 – 0x17FF Main program

0x1800 – 0x1FFF CIS storage area

Using the SDIO Development Card #1
Microcontroller Software Driver

Confidential Using the SDIO Development Card #1 13

FBR Area
The Function Basic Register Area is described in the SDIO
Specification. This area is used to query individual function
capabilities and to control basic function services. This area also
allows access to any CSA areas residing on the EDK card.

According to the SDIO Specification, the FBR is logically addressed
as memory locations 0x100 – 0xFFF. In this design, the FBR
physically resides in the microcontroller general register memory

Table 4 CCCR logical-to-physical address map

SDIO Address Physical Address Register Name

0x00 0x1A0 CCCR/SDIO Revision

0x01 0x1A1 SD Specification Revision

0x02 0x1A2 I/O Enable

0x03 0x1A3 I/O Ready

0x04 0x1A4 Int Enable

0x05 0x1A5 Int Pending

0x06 0x1A6 I/O Abort

0x07 0x1A7 Bus Interface Control

0x08 0x1A8 Card Capability

0x09 – 0x0B 0x1A9 – 0x1AB Common CIS Pointer

0x0C 0x1AC Bus Suspend

0x0D 0x1AD Function Select

0x0E 0x1AE Exec Flags

0x0F 0x1AF Ready Flags

0x10 – 0x11 0x1B0 – 0x1B1 FN0 Block Size

0x12 – 0xFF 0x1B2 - 0x1BF Reserved for future use

Using the SDIO Development Card #1
Microcontroller Software Driver

14 Using the SDIO Development Card #1 Confidential

space from locations 0x1C0 – 0x1DF. The firmware in the EDK card
maps logical memory addresses to the physical memory locations.

Table 5 shows the mapping from SDIO logical addresses to physical
memory locations for FBR 1.

CIS Area
The Card Information Structure Area is described in the SDIO
Specification and in the PC-Card (PCMCIA) specifications (available
at www.pcmcia.org). This area is used to determine the
capabilities of the card and of individual functions.

According to the SDIO Specification, the CIS structures are stored in
logical addresses 0x0001000 - 0x017FFF. In this design, the CIS
structures physically reside in the microcontroller program memory
space from locations 0x1800 - 0x1FFF. The firmware in the EDK card
maps logical memory addresses to physical memory locations.

Table 6 shows the mapping from SDIO logical addresses to program
memory addresses.

Table 5 FBR 1 logical-to-physical address map

SDIO Address Physical Address Register Name

0x100 0x1C0 Function 1 FBR Info

0x101 – 0x108 0x1C1 – 0x1C8 Reserved for future use

0x109 – 0x10B 0x1C9 – 0x1CB Pointer to Function 1 CIS

0x10C – 0x10E 0x1CC – 0x1CE Pointer to Function 1 CSA

0x10F 0x1CF Data Access Window to
Function 1 CSA

0x110 – 0x111 0x1D0 – 0x1D1 I/O Block Size for
Function 1

0x112 – 0x1FF 0x1D2 Reserved for future use

0x200 – 0xFFF unmapped Unused Function 2-7 FBR
and reserved for future
use area

Using the SDIO Development Card #1
Microcontroller Software Driver

Confidential Using the SDIO Development Card #1 15

The CIS data is stored in program memory as a simple look-up
table. To return the value at an offset in the table, the offset is put in
the W register and a subroutine call is made to the start of the table.
The value at the offset is returned in the W register. For more details
on this technique, refer to the RETLW instruction documented in the
PICmicro™ Mid-Range MCU Family Reference Manual.

Function 1 Registers
The EDK card implements a simple LED and thermometer function.
The Function 1 registers are located in the microcontroller general-
purpose register space at addresses 0x0020 - 0x003F. The following
table describes each of the Function 1 registers.

Table 6 CIS logical-to-program memory address map

Logical
Address

Program Memory
Address

Description

0x1000 CIS_TABLE
(0x1800)

Card's Common Card
Information Structure (CIS)

0x2000 FN1_CIS_TABLE
(variable)

Function 1 Card Information
Structure (CIS)

Table 7 Function 1 register logical-to-physical address map

Function
1 Register
address
(logical)

Physical
address

Description

0x00 0x0020 LED control. Set to 1 to turn the LED on.

0x01 0x0021 Temperature low-order byte.

0x02 0x0022 Temperature high-order byte.

0x03 0x0023 Function 1 command register. Set to
0xA5 to erase the card’s EDK Flash
memory (this memory serves as the
Function 1 CSA).

