
Palm OS® Emulator
Excerpt from Palm OS Programming

Development Tools Guide
Document Number 3011-003
Print Date 2/01

CONTRIBUTORS

Written by Brian Maas and Gary Hillerson
Production by <dot>PS document production services>
Engineering contributions by Keith Rollin, Derek Johnson, Ken Krugler, Jesse Donaldson, Andy Stewart,
and Kenneth Albanowski.

Copyright © 1996 - 2001, Palm, Inc. All rights reserved. This documentation may be printed and copied
solely for use in developing products for Palm OS software. In addition, two (2) copies of this documenta-
tion may be made for archival and backup purposes. Except for the foregoing, no part of this documenta-
tion may be reproduced or transmitted in any form or by any means or used to make any derivative work
(such as translation, transformation or adaptation) without express written consent from Palm, Inc.

Palm, Inc. reserves the right to revise this documentation and to make changes in content from time to
time without obligation on the part of Palm, Inc. to provide notification of such revision or changes.
PALM, INC. MAKES NO REPRESENTATIONS OR WARRANTIES THAT THE DOCUMENTATION IS
FREE OF ERRORS OR THAT THE DOCUMENTATION IS SUITABLE FOR YOUR USE. THE DOCUMEN-
TATION IS PROVIDED ON AN “AS IS” BASIS. PALM, INC. MAKES NO WARRANTIES, TERMS OR
CONDITIONS, EXPRESS OR IMPLIED, EITHER IN FACT OR BY OPERATION OF LAW, STATUTORY
OR OTHERWISE, INCLUDING WARRANTIES, TERMS, OR CONDITIONS OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND SATISFACTORY QUALITY.

TO THE FULL EXTENT ALLOWED BY LAW, PALM, INC. ALSO EXCLUDES FOR ITSELF AND ITS SUP-
PLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR TORT (INCLUDING NEGLIGENCE),
FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL, OR PUNITIVE DAMAGES OF
ANY KIND, OR FOR LOSS OF REVENUE OR PROFITS, LOSS OF BUSINESS, LOSS OF INFORMATION
OR DATA, OR OTHER FINANCIAL LOSS ARISING OUT OF OR IN CONNECTION WITH THIS DOCU-
MENTATION, EVEN IF PALM, INC. HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Palm Computing, Palm OS, Graffiti, HotSync, and Palm Modem are registered trademarks, and Palm III,
Palm IIIe, Palm IIIx, Palm V, Palm Vx, Palm VII, Palm, Palm Powered, More connected., Simply Palm, the
Palm logo, Palm Computing platform logo, Palm III logo, Palm IIIx logo, Palm V logo, and HotSync logo
are trademarks of Palm, Inc. or its subsidiaries. All other product and brand names may be trademarks or
registered trademarks of their respective owners.

IF THIS DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE OTHER SOFTWARE AND
DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT TO THE LICENSE AGREEMENT AC-
COMPANYING THE COMPACT DISC.

Palm, Inc.
5470 Great America Pkwy
Santa Clara, CA 95054
USA
www.palmos.com

Palm OS Programming Development Tools Guide
Document Number 3011-003
February 20, 2001
For the latest version of this document, visit
http://www.palmos.com/dev/tech/docs/.
Document Number 3011-003

http://www.palmos.com
http://www.palmos.com/dev/tech/docs/

Table of Contents
1 Using Palm OS® Emulator 11

About Palm OS Emulator 12
Feature Overview. 12

Standard Device Features 14
Extended Emulation Features 14
Debugging Features 14

Prerequisites . 15
Palm OS Emulator Runtime Requirements. 15
Using ROM Images. 15

Downloading Palm OS Emulator 16
Versions of Palm OS Emulator 17

Loading ROM Images 18
Downloading a ROM Image Obtained From Palm 19
Transferring a ROM Image From a Handheld 19
Transferring a ROM File in Windows 19
Transferring a ROM File On a Macintosh 20
Transferring a ROM File On a Unix System 21
Using a ROM Image in Palm OS Emulator 22

Running Palm OS Emulator 24
Command Line Options. 24
Starting Palm OS Emulator 28

Using Emulation Sessions 31
Configuring a New Session 31
The Difference Between the New Menu Item and the Open

Menu Item . 33
Dragging and Dropping Files 33
Saving and Restoring Session State 34
Changing the Emulator’s Appearance. 34

Modifying the Runtime Environment 36
Palm OS Emulator Properties 36
Installing Applications 37
Serial Communications and Palm OS Emulator. 38
Using the HotSync Application With Palm OS Emulator. . . 39
Emulating Expansion Cards 42
Palm OS Programming Development Tools Guide 3

Testing Your Application 43
Testing Software . 44
Debug Options. 44
Logging Options . 47
Using Gremlins to Automate Testing 51
Setting Breakpoints 56
Source Level Debugging 58
Connecting Emulator with Palm Debugger 59
Connecting Emulator with the GDB Debugger 59
Connecting the Emulator With External Debuggers 60
Profiling Your Code 61

Error Handling Concepts 62
Detecting an Error Condition 63
Error Condition Types 63
Error Messages . 64

Advanced Topics . 70
Creating Demonstration Versions of Palm OS Emulator . . . 70
Sending Commands to Palm OS Emulator 70

User Interface Summary 72
Palm OS Emulator Display 72
Using the Menus . 72
Using the Hardware Buttons. 77
Control Keys . 78

Getting Help With Palm OS Emulator 79

2 Host Control API Reference 81
About the Host Control API 81
Constants . 82

Host Error Constants 82
Host Function Selector Constants. 86
Host ID Constants 86
Host Platform Constants 86
Host Signal Constants 87

Data Types. 87
HostBoolType . 88
HostClockType . 88
4 Palm OS Programming Development Tools Guide

HostDirEntType . 88
HostDIRType . 88
HostFILEType . 89
HostGremlinInfoType. 89
HostIDType . 90
HostPlatformType 90
HostSignalType . 90
HostSizeType . 90
HostStatType . 91
HostTimeType . 92
HostTmType . 92
HostUTimeType . 93

Functions . 94
HostAscTime . 94
HostClock . 94
HostCloseDir . 95
HostCTime . 95
HostErrNo . 95
HostExportFile. 96
HostFClose . 96
HostFEOF . 97
HostFError . 97
HostFFlush . 97
HostFGetC . 98
HostFGetPos . 98
HostFGetS. 98
HostFOpen . 99
HostFPrintF . 99
HostFPutC . 99
HostFPutS. . 100
HostFRead . 100
HostFree . 100
HostFReopen . 101
HostFScanF . 101
HostFSeek. . 102
HostFSetPos . . 102
Palm OS Programming Development Tools Guide 5

HostFTell . 103
HostFWrite . 103
HostGestalt . 103
HostGetDirectory 104
HostGetEnv . . 104
HostGetFile . 104
HostGetFileAttr . 105
HostGetHostID . 106
HostGetHostPlatform. 106
HostGetHostVersion 106
HostGetPreference 107
HostGMTime . 108
HostGremlinCounter 108
HostGremlinIsRunning 108
HostGremlinLimit 109
HostGremlinNew 109
HostGremlinNumber 109
HostImportFile . 110
HostIsCallingTrap 110
HostIsSelectorImplemented 111
HostLocalTime. . 111
HostLogFile . . 112
HostMalloc . 112
HostMkDir . 112
HostMkTime . 113
HostOpenDir . 113
HostProfileCleanup 113
HostProfileDetailFn 114
HostProfileDump 114
HostProfileGetCycles 115
HostProfileInit . . 115
HostProfileStart . 116
HostProfileStop . 116
HostPutFile . 117
HostReadDir . 117
HostRealloc . 117
HostRemove. . 118
6 Palm OS Programming Development Tools Guide

HostRename. . 118
HostRmDir . 119
HostSaveScreen . 119
HostSessionClose 119
HostSessionCreate 120
HostSessionOpen 121
HostSessionQuit . 121
HostSetFileAttr . 122
HostSetLogFileSize 123
HostSetPreference 123
HostSignalResume 124
HostSignalSend . 124
HostSignalWait . 125
HostSlotHasCard. 126
HostSlotMax. . 127
HostSlotRoot . 127
HostStat . 128
HostStrFTime . 128
HostTime . 129
HostTmpFile . 129
HostTmpNam . . 129
HostTraceClose . 130
HostTraceInit . 130
HostTraceOutputB 131
HostTraceOutputT 131
HostTraceOutputTL 133
HostTraceOutputVT 134
HostTraceOutputVTL 135
HostTruncate . 135
HostUTime . 136

