

Tapwave TwGfx Graphics API Reference

Tapwave, Inc. Proprietary

Tapwave®
Tapwave TwGfx Graphics API Reference

	Current Version
	Date
	Author

	Rev 0.3
	07/27/2003
	MS

	
	
	

Revision History

	Version
	Date
	Description
	Author

	rev 0.1
	04/30/2003
	
	KH

	rev 0.2
	06/20/2003
	
	KH

	rev 0.3
	7/27/2003
	light copy edit
	MS

© Copyright 2003 Tapwave, Inc. All Rights Reserved. Tapwave is a registered trademark of Tapwave, Inc. Palm OS, the Palm logo, Graffiti, HotSync, and PalmSource are registered trademarks of Palm, Inc. Palm, Palm Powered, and the Palm Powered logo are trademarks of Palm, Inc. X-Forge is a trademark of Fathammer, Ltd. Java is a registered trademark of Sun Microsystems, Inc. Windows is a registered trademark of Microsoft Corporation, Inc. All other brands are trademarks or registered trademarks of their respective owners.

Background

To use the TwGfx library your application must include TwGfx.h, which is automatically included by Tapwave.h. The Tapwave ROM restricts access to the TwGfx API to only those applications that have been digitally signed via the Tapwave Signing Server. See XXXX for more information about signing your application using the Tapwave Signing Server.
You must open the library with TwGfxOpen before making any other calls, and you must call TwGfxClose before your application exits. You can call TwGfxOpen as many times as desired, but you must pair each call with a matching TwGfxClose.

The library provides facilities for the allocation and manipulation of surfaces, objects which are rectangular regions of memory associated with the graphics accelerator. In addition to basic rendering operations (points, lines, rectangles) there are a large set of bit blt operations used to perform surface to surface copy operations. Note that bit blt operations that use the same surface for both the source and destination will yield undefined results in the overlapping area.
The library provides access to the display surface (the surface used to refresh the TFT display) via the TwGfxGetPalmDisplaySurface. This surface object remains consistent with the size, shape, location and orientation of the “PalmOS” drawing area. The PalmOS surface size, shape, location and orientation are controlled by the PINSetInputAreaState, StatShow, StatHide and SysSetOrientation API’s (see PenInputMgr.h for more information). In addition, calls to WinScreenLock are also tracked by the Palm drawing surface – rendering will shift to an offscreen surface during a lock operation, and be automatically blt’d to the onscreen surface when the lock ends.
Surface memory can be accessed directly by the CPU. However, this access is not as efficient as accessing CPU memory. To increase performance several asynchronous procedures are provided to transfer data to/from a surface using background DMA. This allows the CPU to continue executing while the copy operation proceeds. When such a transfer is started (see TwGfxReadSurface or TwGfxWriteSurface later in this document) the surface is considered busy. Any other attempt to use the surface will fail, returning a twGfxErrorOperationInProgress error. To determine when a surface is no longer busy use the TwGfxIsSurfaceReady procedure.

In addition to the asynchronous copy operation, there is also an asynchronous bit blt operation. This is used to avoid waiting for vertical blank before issuing a bitblt, thus freeing up the CPU to perform other calculations. There can be at most one asynchronous bitblt going at any time, for all instances of the library.

Library data types

typedef struct TwGfxInfoType {

 /* caller MUST set this to sizeof (TwGfxInfoType) */

 Int32 size;

 Int32 displayWidth, displayHeight; /* current dimensions of display */

 Int32 displayRowBytes; /* byte width of entire row */

 Int32 displayPixelFormat; /* format of display */

 Int32 freeAcceleratorMemory; /* free accelerator memory */

 Int32 totalAcceleratorMemory; /* total accelerator memory */

} TwGfxInfoType;

/*

 * Surface information structure

 */

typedef struct TwGfxSurfaceInfoType {

 /* caller MUST set this to sizeof(TwGfxSurfaceInfoType) */

 Int32 size;

 Int32 width, height; /* dimensions */

 Int32 rowBytes; /* byte width of entire row */

 Int32 location; /* memory location of the surface */

 Int32 pixelFormat; /* format of the surface */

} TwGfxSurfaceInfoType;

/*

 * Bitmap structure

 */

typedef struct TwGfxBitmapType {

 /* caller MUST set this to sizeof(TwGfxBitmapType) */

 Int32 size;

 Int32 width, height; /* size of bitmap */

 Int32 rowBytes; /* bytes per row */

 Int32 pixelFormat; /* format of data */

 void* data; /* actual data */

 UInt16* displayPalette; /* In native display format */

 TwGfxPackedRGBType transparentColor;

} TwGfxBitmapType;

typedef struct TwGfxPointType {

 Int32 x, y;

} TwGfxPointType;

typedef struct TwGfxRectType {

 Int32 x, y, w, h;

} TwGfxRectType;

typedef struct TwGfxSpanType {

 Int32 x, y, w;

} TwGfxSpanType;
Library macros
The first set of macros are used to convert to/from various color formats supported by the library. The format of all TwGfx surfaces is 16 bits per pixel (little endian) RGB 565 which means that there are 5 bits of red, 6 bits of green and 5 bits of blue. Please note that the API calls do not in general deal with surface colors; rather the API is made more generic (and future proof) by accepting “packed component RGB” format colors which are simply RGB 888 (8 bits per color component).
Also note that the color conversions done when converting from RGB 888 to RGB 565 do simple mask and shift operations. No attempt is made to “round” or apply any other color policy that might be used to mitigate the difference in accuracy of the two color types. Such policy is the responsibility of the application.
/*

 * Macro to construct a frame buffer compatible rgb565 color given

 * three 8 bit components. This is a manually optimized version that

 * is consistent with the other color macros here.

 *

 * Note that the 68k version of this macro generates data that is

 * byte-swapped into little-endian format. This means that data passed

 * to TwGfxDrawBitmap and TwGfxWriteSurface will be properly arranged

 * if you use this macro.

