
Developing SDIO
Peripherals for

palmOne Handhelds

Copyright
© 1996-2005 palmOne, Inc. All rights reserved.

palmOne, Zire, Tungsten, Treo, Blazer, VersaMail, Palm Powered, and Palm OS are among the trademarks or
registered trademarks owned by or licensed to palmOne, Inc. All other brand and product names are or may be
trademarks of, and are used to identify products or services of, their respective owners.

Disclaimer and Limitation of Liability
palmOne, Inc. assumes no responsibility for any damage or loss resulting from the use of this guide.

palmOne, Inc. assumes no responsibility for any loss or claims by third parties which may arise through the use
of this software. palmOne, Inc. assumes no responsibility for any damage or loss caused by deletion of data as
a result of malfunction, dead battery, or repairs. Be sure to make backup copies of all important data on other
media to protect against data loss.

IMPORTANT Please read the End User Software License Agreement with this product before using the
accompanying software program(s). Using any part of the software indicates that you accept the terms of the
End User Software License Agreement.

iii

About This Document . 1

SDIO SDK . 1

Developing SDIO Applications for palmOne Handhelds 3

Useful information and tools . 3

SD, SDIO, and MMC specifications . 3

Palm OS SDK . 4

Software Architecture of an SDIO Application . 4

Expansion Manager . 5

VFS Manager . 6

SDIO Slot Driver . 6

Notification Manager . 6

Guidelines for SDIO Applications . 6

Power Management . 7

Turning on Card Functions . 7
Auto Power Off . 7
Callbacks . 7

Interrupt Handling . 8

Detecting Card Insertion and Removal . 8

Auto Run . 9

Developing the SDIO Peripheral . 9

EDK . 9

Specifications . 10

SDIO Slot Driver . 10

SDIO Card Initialization and Identification on Palm OS 10

Identification . 11
Initialization . 11

CSA . 11

Contents

Contents

iv

1

About This Document

This document is intended to assist you in writing Palm OS® applications that interact
with SDIO hardware. Because there is a wide range of possible SDIO devices, it
focuses solely on those aspects of program design that are specific to the Palm OS,
palmOne handhelds, and to the SDIO slot driver.

SDIO SDK
The latest palmOne SDIO SDK is available for download from
http://pluggedin.palmone.com. It contains the SDIO headers, API Guide, and sample
code.

http://pluggedin.palmone.com/
http://pluggedin.palmone.com

About This Document

2

3

Developing SDIO Applications
for palmOne Handhelds

Much of an SDIO application is dictated by the hardware with which it interacts.
However, because SDIO is a standard, and because these SDIO applications run on
the Palm OS® handheld, all such applications have a number of traits in common.
This commonality is the subject of this chapter.

This chapter begins by ensuring that you have all of the software, hardware, and
documentation that you’ll need to create your application. It next talks about the
various aspects of the Palm OS that you’ll use when writing your application, and
then provides some programming guidelines specific to SDIO applications. It ends
with a few pointers relative to creating the SDIO card itself.

Useful information and tools
This document is by no means an exhaustive source of information with regard to
creating SDIO applications. In addition, you’ll want to have a copy of the SDIO
Specification and an up-to-date copy of the Palm OS Programmer’s API Reference
and Companion (http://www.palmos.com/dev/support/docs/palmos/).

If you are developing SDIO hardware, you will also want to know about palmOne’s
HDK (Hardware Development Kit) and EDK (Expansion Development Kit). The HDK
contains mechanical specifications, drawings, and documentation that assist with the
design of peripherals. The EDK is a set of parts or items available for purchase at the
palmOne Expansion Parts Store (http://pluggedin.palmone.com/regac/pluggedin/

auth/PalmPartsStore). Information on all of these items can be found at the
PluggedIn Program website (http://pluggedin.palmone.com).