Reference Summary. 136
Host Control Database Functions 136
Host Control Directory Handler Functions. 137
Host Control Environment Functions 137
Host Control File Chooser Support Functions 138
Host Control Gremlin Functions 138
Host Control Logging Functions 139
Palm OS Programming Development Tools Guide 7

Host Control Preference Functions 139
Host Control Profiling Functions 139
Host Control RPC Functions 140
Host Control Standard C Library Functions 140
Host Control Time Functions 142
Host Control Tracing Functions 143

3 Debugger Protocol Reference 145
About the Palm Debugger Protocol 145

Packets . 146
Packet Structure . 146
Packet Communications. 148

Constants . 148
Packet Constants 148
State Constants . 149
Breakpoint Constants 149
Command Constants 149

Data Structures . . 150
_SysPktBodyCommon 150
SysPktBodyType . 151
SysPktRPCParamType 151
BreakpointType . 152

Debugger Protocol Commands 152
Continue . 152
Find . 154
Get Breakpoints . 155
Get Routine Name 156
Get Trap Breaks . 158
Get Trap Conditionals. 159
Message . 160
Read Memory . 161
Read Registers . . 162
RPC . 163
Set Breakpoints . 164
Set Trap Breaks . 165
Set Trap Conditionals 166
8 Palm OS Programming Development Tools Guide

State . 168
Toggle Debugger Breaks 170
Write Memory . . 171
Write Registers. . 172

Summary of Debugger Protocol Packets 173

 Index 175
Palm OS Programming Development Tools Guide 9

10 Palm OS Programming Development Tools Guide

1
Using Palm OS®
Emulator
This chapter describes how to use the Palm OS® Emulator program,
a hardware emulator for the Palm Powered® platform. You can use
Palm OS Emulator to test and debug programs that you have
developed for this platform.

This edition covers Palm OS Emulator 3.0a8.

Note: Palm OS Emulator has previously been referred to as POSE or
Poser. The name Palm OS Emulator is used throughout this book
and in new versions of other Palm documentation. In this chapter,
Emulator is sometimes used as an abbreviated form of Palm OS
Emulator.

This chapter begins with overview information:

• “About Palm OS Emulator” on page 12

• “Feature Overview” on page 12

• “Prerequisites” on page 15

Next, the chapter addresses how you can use an Emulator session to
test your application:

• “Downloading Palm OS Emulator” on page 16

• “Loading ROM Images” on page 18

• “Running Palm OS Emulator” on page 24

• “Using Emulation Sessions” on page 31

• “Modifying the Runtime Environment” on page 36

• “Testing Your Application” on page 43

The remainder of the chapter covers additional concepts and
reference information:

• “Error Handling Concepts” on page 62
Palm OS Programming Development Tools Guide 11

Using Palm OS® Emulator
About Palm OS Emulator
• “Advanced Topics” on page 70

• “User Interface Summary” on page 72

• “Getting Help With Palm OS Emulator” on page 79

About Palm OS Emulator
Palm OS Emulator is a hardware emulator program for the Palm
Powered platform, which means that it emulates the Palm hardware
in software, providing you with the ability to test and debug Palm
OS software on a Macintosh, Unix, or Windows-based desktop
computer.

When you run a Palm OS application with Palm OS Emulator on
your desktop computer, Palm OS Emulator fetches instructions,
updates the handheld screen display, works with special registers,
and handles interrupts in exactly the same manner as does the
processor inside of Palm Powered handhelds. The difference is that
Palm OS Emulator executes these instructions in software on your
desktop computer.

Feature Overview
Palm OS Emulator displays an on-screen image that looks exactly
like a Palm Powered handheld, as shown in Figure 1.1.
12 Palm OS Programming Development Tools Guide

Using Palm OS® Emulator
Feature Overview
Figure 1.1 Palm OS Emulator display

You can select which type of Palm handheld device you want to
emulate. You can also specify whether you want Palm OS Emulator
to display the screen in double size, which continues to provide an
accurate representation and makes the Palm screen easier to view.

You can use the mouse on your desktop computer just as you use
the stylus on a Palm Powered handheld. You can even use the
Graffiti® power writing software with Palm OS Emulator and your
mouse. And Palm OS Emulator includes additional keyboard
shortcuts that you can use on your desktop computer.

You can use Palm OS Emulator to perform some debugging of your
applications, and you can use Emulator with Palm Debugger to
perform extensive debugging of your applications. When you
connect Emulator with Palm Debugger, you can debug in exactly
the same manner as debugging with your application running on an
actual hardware handheld device. For more information about Palm
Debugger, see Chapter 4, “Using Palm Debugger.”
Palm OS Programming Development Tools Guide 13

Using Palm OS® Emulator
Feature Overview
Standard Device Features
Palm OS Emulator accurately emulates Palm Powered hardware
devices, and includes the following features:

• an exact replica of the Palm device display, including the
silkscreen and Graffiti areas

• emulation of the Palm stylus with the desktop computer
pointing device (mouse)

• emulation of the Palm device hardware buttons, including:

– power on/off button

– application buttons

– up and down buttons

– reset button

– HotSync® button

• ability to zoom the display for enhanced readability and
presentation

• screen backlighting

• communications port emulation for modem communications
and synchronizing

Extended Emulation Features
Palm OS Emulator also provides the following capabilities on your
desktop computer that extend the standard Palm device interface.

• ability to enter text with the desktop computer

• configurable memory card size, up to 8MB

Debugging Features
Palm OS Emulator provides a large number of debugging features
that help you to detect coding problems and unsafe application
operations. Palm OS Emulator includes the following debugging
features and capabilities:

• use of an automated test facility called Gremlins, which
repeatedly generates random events
14 Palm OS Programming Development Tools Guide

Using Palm OS® Emulator
Prerequisites
• support for external debuggers, including Palm Debugger,
the Metrowerks CodeWarrior debugger, and gdb.

• monitoring of application actions, including various memory
access and memory block activities

• logging of application activities, including events handled,
functions called, and CPU opcodes executed by the
application

• profiling of application performance

Prerequisites

Palm OS Emulator Runtime Requirements
Palm OS Emulator requires one of the following runtime
environments:

• Windows 98

• Windows 95

• Windows NT

• MacOS 7.5 or later

• Unix: some versions, including Linux

Emulator is a multi-threaded 32-bit program. It does not run on
Windows 3.1, even with Win32s installed.

Using ROM Images
To run Palm OS Emulator, you need to transfer a ROM image to it.
The ROM image contains all of the code used for a specific version
of the Palm OS. You can obtain ROM images for different Palm OS
versions from the Palm Resource Pavilion, or you can tell Palm OS
Emulator to download the ROM from a handheld that has been
placed in the device cradle and connected to the desktop computer.
For more information about transferring a ROM image to Palm OS
Emulator, see “Loading ROM Images” on page 18.

When you download ROM images from the Palm Resource
Pavilion, you can also obtain debug ROM images. Debug ROM
Palm OS Programming Development Tools Guide 15

Using Palm OS® Emulator
Downloading Palm OS Emulator
images contain additional error checking and reporting functions
that can help you debug Palm OS applications.

For more information about testing and debugging applications
with Palm OS Emulator, see “Testing Your Application” on page 43.

Downloading Palm OS Emulator
The most recent released version of Palm OS Emulator for both the
Macintosh and Windows is always posted on the Internet in the
Palm developer zone:

http://www.palmos.com/dev

Follow the links from the developer zone main page to the Emulator
page to retrieve the released version of Emulator. If you want to test-
drive the version of Palm OS Emulator that is currently under
development, follow links from the developer zone page to the
Emulator seed page.

The Palm OS Emulator package that you download includes the
files shown in Table 1.1.

Note: For the Unix version of Palm OS Emulator, the source code is
provided rather than the executables listed in the table below.

Table 1.1 Files Included in the Palm OS Emulator Package

File name Description

• Emulator.exe (Windows)

• Palm OS Emulator
(Macintosh)

Main Palm OS Emulator executable

• Emulator_Profile.exe
(Windows)

• Palm OS Emulator -
Profile (Macintosh)

Palm OS Emulator with added profiling
facilities
16 Palm OS Programming Development Tools Guide

http://www.palm.com/dev

Using Palm OS® Emulator
Downloading Palm OS Emulator
Versions of Palm OS Emulator
Each released version of Palm OS Emulator has a version number
that uses the following scheme:

<majorVers>.<minorVers>.<bugFix>[dab]<preRel>

Each field has the following semantics:

majorVers The major version number.

minorVers The minor version number.

bugFix The optional bug repair revision number.

dab The prelease stage of the product, as follows:

d Indicates that the version is currently
under development, and features are still
being added.