 */

#define TwGfxMakeDisplayRGB_BigEndian(_r,_g,_b) \

 ((((_g) & 0xFC) << 11) | (((_b) & 0xF8) << 5) | \

 ((_r) & 0xF8) | (((_g) & 0xFF) >> 5))

#define TwGfxMakeDisplayRGB_LittleEndian(_r,_g,_b) \

 ((((_r) & 0xF8) << 8) | (((_g) & 0xFC) << 3) | (((_b) & 0xF8) >> 3))

#if CPU_TYPE == CPU_68K

#define TwGfxMakeDisplayRGB(_r,_g,_b) \

 TwGfxMakeDisplayRGB_BigEndian(_r,_g,_b)

#else

#define TwGfxMakeDisplayRGB(_r,_g,_b) \

 TwGfxMakeDisplayRGB_LittleEndian(_r,_g,_b)

#endif

/*

 * These macros take an 8 bit color component and adjust the

 * size to match the rgb565 display framebuffer

 */

#define TwGfxRComponentToDisplayComponent(_r) (((_r) & 0xF8) >> 3)

#define TwGfxGComponentToDisplayComponent(_g) (((_g) & 0xFC) >> 2)

#define TwGfxBComponentToDisplayComponent(_b) (((_b) & 0xF8) >> 3)

/*

 * This macro converts from packed component RGB to packed display RGB

 */

#define TwGfxPackedRGBToDisplayRGB(_rgb) \

 ((TwGfxRComponentToDisplayComponent((_rgb) >> 16) << twGfxRShift) | \

 (TwGfxGComponentToDisplayComponent((_rgb) >> 8) << twGfxGShift) | \

 (TwGfxBComponentToDisplayComponent((_rgb)) << twGfxBShift))

/*

 * This macro converts a TwGfxRGBType structure to a

 * TwGfxPackedRGBType value.

 */

#define TwGfxRGBToPackedRGB(_rgb) \

 ((TwGfxPackedRGBType) (((_rgb).r << 16) | ((_rgb).g << 8) | (_rgb).b))

/*

 * This macro converts rgb components to a TwGfxPackedRGBType

 */

#define TwGfxComponentsToPackedRGB(_r,_g,_b) \

 ((TwGfxPackedRGBType) ((((_r) & 0xFF) << 16) | \

 (((_g) & 0xFF) << 8) | \

 ((_b) & 0xFF)))
The following macros are convenience macros, used to simplify and possibly clarify code.
/*

 * This macro helps fill in a TwGfxPointType

 */

#define TwGfxMakePoint(_point, _x, _y) \

 ((_point).x = (_x), (_point).y = (_y))

/*

 * This macro helps fill in a TwGfxRectType

 */

#define TwGfxMakeRect(_rect, _x, _y, _w, _h) \

 ((_rect).x = (_x), (_rect).y = (_y), (_rect).w = (_w), (_rect).h = (_h))
Library access calls

TwGfxOpen

	Purpose
	Access the accelerated graphics library. You can make this call as many times as desired. However, you must pair each TwGfxOpen with a TwGfxClose call to avoid resource leaks.

	Prototype
	Err TwGfxOpen(TwGfxType** aResult,

 TwGfxInfoType* aInfoResult)

	Fields
	[out] aResult
	Pointer to a handle to the graphics library. If the call succeeds then *aResult is set to a handle to the graphics library for use in subsequent calls.

	
	[inout] aInfoResult
	Pointer to a TwGfxInfoType object which is filled with a description of the capabilities of the device and the graphics library. Note that you must set the size field of TwGfxInfoType to the size of the data structure.

This argument and the size field can also be NULL if no such data is desired.

	Result
	errNone – Succeeded

TwGfxErrorLibraryOpen – the library is already open

twGfxErrorBadObjectVersion – the TwGfxInfoType size field doesn’t match a known version for the library

	Side Effects
	

	Comments
	

	Header
	TwGfx.h

	Sample
	TBD

TwGfxClose
	Purpose
	Shutdown use of the library, releasing all resources associated with the library.

	Prototype
	Err TwGfxClose(TwGfxType* aGfx)

	Fields
	[in] aGfx
	A handle to the graphics library.

	Result
	errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the library was invalid

	Side Effects
	This call releases all resources allocated by the library including any surface objects that were created and not yet released. Note that only the surfaces created using this instance of the TwGfx library are released. Continuing to use the aGfx handle after calling close yields undefined results (most likely a crash).

	Comments
	

	Header
	TwGfx.h

	Sample
	TBD

TwGfxGetInfo

	Purpose
	Query the graphics library for information describing the capabilities of the device and of the graphics library.

	Prototype
	Err TwGfxGetInfo(TwGfxType* aGfx,

 TwGfxInfoType* aInfoResult)

	Fields
	[in] aGfx
	A handle to the graphics library.

	
	[inout] aInfoResult
	Pointer to a TwGfxInfoType object which will be filled in with a description of the capabilities of the device and of the graphics library. The size field of TwGfxInfoType must be set to the size of the data structure.

	Result
	errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the library is invalid

twGfxErrorNullPointer – the aInfoResult pointer is NULL

twGfxErrorBadObjectVersion – the TwGfxInfoType size field doesn’t match a known version for the library

	Side Effects
	

	Comments
	

	Header
	TwGfx.h

	Sample
	TBD

TwGfxGetMemoryUsage
	Purpose
	Query the current usage of graphics accelerator memory.

	Prototype
	Err TwGfxGetMemoryUsage(TwGfxType* aGfx,

 Int32 aLocation,

 Int32* aUsedResult)

	Fields
	[in] aGfx
	A handle to the graphics library.

	
	[in] aLocation
	Must be twGfxLocationAcceleratorMemory

	
	[out] aUsedResult
	Pointer to an integer that receives the usage value.

	Result
	errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the library is invalid

twGfxErrorNullPointer – the aUsedResult pointer is NULL

	Side Effects
	

	Comments
	This call is largely unimplemented except to return error codes.

	Header
	TwGfx.h

	Sample
	TBD

	
	

	
	

	
	
	

	
	
	

	
	

	
	

	
	

	
	

	
	

TwGfxGetPalmDisplaySurface

	Purpose
	Query the graphics library for the surface used for the PalmOS display. The call returns the TwGfxSurfaceType handle that represents the actual display.

	Prototype
	Err TwGfxGetPalmDisplaySurface(TwGfxType* aGfx,

 TwGfxSurfaceType** aResult)

	Fields
	[in] aGfx
	A handle to the graphics library.

	
	[out] aResult
	Pointer to a handle to a graphics surface that is filled in when the call succeeds.