SD, SDIO, and MMC specifications
The SD Card Association (SDA) publishes the SDIO Card Specification, which is
based on and refers to the SDA document titled SD Memory Card Specifications,
Part 1, PHYSICAL LAYER SPECIFICATION. Both of these documents provide essential
foundation material for the contents of this document. You should be familiar with
the SDIO Card Specification and with those parts of the SD Memory Card
Specifications that document card modes, card initialization, interrupts, registers,
and card reading and writing. Depending on the SDIO hardware with which you are
working, additional sections of the SD Memory Card Specifications document may
be of interest.

The SD Card Association’s website can be found at http://www.sdcard.org/. You’ll
need to be a member in order to obtain the specifications from the SD Card
Association.

http://www.sdcard.org/
http://www.palmos.com/dev/support/docs/palmos/
http://pluggedin.palmone.com
http://pluggedin.palmone.com/regac/pluggedin/auth/PalmPartsStore
http://www.palmos.com/dev/support/docs/palmos/
http://pluggedin.palmone.com/regac/pluggedin/auth/PalmPartsStore
http://pluggedin.palmone.com/regac/pluggedin/auth/PalmPartsStore

Developing SDIO Applications for palmOne Handhelds

4

NOTE Creating Palm OS applications that can use and exchange data from other
products via SD Memory cards is outside the scope of this document. However, to
make sure that data can be interchanged with present and future SD products, please
refer to the appropriate SD Association specification depending on the type of
application.

For developers working with MultiMediaCards (MMC), the MultiMediaCard
Association’s website can be found at http://www.mmca.org/. The MMC
specifications are available from the MultiMediaCard Association to MMCA
members.

The SDIO slot driver has been written to accommodate the following specifications:

■ MMC memory cards, V1.4 to V3.0

■ SD memory cards, Part 1, V1.0 (and the supplement to part 1)

■ SDIO V1.0

Palm OS SDK
General Palm OS programming concepts are documented in the Palm OS
Programmer's Companion. Reference documentation for the APIs made public by
the Palm OS can be found in the Palm OS Programmer’s API Reference. Both of these
documents are installed as part of the Palm OS Software Developer’s Kit (SDK), which
can be found at http://www.palmos.com/dev/tools/core.html. SDIO applications
are not supported on versions of the Palm OS prior to 4.0.

Although you’ll want to be familiar with a number of different aspects of Palm OS
programming, pay particular attention to the portions of the Companion and
Reference that cover the Expansion and VFS Managers; these chapters show you
how to read and write expansion media, including SD memory cards.

In addition to the Palm OS SDK, you should also have the header files for the SDIO
slot driver and copies of the SDIO sample applications provided by palmOne. These
are included with the palmOne SDIO SDK. The header files included with the SDIO
SDK are compatible with the Palm OS SDK and must be copied into a folder in your
project’s “include” path.

Software Architecture of an SDIO Application
Palm OS applications that interact with SDIO cards make use of the functions
provided by the Expansion Manager, the VFS Manager, and the SDIO slot driver.
Before you can write such a Palm OS application, you should have an understanding
of how your application will interact with these and other features of the Palm OS.

Figure 1 presents a simplified view of how the SDIO slot driver relates to your
applications, the Expansion Manager, and the VFS Manager. Unlike other Expansion
Manager slot drivers, the SDIO slot driver exposes its APIs to applications. Because
it also lies beneath the Expansion and VFS managers, you access SDIO hardware
through a combination of Expansion Manager, VFS Manager, and SDIO slot driver
calls. Note that you use the VFS Manager with a given SDIO card only if there is an
SD or SDIO file system present on that card.

The VFS Manager APIs are used for all file system access on an expansion card.
When inserted, SD memory and SDIO CSA memory is mounted as file system

http://www.mmca.org/
http://www.palmos.com/dev/tools/core.html

Software Architecture of an SDIO Application

5

memory. Therefore, access to these memory areas is done using the VFS Manager
APIs. Details of accessing data on file systems can be found in the standard Palm OS
documentation on Expansion Manager and VFS APIs.

Figure 1 Relationship between SDIO application, SDIO slot driver, and other key OS
components

Expansion Manager
The Expansion Manager is a software layer that manages slot drivers on Palm OS
handhelds. The Expansion Manager is not solely responsible for support of
expansion cards; rather, it provides an architecture and higher-level set of APIs that,
with the help of low-level slot drivers and file system libraries, support various types
of media.