Docs (directory) Palm OS Emulator documents, including:

• _ReadMe.txt, which describes the
files in the Docs directory

• _News.txt, which describes
changes in the most recent version

• _OldNews.txt, which describes
previous version changes

• _Building.txt, which describes
how to build Emulator executables

• ROM Transfer.prc
(Windows, Macintosh)

• ROM_Transfer.prc (Unix)

Palm OS application used to transfer the
ROM image from your handheld device to
your desktop.

HostControl.h C/C++ header file declaring functions that
can be used to control Palm OS Emulator.
For more information about the Host
Control API, see Chapter 2, “Host Control
API Reference.”

Table 1.1 Files Included in the Palm OS Emulator Package

File name Description
Palm OS Programming Development Tools Guide 17

Using Palm OS® Emulator
Loading ROM Images
a Indicates alpha status, which means that
the feature set is complete and some
quality assurance testing has been
performed.

b Indicates beta status, which means that
bugs uncovered in the alpha version
have been addressed, and more
extensive testing has been performed.

preRel The developmental, pre-release version
number.

Some examples of version numbers are shown in Table 1.2

Profile Versions

Some releases of Palm OS Emulator include a profile version, with
the word profile appended to the program name. Each profile
version adds the ability to perform selective profiling of your
program’s execution, and to save the results to a file.

The code required to add profiling capability slows down your
application, even when you are not using profiling. That means that
you are better off using the non-profiling version of Palm OS
Emulator if you don’t expect to use the profiling capabilities.

For more information about profiling with Palm OS Emulator, see
“Profiling Your Code” on page 61.

Loading ROM Images
Because Palm OS Emulator emulates the Palm Powered hardware,
all components of the hardware must be present. This includes a

Table 1.2 Version number examples

Version Description

3.0 Official release version 3.0

2.1d19 The 19th developmental release of version 2.1.

3.0a8 The 8th alpha release of version 3.0.
18 Palm OS Programming Development Tools Guide

Using Palm OS® Emulator
Loading ROM Images
ROM image file, which is not shipped with the Emulator. There are
two ways to obtain a ROM image:

• download a ROM image from the Palm Resource Pavilion

• transfer a ROM image from a handheld

Downloading a ROM Image Obtained From
Palm
To download a debug ROM image from Palm, see:

http://www.palmos.com/dev

The ROM image files are found in the Resource Pavilion.

The Resource Pavilion is an area for developers who have registered
as members of the Palm Alliance Program. You can find instructions
for joining the Palm Alliance Program at the developer site.

Transferring a ROM Image From a Handheld
To transfer a ROM image from a handheld, follow these steps:

1. Install the Palm OS application named ROM Transfer.prc
on your handheld device. You can use the Install program in
the Palm Desktop organizer software and then synchronize
with the handheld to install this program.

2. Place the handheld in the HotSync cradle that is connected to
your desktop computer.

3. Follow the steps in the appropriate section below.

Transferring a ROM File in Windows
This section describes how to transfer a ROM image from a
handheld on a Windows-based desktop computer. Before
proceeding, you must have the ROM Transfer.prc program
installed on the handheld, as described in the previous section.

If you are running the program for the first time, Palm OS Emulator
presents the Startup dialog box shown in Figure 1.2. Click
Download to begin the transfer of a ROM image from a handheld.
Palm OS Programming Development Tools Guide 19

http://www.palmos.com/dev/

Using Palm OS® Emulator
Loading ROM Images
Figure 1.2 Palm OS Emulator Startup Dialog Box

If you are not running Palm OS Emulator for the first time, it usually
restarts the session that you most recently ran, as described in
“Starting Palm OS Emulator” on page 28.

To transfer a new ROM image for Palm OS Emulator to use, you can
right-click on the Palm OS Emulator display (the Palm device
image) and select Transfer ROM.

Palm OS Emulator opens a Transfer ROM dialog box that will guide
you through the process.

Transferring a ROM File On a Macintosh
This section describes how to transfer a ROM image from a
handheld on a Macintosh desktop computer. Before proceeding,
you must have the ROM Transfer.prc program installed on the
handheld, as described in the previous section.

If you are running the program for the first time, Palm OS Emulator
presents the dialog box shown in Figure 1.3.
20 Palm OS Programming Development Tools Guide

Using Palm OS® Emulator
Loading ROM Images
Figure 1.3 Running Palm OS Emulator for the First Time on a
Macintosh System

You can dismiss this dialog box and choose Transfer ROM from the
File menu.

If you are not running Palm OS Emulator for the first time, it usually
restarts the session that you most recently ran. To transfer a new
ROM image for Palm OS Emulator to use, select Transfer ROM
from the File menu.

Palm OS Emulator opens a Transfer ROM dialog box that will guide
you through the process.

Transferring a ROM File On a Unix System
This section describes how to transfer a ROM image from a
handheld on a Unix-based desktop computer. Before proceeding,
you must have the ROM Transfer.prc program installed on the
handheld, as described in the previous section.

When running the program on a Unix system, Palm OS Emulator
presents an empty window frame as shown in Figure 1.4 on
page 22.
Palm OS Programming Development Tools Guide 21

Using Palm OS® Emulator
Loading ROM Images
Figure 1.4 Running Palm OS Emulator for the First Time on a
Unix System

Right-click (use mouse button two) on the window to display the
Emulator popup menu. Click Transfer ROM to begin the transfer of
a ROM image from a handheld.

Palm OS Emulator opens a Transfer ROM dialog box that will guide
you through the process.

Using a ROM Image in Palm OS Emulator
Once you have transferred a ROM image to disk, you need to create
a new session that is based on the image. To initiate the new session,
you select New from the popup menu. Table 1.3 shows the first step
in creating a new session for each transfer method.
22 Palm OS Programming Development Tools Guide

Using Palm OS® Emulator
Loading ROM Images
After you initiate the session, Palm OS Emulator presents the new
session dialog box, which is described in “Configuring a New
Session” on page 31. The Windows version of this dialog box is
shown in Figure 1.5.

Figure 1.5 New Session Dialog Box

After you select your parameters and click OK, Palm OS Emulator
begins an emulation session.

Drag and Drop a ROM Image

You can use drag and drop to start a new Emulator session in either
of two ways:

Table 1.3 Initiating a New Session After Transferring a ROM
Image

Method Used to
Initiate ROM Transfer

New Session Method

Clicked Download
initial dialog box in
Windows

Click New in the dialog box.

Selected Transfer
ROM in Windows

Select either New or Close from the File
menu.

Selected Transfer
ROM on a Macintosh

Select New from the File menu.

Selected Transfer
ROM on Unix

Select New from the File menu.
Palm OS Programming Development Tools Guide 23

Using Palm OS® Emulator
Running Palm OS Emulator
• Drag and drop a ROM image file onto the Emulator screen to
start a new session.

• Drag and drop a ROM image file onto the Emulator
executable or shortcut (alias) to start the Palm OS Emulator
program.

You can also drag and drop other file types, as described in
“Dragging and Dropping Files” on page 33.

Running Palm OS Emulator
Run Palm OS Emulator just like you would any other program.
When Palm OS Emulator starts up, it displays an image of a
handheld device, as shown in Figure 1.1 on page 13.

Command Line Options
If you are running Palm OS Emulator on a Windows-based desktop
computer or on a Unix system, you can supply the session
parameters as command-line parameters. For example:

Emulator -psf C:\Data\Session1.psf

Table 1.4 shows the options that you can specify on the Windows
command line. You can also change most of these options by
starting a new session with the New menu, as described in
“Configuring a New Session” on page 31.

Note that the command line option specifications are not case
sensitive.
24 Palm OS Programming Development Tools Guide

Using Palm OS® Emulator
Running Palm OS Emulator
Table 1.4 Palm OS Emulator Command Line Options

Option syntax Parameter values Description

-horde <num> A Gremlin number The number of the Gremlin
to run after the session is
created or loaded.

Note that this is equivalent
to supplying the same
Gremlin number for the
horde_first and
horde_last options.

-horde_first
<num>

A Gremlin number The first Gremlin to run in a
horde.

-horde_last
<num>

A Gremlin number The last Gremlin to run in a
horde.