	Result
	errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the library is invalid

twGfxErrorNullPointer – the aResult pointer is NULL

	Side Effects
	

	Comments
	The “Palm” display surface represents the subset of the display surface used by the PalmOS. It stays consistent with the size, shape, location and orientation of the PalmOS display. This includes staying consistent with the “back buffer” used by WinScreenLock.
Each instance of a library has its own unique reference to the palm display surface. This means that changing the surface clip for the palm display surface in one library handle will not affect it in a palm display surface created from a different library handle.
For example, opening the TwGfx library twice, querying the palm display surface for each library instance and then comparing the two surface handles will yield different values for the surface handles.
Use this call – Don’t use TwGfxGetDisplaySurface.

	Header
	TwGfx.h

	Sample
	TBD

TwGfxInVBlank

	Purpose
	Query the graphics library and see whether or not the display is in the vertical blanking period.

	Prototype
	Err TwGfxInVBlank(TwGfxType* aGfx,

 Boolean* aInVBlankResult)

	Fields
	[in] aGfx
	A handle to the graphics library.

	
	[out] aInVBlankResult
	Pointer to a Boolean value which indicates the current state of the vertical blanking. The value is true if the display is in vertical blanking, false otherwise.

	Result
	errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the library is invalid

twGfxErrorNullPointer – the aInfoResult pointer is NULL

	Side Effects
	

	Comments
	See TwGfxAsyncBlt for a more efficient way to sync up with vertical blanking.

	Header
	TwGfx.h

	Sample
	TBD

TwGfxWaitForVBlank

	Purpose
	Wait for the vertical blanking period to begin. This call may return immediately if the display is already in the vertical blanking period.

	Prototype
	Err TwGfxWaitForVBlank(TwGfxType* aGfx)

	Fields
	[in] aGfx
	A handle to the graphics library.

	Result
	errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the library is invalid

	Side Effects
	

	Comments
	See TwGfxAsyncBlt for a more efficient way to sync up with vertical blanking.

	Header
	TwGfx.h

	Sample
	TBD

TwGfxGetDisplaySurface

	Purpose
	Query the graphics library for the surface used for display. The call returns the TwGfxSurfaceType handle that represents the actual display.

 Don’t use this call. Instead, you should use TwGfxGetPalmDisplaySurface.

If you must use this call, be careful to close the PINS area and the status area using the “PINSetInputAreaState” and “StatHide” defined calls in PenInputMgr.h.

	Prototype
	Err TwGfxGetDisplaySurface(TwGfxType* aGfx,

 TwGfxSurfaceType** aResult)

	Fields
	[in] aGfx
	A handle to the graphics library.

	
	[out] aResult
	Pointer to a handle to a graphics surface that is filled in when the call succeeds.

	Result
	errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the library is invalid

twGfxErrorNullPointer – the aResult pointer is NULL

	Side Effects
	

	Comments
	Use TwGfxGetPalmDisplaySurface instead. It is nearly identical in function to this call, and has the added benefit of keeping in sync with the API’s that affect the size, shape, location and orientation of the palm display area.
Each instance of a library has its own unique reference to the display surface. This means that changing the surface clip for the display surface in one library handle will not affect it in a display surface created from a different library handle.

For example, opening the TwGfx library twice, querying the display surface for each library instance and then comparing the two surface handles will yield different values for the surface handles.

	Header
	TwGfx.h

	Sample
	TBD

Surface calls

TwGfxAllocSurface
	Purpose
	Attempt to allocate a new surface. Surfaces are used by the rendering calls described below. Surfaces should be allocated in accelerator memory.

	Prototype
	Err TwGfxAllocSurface(TwGfxType* aGfx,

 TwGfxSurfaceType** aResult,

 TwGfxSurfaceInfoType* aDescription);

	Fields
	[in] aGfx
	A handle to the graphics library.

	
	[out] aResult
	Pointer to a handle to a surface that is filled in if the call succeeds.

	
	[inout] aDescription
	Pointer to a TwGfxSurfaceInfoType object. This pointer must not be NULL and the size field must be initialized to the size of the data structure. In addition, you must set the width, height, pixelFormat and location fields to the values desired for creation of the surface. All other fields are ignored.

	Result
	errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the library is invalid

twGfxErrorOutOfMemory – the library ran out of memory

twGfxErrorInvalidPixelFormat – the pixelFormat field is invalid

twGfxErrorInvalidLocation – the location field is invalid

twGfxErrorInvalidSize – the width/height fields are <= zero.

twGfxErrorNullPointer – the aDescription pointer is NULL

twGfxErrorBadObjectVersion – the TwGfxSurfaceInfoType size field doesn’t match a known version for the library

twGfxErrorSurfaceAllocFailed – the allocation failed (insufficient device memory is the most likely reason).

	Side Effects
	When the call succeeds the fields in aDescription are filled in so that the caller receives a complete description of the surface.

	Comments
	Only the pixel format twGfxPixelFormatRGB565_LE can be used for surface creation at this time.
There are currently two locations supported – twGfxLocationAcceleratorMemory and twGfxLocationAcceleratorMemoryNoBackingStore. The former type allocates dynamic heap memory to maintain a copy of the surface during system sleep. The latter does not.

	Header
	TwGfx.h

	Sample
	TBD

TwGfxFreeSurface

	Purpose
	Free a previously allocated surface.

	Prototype
	Err TwGfxFreeSurface(TwGfxType* aGfx,

 TwGfxSurfaceType* aSurface)

	Fields
	[in] aGfx
	A handle to the graphics library.

	
	[in] aSurface
	Handle to the surface that should be freed.

	Result
	 errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the library or surface is invalid

	Side Effects
	

	Comments
	If you free the display surface or the palm surface and then call TwGfxGetDisplaySurface or TwGfxGetPalmDisplaySurface (respectively) then they will be automatically recreated.

	Header
	TwGfx.h

	Sample
	TBD

TwGfxSetClip
	Purpose
	Set the clipping rectangle associated with the given surface. All rendering calls are clipped by the surface clipping rectangle.

	Prototype
	Err TwGfxSetClip(TwGfxSurfaceType* aSurface,

 const TwGfxRectType* aClipRect)

	Fields
	[in] aSurface
	A handle to the surface.

	
	[in] aClipRect
	Pointer to the clipping rectangle. If aClipRect is NULL then clipping is disabled for the surface (this has the same effect as setting the clipping rectangle to cover the entire surface).

	Result
	 errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the surface is invalid

	Side Effects
	

	Comments
	The clipping rectangle for all surfaces will be intersected against the actual clipping surface bounds automatically before being applied. This is important when considering the palm display surface whose bounds change dynamically. The clipping rectangle provided by this call will remain in effect, but intersected with the actual bounds of the palm surface as it changes size, position and orientation.