The Expansion Manager:

■ broadcasts notification of card insertion and removal

■ plays sounds to signify card insertion and removal

■ mounts and unmounts card-resident volumes

NOTE Some of the functions provided by the Expansion Manager are designed to be
used by slot drivers and file systems and are not generally used by third-party
applications.

For a detailed explanation of the functions that make up the Expansion Manager, see
the “Expansion Manager” chapter in the Palm OS Programmer’s API Reference
(http://www.palmos.com/dev/support/docs/palmos/PalmOSReference/

ReferenceTOC.html).

Expansion
Manager

VFS
Manager

Applications and System

FAT
File

System

SDIO Slot
Driver

(SD, SDIO, MMC)

http://www.palmos.com/dev/support/docs/palmos/PalmOSReference/ReferenceTOC.html
http://www.palmos.com/dev/support/docs/palmos/PalmOSReference/ReferenceTOC.html

Developing SDIO Applications for palmOne Handhelds

6

VFS Manager
The VFS (Virtual File System) Manager provides a unified API that gives applications
access to many different file systems on many different media types, including SD
media. The VFS Manager is used for all file system access on an expansion card. In
the case of an SDIO card, the VFS Manager is typically used to access any function
CSA memory. The data stored in CSA memory is structured as a FAT12/16 file system
(FAT 12/16/32 for LifeDrive™ mobile manager devices) and is therefore ideally suited
for access by the VFS Manager.

Combo cards may contain SD memory that is also accessed through the VFS
Manager APIs.

For a detailed explanation of the functions that make up the VFS Manager, see the
“Virtual File System Manager” chapter in the Palm OS Programmer’s API Reference
(http://www.palmos.com/dev/support/docs/palmos/PalmOSReference/

ReferenceTOC.html).

SDIO Slot Driver
To simplify the interaction with the SDIO hardware, palmOne has created an SDIO
slot driver. It replaces the Palm OS SD/MMC slot driver, which isn’t SDIO-aware, and
consists of data structures and functions that allow you to easily manage power,
interrupts, and data on the SDIO card.

The SDIO slot driver controls all media supported by an SD expansion slot, including
SD media, MMC media, and SDIO media.

An examination of the functions provided by the SDIO slot driver shows that it
implements most of the software functionality outlined in the SDIO Card
Specification. It does not, however, support the following:

■ SDIO Suspend/Resume Operation

■ SDIO Read Wait Operation

■ SDIO RW Extended Block Operation in “forever” mode

Notification Manager
The Palm OS Notification Manager allows applications to receive notification when
certain system-level or application-level events occur. Although the Notification
Manager has many uses, developers of SDIO applications should particularly take
note of the fact that you use it to detect card removal by registering for a
sysNotifyCardRemovedEvent

Guidelines for SDIO Applications
All SDIO applications need to be aware of the power needs of the SDIO card. As well,
they need to be able to handle interrupts generated by the card, and must be aware
of when an SDIO card is inserted or removed from the handheld’s SD slot. The
following sections discuss these and other SDIO-application–specific topics.

http://www.palmos.com/dev/support/docs/palmos/PalmOSReference/ReferenceTOC.html
http://www.palmos.com/dev/support/docs/palmos/PalmOSReference/ReferenceTOC.html

Guidelines for SDIO Applications

7

Power Management
When the handheld awakes from sleep mode, it doesn’t turn the card on. Only when
there is a request to access the card does it turn the card on.

Turning on Card Functions
You can turn on a given SDIO card function with SDIOSetPower. Be aware that you, as
an application developer, are responsible for managing card power.

You must ensure that the total of all function hardware that is active does not draw
in excess of the SDIO-specified maximum of 200ma.

Perform the following steps to explicitly turn on an SDIO card function:

1. Disable SDIO interrupts with SDIODisableHandheldInterrupt—even if your
application doesn’t use interrupts.

2. Verify that there is sufficient current available to power the card function. To aid in
the power management process, the SDIO slot driver provides three functions:
SDIOGetCurrentLimit, SDIOSetCurrentLimit, and SDIORemainingCurrentLimit.