Using the SDIO Development Card #1
CPLD Firmware Design

16 Using the SDIO Development Card #1 Confidential

CSA Area
The Code Storage Area is described in the SDIO Specification. This
area is used to hold drivers, data, and applications that may be
required by the host to interact with the SDIO card. The CSA area is
accessed through a data window controlled by a series of registers
residing in the FBR area. The microcontroller automatically creates
the offset from the requested CSA address and the physical memory
space, in addition to automatically incrementing the CSA window
address after each read.

In order for a CSA to be readable by the Palm OS, it should be in
FAT12/FAT16 format and any drivers, data, or applications that
should be automatically detected by the Palm handheld should
reside in the /PALM and /PALM/Launcher directories. Once a CSA
area is mounted in the handheld memory space, an application may
access any data within the CSA, regardless of the data’s directory
location. For more information on creating a CSA image, see
“Programming the EDK Flash Memory” on page 27.

The CSA physically resides in the external flash memory space from
0x00000 – 0x1FFFF.

CPLD Firmware Design
The EDK card’s CPLD firmware was developed on Xilinx’s
WebPOWERED software using the Verilog HDL language, and the
compiled binary code was downloaded to the EDK card using a
Xilinx Parallel Download Cable. The Verilog language was chosen
as this provides a good balance between hardware abstraction

0x04 0x0024 Firmware version of microcontroller
code.

0x05 0x0025 Firmware version of CPLD.

Table 7 Function 1 register logical-to-physical address map

Function
1 Register
address
(logical)

Physical
address

Description

Using the SDIO Development Card #1
CPLD Firmware Design

Confidential Using the SDIO Development Card #1 17

(thereby allowing the easy implementation of a new design with
different components), development speed, and effort.

Two recommended reference books on implementing Verilog
designs for CPLD handhelds are:

• Real World FPGA Design with Verilog by Ken Coffman,
published by Prentice Hall PTR, 2000

• The Verilog Hardware Description Language, Fourth Edition by
Donald E. Thomas and Philip R. Moorby, published by
Kluwer Academic Publishers, 1998

NOTE: The CPLD was used in the EDK card design because it
provides an inexpensive way to implement the SDIO specification
in a low-volume product. In a real product this specification could
be implemented in hardware.
Because the EDK card is primarily intended to allow you to
experiment with the interaction between the PIC code and the
Palm OS application code, you need not change the programming
of the CPLD. Instead, you may want to focus your attention on the
PIC’s firmware, since it illustrates one way to create a product that
connects to the SD interface.

CPLD Firmware Block Diagram
Figure 3 is a block diagram of the CPLD design.

Using the SDIO Development Card #1
Reprogramming the EDK Card

18 Using the SDIO Development Card #1 Confidential

Figure 3 CPLD Block Diagram (SPI Only)

Reprogramming the EDK Card
The EDK card’s microcontroller, CPLD, and flash can all be
reprogrammed. The following sections walk you through the
process of reprogramming each:

• Programming the Microchip PICMicro Microcontroller

• Programming the Xilinx XPLA3 CPLD

State
Control

Address
Controller

SPI
Shift
Out

csabus [7..0]

WriteN

ResetN

RdyN

PCLK

Data_RdyN

DataAck

3

DO

8

Inc

1 7

addr[16..0]

SCLK

CD

DataAck

RdyN

BSel

StrbN

8

Using the SDIO Development Card #1
Reprogramming the EDK Card

Confidential Using the SDIO Development Card #1 19

• Programming the EDK Flash Memory

Programming the Microchip PICMicro
Microcontroller
To program the PICMicro microcontroller, you need both the
Microchip MPLAB IDE software and the MPLAB ICD (In-Circuit
Debugger). The MPLAB IDE can be downloaded from
www.microchip.com. The ICD can be purchased from Digi-Key
(call 800-DIGIKEY). Purchase either the DV164001 ICD Module,
which doesn’t include a power supply, or the DV164003 ICD Deluxe
Developer’s Kit, which includes both a power supply and a demo
board.

Once you have obtained the IDE software and the ICD, the
following procedure walks you through the process of
programming the microcontroller:

1. Download the Microchip MPLAB IDE toolset and install it on
the development PC. The following packages were used in
the EDK card development and should be installed:

– MPLAB IDE Files

– MPLAB ASM Assembler and Linker

– MPLAB SIM Simulator Environment

– MPLAB ICD In-circuit Debugger Software

– Help Files

2. Once the Microchip MPLAB software is installed, copy the
EDKFirmware.MPLAB folder (which can be found inside the
Palm SDIO EDK’s Firmware folder) to an appropriate
MPLAB Project folder.