	Header
	TwGfx.h

	Sample
	TBD

TwGfxGetClip
	Purpose
	Get the clipping rectangle associated with a surface.

	Prototype
	Err TwGfxGetClip(TwGfxSurfaceType* aSurface,

 TwGfxRectType* aResult)

	Fields
	[in] aSurface
	A handle to the surface.

	
	[out] aClipRect
	Pointer to the rectangle object which will be filled in with the surface clipping rectangle.

	Result
	 errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the surface is invalid or the library is not open

twGfxErrorNullPointer – the aClipRect pointer is NULL

	Side Effects
	

	Comments
	If the clipping for a surface is disabled (the default state for a surface) then the fields in aClipRect will contain the size of the surface (0, 0, width, height).

	Header
	TwGfx.h

	Sample
	TBD

TwGfxGetSurfaceInfo
	Purpose
	Query the surface information for a given surface.

	Prototype
	Err TwGfxGetSurfaceInfo(TwGfxSurfaceType* aSurface,

 TwGfxSurfaceInfoType* aResult)

	Fields
	[in] aSurface
	A handle to the surface.

	
	[inout] aResult
	A TwGfxSurfaceInfoType object that will be filled in with the description of the surface. The size field of aResult must be set to the size of the data structure before making this call.

	Result
	 errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the surface is invalid or the library is not open

twGfxErrorNullPointer – the aClipRect pointer is NULL

twGfxErrorBadObjectVersion – the TwGfxSurfaceInfoType size field doesn’t match a known version for the library

	Side Effects
	

	Comments
	

	Header
	TwGfx.h

	Sample
	TBD

TwGfxLockSurface
	Purpose
	Return a memory address for the surfaces video memory.

	Prototype
	Err TwGfxLockSurface(TwGfxSurfaceType* aSurface,

 void** aAddressResult)

	Fields
	[in] aSurface
	A handle to the surface.

	
	[out] aAddressResult
	A pointer to a void pointer that will be filled in with a readable/writable memory address for the surface memory.

	Result
	 errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the surface is invalid or the library is not open

twGfxErrorNullPointer – the aAddressResult pointer is NULL

	Side Effects
	

	Comments
	The memory address returned remains valid until TwGfxUnlockSurface is called. Note that you can nest these calls. When this occurs, the same memory address is always returned and is valid until the matching number of TwGfxUnlockSurface calls are made.

Use care when mixing direct access to the surface memory with surface rendering operations. Surface rendering operations can execute in parallel with the CPU’s access to the memory and yield unpredictable results. To work around this issue, use TwGfxUnlockSurface to release access to the surface followed by a TwGfxLockSurface call. TwGfxLockSurface will ensure that the rendering pipeline is empty before returning.

	Header
	TwGfx.h

	Sample
	TBD

TwGfxUnlockSurface
	Purpose
	Unlock a previously locked surface.

	Prototype
	Err TwGfxUnlockSurface(TwGfxSurfaceType* aSurface,

 Boolean aUpdate)

	Fields
	[in] aSurface
	A handle to the surface.

	
	[in] aUpdate
	This flag indicates to the graphics library that the surface memory was modified by the caller. If for some reason actual surface memory was not returned by TwGfxLockSurface, it should be copied to the actual surface memory.

	Result
	 errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the surface is invalid or the library is not open

twGfxErrorSurfaceNotLocked – the surface was not locked

	Side Effects
	

	Comments
	

	Header
	TwGfx.h

	Sample
	TBD

TwGfxReadSurface
	Purpose
	Make a copy of the surface display memory.

	Prototype
	Err TwGfxReadSurface(TwGfxSurfaceType* aSurface,

 void* aDest,

 Boolean aAsync)

	Fields
	[in] aSurface
	A handle to the surface.

	
	[out] aDest
	A pointer to the memory where the surface memory will be written. It is the callers responsibility to allocate enough memory.

	
	[in] aAsync
	When true this flag indicates that the copy should be done asynchronously. Use TwGfxSurfaceIsReady to query when the copy is done.

	Result
	 errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the surface is invalid or the library is not open

twGfxErrorNullPointer – the aDest pointer is NULL

twGfxErrorOperationInProgress – a TwGfxSurfaceRead or TwGfxSurfaceWrite call is already in progress

	Side Effects
	

	Comments
	This is identical to calling TwGfxReadSurfaceRegion with a bound rectangle that covers the entire surface.

To allocate enough memory for the copy, use TwGfxGetSurfaceInfo and perform this calculation:

 Int32 bytesNeeded = info.rowBytes * info.height;

	Header
	TwGfx.h

	Sample
	TBD

TwGfxReadSurfaceRegion
	Purpose
	Make a copy of the surface display memory.

	Prototype
	Err TwGfxReadSurfaceRegion(TwGfxSurfaceType* aSurface,

 const TwGfxRectType* aBounds,

 void* aDestPixels,

 Int32 aDestRowBytes,

 Boolean aAsync)

	Fields
	[in] aSurface
	A handle to the surface.

	
	[in] aBounds
	A pointer to the rectangle object which contains the area of the surface to be written.

	
	[out] aDestPixels
	A pointer to the memory where the surface memory will be written. It is the callers responsibility to allocate enough memory.

	
	[in] aDestRowBytes
	The number of data bytes per row in aDestPixels.

	
	[in] aAsync
	When true this flag indicates that the copy should be asynchronous. Use TwGfxSurfaceIsReady to query when the copy is done.

	Result
	 errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the surface is invalid or the library is not open

twGfxErrorNullPointer – the aDest pointer is NULL

twGfxErrorOperationInProgress – an asynchronous operation is in progress

	Side Effects
	

	Comments
	

	Header
	TwGfx.h

	Sample
	TBD

TwGfxWriteSurface
	Purpose
	Write a memory buffer to the surface display memory.

	Prototype
	Err TwGfxWriteSurface(TwGfxSurfaceType* aSurface,

 const void* aSource,

 Boolean aAsync)

	Fields
	[in] aSurface
	A handle to the surface.

	
	[in] aSource
	A pointer to the memory to be copied to the surface display memory.

	
	[in] aAsync
	When true this flag indicates that the copy should be asynchronous. Use TwGfxIsSurfaceReady to query when the copy is done.