NOTE These three functions do not detect or limit current draw, check the
battery level, or reflect how much energy the battery has left.

The current limit for each function can be obtained by calling
SDIOGetCurrentLimit or changed by calling SDIOSetCurrentLimit. Prior to
enabling power to a given function, call SDIOGetCurrentLimit to determine how
much power it will draw, and compare it to the value returned from
SDIORemainingCurrentLimit, which indicates how much current can be spared.

3. Turn the function on using SDIOSetPower.

4. Reenable interrupts by calling SDIOEnableHandheldInterrupt.

After turning off an SDIO card function (with SDIOSetPower), be sure to call
SDIOSetCurrentLimit and set its current limit to zero.

When a card is removed, all of the in-memory current limits are automatically set to
zero.

Auto Power Off
The SDIOSetAutoPowerOff function allows you to specify an amount of time after
which the power and data signals to a given function on an SDIO card should be
turned off. You specify this time interval in system ticks; there are SysTicksPerSecond
ticks per second. To disable the auto-power-off feature, simply call this function and
supply a tick count of zero.

To obtain the current auto-power-off settings for a given SDIO card function, use
SDIOGetAutoPowerOff.

Callbacks
The SDIO slot driver allows your application to register callback functions that will be
invoked whenever the corresponding event occurs on the SDIO card. Several of these
callbacks relate to power management.

Developing SDIO Applications for palmOne Handhelds

8

Whenever the handheld is about to be put to sleep, the callback function
corresponding to sdioCallbackSelectSleep is called. Just after the handheld wakes,
the function corresponding to sdioCallbackSelectAwake is called. These callback
functions can be called from either an interrupt routine or a non-interrupt routine; as
a result, interrupts may be disabled or enabled. In either case, they should always be
as fast as possible.

Whenever SDIO card power is turned on or is about to be turned off, the callback
function corresponding to sdioCallbackSelectPowerOn or
sdioCallbackSelectPowerOff, respectively, is called. While processing these
functions, never call SDIOSetPower in order to turn an SDIO card’s power on or off.
These functions can be called from within an interrupt handler, so they should be as
fast as possible.

Interrupt Handling
An SDIO card is capable of interrupting the host device into which it is inserted—in
this case, the palmOne handheld. The SDIO slot driver allows you to register a
callback function that is called whenever the card interrupts the handheld.

Register for the interrupt callback by calling SDIOSetCallback and specifying that you
are registering for sdioCallbackSelectInterruptSdCard. In your callback function,
be sure to reset the interrupt source to prevent the interrupt callback from being
called again inadvertently.

Whether or not you have registered an interrupt callback function, you can enable or
disable the SDIO interrupt on the handheld by calling SDIOEnableHandheldInterrupt
or SDIODisableHandheldInterrupt. Note that these functions only affect interrupts
on the handheld; they do not turn on or off interrupts on the SDIO card itself.

These functions are implemented as an incrementing counter, making them re-
entrant. For instance, for every call to SDIODisableHandheldInterrupt there must be
an equal number (or more) of calls to SDIOEnableHandheldInterrupt in order to re-
enable interrupts.

By default, when the card is inserted interrupts on the handheld are enabled, but are
disabled internally until an interrupt callback is set with SDIOSetCallback. Note that
in order to receive the SDIO interrupt, power to the card must be on, even if the
handheld is asleep.

Detecting Card Insertion and Removal
Applications that depend on the presence of the SDIO card in the slot should register
for a sysNotifyCardRemovedEvent, which is broadcast when the user removes the
card from the SD slot.

Be sure to unregister for the sysNotifyCardRemovedEvent notification and any SDIO
callbacks when your application terminates.