-horde_apps <app
name list>

A comma-separated list of
applications

The list of applications to
which the Gremlin horde is
allowed to switch.

The default is no restrictions.

-horde_save_dir
<path>

A path name The name of the directory in
which to save session and
log files.

The default log location is
the directory in which the
Palm OS Emulator
application is stored.

-horde_save_freq
<num>

An event count The Gremlin snapshot
frequency.

The default value is to not
save snapshots.
Palm OS Programming Development Tools Guide 25

Using Palm OS® Emulator
Running Palm OS Emulator
-horde_depth_max
<num>

An event count The maximum number of
Gremlin events to generate
for each Gremlin.

The default value is no
upper limit.

-
horde_depth_swit
ch <num>

An event count The number of Gremlin
events to generate before
switching to another
Gremlin in the horde.

The default is to use the
same value as specified for
the horde_depth_max
option.

-psf <fileName> Any valid PSF file name The emulator session file to
load upon start-up. You can
also load a session file with
the Open menu.

-rom <fileName> Any valid ROM file name The name of the ROM file to
use.

-ram <size>

or

-ramsize <size>

One of the following kilobyte
size values:

128
256
512
1024
2048
4096
8192

The amount of RAM to
emulate during the session.

Table 1.4 Palm OS Emulator Command Line Options

Option syntax Parameter values Description
26 Palm OS Programming Development Tools Guide

Using Palm OS® Emulator
Running Palm OS Emulator
-device <type> One of the following device
type values:
Pilot, Pilot1000,
Pilot5000, PalmPilot,
PalmPilotPersonal,
PalmPilotProfessional,
PalmIII, PalmIIIc,
PalmIIIe, PalmIIIx,
PalmV, PalmVx, PalmVII,
PalmVIIEZ, PalmVIIx,
m100, Symbol1700, TRGpro,
Visor

The device type to emulate
during the session.

Note that Pilot1000 and
Pilot5000 are synonyms
for Pilot.

Also note that
PalmPilotPersonal and
PalmPilotProfessional
are synonyms for
PalmPilot.

-load_apps <file
name list>

A list of valid file names,
separated by commas

A list of PRC files or other
files to load into the session
after starting up.

-log_save_dir
<path>

A path name The name of the directory in
which to save the standard
log file.

The default log location is
the directory in which the
Palm OS Emulator
application is stored.

-quit_on_exit None If the -run_app option was
specified, this option
indicates that Palm OS
Emulator should quit after
that application terminates.

Table 1.4 Palm OS Emulator Command Line Options

Option syntax Parameter values Description
Palm OS Programming Development Tools Guide 27

Using Palm OS® Emulator
Running Palm OS Emulator
Starting Palm OS Emulator
The most common scenario for starting Palm OS Emulator is
without any command line parameters. In this case, Emulator
restarts with saved information from the previous session.

When Palm OS Emulator starts execution, it determines its
configuration by sequencing through the following rules:

1. If the CAPS LOCK key is on, the Startup dialog box is always
displayed. The Startup dialog box is shown in Figure 1.6.

-run_app <app
name>

Application name The name of an application
to run in the session after
starting up. You must
specify the name of the
application, not the name of
the application’s file.

-silkscreen
<type>
or
-skin <type>

The name of a skin. The skin
names are defined by the
device-specific .skin files.
For most devices, these skin
names are available:

Generic
Standard-English
Standard-Japanese

The skin types to emulate
during the session.

Table 1.4 Palm OS Emulator Command Line Options

Option syntax Parameter values Description
28 Palm OS Programming Development Tools Guide

Using Palm OS® Emulator
Running Palm OS Emulator
Figure 1.6 Palm OS Emulator Startup Dialog Box

NOTE: The dialog box shown in Figure 1.6 is displayed when
you are running Palm OS Emulator on a Windows-based
computer.

If you are using a Macintosh computer, the new session dialog
box shown in Figure 1.3 on page 21 is displayed instead.

If you are using a Unix system, Palm OS Emulator does not
provide an automatic startup sequence; instead, it presents you
with a window shown in Figure 1.4 on page 22, and you must
right-click in that window to display the new session menu.

2. If you are using Windows or Unix with command line
options specified:

– If the CAPS LOCK key is not on, Palm OS Emulator scans
the command line for options. If an error is encountered
on the command line, Palm OS Emulator displays an
error message and then presents the Startup dialog box.

– If a session (PSF) file was specified on the command line,
Palm OS Emulator attempts to load the file. If the file
cannot be loaded, Palm OS Emulator displays an error
message and then presents the Startup dialog box.

– If any other options are specified on the command line,
Palm OS Emulator attempts to start a new session with
those values. If any of the four values is missing, Palm OS
Palm OS Programming Development Tools Guide 29

Using Palm OS® Emulator
Running Palm OS Emulator
Emulator displays the session configuration dialog box,
as shown in Figure 1.7.

If any of the command line options are not valid, or if the
user cancels the dialog box, Palm OS Emulator displays an
error message and then presents the Startup dialog box.

Figure 1.7 New Session Dialog Box

3. If no command line options are specified, Palm OS Emulator
attempts to reopen the session file from the most recent
session, if one was saved. If the file cannot be opened, Palm
OS Emulator displays an error message, and then presents
the Startup dialog box.

4. Palm OS Emulator attempts to create a new session based on
the setting most recently specified by the user. If an error
occurs, Palm OS Emulator displays an error message, and
then presents the Startup dialog box.

NOTE: When it starts up, Palm OS Emulator looks for the most
recently saved PSF file:
- On Windows and Unix, Emulator uses the full path name of that
file.
- On Macintosh, Emulator uses aliases to locate the file.

If Emulator cannot find that file, it looks for the file name in the
directory in which the Palm OS Emulator executable is located.
30 Palm OS Programming Development Tools Guide

Using Palm OS® Emulator
Using Emulation Sessions
Using Emulation Sessions
Palm OS Emulator uses the concept of an emulation session, which
is a testing or debugging session for a combination of the following
items:

• the handheld device type to emulate

• the amount of RAM to emulate

• the ROM file to use for the emulation

You can start new emulation sessions during a single run of Palm
OS Emulator. You can also save the current state of a session and
restore it in a later session. This session describes these features of
Palm OS Emulator.

Configuring a New Session
You can start a new session in Palm OS Emulator by choosing New
from the Palm OS Emulator menu. If you are already running an
emulation session, Palm OS Emulator will optionally ask if you
want to save the session in a Palm OS Emulator session (PSF) file
before starting the new session. You set this option in your
preferences.

Figure 1.8 shows the New Session dialog box, which Palm OS
Emulator displays when you choose New from the menu.

Figure 1.8 Configuring a New Session

You need to make the following choices in this dialog box:

• Select the ROM file on your desktop computer that you want
to use for the session. You can click on the arrow and select
Palm OS Programming Development Tools Guide 31

Using Palm OS® Emulator
Using Emulation Sessions
Other... to navigate to the file. For more information about
ROM files, see “Loading ROM Images” on page 18.

• Select the Palm handheld device that you want to emulate in
the session. Only those devices that apply to the selected
ROM will be shown in the list. The list may include the
following choices:

• Select the skin that you want displayed on the emulation
screen.

Note that the skin is simply a graphic; it does not change the
ROM or the device being emulated. The skin simply changes
the appearance of the Emulator window.

The skin choices available are dependent on the device
selection. When you select a device, Emulator reads through
the available SKIN files for the skin names that support the
selected device.

Alternative skins, such as the Japanese skin, are only
available for certain device types. The Generic choice is
always available, even when alternatives are not available.
For additional information, see the section “Changing the
Emulator’s Appearance” on page 34.

• Select the amount of memory that you want emulated. You
can choose from the following RAM sizes:

– 128K

– 256K

– 512K

-Pilot -Pilot 1000 -Pilot 5000

-PalmPilot -PalmPilotPersonal -PalmPilotProfessional

-Palm III -Palm IIIc -Palm IIIe

-Palm IIIx -Palm V -Palm Vx

-Palm VII -Palm VIIEZ -Palm VIIx

-m100 -Symbol1700 -TRGpro

-Visor
32 Palm OS Programming Development Tools Guide

Using Palm OS® Emulator
Using Emulation Sessions
– 1024K

– 2048K

– 4096K

– 8192K

Note that 1 MB (1024K) is most often the right amount of
RAM to emulate. Using 1 MB of RAM tells you if your
application will work properly across the majority of
hardware devices available.

After you click OK, Palm OS Emulator begins an emulation session.