	Result
	 errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the surface is invalid or the library is not open

twGfxErrorNullPointer – the aSource pointer is NULL

twGfxErrorOperationInProgress – an asynchronous operation is already in progress

	Side Effects
	

	Comments
	See TwGfxReadSurface for how to allocate enough memory for the copy. This call is the same as calling TwGfxWriteSurfaceRegion and specifying a region that covers the entire surface with source row bytes that are the same as the surface row bytes.

	Header
	TwGfx.h

	Sample
	TBD

TwGfxWriteSurfaceRegion
	Purpose
	Write a memory buffer to a subset of the surface display memory.

	Prototype
	Err TwGfxWriteSurfaceRegion(TwGfxSurfaceType* aSurface,

 const TwGfxRectType* aBounds,

 const void* aSourcePixels,

 Int32 aSourceRowBytes,

 Boolean aAsync)

	Fields
	[in] aSurface
	A handle to the surface.

	
	[in] aBounds
	A pointer to the rectangle object which contains the area of the surface to be written.

	
	[in] aSourcePixels
	A pointer to the memory to be copied to the surface display memory.

	
	[in] aSourceRowBytes
	The number of bytes per row of data in aSourcePixels.

	
	[in] aAsync
	When true this flag indicates that the copy should be asynchronous. Use TwGfxIsSurfaceReady to query when the copy is done.

	Result
	 errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the surface is invalid or the library is not open

twGfxErrorNullPointer – the aSource pointer is NULL

twGfxErrorInvalidCoord – the coordinates in aDestRect are outside the bounds of the surface or specify an empty area (zero width/height)

twGfxErrorOperationInProgress – a TwGfxSurfaceRead or TwGfxSurfaceWrite call is already in progress

	Side Effects
	

	Comments
	The amount of memory necessary for the copy to work properly depends on the pixel format of the surface and the height of the aDestRect and aSourceRowBytes. For example, assuming 2 bytes per pixel, the following calculation will be correct:

totalBytes = aDestRect->h * aSourceRowBytes * 2;

	Header
	TwGfx.h

	Sample
	TBD

TwGfxIsSurfaceReady
	Purpose
	Query the surface and see if it is ready for another TwGfxSurfaceRead or TwGfxSurfaceWrite call.

	Prototype
	Err TwGfxIsSurfaceReady(TwGfxSurfaceType* aSurface)

	Fields
	[in] aSurface
	A handle to the surface.

	Result
	 errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the surface is invalid or the library is not open
twGfxErrorOperationInProgress – a TwGfxSurfaceRead or TwGfxSurfaceWrite call is still in progress

	Side Effects
	

	Comments
	This call returns errNone when no operations are pending (and the surface is a valid surface). If the arguments are valid and an operation is pending, then it returns twGfxErrorOperationInProgress.

	Header
	TwGfx.h

	Sample
	TBD

Rendering calls

This section describes the rendering methods in the graphics library.

TwGfxBitBlt

	Purpose
	Basic bitblt rendering call.

	Prototype
	Err TwGfxBitblt(TwGfxSurfaceType* aDestSurface,

 const TwGfxPointType* aDestPoint,

 TwGfxSurfaceType* aSourceSurface,

 const TwGfxRectType* aSourceRect)

	Fields
	[in] aDestSurface
	A handle to the surface to which you want to bitblt.

	
	[in] aDestPoint
	The upper-left coordinate in the destination surface to which you want to bitblt.

	
	[in] aSourceSurface
	A handle to the surface from which you want to bitblt.

	
	[in] aSourceRect
	The area in the source surface from which you want to bitblt.

	Result
	 errNone – Succeeded

twGfxErrorInvalidHandle – the handle to a surface is invalid or the library is not open

twGfxErrorNullPointer – aDestPoint or aSourceRect is NULL

twGfxErrorInvalidCoord – the coordinate values in the destination point or the source rectangle address values outside their respective surfaces

twGfxErrorOperationInProgress – an asynchronous operation is in progress

	Side Effects
	

	Comments
	

	Header
	TwGfx.h

	Sample
	TBD

TwGfxAsyncBlt

	Purpose
	Basic bitblt rendering call, done asynchronously.

	Prototype
	Err TwGfxAsyncblt(TwGfxSurfaceType* aDestSurface,

 const TwGfxPointType* aDestPoint,

 TwGfxSurfaceType* aSourceSurface,

 const TwGfxRectType* aSourceRect)

	Fields
	[in] aDestSurface
	A handle to the surface to which you want to bitblt.

	
	[in] aDestPoint
	The upper-left coordinate in the destination surface to which you want to bitblt.

	
	[in] aSourceSurface
	A handle to the surface from which you want to bitblt.

	
	[in] aSourceRect
	The area in the source surface from which you want to bitblt.

	Result
	 errNone – Succeeded

twGfxErrorInvalidHandle – the handle to a surface is invalid or the library is not open

twGfxErrorNullPointer – aDestPoint or aSourceRect is NULL

twGfxErrorInvalidCoord – the coordinate values in the destination point or the source rectangle address values outside their respective surfaces

twGfxErrorOperationInProgress – an asynchronous operation is in progress or another asynchronous bitblt has been requested

	Side Effects
	

	Comments
	This call is identical to TwGfxBitBlt except that the bitblt occurs during the next vertical retrace period.

There can only one asynchronous bitblt request at a time.

	Header
	TwGfx.h

	Sample
	TBD

TwGfxTransparentBlt

	Purpose
	Transparent bitblt rendering call.

	Prototype
	Err TwGfxTransparentBlt(TwGfxSurfaceType* aDestSurface,

 const TwGfxPointType* aDestPoint,

 TwGfxSurfaceType* aSourceSurface,

 const TwGfxRectType* aSourceRect,

 TwGfxPackedRGBType aTransparentColor)

	Fields
	[in] aDestSurface
	A handle to the surface to which you want to bitblt.

	
	[in] aDestPoint
	The upper-left coordinate in the destination surface to which you want to bitblt.

	
	[in] aSourceSurface
	A handle to the surface from which you want to bitblt.

	
	[in] aSourceRect
	The area in the source surface from which you want to bitblt.

	
	[in] aTransparentColor
	The color which should not be rendered.