3. Start MPLAB.

4. Under the Project menu, open the project file edkreva.pjt.
The following will be displayed:

– edkreva.asm

– edkreva.inc

The window should look something like this:

Using the SDIO Development Card #1
Reprogramming the EDK Card

20 Using the SDIO Development Card #1 Confidential

5. Press the F10 key to compile the project.

To download the program to the PIC16LF877 microcontroller, do the
following:

1. Remove the EDK card from the Palm handheld.

2. Connect the Microchip ICD Programmer to programmer
interface J3.

3. Apply +3.3 V to the VDD pin, connecting VSS to the negative
supply terminal.

Note that when the EDK card is inserted into a Palm
handheld’s SD slot, the handheld will apply +3.3 V. This is
the recommended operating and programming voltage that
should be applied to VDD (+ terminal) and VSS (- terminal).

Using the SDIO Development Card #1
Reprogramming the EDK Card

Confidential Using the SDIO Development Card #1 21

WARNING! The EDK card has a maximum voltage rating of
3.6V. Do not exceed this voltage.

IMPORTANT: During programming of the PICMicro
microcontroller, the EDK card should be removed from the Palm
handheld and powered by an external 3.3V power supply (100mA
minimum).

The LED on the ICD programmer should turn on or flash.

4. In the MPLAB IDE application, select Development Mode…
from the Options menu.

5. On the Tools tab select MPLAB ICD Debugger, then click
Apply. The MPLAB ICD will initialize.

6. In the MPLAB ICD window make sure that COM1 is
selected. COM2 does not work. This means that you should
set HotSync to use COM2 with your serial cradle.

7. In the MPLAB ICD window click Options….

8. Configure the Options window as shown here:

Using the SDIO Development Card #1
Reprogramming the EDK Card

22 Using the SDIO Development Card #1 Confidential

WARNING! Never click Blank or Erase. Neither should you
select “Erase All before Program” or “Code Protection On”. These
can cause the PIC16LF877 to be reset to “code protect” mode,
which disables the in-circuit programming capabilities of the
microcontroller. If this happens, you will no longer be able to
program the PIC16LF877. Only use the “Program” function. If you
want to experiment with the other functions, do so on a packaged
part that can be discarded if an error occurs.

9. Click Program to program the part.

10.After successful programming, in the MPLAB IDE window
select Development Mode… from the Options menu.

11.In the Tools tab select MPLAB SIM Simulator mode and click
Apply.

Using the SDIO Development Card #1
Reprogramming the EDK Card

Confidential Using the SDIO Development Card #1 23

12.Turn off power and disconnect all power and programmer
leads.

Programming is complete.

Programming the Xilinx XPLA3 CPLD
To program the Xilinx CoolRunner XPLA3 CPLD, you need a JTAG
programming cable—such as the Parallel Cable III, which can be
ordered from Xilinx or through a Xilinx distributor—along with the
appropriate software. The HDL software design tools required to
program this component are available from Xilinx as part of their
free WebPOWERED PC software suite, and can be downloaded
from the Xilinx website (www.xilinx.com). The following
software packages are required:

• Design Entry

• XPLA Fitter

• XPLA Programmer

• MXE Simulator

• HDL Bencher

These are optional:

• WebPACK ECS-CPLD Lib

• WebPACK State CAD

Once you have obtained the programming cable and the
WebPOWERED software, the following procedure walks you
through the process of programming the CPLD:

1. Download the ISE WebPACK tools (listed above) for the
CoolRunner XPLA3 series of CPLDs from
www.xilinx.com, and install on the development PC.

2. Copy the EdkCpld.Xilinx folder (which can be found
inside the Palm SDIO EDK’s Firmware folder) into a
WebPACK Projects folder.

3. Once the WebPOWERED software is installed on a host
machine, do the following:

a. Start the Xilinx Project Navigator application

Using the SDIO Development Card #1
Reprogramming the EDK Card

24 Using the SDIO Development Card #1 Confidential

b. From the File menu, select Open Project, then navigate to
and open the EdkCpld.Xilinx folder. Open the
SdioCpld.npl project file.

The Project Navigator should look similar to the following:

The User Constraints File (sdio.ucf) associates the I/O names
used in the Verilog software with specific pins on the CPLD
component. To inspect this file, use a separate text editor.

Using the SDIO Development Card #1
Reprogramming the EDK Card

Confidential Using the SDIO Development Card #1 25

To compile the Verilog code and implement the design, use the
WebPACK Project navigator as follows:

1. In the upper left-hand box highlight “SDIO (sdio_cpld.v)”.

2. In the lower left is the “Process View” box. Right-click on
“Implement Design”.

3. Select “Rerun All”.

The compilation and implementation should succeed with only
warnings about unused pins.