The Difference Between the New Menu Item
and the Open Menu Item
Both New and Open can be used to initiate an emulator session.
However, the Open menu is used to open an existing session file
(PSF file) that has been saved from a previous emulator session. The
Open menu does not allow you to change the ROM file or device
being emulated.

Dragging and Dropping Files
You can drag and drop the following file type categories onto the
Palm OS Emulator LCD screen:

• PRC, PDB, and PQA files

• ROM files

• PSF files

When dragging and dropping files, observe the following rules:

• You can drag and drop only one ROM file at a time.

• You can drag and drop only one PSF file at a time.

• You can drag and drop any number of PRC, PDB, and PQA
files.

• You cannot drag and drop files from more than one of the file
type categories in the same operation.
Palm OS Programming Development Tools Guide 33

Using Palm OS® Emulator
Using Emulation Sessions
Saving and Restoring Session State
You can save the current state of a Palm OS Emulator session to a
session file for subsequent restoration. Palm OS Emulator saves a
session to a session file. The Emulator uses Save and Save As in the
standard manner, with one addition: you can automate what
happens when closing a session by changing the Save options.

Saving the Screen
You can save the current screen to a bitmap file by selecting the Save
Screen, which saves the contents of the emulated Palm handheld
device screen.

Figure 1.9 A Palm OS Emulator Screen Shot

Palm OS Emulator saves screen images on Windows-based systems
as BMP bitmap images, saves screen images on MacOS-based
systems as SimpleText image files, and saves screen images on Unix-
based systems as PPM files.

Changing the Emulator’s Appearance
You can change the appearance of Palm OS Emulator by choosing
Skins from the Settings submenu. This displays the Skins dialog
box, which is shown in Figure 1.10.
34 Palm OS Programming Development Tools Guide

Using Palm OS® Emulator
Using Emulation Sessions
Figure 1.10 Changing Palm OS Emulator Appearance

The Skins dialog box lists the skins that are available for the device
that is being emulated. This means that you cannot use a Palm V
skin for a Palm III device, for example.

Emulator comes with a built-in Generic skin. You can download
additional skins from:

http://www.palmos.com/dev/tech/tools/emulator/

When you download the package of additional skins, you place the
skins in a skins directory. When you select a device during session
configuration, Emulator reads through the skins directory and finds
all of the skins that can be used with the selected device. The
supported skins are displayed in the Skins dialog box.

Note that the skin is simply a graphic. Selecting a skin changes the
appearance of the Emulator window, but it does not change the
ROM or the device being emulated.

Other Options on the Skins Dialog Box

In addition to selecting a skin, use the Skins dialog box to change
these appearance options:

• Select or deselect Double scale to display the emulated
device in double size or actual size on your monitor.
Palm OS Programming Development Tools Guide 35

http://www.palmos.com/dev/tech/tools/emulator/

Using Palm OS® Emulator
Modifying the Runtime Environment
• Select or deselect White Background to display the emulated
device LCD background color in white or green on your
monitor.

Modifying the Runtime Environment
This section describes how you can modify the Palm OS Emulator
runtime environment, including changing the properties and
installing applications in the emulator session.

Palm OS Emulator Properties
Use the Properties dialog box to modify characteristics of your Palm
OS Emulator sessions. To display this dialog box, choose Properties
on Windows or Preferences on Macintosh or Unix. The Properties
dialog box is shown in Figure 1.11.

Figure 1.11 Changing Palm OS Emulator Properties
36 Palm OS Programming Development Tools Guide

Using Palm OS® Emulator
Modifying the Runtime Environment
Table 1.5 describes the options available in the properties dialog
box.

Preferences Files

Your properties are stored in a preferences file on your computer.
Each property is stored as a text string that you can view with a text
editor. The location of your preferences file depends on the type of
computer that you are using, as shown in Table 1.6.

Installing Applications
Use Install to load applications or databases directly into the
current Palm OS Emulator session.

Table 1.5 Palm OS Emulator properties

Option Description

Serial Port Specifies which serial port Palm OS Emulator uses to emulate
serial communications on the handheld device.

Redirect Netlib
calls

Redirects Netlib calls in emulated software to TCP/IP calls on the
desktop computer.

Enable sounds Specifies whether Palm OS Emulator should enable emulation of
device sounds.

Session saving Selects what action Palm OS Emulator takes when you close a
session or quit the program.

User name Selects the user account name for synchronizing from Palm OS
Emulator with the desktop computer HotSync application.

Table 1.6 Palm OS Emulator Preference File Locations

Platform File name File location

Macintosh Palm OS Emulator Prefs In the Preferences
folder.

Windows Palm OS Emulator.ini In the Windows System
directory.

Unix .poserrc In your home directory.
Palm OS Programming Development Tools Guide 37

Using Palm OS® Emulator
Modifying the Runtime Environment
• For Windows and Unix, right-click on the Palm OS Emulator
screen display and choose Install Application/Database

• On a Macintosh system, select Install Application/Database
from the File menu

Install displays an open file dialog box in which you can choose the
application (PRC), database (PDB), or Palm Query Application (PQA)
file that you want installed.

Palm OS Emulator immediately loads the file into emulated RAM. If
Palm OS Emulator finds another application or database with the
same creator ID, that application or database is deleted before the
new version is loaded.

IMPORTANT: If you install an application while the Palm OS
Launcher is running, the Launcher does not update its data
structures, and thus does not reflect the fact that a database has
been added or modified. Use Install while an application is
running in the emulated session.

Serial Communications and Palm OS Emulator
Palm OS Emulator supports emulation of the Palm device serial
port connection. It does so by mapping Palm OS serial port
operations to a communications port on the desktop computer. To
select which port the Emulator uses, use Properties (on Macintosh
and Unix computers, this is Preferences), as described in Palm OS
Emulator Properties.

When emulated software accesses the processor serial port
hardware registers, Palm OS Emulator performs the appropriate
actions on the specified serial port on the desktop computer. This
means that serial read and write operations work as follows:

• when outgoing data is written to the UART’s tx register, the
Emulator redirects that data to the desktop computer’s serial
port.

• when the emulated software attempts to read data from the
UART’s rx register, the Emulator reads data from the
desktop computer’s serial port and places the data into that
register.
38 Palm OS Programming Development Tools Guide

Using Palm OS® Emulator
Modifying the Runtime Environment
Using the HotSync Application With Palm OS
Emulator
You can perform a HotSync operation from your emulated session
in one of two ways:

• If you are using a Windows-based computer, you can use the
Network HotSync option, which greatly simplifies your
communications efforts. This method is described in the
“Emulating Network Hotsync with Palm OS Emulator on
Windows” section below.

• Alternatively, you can use a null-modem cable to connect
two serial ports together and perform a HotSync operation.
This method is described in “Emulating HotSync with a Null
Modem Cable” section below.

Emulating Network Hotsync with Palm OS Emulator on
Windows

You do not need to be connected to a network to emulate Network
HotSync with Palm OS Emulator. This method can be used with
Emulator and a single Windows computer. However, other
configurations are possible.

In general, you need these two:

• a Windows computer running HotSync Manager

• a computer running Emulator that can access the computer
running HotSync Manager.

The computer running Emulator can be the same Windows
computer that is running HotSync Manager, or it can be a second
computer (either Windows, Macintosh, or Unix). If you are using a
single Windows computer, you don’t need to be connected to a
network. However, if you are using a second computer, you will
need the actual IP address of the Windows computer running
HotSync Manager for step 4 below.

Here is the complete process for emulating Network HotSync:

1. Ensure that you have the Network HotSync application on
your emulated device:

– If you are emulating a Palm III or m100 device, you must
first download and install the Network HotSync
Palm OS Programming Development Tools Guide 39

Using Palm OS® Emulator
Modifying the Runtime Environment
application on the emulated device. You can get the
Network HotSync files from:

http://www.palm.com/support/downloads/
netsync.html

– If you are emulating a device running Palm OS version
3.1 or later, then you may already have the Network
HotSync application installed on the emulated device.

2. Configure HotSync on your Windows computer:

– Right-click (use mouse button two) on the HotSync icon
in the system tray.

– In the pop-up menu, select Network to enable Network
HotSync. (A checkmark will appear next to the Network
menu item if it is already enabled.)

3. Configure Palm OS Emulator to Redirect NetLib Calls to
TCP/IP:

– Right-click (use mouse button two) on Emulator.

– In the pop-up menu, select Settings>Properties...