	Result
	 errNone – Succeeded

twGfxErrorInvalidHandle – the handle to a surface is invalid or the library is not open

twGfxErrorNullPointer – aDestPoint or aSourceRect is NULL

twGfxErrorInvalidCoord – the coordinate values in the destination point or the source rectangle address values outside their respective surfaces

twGfxErrorOperationInProgress – an asynchronous operation is in progress

	Side Effects
	

	Comments
	The source surface is bitblt’d to the destination surface like a regular bitblt with one distinction: any pixel in the source surface whose color is identical to aTransparentColor is not written to the destination surface.

	Header
	TwGfx.h

	Sample
	TBD

TwGfxMaskBlt

	Purpose
	Mask bitblt rendering call.

	Prototype
	Err TwGfxMaskBlt(TwGfxSurfaceType* aDestSurface,

 const TwGfxPointType* aDestPoint,

 TwGfxSurfaceType* aSourceSurface,

 const TwGfxRectType* aSourceRect,

 const TwGfxBitmapType* aMask)

	Fields
	[in] aDestSurface
	A handle to the surface to which you want to bitblt.

	
	[in] aDestPoint
	The upper-left coordinate in the destination surface to which you want to bitblt.

	
	[in] aSourceSurface
	A handle to the surface from which you want to bitblt.

	
	[in] aSourceRect
	The area in the source surface from which you want to bitblt.

	
	[in] aMask
	A monochrome bitmap that describes which pixels to render and which to not render.

	Result
	 errNone – Succeeded

twGfxErrorInvalidHandle – the handle to a surface is invalid or the library is not open

twGfxErrorNullPointer – aDestPoint or aSourceRect is NULL

twGfxErrorInvalidCoord – the coordinate values in the destination point or the source rectangle address values outside their respective surfaces

twGfxErrorOperationInProgress – an asynchronous operation is in progress

	Side Effects
	

	Comments
	Only monochrome bitmaps can be used as masks. When a one bit is present in the bitmap the source surface pixel will be written to the destination surface. When a zero bit is present the destination pixel will not be overwritten.

	Header
	TwGfx.h

	Sample
	TBD

TwGfxBlendBlt

	Purpose
	Blending bitblt rendering call.

	Prototype
	Err TwGfxBlendBlt(TwGfxSurfaceType* aDestSurface,

 const TwGfxPointType* aDestPoint,

 TwGfxSurfaceType* aSourceSurface,

 const TwGfxRectType* aSourceRect,

 TwGfxPackedRGBType aSourceAlpha)

	Fields
	[in] aDestSurface
	A handle to the surface to which you want to bitblt.

	
	[in] aDestPoint
	The upper-left coordinate in the destination surface to which you want bitblt.

	
	[in] aSourceSurface
	A handle to the surface from which you want to bitblt.

	
	[in] aSourceRect
	The area in the source surface from which you want to bitblt.

	
	[in] aSourceAlpha
	The constant alpha color to use over the entire surface

	Result
	errNone – Succeeded

twGfxErrorInvalidHandle – the handle to a surface is invalid or the library is not open

twGfxErrorNullPointer – aDestPoint or aSourceRect is NULL

twGfxErrorInvalidCoord – the coordinate values in the destination point or the source rectangle address values outside their respective surfaces

twGfxErrorOperationInProgress – an asynchronous operation is in progress

	Side Effects
	

	Comments
	The source surface is blended into the destination surface using the following formula on a per pixel basis:

dst.r = src.r * alpha.r + (1 – alpha.r) * dst.r

dst.g = src.g * alpha.g + (1 – alpha.g) * dst.g

dst.b = src.b * alpha.b + (1 – alpha.b) * dst.b

The alpha color componets are logically normalized to a 0.0 – 1.0 range (inclusive) before the above calculation is done.

The above formula can be translated to “As the alpha value increases towards 1, more of the source pixel is used and less of the destination pixel is used.”

	Header
	TwGfx.h

	Sample
	TBD

TwGfxMaskBlendBlt

	Purpose
	Maked blending bitblt rendering call.

	Prototype
	Err TwGfxMaskBlendBlt(TwGfxSurfaceType* aDestSurface,

 const TwGfxPointType* aDestPoint,

 TwGfxSurfaceType* aSourceSurface,

 const TwGfxRectType* aSourceRect,

 const TwGfxBitmapType* aAlphaMask)

	Fields
	[in] aDestSurface
	A handle to the surface to which you want bitblt.

	
	[in] aDestPoint
	The upper-left coordinate in the destination surface to which you want bitblt.

	
	[in] aSourceSurface
	A handle to the surface from which you want to bitblt.

	
	[in] aSourceRect
	The area in the source surface from which you want to bitblt.

	
	[in] aAlphaMask
	A bitmap containing per-pixel alpha values

	Result
	errNone – Succeeded

twGfxErrorInvalidHandle – the handle to a surface is invalid or the library is not open

twGfxErrorNullPointer – aDestPoint or aSourceRect is NULL

twGfxErrorInvalidCoord – the coordinate values in the destination point or the source rectangle address values outside their respective surfaces

twGfxErrorOperationInProgress – an asynchronous operation is in progress

	Side Effects
	

	Comments
	The alpha mask bitmap provides a per-pixel alpha value to perform the blending calculation with (see TwGfxBlendBlt for the blending calculation). The alpha mask pixel format must be one of the index formats (monochrome, 2bpp, 4bpp or 8bpp) with the 4bpp being the most efficient choice.

Each pixel of the source surface in the source rectangle is blended with the destination pixel using the blending formula described in TwGfxBlendBlt. The alpha color value is taken from the mask, which means that each pixel can have a different alpha value applied to the calculation.

	Header
	TwGfx.h

	Sample
	TBD

TwGfxStretchBlt

	Purpose
	Basic bitblt rendering call.

	Prototype
	Err TwGfxStretchBlt(TwGfxSurfaceType* aDestSurface,

 const TwGfxRectType* aDestRect,

 TwGfxSurfaceType* aSourceSurface,

 const TwGfxRectType* aSourceRect)

	Fields
	[in] aDestSurface
	A handle to the surface to which you want bitblt.

	
	[in] aDestRect
	The area in the destination surface to which you want bitblt.

	
	[in] aSourceSurface
	A handle to the surface from which you want to bitblt.

	
	[in] aSourceRect
	The area in the source surface from which you want to bitblt.