For more information on registering and unregistering for notifications, see the
Notification Manager chapter in the Palm OS API Reference Guide
(http://www.palmos.com/dev/support/docs/palmos/PalmOSReference/

ReferenceTOC.html). The “Expansion” chapter of the Palm OS Programmer’s
Companion, vol. I (http://www.palmos.com/dev/support/docs/palmos/

PalmOSCompanion/CompanionTOC.html) discusses, among other things, the

http://www.palmos.com/dev/support/docs/palmos/PalmOSReference/ReferenceTOC.html
http://www.palmos.com/dev/support/docs/palmos/PalmOSReference/ReferenceTOC.html
http://www.palmos.com/dev/support/docs/palmos/PalmOSCompanion/CompanionTOC.html
http://www.palmos.com/dev/support/docs/palmos/PalmOSCompanion/CompanionTOC.html

Developing the SDIO Peripheral

9

various notifications that are issued when a card is inserted or removed, or when a
volume is mounted or unmounted.

Auto Run
When a card is inserted into the SD slot, after it has been initialized any file system
memory present on the card is mounted by the Expansion Manager. This includes all
SD memory, in the case of a standard SD card or SDIO combo card, and all SDIO
Function CSA memory for functions 0-7.

After mounting of the file systems, the SDIO slot driver broadcasts a series of Auto
Run (sysNotifyDriverSearch) notifications. These notifications are sent in an
attempt to locate function- or card-specific drivers, and allow those drivers that are
already on the handheld to launch themselves.

The typical sequence of events after a card is inserted is as follows:

1. Power is applied to the card.

2. The card is initialized according to the SDIO, SD, or MMC specification, as
appropriate.

3. Information about the card (tuples, clock speed, CSD, CID, etc.) is read.

4. Any recognized file systems are mounted.

5. sysAppLaunchCmdCardLaunch is sent to start.prc on each mounted file system.

6. The Auto Run notifications (sysNotifyDriverSearch) are sent.

7. sysAppLaunchCmdNormalLaunch is sent to start.prc on each mounted file system.

For SDIO cards, one Auto Run notification is broadcast for the SD memory portion of
a combo card, and an additional notification is broadcast for each card function (up
to 7). For SD memory and MMC memory cards, only one such notification is sent. The
notifications are sent starting with SD memory, followed by function 7 (if there is one)
and proceeding to function 1 as appropriate.

The notifyDetailsP field of the SysNotifyParamType structure that accompanies the
Auto Run notification points to an AutoRunInfoType structure. Each driver that has
registered for sysNotifyDriverSearch should examine the contents of the
AutoRunInfoType structure to determine if it is the driver that should control the
inserted card. If so, the driver should then check the SysNotifyParamType structure’s
handled field. If handled is set to true, another driver has received the broadcast and
will control the card. If handled is set to false, the driver should set it to true to
indicate that it will control the device.

Developing the SDIO Peripheral
An SDIO application is only as good as the hardware with which it interacts. The
following sections provide some tips for the creation of an SDIO peripheral to be
used with a palmOne handheld.

EDK
palmOne has made available the SDIO Developer Card #1, a sample SDIO design
demonstrating an SDIO interface to a microcontroller. It is an Expansion Developer
Kit (EDK) that allows hardware developers to experiment with SDIO hardware and

Developing SDIO Applications for palmOne Handhelds

10

software for prototyping and evaluation purposes. The card includes a flash
programmable PIC microcontroller and a CPLD for maximum flexibility in
prototyping.

palmOne’s EDK is available for purchase at the palmOne Expansion Parts Store
(http://pluggedin.palmone.com/regac/pluggedin/auth/PalmPartsStore).

Specifications
When developing an SDIO peripheral, it is extremely important that you following the
specifications identified in SD, SDIO, and MMC specifications. Be sure to pay close
attention to the power restrictions, as the palmOne handheld isn’t able to deliver
more power to an SDIO peripheral than the specification maximum.

SDIO Slot Driver
A palmOne handheld running Palm OS 4.0 or 5.0 supports SD/MMC expansion cards.
If the SDIO slot driver is installed, it will also support SDIO expansion cards. In both
cases, only one file system can be mounted for a given expansion card. Future
versions of the Palm OS will likely lift this restriction, allowing up to seven file
systems to be mounted for an SDIO expansion card.