– In the Properties dialog box, click the Redirect NetLib
Calls to TCP/IP checkbox. Click OK to save the changed
properties.

4. Configure HotSync on the emulated device:

– From the device’s application launcher, tap the HotSync
application to open it.

– Tap Menu to display the HotSync application’s menu.

– Select Options>Modem Sync Prefs...

– In the Modem Sync Preferences dialog box, tap the
Network button. Tap the OK button to save the changed
preferences.

– Tap Menu to display the HotSync application’s menu
again.

– Select Options>LANSync Prefs...

– In the LANSync Preferences dialog box, tap the LANSync
button. Tap the OK button to save the changed
preferences.
40 Palm OS Programming Development Tools Guide

http://www.palm.com/support/downloads/netsync.html

Using Palm OS® Emulator
Modifying the Runtime Environment
– Tap Menu to display the HotSync application’s menu
again.

– Select Options>Primary PC Setup...

– In the Primary PC Setup dialog box, enter the Primary PC
Address (the middle entry field):

- If you are running Emulator and HotSync manager on
the same Windows computer, enter 127.0.0.1

- If you are running Emulator on a second computer, then
enter the actual IP address of the Windows computer
running Network HotSync.

Tap the OK button to save the changed preferences.

– In the HotSync application, tap Modem. Next, tap the
Select Service button under the Modem Sync icon.

– In the Preferences dialog box, tap the Tap to enter phone
field. In the Phone Setup dialog box, enter 00 in the
Phone # entry field. Then tap the OK button. Then tap the
Done button.

– To start the HotSync, tap the HotSync icon in the center of
the HotSync dialog box.

Emulating HotSync with a Null Modem Cable

You can emulate HotSync by connecting the serial port that the
HotSync application uses to communicate with the handheld device
to another serial port that Palm OS Emulator uses. You connect
these ports together with a null modem cable, such as a LapLink
cable.

For example, if your HotSync application uses the COM1 port,
follow these steps:

1. Select Properties (Preferences on a Macintosh or Unix) and
specify the COM2 port for Palm OS Emulator.

2. Connect COM1 and COM2 together with a null modem
cable.

3. Select HotSync from the Palm OS Emulator menu.

The HotSync application synchronizes with Palm OS Emulator just
as it does with an actual hardware handheld device.
Palm OS Programming Development Tools Guide 41

Using Palm OS® Emulator
Modifying the Runtime Environment
TIP: The desktop HotSync application is CPU-intensive, which
is not generally an issue; however, when you are using the
HotSync application with Palm OS Emulator, the two programs
are sharing the same CPU, which can dramatically the
synchronization down.

A handy trick to deal with this problem is to click on the Palm OS
Emulator window after the HotSync process starts. This brings the
Emulator back into the foreground and allows it to use more CPU
time, which improves the speed of the overall process.

If your desktop computer has two ports and you use a serial mouse
on one of them, you can temporarily disable the mouse, perform a
synchronization, and re-enable the mouse. Follow these steps:

1. Disable your mouse.

2. Restart Windows.

3. Connect the serial ports together with a null modem cable.

4. Start Palm OS Emulator.

5. Press F10 to display the menu, then H to begin the HotSync
operation.

6. After the HotSync operation completes, re-enable your
mouse.

7. Restart Windows again.

TIP: When you first perform a HotSync operation with Palm OS
Emulator, the HotSync application asks you to select a user
name. It is a good idea to create a new user account, with a
different name, for use with the Emulator.

Emulating Expansion Cards
Palm OS 4.0 includes the Expansion Manager, which manages plug-
in memory cards, and the Virtual File System manager, which
supports the management of files on memory cards.
42 Palm OS Programming Development Tools Guide

Using Palm OS® Emulator
Testing Your Application
Palm OS Emulator can emulate these cards, which the Expansion
Manager will recognize and mount in the same way it would mount
an actual hardware expansion card. The Virtual File System
Manager will then read from and write to the host operating system
using the mount information associated with the emulated card.
The host operating manipulation is performed using the many file-
related host control functions available. (See “Host Control API
Reference” on page 81 for more information on the host control
API.)

To specify mount information for card emulation, use the Card
Options dialog box shown in Figure 1.12 on page 43.

Figure 1.12 Palm OS Emulator Card Options Dialog Box

The Card Options dialog box supports the mounting of up to four
emulated cards. For each card, you can specify a directory in the
host file system that will serve as the root for the card as managed
by the Virtual File System Manager. You can also specify whether a
particular card is actually mounted.

You can change the card options settings while an emulation session
is running. Changes regarding whether a card is mounted or not
take place immediately; the Palm OS is notified that the card has
been added or removed. Changes regarding the root path take effect
only when the card is mounted.

Testing Your Application
This section describes how to use Palm OS Emulator to test and/or
debug an application.
Palm OS Programming Development Tools Guide 43

Using Palm OS® Emulator
Testing Your Application
Testing Software
Testing software is probably the most common use of Palm OS
Emulator. This section provides a quick summary of the steps to
load and test an application.

Debug Options
Palm OS Emulator monitors the actions of your application while it
is emulating the operation of the handheld device. When your
application performs an action that does not strictly conform to
Palm OS’s programming guidelines, the Emulator displays a dialog
box that explains what is happening.

The debugging options dialog box, which is shown in Figure 1.13,
lets you enable or disable the monitoring activities applied to your
application. Use Debug Options to display this dialog box.

Figure 1.13 Palm OS Emulator Debug Options Dialog Box

Table 1.7 describes each of the debugging options.
44 Palm OS Programming Development Tools Guide

Using Palm OS® Emulator
Testing Your Application
Table 1.7 Emulator Debugging Options

Option Description

Low-Memory Access Monitors low-memory access by applications.

Low-memory access means an attempt to read from or
write to a memory location in the range 0x0000 to
0x00FF.

System Globals Access Monitors access to system global variables by
applications.

System global variable access is defined as reading
from or writing to a memory location in the range from
0x0100 to the end of the trap dispatch table.

Screen Access Monitors LCD screen buffer access by applications.

LCD screen buffer access is defined as reading from or
writing to the memory range indicated by the LCD-
related hardware registers.

Hardware Register Access Monitors accesses to hardware registers by
applications.

Hardware register access is defined as reading from or
writing to memory in the range from 0xFFFFF000 to
0xFFFFFFFF.

MemMgr Data Structure Monitors access to Memory Manager data structures,
which is restricted to only the Memory Manager.

Memory Manager data structures are the heap
headers, master pointer tables, memory chunk
headers, and memory chunk trailers.

Storage Heap Access Monitors naked access to the storage heap by
applications. To access the storage heap, your
application should use the DmWrite functions.
Palm OS Programming Development Tools Guide 45

Using Palm OS® Emulator
Testing Your Application
MemMgr Semaphore Monitors how long the Memory Manager semaphore
has been acquired for write access using the
MemSemaphoreReserve and
MemSemaphoreRelease functions.

Your applications should not be calling these
functions; however, if you must call them, you should
not hold the semaphore for longer than 10
milliseconds.

Low Stack Access Monitors access to the range of memory below the
stack pointer.

Free Chunk Access Monitors access to free memory chunks.

No process should ever access the contents of a chunk
that has been deallocated by the MemChunkFree,
MemPtrFree, or MemHandleFree functions.

Unlocked Chunk Access Monitors access to unlocked, relocatable memory
chunks, which is restricted to the Memory Manager.

Uninitialized Stack Access Monitors read accesses to uninitialized portions of the
stack. You can use this option to detect read accesses to
uninitialized local variables.

Table 1.7 Emulator Debugging Options (continued)

Option Description
46 Palm OS Programming Development Tools Guide

Using Palm OS® Emulator
Testing Your Application
Logging Options
Palm OS Emulator also logs various actions taken by your
application to help you debug and performance tune your code. The
logged information is automatically written to a text file that is
saved in the same directory as the Emulator executable.

You can control the logging activity with the logging options dialog
box, which is shown in Figure 1.14. Use Logging Options to display
this dialog box.

Uninitialized Chunk Access Monitors read access to uninitialized portions of
memory chunks that have been allocated by the
MemChunkNew, MemPtrNew, and MemHandleNew
functions.

You can use this option to detect read accesses to
uninitialized portions of dynamically allocated
memory chunks. Note that your application’s global
variables are stored in memory chunks allocated by
these functions, so enabling this option also detects
read accesses to uninitialized global variables.

Stack Almost Overflow Ensures that the stack pointer has not dipped below
the space allocated for it by the kernel.