	Result
	 errNone – Succeeded

twGfxErrorInvalidHandle – the handle to a surface is invalid or the library is not open

twGfxErrorNullPointer – aDestPoint or aSourceRect is NULL

twGfxErrorInvalidCoord – the coordinate values in the destination point or the source rectangle address values outside their respective surfaces

twGfxErrorOperationInProgress – an asynchronous operation is in progress

	Side Effects
	

	Comments
	The source surface is stretched or shrunk to fit in the destination rectangle. The exact effect on the pixels is not defined here. This operation is not fast, but is marginally accelerated by the graphics accelerator.

	Header
	TwGfx.h

	Sample
	TBD

TwGfxTileBlt

	Purpose
	Basic bitblt rendering call.

	Prototype
	Err TwGfxTileBlt(TwGfxSurfaceType* aDestSurface,

 const TwGfxRectType* aDestRect,

 TwGfxSurfaceType* aSourceSurface,

 const TwGfxPointType* aSourceAlignmentPoint)

	Fields
	[in] aDestSurface
	A handle to the surface to which you want bitblt.

	
	[in] aDestRect
	The destination area to tile with the source surface.

	
	[in] aSourceSurface
	A handle to the surface from which you want to bitblt.

	
	[in] aSourceAlignmentPoint
	The offset in x & y from which to begin the tiling.

	Result
	 errNone – Succeeded

twGfxErrorInvalidHandle – the handle to a surface is invalid or the library is not open

twGfxErrorNullPointer – aDestPoint or aSourceRect is NULL

twGfxErrorInvalidCoord – the coordinate values in the destination point or the source rectangle address values outside their respective surfaces

twGfxErrorOperationInProgress – an asynchronous operation is in progress

	Side Effects
	

	Comments
	The source surface is drawn as many times as necessary to cover the destination rectangle. The first pixel written to the upper-left corner of the destination rectangle will come into the source surface from the aSourceAlignmentPoint (x,y) offset.

	Header
	TwGfx.h

	Sample
	TBD

TwGfxTransformBlt

	Purpose
	Transforming bitblt rendering call.

	Prototype
	Err TwGfxTransformBlt(TwGfxSurfaceType* aDestSurface,

 const TwGfxPointType* aDestPoint,

 TwGfxSurfaceType* aSourceSurface,

 const TwGfxRectType* aSourceRect,

 Int32 aRotationFlags,

 Int32 aMirrorFlags)

	Fields
	[in] aDestSurface
	A handle to the surface to which you want bitblt.

	
	[in] aDestPoint
	The upper-left coordinate in the destination surface to which you want bitblt.

	
	[in] aSourceSurface
	A handle to the surface from which you want to bitblt.

	
	[in] aSourceRect
	The area in the source surface from which you want to bitblt.

	
	[in] aRotationFlags
	A value indicating the kind of rotation to perform.

	
	[in] aMirrorFlags
	A value indicating the kind of mirroring to perform.

	Result
	 errNone – Succeeded

twGfxErrorInvalidHandle – the handle to a surface is invalid or the library is not open

twGfxErrorNullPointer – aDestPoint or aSourceRect is NULL

twGfxErrorInvalidCoord – the coordinate values in the destination point or the source rectangle address values are outside their respective surfaces

twGfxErrorInvalidRotation – the rotation value is invalid

twGfxErrorInvalidMirror – the mirror value is invalid

twGfxErrorOperationInProgress – an asynchronous operation is in progress

	Side Effects
	

	Comments
	Legal values for aRotationFlags:

twGfxRotateNone, twGfxRotateCW90, twGfxRotateCW180, twGfxRotateCW270, twGfxRotateCCW90, twGfxRotateCCW180, twGfxRotateCCW270

Legal values for aMirrorFlags:

twGfxMirrorNone, twGfxMirrorHorizontal, twGfxMirrorVertical, twGfxMirrorBoth

	Header
	TwGfx.h

	Sample
	TBD

TwGfxDrawPoints

	Purpose
	Draw a set of points to the destination surface.

	Prototype
	Err TwGfxDrawPoints(TwGfxSurfaceType* aDestSurface,

 const TwGfxPointType* aPoints,

 Int32 aNumberOfPoints,

 TwGfxPackedRGBType aColor)

	Fields
	[in] aDestSurface
	A handle to the surface.

	
	[in] aPoints
	A pointer to the array of TwGfxPointType objects containing the x,y coordinates of the points to be plotted.

	
	[in] aNumberOfPoints
	The number of points to plot.

	
	[in] aColor
	The color to use when plotting each point.

	Result
	 errNone – Succeeded

twGfxErrorInvalidHandle – the handle to the surface is invalid or the library is not open

twGfxErrorNullPointer – aPoints is NULL

twGfxErrorInvalidCount – the aNumberOfPoints value is <= zero

twGfxErrorOperationInProgress – an asynchronous operation is in progress

	Side Effects
	

	Comments
	

	Header
	TwGfx.h

	Sample
	TBD

TwGfxDrawColorPoints

	Purpose
	Draw a set of points to the destination surface. Each point has its own color.

	Prototype
	Err TwGfxDrawColorPoints(TwGfxSurfaceType* aDestSurface,

 const TwGfxPointType* aPoints,

 Int32 aNumberOfPoints,

 const TwGfxPackedRGBType* aColors)

	Fields
	[in] aDestSurface
	A handle to the surface.

	
	[in] aPoints
	A pointer to the array of TwGfxPointType objects containing the x,y coordinates of the points to be plotted.

	
	[in] aNumberOfPoints
	The number of points to plot.

	
	[in] aColors
	The color to use when plotting each point. There must be one color in the aColors array for each point in the aPoints array.

	Result
	 errNone – Succeeded

twGfxErrorInvalidHandle – the handle to a surface is invalid or the library is not open
twGfxErrorNullPointer – aPoints or aColors is NULL

twGfxErrorInvalidCount – the aNumberOfPoints value is <= zero

twGfxErrorOperationInProgress – an asynchronous operation is in progress

	Side Effects
	

	Comments
	

	Header
	TwGfx.h

	Sample
	TBD

TwGfxDrawLines

	Purpose
	Draw one or more connected lines.

	Prototype
	Err TwGfxDrawLines(TwGfxSurfaceType* aDestSurface,

 const TwGfxPointType* aPoints,

 Int32 aNumberOfPoints,

 TwGfxPackedRGBType aColor)

	Fields
	[in] aDestSurface
	A handle to the surface.