Using the SDIO Development Card #1
Reprogramming the EDK Card

26 Using the SDIO Development Card #1 Confidential

To upload the CPLD program to the XCR3128XL CPLD, perform the
following:

1. Remove EDK card from Palm handheld.

2. Connect the Xilinx Parallel Cable III JTAG Programmer to
programmer interface J2.

3. Apply +3.3 V to the VDD pin, connecting VSS to the negative
supply terminal.

Note that when the EDK card is inserted into a Palm
handheld’s SD slot, the handheld will apply +3.3 V. This is
the recommended operating and programming voltage that
should be applied to VDD (+ terminal) and VSS (- terminal).

Using the SDIO Development Card #1
Reprogramming the EDK Card

Confidential Using the SDIO Development Card #1 27

WARNING! The EDK card has a maximum voltage rating of
3.6V. Do not exceed this voltage.

4. In the WebPACK Project Navigator select the Process View
tab and then double-click on the “XPLA Programmer” entry.
This will start the XPLA Programmer application.

5. Under the column labeled “Device Name”, double-click on
the first cell and then select “XCR3128XL”.

6. Under the column labeled “Operation”, double-click on the
first cell then select “Prog & Verify”.

7. Under the column labeled “Design file name”, double-click
on the first cell and then select the sdio.jed file. This is the
JEDEC file that will be uploaded to the CPLD.

8. Press the Execute button to program the part.

9. After successful programming, turn off power and
disconnect all power and programmer leads.

This completes the programming of the CPLD.

Programming the EDK Flash Memory
The EDK card includes 128 KB of programmable flash memory. This
memory is used as the Function 1 CSA and contains a FAT12 file
system image containing the EDK Demo program. This memory can
be reprogrammed using the Demo program’s Program Flash Image
function.

Before the Program Flash Image function can be used, a valid
memory image file must be created and installed on the handheld.
To create this memory image, use the FATFlash program included in
the EDK download. Figure 4 shows the FATFlash user interface.

Using the SDIO Development Card #1
Reprogramming the EDK Card

28 Using the SDIO Development Card #1 Confidential

Figure 4 FATFlash user interface

FATFlash creates a binary image representing a FAT12 file system.
You can configure the size of the image (number of bytes), allowing
FATFlash to create file system images for various ROM sizes. In the
case of the EDK card, the size of the file system created should be
the default of 128 KB (256 sectors, 512 bytes per sector). If you wish

Using the SDIO Development Card #1
Reprogramming the EDK Card

Confidential Using the SDIO Development Card #1 29

to adjust the size of the file system image created, adjust the number
of sectors.

To create a file system image and program it into the EDK card, do
the following:

1. Create a folder on your desktop computer that contains all
files and data organized as it should appear in the file system
image.

2. Start FATFlash and specify the folder created in step 1.,
above, as the Root Directory.

3. Adjust the Target File System Parameters if necessary. Note
that FATFlash initially sets each parameter to a default value
compatible with the flash memory on the EDK card, so you
won’t need to adjust the parameter values if you are
programming the EDK card. See “Target File System
Parameters” on page 30 for details on the purpose of each
parameter.

4. Select Export File System Image from the File menu. In the
dialog that appears, set the file type to “Palm OS File Stream
(*.pdb)”, supply a filename, and click Save.

5. Assuming that the file is created without error, a
confirmation dialog appears. This dialog indicates the full
path of the newly-created PDB file.

6. Double-click on the newly-created PDB file to start the Palm
Desktop Install Tool and schedule the PDB file for
installation on the handheld.

7. Place the Palm handheld into its cradle and perform a
HotSync operation.

8. Remove the handheld from its cradle and insert the EDK
card into the handheld. This will start the EDK Demo
program.

9. Tap Program Flash Image in the EDK Demo program’s
Options menu.

This will erase the EDK card’s flash memory and program the new
file system image.

Using the SDIO Development Card #1
Reprogramming the EDK Card

30 Using the SDIO Development Card #1 Confidential

IMPORTANT: Do not remove the EDK card while it is being
reprogrammed. As a reminder, a “Please Wait” dialog will remain
on the screen until programming is complete.

Complete source code for the EDKDemo program is included in the
download package from Palm.

Export Filetypes

FATFlash can create a file system image either as a Palm database
file (.pdb) or as a binary image file (.bin). The Palm database file
contains a representation of the file system image that can be loaded
on a Palm handheld and accessed using the Palm OS File Streaming
APIs. The binary image file contains a binary image of the resulting
file system suitable for programming into a ROM. The binary image
may be more suitable for custom SDIO card developers.

Target File System Parameters

FATFlash displays the following target file system parameters,
which specify how the file system image will be generated:

Number of Sectors Adjust this parameter to vary the total size of
the file system image. The default is 256 sectors
(each sector is 512 bytes), producing a 128 KB
image.