When this option is enabled, Palm OS Emulator warns
you when the application stack is getting close to full.

Note that you are always warned of a stack overflow,
even if this option is disabled.

Table 1.7 Emulator Debugging Options (continued)

Option Description
Palm OS Programming Development Tools Guide 47

Using Palm OS® Emulator
Testing Your Application
Figure 1.14 Palm OS Emulator Logging Options Dialog Box

The logging options dialog box features radio buttons to indicate
logging during normal operations (Normal), and logging while a
Gremlin is running (Gremlins). Both offer the same options, which
are described in Table 1.8

Table 1.8 Emulator Logging Options

Option Description

Error Messages Not yet implemented.

Warning Messages Logs any message that is displayed in a dialog box
that can be dismissed by tapping the Continue
button.

Misc Gremlin Info Logs information about Gremlins that is mostly
useful for debugging the Gremlins themselves.

Assembly Opcodes Logs assembly-level trace information, including
registers, the program counter, opcodes, and related
information.

This option is not yet implemented.
48 Palm OS Programming Development Tools Guide

Using Palm OS® Emulator
Testing Your Application
Posted Events Logs events that have entered into the system by
way of calls to the EvtAddEventToQueue,
EvtAddUniqueEventToQueue,
EvtEnqueuePenPoint, and EvtEnqueueKey
functions.

Received Events Logs events returned by calls to the EvtGetEvent,
EvtGetPen, and EvtGetSysEvent functions.

System Calls Logs calls to Palm OS® functions.

Application Calls Logs calls to functions in your application.

This option is not yet implemented.

Serial Activity Logs changes in serial port settings, and the opening
and closing of the serial port.

Table 1.8 Emulator Logging Options (continued)

Option Description
Palm OS Programming Development Tools Guide 49

Using Palm OS® Emulator
Testing Your Application
Serial Data Logs data sent and received over the serial port.
Data is logged as it is being transferred over the host
serial port

Incoming data follows this path:

1. Serial port

2. Emulated hardware registers

3. Palm OS

4. Palm application

Palm OS Emulator logs the serial port data.

Outgoing data follows this path:

1. Palm application

2. Palm OS

3. Emulated hardware registers

4. Serial port

Again, Palm OS Emulator logs the serial port data.

NetLib Activity Logs calls to NetLib functions, including
parameter and return values.

NetLib Data Logs data sent and received via NetLib calls.

ExgMgr Activity Logs calls to ExgMgr functions.

ExgMgr Data Logs data sent and received via ExgMgr calls.

RPC Activity Logs remote procedure calls.

RPC Data Logs data sent and received via remote procedure
calls.

High-level Debugger Activity Logs messages received back from an external
debugger, and the messages sent back to the
debugger.

Table 1.8 Emulator Logging Options (continued)

Option Description
50 Palm OS Programming Development Tools Guide

Using Palm OS® Emulator
Testing Your Application
Using Gremlins to Automate Testing
You can use Gremlins to automate testing of an application. A
Gremlin generates a series of user input events that test your
application’s capabilities. You can have a Gremlin to run a specified
number of times, or to loop forever, which lets you set up a Gremlin
and allow it to run overnight to thoroughly test your application.

A Gremlin horde is a range of Gremlins that you want Palm OS
Emulator to run. The Emulator generates a stream of events for each
Gremlin and then moves onto the next Gremlin. The Emulator
cycles through the Gremlins until the maximum number of events
have been generated for the horde.

Palm OS Emulator generates a stream of events for each Gremlin in
the horde until one of the following conditions occurs:

• An error such as a hardware exception or illegal memory
access is generated.

• The maximum number of events for a single Gremlin have
been generated.

• The maximum number of events for the horde have been
generated.

• You stop the horde by choosing Stop or Step from the
Emulator menu or from the Gremlin Status dialog box.

If a Gremlin generates an error, it is halted and Palm OS Emulator
does not include it when cycling through the horde again.

High-level Debugger Data Logs details of the messages sent to and received
from an external debugger.

Low-level Debugger Activity Traces the low-level mechanisms that receive raw
data from external debuggers and send data back to
external debuggers.

Low-level Debugger Data Logs the raw data being sent to and received from
an external debugger.

Table 1.8 Emulator Logging Options (continued)

Option Description
Palm OS Programming Development Tools Guide 51

Using Palm OS® Emulator
Testing Your Application
Gremlin Characteristics

Each Gremlin has the following characteristics:

• it generates a unique, random sequence of stylus and key
input events to step through the user interface possibilities of
an application

• it has a unique “seed” value between 0 and 999

• it generates the same sequence of random events whenever it
is run

• it runs with a specific application or applications

• it displays a report immediately when an error occurs

Gremlin Horde Characteristics

Each Gremlin horde has the following characteristics:

• The number of the first Gremlin to run. This must be a value
between 0 and 999.

• The number of the last Gremlin to run. This must be a value
between 0 and 999.

• The switching depth of the Gremlin horde. This is the
number of events to run for each Gremlin. After this many
events have been generated for the Gremlin, it is suspended,
and the next Gremlin in the horde starts running.

• The maximum number of events for each gremlin in the
horde. The Emulator stops running the Gremlin after it posts
this many events, or after it terminates with an error.

• With which applications the Gremlins are to run. You can
select a single application, a group of applications, or all
applications.

• Errors that occur are logged to the log file and the emulation
continues with the next Gremlin in the horde.

When Palm OS Emulator runs a Gremlin horde, it actually
maintains a separate stream for each Gremlin in the horde. When it
starts a horde, the Emulator first saves the complete state of the
emulation to a session (PSF) file. Then, the Emulator:

• Starts the first Gremlin. When the Gremlin has posted a
number of events equal to the specified switching depth, the
52 Palm OS Programming Development Tools Guide

Using Palm OS® Emulator
Testing Your Application
Emulator saves its state to a new file and suspends the
Gremlin.

• Reloads the original session state.

• Starts the second Gremlin and run it until it posts that
number of events, at which time its state is saved to another
file, and the Gremlin is suspended.

• Runs each Gremlin in the horde, until each has been
suspended or terminated:

– A Gremlin is terminated when an error occurs while the
Gremlin is posting events.

– A Gremlin is suspended when it has posted a number of
events equal to the switching depth for the horde.

• Returns to the first suspended Gremlin in the horde, reloads
its state from the saved file, and resumes its execution as if
nothing else had happened in the meantime.

• Continues cycling through the Gremlins in the horde until
each Gremlin has finished. A Gremlin finishes when either of
these conditions occurs:

– the Gremlin has terminated due to an error

– the Gremlin has posted a total number of events equal to
the maximum specified for the horde.

Running a Gremlin Horde

Select New Gremlin to start a Gremlin. The new Gremlin dialog box
displays, as shown in Figure 1.15. Use this dialog box to specify the
characteristics of the Gremlin horde that you want to run.

TIP: If you wish to run a single Gremlin, simply set the Gremlin
Start Number and Gremlin End Number fields to the same value.
Palm OS Programming Development Tools Guide 53

Using Palm OS® Emulator
Testing Your Application
Figure 1.15 The Gremlin Horde Dialog Box

When Palm OS Emulator runs the example shown in Figure 1.15,
the horde will operate as follows:

• The Emulator will only run the Address application when
generating key and stylus events for this horde.

• The Emulator will use a seed value of 2 for the first Gremlin
in the horde and a seed value of 14 for the last Gremlin in the
horde. It also runs all intervening Gremlins: numbers 3
through 13.

• The Emulator will generate 25 events for each Gremlin before
switching to the next Gremlin in the horde.

• The Emulator will cycle through the Gremlins in the horde
until a total of 1000 events have been generated for each
Gremlin. Thus, a total of 13,000 events will be generated.

This means that the Emulator will generate the following sequence
of Gremlin events:

1. Gremlin #2 runs and receives twenty-five events, after which
Gremlin 2 is suspended.

2. Gremlin #3 runs and receives twenty-five events, after which
Gremlin #3 is suspended.
54 Palm OS Programming Development Tools Guide

Using Palm OS® Emulator
Testing Your Application
3. Similarly, each Gremlin (#4 through #14) runs and receives
twenty-five events, after which it is suspended.

4. The Emulator loops back to Gremlin #2 and runs it, sending
it twenty-five events before again suspending it.

5. Gremlin #3 runs again, receives twenty-five events, and
suspends.

6. This looping through the Gremlins and sending each events
until the switch depth (25) is reached continues until the
maximum number of horde events (1000) have been
generated.