	
	[in] aPoints
	The set of points that define the lines to be drawn. Lines are drawn starting at (aPoints[I-1].x,aPoints[I-1].y) to (aPoints[I].x,aPoints[I].y) where I goes from 1 to aNumberOfPoints-1. Therefore, if aNumberOfPoints is 3 then 2 lines will be drawn.

	
	[in] aNumberOfPoints
	The number of points in aPoints.

	
	[in] aColor
	The color to use when drawing each line.

	Result
	 errNone – Succeeded

twGfxErrorInvalidHandle – the handle to a surface is invalid or the library is not open

twGfxErrorNullPointer – aPoints is NULL

twGfxErrorInvalidCount – the number of points is less than two.

twGfxErrorOperationInProgress – an asynchronous operation is in progress

	Side Effects
	

	Comments
	Example: If aNumberOfPoints is 3 then the following two lines are drawn:

(aPoints[0].x,aPoints[0].y) to (aPoints[1].x,aPoints[1].y)
(aPoints[1].x,aPoints[1].y) to (aPoints[2].x,aPoints[2].y)

	Header
	TwGfx.h

	Sample
	TBD

TwGfxDrawLineSegments

	Purpose
	Draw one or more independent lines.

	Prototype
	Err TwGfxDrawLineSegments(TwGfxSurfaceType* aDestSurface,

 const TwGfxPointType* aPoints,

 Int32 aNumberOfPoints,

 TwGfxPackedRGBType aColor)

	Fields
	[in] aDestSurface
	A handle to the surface.

	
	[in] aPoints
	The set of points that define the lines to be drawn.

	
	[in] aNumberOfPoints
	The number of points in aPoints.

	
	[in] aColor
	The color to use when drawing each line.

	Result
	 errNone – Succeeded

twGfxErrorInvalidHandle – the handle to a surface is invalid or the library is not open

twGfxErrorNullPointer – aPoints is NULL

twGfxErrorInvalidCount – the number of points is not even or is <= zero

twGfxErrorOperationInProgress – an asynchronous operation is in progress

	Side Effects
	

	Comments
	Example: If aNumberOfPoints is 4 then the following two lines are drawn:

(aPoints[0].x,aPoints[0].y) to (aPoints[1].x,aPoints[1].y)

(aPoints[2].x,aPoints[2].y) to (aPoints[3].x,aPoints[3].y)

	Header
	TwGfx.h

	Sample
	TBD

TwGfxDrawRect

	Purpose
	Draw the outline of a rectangle.

	Prototype
	Err TwGfxDrawRect(TwGfxSurfaceType* aDestSurface,

 const TwGfxRectType* aRect,

 TwGfxPackedRGBColor aColor)

	Fields
	[in] aDestSurface
	A handle to the surface.

	
	[in] aRect
	A pointer to the rectangle to outline.

	
	[in] aColor
	The color to use when drawing the outline.

	Result
	 errNone – Succeeded

twGfxErrorInvalidHandle – the handle to a surface is invalid or the library is not open

twGfxErrorNullPointer – aRect is NULL

twGfxErrorOperationInProgress – an asynchronous operation is in progress

	Side Effects
	

	Comments
	

	Header
	TwGfx.h

	Sample
	TBD

TwGfxFillRect

	Purpose
	Fill a rectangle with the given color.

	Prototype
	Err TwGfxFillRect(TwGfxSurfaceType* aDestSurface,

 const TwGfxRectType* aRect,

 TwGfxPackedRGBColor aColor)

	Fields
	[in] aDestSurface
	A handle to the surface.

	
	[in] aRect
	A pointer to the rectangle to fill.

	
	[in] aColor
	The color to use when filling the rectangle.

	Result
	 errNone – Succeeded

twGfxErrorInvalidHandle – the handle to a surface is invalid or the library is not open

twGfxErrorNullPointer – aRect is NULL

twGfxErrorOperationInProgress – an asynchronous operation is in progress

	Side Effects
	

	Comments
	

	Header
	TwGfx.h

	Sample
	TBD

TwGfxDrawSpans

	Purpose
	Draw one or more horizontal spans with a constant color.

	Prototype
	Err TwGfxDrawSpans(TwGfxSurfaceType* aDestSurface,

 const TwGfxSpanType* aSpans,

 Int32 aNumberOfSpans,

 TwGfxPackedRGBColor aColor)

	Fields
	[in] aDestSurface
	A handle to the surface.

	
	[in] aSpans
	A pointer to one or more TwGfxSpanType objects.

	
	[in] aNumberOfSpans
	The number of spans to draw.

	
	[in] aColor
	The color to draw each span.

	Result
	 errNone – Succeeded

twGfxErrorInvalidHandle – the handle to a surface is invalid or the library is not open

twGfxErrorNullPointer – aSpans is NULL

twGfxErrorInvalidCount – the number of spans is <= zero

twGfxErrorOperationInProgress – an asynchronous operation is in progress

	Side Effects
	

	Comments
	

	Header
	TwGfx.h

	Sample
	TBD

TwGfxDrawBitmap

	Purpose
	Draw a bitmap to the destination surface.

	Prototype
	Err TwGfxDrawBitmap(TwGfxSurfaceType* aDestSurface,

 const TwGfxPointType* aDestPoint,

 const TwGfxBitmapType* aBitmap)

	Fields
	[in] aDestSurface
	A handle to the surface.

	
	[in] aDestPoint
	The destination coordinates in the destination surface (upper-left) to draw the bitmap.

	
	[in] aBitmap
	A pointer to the TwGfxBitmapType object which describes the size and pixel format of the bitmap. Note that the size field must be set to the size of the TwGfxBitmapType data structure.

	Result
	errNone – Succeeded

twGfxErrorInvalidHandle – the handle to a surface is invalid or the library is not open

twGfxErrorNullPointer – aDestPoint or aBitmap is NULL

twGfxErrorBadObjectVersion – the TwGfxBitmapType size field doesn’t match a known version for the library

twGfxErrorOperationInProgress – an asynchronous operation is in progress

	Side Effects
	

	Comments
	The following pixel formats are supported for bitmaps:

twGfxPixelFormatMonochrome

twGfxPixelFormat2bpp

twGfxPixelFormat4bpp

twGfxPixelFormat8bpp

twGfxPixelFormatRGB565_LE

twGfxPixelFormatRGB565_BE

For index formats the palette field in aBitmap must point to a table of color values used to convert the index data into display pixels.

	Header
	TwGfx.h

	Sample
	TBD

Tapwave, Inc. Proprietary
3