Bytes Per Sector The SD specification specifies 512 bytes per
sector. This parameter cannot be changed.

Sectors Per Cluster This parameter is currently set to 1 sector per
cluster, and cannot be changed.

Number of Root Directory Entries:
Set to 512, per the SD specification. This
parameter cannot be changed.

Number of FAT's: Set to 2. This parameter cannot be changed.

Reserved Sectors: By default, one sector is reserved for the
Partition Boot Record. This value can be
increased as necessary.

Using the SDIO Development Card #1
Reprogramming the EDK Card

Confidential Using the SDIO Development Card #1 31

Number of Hidden Sectors
No sectors are hidden by default. You can
increase this value if necessary.

Volume ID An identifier, such as a serial number, to be set
in the Partition Boot Record.

Volume Name Volume name of the resultant file system. This
name is displayed in the Palm OS Launcher
when the contents of the card are displayed.
This field as a maximum length of 11
characters.

FATFlash File Menu

The following commands are listed in the FATFlash application’s
File menu:

Creating File System Images

To create a file system image that can be programmed into the EDK
card’s flash memory, ensure that you specify “Palm OS File Stream”
as the filetype of the exported file system image. This will cause

Command Function

New Reset the FATFlash configuration to
its default state.

Set Root Directory Specify the root directory from
which the desired card image
should be created.

Open Configuration File Load a previously saved FATFlash
configuration.

Save Configuration File Save the current configuration.

Save Configuration File As Save a copy of the current
configuration.

Export File System Image Create a file system image and save
it to a specified file.

Exit Exit FATFlash

Using the SDIO Development Card #1
Tracing SDIO Commands

32 Using the SDIO Development Card #1 Confidential

FATFlash to create a Palm OS file stream database containing the file
system image that can be installed to the Palm device using the
Palm Desktop Install Tool. The EDK Demo program’s Program
Flash Image function can then be used to transfer the file stream
database into the flash memory on the EDK card.

The following directories should be present on any file system to be
read by Palm OS:

If you have a Palm OS application that is to be auto-launched upon
card insertion, name the application’s PRC file START.PRC and
place it in the \PALM directory. (Note that the name of the PRC file
isn’t what is displayed in the Palm OS Launcher.) If you want the
auto-launched application to also appear when the user displays the
card’s contents in the Launcher, place a second copy of the PRC in
the \PALM\LAUNCHER directory.

For more details on how Palm OS handles files and file systems on
expansion cards, or for information on file streams, see the
Expansion chapter in the Palm OS Programmer’s Companion.

Tracing SDIO Commands
Using the EDK card and a debug SDIO slot driver on a Palm
handheld, you can view a trace of SDIO commands sent and
received during card operation. This functionality can be very
useful in developing and debugging your custom SDIO cards.

Directory Purpose

\PALM Root directory for all Palm OS information.
To preserve space in the root directory, this
entry should be all upper-case. Any lower-
case entries require a long filename, which
consumes more than one root directory
entry.

\PALM\LAUNCHER Directory containing all Palm OS
applications (PRCs) that should appear in
the Launcher.

Using the SDIO Development Card #1
Tracing SDIO Commands

Confidential Using the SDIO Development Card #1 33

Listing 10 shows a typical identification and initialization sequence
when the EDK card is inserted into a Palm handheld.

Listing 10 EDK card initialization and identification

Spi Clock actualFrequency=259072 Hz
Power ON card procedure
 turn On card
Spi Clock actualFrequency=259072 Hz

// Set SPI mode
CMD0, argument=0x00000000, response[1]= 0x00

// Read OCR
CMD5, argument=0x00000000, response[5]= 0x00 0x90 0xFF 0x80 0x00
SD I/O Only Card with 1 function
CMD5, argument=0x00180000, response[5]= 0x00 0x90 0xFF 0x80 0x00
Spi Clock actualFrequency=259072 Hz
Power Card procedure Done

Card Identification Begin.

// Read CCCR
CMD53, argument=0x04000010, response[2]= 0x00 0x00
 IO_RW_EXTENDED function 0 byte read Incrementing Address 0x00000000 Hex
data[0x0010]=
 00 00 00 00 00 00 00 00 00 00 10 00 00 00 00 00

// Walk Function 0 tuples
CMD52, argument=0x00200000, response[2]= 0x00 0x21
CMD52, argument=0x00200200, response[2]= 0x00 0x02
CMD52, argument=0x00200800, response[2]= 0x00 0x22
CMD52, argument=0x00200A00, response[2]= 0x00 0x04
CMD52, argument=0x00201400, response[2]= 0x00 0x20
CMD52, argument=0x00201600, response[2]= 0x00 0x04
CMD52, argument=0x00202000, response[2]= 0x00 0x15
CMD52, argument=0x00202200, response[2]= 0x00 0x24
CMD52, argument=0x00206C00, response[2]= 0x00 0xFF