In order to support SDIO peripherals, handhelds running Palm OS 4.0 must either be
flash-upgraded to a version of the OS that supports SDIO, or must have the SDIO slot
driver separately installed in RAM. The SDIO slot driver can be downloaded from the
palmOne website and installed as a PRC file in RAM on Palm OS 4.0 devices. After a
soft reset, the slot driver in RAM is recognized and takes precedence over the SD/
MMC slot driver in ROM.

NOTE The latest Palm OS 5.0 based devices have the SDIO slot driver built into the
ROM.

You can verify whether a given slot driver is “SDIO-aware” by calling
SDIOAPIVersion. This function returns expErrUnimplemented if the specified driver
doesn’t support SDIO, or errNone if it does. If the driver does support SDIO this
function also returns the slot driver version number through the versionP parameter.

To remove the SDIO slot driver from RAM, you must perform a hard reset of the
handheld. You cannot delete the SDIO slot driver using the Application Launcher’s
“Delete” function. Note that to avoid having the SDIO slot driver reinstalled on the
handheld during the next HotSync operation, you must remove the slot driver PRC
from the Backup directory of your desktop computer.

SDIO Card Initialization and Identification on Palm OS
The process of identifying and initializing an SDIO card is specified in the SDIO Card
Specification. One of the first steps in developing an SDIO card is to have the card
identify itself as an SDIO card to the host.

http://pluggedin.palmone.com/regac/pluggedin/auth/PalmPartsStore

Developing the SDIO Peripheral

11

Identification
Identification of a card is done only once, at the time the card is inserted into the
handheld’s SD slot. Information obtained from the card during the identification
phase is retained in the handheld’s memory until the card is removed. Among other
things, this information includes:

■ the type of card in the slot

■ what the card contains

■ the card’s limits

■ data read from tuples

By default SDIO cards power-off automatically after a certain amount of inactivity.
This behavior can be modified with the SDIOSetAutoPowerOff function.

Initialization
A card is initialized every time it is turned on. The SDIO slot driver follows the
appropriate initialization flowchart—SD mode or SPI mode—from the “SDIO Card
Initialization” section of the SDIO Card Specification to initialize the card.

During the initialization phase, the handheld operates within the range of SD or SPI
clock frequencies specified in the SD Memory Card Specifications (from zero to
400kHz). The actual clock frequency used depends upon the model of the palmOne
handheld.

The TPLFID_FUNCTION tuple, located immediately after the CISTPL_FUNCID tuple in
the CIS for function 0, contains the TPLFE_MAX_TRAN_SPEED byte. This byte
indicates “the maximum transfer rate per one data line during data transfer”;
essentially, the maximum clock frequency that the card can support. As soon as this
tuple is read, the SDIO slot driver increases the clock speed to the highest possible
frequency that doesn’t exceed the maximum specified in TPLFE_MAX_TRAN_SPEED.

CSA
In order for an SDIO card’s CSA (Code Storage Area) to be readable by the Palm OS,
the CSA should be in FAT12/16 format (FAT 12/16/32 for LifeDrive™ mobile manager
devices), and any drivers, data, or applications that the peripheral would like to be
automatically detected by the palmOne handheld should reside in the /Palm and /
Palm/Launcher directories. Once the CSA area is mounted, applications may access
any data within the CSA, irrespective of the directory in which that data resides.

Developing SDIO Applications for palmOne Handhelds

12

	Developing SDIO Peripherals for palmOne Handhelds
	Contents
	About This Document
	SDIO SDK

	Developing SDIO Applications for palmOne Handhelds
	Useful information and tools
	SD, SDIO, and MMC specifications
	Palm OS SDK

	Software Architecture of an SDIO Application
	Expansion Manager
	VFS Manager
	SDIO Slot Driver
	Notification Manager

	Guidelines for SDIO Applications
	Power Management
	Turning on Card Functions
	Auto Power Off
	Callbacks

	Interrupt Handling
	Detecting Card Insertion and Removal
	Auto Run

	Developing the SDIO Peripheral
	EDK
	Specifications
	SDIO Slot Driver
	SDIO Card Initialization and Identification on Palm OS
	Identification
	Initialization

	CSA