// Read TPLFID_FUNCTION tuple for Function 0
CMD53, argument=0x04200C04, response[2]= 0x00 0x00
 IO_RW_EXTENDED function 0 byte read Incrementing Address 0x00001006 Hex
data[0x0004]=
 00 80 00 78
SDIO, function 0, tuple CISTPL_FUNCE found.
SDIO, function 0, TPLFE_FN0_BLK_SIZE = 128
SDIO, function 0, TPLFE_MAX_TRAN_SPEED = 800000

Using the SDIO Development Card #1
Tracing SDIO Commands

34 Using the SDIO Development Card #1 Confidential

Spi Clock actualFrequency=518144 Hz

// Read CISTPL_FUNCID tuple for Function 0
CMD52, argument=0x00200400, response[2]= 0x00 0x0C
CMD52, argument=0x00200600, response[2]= 0x00 0x00

// Read FBR 1
CMD53, argument=0x0402000C, response[2]= 0x00 0x00
 IO_RW_EXTENDED function 0 byte read Incrementing Address 0x00000100 Hex
data[0x000C]=
 40 00 00 00 00 00 00 00 00 00 20 00

// Walk Function 1 tuples
CMD52, argument=0x00400000, response[2]= 0x00 0x21
CMD52, argument=0x00400200, response[2]= 0x00 0x02
CMD52, argument=0x00400800, response[2]= 0x00 0x22
CMD52, argument=0x00400A00, response[2]= 0x00 0x1C
CMD52, argument=0x00404400, response[2]= 0x00 0xFF

// Read CISTPL_FUNCID tuple for Function 1
CMD52, argument=0x00400400, response[2]= 0x00 0x0C
CMD52, argument=0x00400600, response[2]= 0x00 0x00

// Read TPLFID_FUNCTION tuple for Function 1
CMD53, argument=0x04400C1C, response[2]= 0x00 0x00
 IO_RW_EXTENDED function 0 byte read Incrementing Address 0x00002006 Hex
data[0x001C]=
 01 01 00 00 00 00 00 00 00 02 00 03 80 00 00 01 FF 00 08 0A 0F 01 01 01 00 00
00 00
SDIO function 1 TPLFE_MAX_BLOCK_SIZE = 0
SDIO function 1 CCCR SMB = 0 (no block mode transfers)
SDIO function 1 FBR - CSA supported=1, TPLFE_CSA_SIZE = 131072

// Enable Function 1 CSA
CMD52, argument=0x00020000, response[2]= 0x00 0x40
CMD52, argument=0x880200C0, response[2]= 0x00 0xC0
SDIO function 1File system enabled.

// Read Manufacturer ID and OEM ID
CMD53, argument=0x04201804, response[2]= 0x00 0x00
 IO_RW_EXTENDED function 0 byte read Incrementing Address 0x0000100C Hex
data[0x0004]=
 96 02 00 01
SDIO Card function 1 Manufacturer ID = 0x00000296 OEM ID = 0x00000100

// Read 512 byte PBR
CMD52, argument=0x80021800, response[2]= 0x00 0x00
CMD52, argument=0x80021A00, response[2]= 0x00 0x00

Using the SDIO Development Card #1
Tracing SDIO Commands

Confidential Using the SDIO Development Card #1 35

CMD52, argument=0x80021C00, response[2]= 0x00 0x00
CMD53, argument=0x00021E80, response[2]= 0x00 0x00
 IO_RW_EXTENDED function 0 byte read Fixed Address 0x0000010F Hex
data[0x0080]=
 EB 3C 90 4D 53 44 4F 53 35 2E 30 00 02 01 01 00 02 00 02 FF 00 F8 01 00 12 00
02 00 00 00 00 00
 00 00 00 00 00 00 29 B6 69 DB 70 53 44 49 4F 20 45 44 4B 20 31 20 46 41 54 31
32 20 20 20 00 00
 00
00 00 00 00 00 00
 00
00 00 00 00 00 00
CMD53, argument=0x00021E80, response[2]= 0x00 0x00
 IO_RW_EXTENDED function 0 byte read Fixed Address 0x0000010F Hex
data[0x0080]=
 00
00 00 00 00 00 00
 00
00 00 00 00 00 00
 00
00 00 00 00 00 00
 00
00 00 00 00 00 00
CMD53, argument=0x00021E80, response[2]= 0x00 0x00
 IO_RW_EXTENDED function 0 byte read Fixed Address 0x0000010F Hex
data[0x0080]=
 00
00 00 00 00 00 00
 00
00 00 00 00 00 00
 00
00 00 00 00 00 00
 00
00 00 00 00 00 00
CMD53, argument=0x00021E80, response[2]= 0x00 0x00
 IO_RW_EXTENDED function 0 byte read Fixed Address 0x0000010F Hex
data[0x0080]=
 00
00 00 00 00 00 00
 00
00 00 00 00 00 00
 00
00 00 00 00 00 00
 00
00 00 00 00 55 AA
CMD53, argument=0x04202423, response[2]= 0x00 0x00
 IO_RW_EXTENDED function 0 byte read Incrementing Address 0x00001012 Hex
data[0x0023]=

Using the SDIO Development Card #1
Tracing SDIO Commands

36 Using the SDIO Development Card #1 Confidential

 07 00 50 61 6C 6D 2C 20 49 6E 63 2E 00 53 44 49 4F 20 44 65 76 65 6C 6F 70 6D
65 6E 74 20 43 61
 72 64 2E

// Read Manufacturer ID and OEM ID
CMD53, argument=0x04201804, response[2]= 0x00 0x00
 IO_RW_EXTENDED function 0 byte read Incrementing Address 0x0000100C Hex
data[0x0004]=
 96 02 00 01

// Read FAT 1
CMD52, argument=0x80021800, response[2]= 0x00 0x00
CMD52, argument=0x80021A02, response[2]= 0x00 0x02
CMD52, argument=0x80021C00, response[2]= 0x00 0x00
CMD53, argument=0x00021E80, response[2]= 0x00 0x00
 IO_RW_EXTENDED function 0 byte read Fixed Address 0x0000010F Hex
data[0x0080]=
 F8 FF FF 00
00 00 00 00 00 00
 00
00 00 00 00 00 00
 00
00 00 00 00 00 00
 00
00 00 00 00 00 00
CMD53, argument=0x00021E80, response[2]= 0x00 0x00
 IO_RW_EXTENDED function 0 byte read Fixed Address 0x0000010F Hex
data[0x0080]=
 00
00 00 00 00 00 00
 00
00 00 00 00 00 00
 00
00 00 00 00 00 00
 00
00 00 00 00 00 00
CMD53, argument=0x00021E80, response[2]= 0x00 0x00
 IO_RW_EXTENDED function 0 byte read Fixed Address 0x0000010F Hex
data[0x0080]=
 00
00 00 00 00 00 00
 00
00 00 00 00 00 00
 00
00 00 00 00 00 00
 00
00 00 00 00 00 00
CMD53, argument=0x00021E80, response[2]= 0x00 0x00

Using the SDIO Development Card #1
Tracing SDIO Commands

Confidential Using the SDIO Development Card #1 37

 IO_RW_EXTENDED function 0 byte read Fixed Address 0x0000010F Hex
data[0x0080]=
 00
00 00 00 00 00 00
 00
00 00 00 00 00 00
 00
00 00 00 00 00 00
 00
00 00 00 00 00 00

// Read root directory (including volume name)
CMD52, argument=0x80021800, response[2]= 0x00 0x00
CMD52, argument=0x80021A06, response[2]= 0x00 0x06
CMD52, argument=0x80021C00, response[2]= 0x00 0x00
CMD53, argument=0x00021E80, response[2]= 0x00 0x00
 IO_RW_EXTENDED function 0 byte read Fixed Address 0x0000010F Hex
data[0x0080]=
 53 44 49 4F 20 43 41 52 44 20 20 08 00 00 00 00 00 00 00 00 00 00 A0 95 24 2B
00 00 00 00 00 00
 00
00 00 00 00 00 00
 00
00 00 00 00 00 00
 00
00 00 00 00 00 00
CMD53, argument=0x00021E80, response[2]= 0x00 0x00
 IO_RW_EXTENDED function 0 byte read Fixed Address 0x0000010F Hex
data[0x0080]=
 00
00 00 00 00 00 00
 00
00 00 00 00 00 00
 00
00 00 00 00 00 00
 00
00 00 00 00 00 00
CMD53, argument=0x00021E80, response[2]= 0x00 0x00
 IO_RW_EXTENDED function 0 byte read Fixed Address 0x0000010F Hex
data[0x0080]=
 00
00 00 00 00 00 00
 00
00 00 00 00 00 00
 00
00 00 00 00 00 00
 00
00 00 00 00 00 00

Using the SDIO Development Card #1
Tracing SDIO Commands

38 Using the SDIO Development Card #1 Confidential

CMD53, argument=0x00021E80, response[2]= 0x00 0x00
 IO_RW_EXTENDED function 0 byte read Fixed Address 0x0000010F Hex
data[0x0080]=
 00
00 00 00 00 00 00
 00
00 00 00 00 00 00
 00
00 00 00 00 00 00
 00
00 00 00 00 00 00
Power OFF card procedure
 turn OFF card
Power Card procedure Done

NOTE: This listing is for illustrative purposes only. It may not
reflect exactly the commands issued during EDK card insertion.
Additional comments have been added to the listing to clarify the
events in the identification and initialization process. Please refer
to the SDIO Specification for a detailed explanation of the card
identification and initialization process.

For additional information on the command tracing feature of the
SDIO slot driver refer to Developing SDIO Applications for Palm
Handhelds, which is available through the Plugged In program.

Installing the Debug SDIO Slot Driver
In order to perform command tracing, a debug version of the SDIO
slot driver must be resident on your handheld. A debug version of
the SDIO slot driver is available through the Plugged In program.

Install it as follows:

1. If necessary, uninstall the existing RAM-resident
SlotDriver:SDIO-sdsd slot driver from your Palm
handheld by performing a hard reset. This step is only
required if the slot driver is resident in RAM.

2. Install the debug version of the slot driver using the standard
Palm Desktop Install Tool.

Using the SDIO Development Card #1
Tracing SDIO Commands

Confidential Using the SDIO Development Card #1 39

3. Perform a soft reset of the device to activate the newly-
installed slot driver.

Enabling Command Tracing
You can now enable command tracing from within the EDK Demo
program. To do this, simply:

1. Insert the EDK card into the SD slot of your Palm handheld
to start the EDK Demo application.

2. Select SDIO Trace All from the EDK Demo application’s
Options menu.

NOTE: If SDIO Trace All does not appear in the Options menu,
the debug version of the SDIO slot driver is not installed.

A trace of all SDIO commands is now sent to the serial port. You can
remove and insert the EDK card, while the EDK Demo application
is running, to view the identification and initialization process.

The selected tracing option remains active until you perform a soft
reset or exit the EDK Demo program.

Viewing Trace Output
The Palm Debugger is a convenient tool for viewing the trace
output. Note that current versions of the Palm Debugger require
that you connect to the handheld using the serial port, which means
that you must have a serial cradle if you are working with a
handheld such as the Palm m500 or m505. The following procedure
shows you how to use the Palm Debugger to view trace output:

1. Ensure that the HotSync Manager is not running on the
desktop, and that a HotSync operation is not in progress.

2. Start the Palm Debugger and set it to monitor the COM port
on the desktop to which the Palm serial cradle is connected.

3. Insert the Palm handheld into the serial cradle.

4. Enable SDIO command tracing as described in “Enabling
Command Tracing,”above.

Using the SDIO Development Card #1
Design Tips and Tricks

40 Using the SDIO Development Card #1 Confidential

NOTE: If you activate command tracing before placing the
handheld is in a serial cradle, all debug messages will be routed
to the USB cradle by default. However, since you are not
connected to a USB cradle, the software will “lock” forever trying
to open a non-existent USB port. To recover from this, either reset
the handheld or start a USB debugger on your desktop computer
and then place the handheld in the USB cradle.

The Metrowerks debugger console window can also be used to
monitor trace output, but note that the formatting of the output can
be affected by display of CR/LF information.

For more information on using Palm Debugger to view the trace of
commands, see “Debugging Your SDIO Card” in Developing SDIO
Peripherals for Palm Handhelds

Design Tips and Tricks
Developing for a CPLD requires patience and the willingness to
attempt multiple solutions for a single problem to ensure the
optimal solution for the part. Sometimes apparent simplifications
will result in larger code, possibly preventing the firmware from
fitting into the part. As well, apparent complications will
occasionally simplify the internal design, perhaps allowing a design
to fit into a constrained part when previously it did not fit.

Remember that every mA of current drawn by a SDIO peripheral
usually comes from the battery of the handheld. While a large (up to
200mA) current drain may fall within the SDIO 1.0 specification’s
limits, this will present a poor user experience on any battery-
powered handheld, as the operating life of the handheld will be
significantly reduced. Whenever possible try to maintain a current
draw of less than 100 mA for any SDIO peripheral that is to be used
with Palm handhelds.

If you are designing a SDIO card for Palm handhelds, refer to the
Palm SDIO Mechanical recommendations to ensure that your
peripheral will work across multiple product lines.

Using the SDIO Development Card #1
Design Tips and Tricks

Confidential Using the SDIO Development Card #1 41

In order to comply with the SD and SDIO ESD specifications,
additional ESD components such as lightning gaps and TranZorbs
(silicon avalanche diodes) may be required in all pins connecting to
the SD connector.

Using the SDIO Development Card #1
Design Tips and Tricks

42 Using the SDIO Development Card #1 Confidential