7. All activity for the Gremlin horde completes.

NOTE: If an error occurs while a specific Gremlin is running,
Palm OS Emulator halts that Gremlin rather than suspending it.
This means that the Gremlin is not run when the Emulator next
iterates through the horde.

Stepping and Stopping Gremlins

After the horde starts running, Palm OS Emulator displays the
Gremlin control dialog box, which is shown in Figure 1.16. You can
use the commands in this dialog box to stop, resume, and single-
step a Gremlin. You can also use the Gremlins menu to perform
these actions.

Figure 1.16 The Gremlin Status Dialog Box

Gremlin Snapshots

When you start a new Gremlin horde, you can specify that you want
Palm OS Emulator to take a snapshot on a regular basis. You specify
a frequency value, as shown in Figure 1.15 on page 54, and the
Palm OS Programming Development Tools Guide 55

Using Palm OS® Emulator
Testing Your Application
Emulator saves a session file each time that many Gremlins have
run. Each snapshot is a PSF file that captures the current state of the
emulation. You can open the snapshot in the Emulator as a new
session and begin debugging from that state.

Logging While Gremlins Are Running

Palm OS Emulator lets you specify separate logging options to use
while Gremlins are running. Figure 1.17 shows the Gremlin logging
options dialog box. Each of the options is described in “Logging
Options” on page 47.

Figure 1.17 Gremlin logging options

Setting Breakpoints
You can set breakpoints in your code with the Emulator. When Palm
OS Emulator encounters a breakpoint that you have set, it halts and
takes one of the following actions:

• If you are running the Emulator connected to a debugger, the
Emulator sends a message to the debugger, informing it that
the breakpoint was hit. The debugger then handles that
command as it sees fit.
56 Palm OS Programming Development Tools Guide

Using Palm OS® Emulator
Testing Your Application
• If the Emulator is not connected to a debugger, the Emulator
displays an error message. This message will typically say
something like “TRAP $0 encountered.”

To set a breakpoint, select Breakpoints from the Settings menu. The
Breakpoints dialog box is displayed, as shown in Figure 1.18.

NOTE: You cannot use the Breakpoints feature on the
Macintosh or Unix versions of Palm OS Emulator.

Figure 1.18 Setting a Breakpoint

Setting the Data Breakpoint

You can set exactly one data breakpoint. While your program is
executing, the Emulator watches the specified address range; if it is
written to, the Emulator generates a break. You can specify both the
address and number of bytes in either hexadecimal (0x) or decimal.
Palm OS Programming Development Tools Guide 57

Using Palm OS® Emulator
Testing Your Application
Setting Conditional Breakpoints

You can set up to six independent conditional breakpoints. The
Emulator generates a break for a conditional breakpoint when both
of the following are true:

• the program counter reaches the specifies address

• the specified condition is true

To set one of these breakpoints, select the breakpoint number in the
list at the top of the dialog box, and click Edit. This displays the
Code Breakpoint dialog box, which is shown in Figure 1.19.

Figure 1.19 Setting a code breakpoint

To set the breakpoint, specify an address and the break condition.
You can specify the address in hexadecimal (0x) or decimal.

The condition that you specify must have the following format:
<register> <condition> <constant>

register One of the registers: A0, A1, A2, A3, A4, A5, A6,
A7, D0, D1, D2, D3, D4, D5, D6, or D7.

condition One of the following operators: ==, !=, <, >, <=,
or >=.

constant A decimal or hexadecimal constant value.

IMPORTANT: All comparisons are unsigned.

Source Level Debugging
Palm OS Emulator provides an interface that external debugger
applications can use to debug an application. For example,
58 Palm OS Programming Development Tools Guide

Using Palm OS® Emulator
Testing Your Application
Metrowerks has developed a plug-in module that you can use to
debug an application that Palm OS Emulator is running, in exactly
the same manner as you would debug an application running on
the handheld. This plug-in module is shipped with the latest
version of CodeWarrior for Palm OS.

Connecting Emulator with Palm Debugger
You can use Palm Debugger with Palm OS Emulator to perform
extensive debugging of your applications. To use Palm Debugger
with the Emulator, follow these steps:

1. Start Palm Debugger and Palm OS Emulator programs.

2. In the Palm Debugger Communications menu, select
Emulator. This establishes the emulator program as the
“device” with which Palm Debugger is communicating.

3. In the debugging window, type the att command.

You can now send commands from Palm Debugger to Palm OS
Emulator.

Connecting Emulator with the GDB Debugger
You can use the gdb debugger with Palm OS Emulator to debug
your applications. To use the gdb debugger with an emulator
session, follow these steps:

1. When you build your application, both compile and link
with the -g option (that is, using “gcc -g ...”). When you
compile using the -g option, the compiler generates the
necessary symbol information. When you link using the -g
option, the linker forces the inclusion of a debug runtime
routine that installs a breakpoint in PilotMain.

2. Start Palm OS Emulator, and install your application in the
emulator session.

3. Start the gdb debugger, loading your application’s symbol
table (for example, using “gdb myApp“). Note that the file to
be loaded is the myApp file created by the gcc linker, not the
myApp.prc created by buildprc.
Palm OS Programming Development Tools Guide 59

Using Palm OS® Emulator
Testing Your Application
4. In the gdb debugger, enter “target pilot
localhost:2000”. The gdb debugger will respond with a
message indicating that remote debugging is starting.

5. Start your application on Palm OS Emulator.

6. Wait for the gdb debugger to see the initial breakpoint and
prompt you, then start debugging.

Connecting the Emulator With External
Debuggers
Palm OS Emulator can communicate with external debuggers using
the methods shown in Figure 1.16.

NOTE: Currently, Palm Debugger uses TCP only when running
on Windows. The CodeWarrior plug-in uses TCP if you select Use
sockets in the debugger preference panel.

However, although you can configure the TCP port that Palm OS
Emulator uses, you cannot configure which TCP port that either
Palm Debugger or the CodeWarrior plug-in uses.

If you are communicating with a debugger using TCP, you can
configure which socket port the debugger connects to by editing the
value of the DebuggerSocketPort preference setting in your
preferences file. You can disable the TCP connection by setting the
value of the DebuggerSocketPort preference to 0.

Table 1.9 Palm OS Emulator Connections

Connection type Platforms

TCP All

PPC Toolbox Macintosh

Memory-mapped files Windows
60 Palm OS Programming Development Tools Guide

Using Palm OS® Emulator
Testing Your Application
NOTE: In some versions of Palm OS Emulator, you may notice
that an unwanted PPP dial-up starts whenever you begin a new
emulation session. You can disable this behavior by disabling the
use of TCP for communications, which you do by setting the
DebuggerSocketPort preference to 0.

Profiling Your Code
One of the features of Palm OS Emulator that is most useful for
developers is the ability to profile your application while it is
running, and to save the resulting data to a file that you can
examine.

When the Emulator profiles your application, it monitors and
generates statistics about where your code is spending its time,
which enables you to focus your optimization efforts in the most
productive manner.

NOTE: In order to use the profiling features, you must be using
a version of Palm OS Emulator with profiling enabled.

On Windows and Macintosh, this means that you must be using
the executable with “profile” in its name. See Table 1.1 on
page 16 for more information.

On Unix, this means that you must build the executable with the
configure switch “--enable-profile”. (See the
_Building.txt file mentioned in Table 1.1.)

You can start a profiling session by choosing Profiling Start. While
profiling is active, Palm OS Emulator monitors which application
and system functions are executed, and the amount of time
executing each. The Emulator collects the timing information until
you select Profiling Stop.

You can then save the profiling information to a file by selecting
Profiling Dump. The information is saved to file in two different
Palm OS Programming Development Tools Guide 61

Using Palm OS® Emulator
Error Handling Concepts
formats. Both of these files are stored in the directory in which the
Emulator executable is located:

You do not have to prepare your code in any special way for Palm
OS Emulator to profile it, because the Emulator can determine when
functions are entered and exited on its own. And the Emulator
performs its profiling calculations between cycles, thus the timing
information is quite accurate.

NOTE: It is a good idea to set your compiler’s switch to embed
debug symbols in your code so that you can easily interpret the
profiling results.

Error Handling Concepts
This section describes the error handling and reporting features of
the Palm OS Emulator program, including the following
information:

• which conditions are detected

• what the Emulator does upon detecting an error condition

• the message displayed for each error condition

• the options available to the user when an error condition
occurs

File name Description

Profile Results.txt A text version of the profiling results.

Profile Results.mwp A Metrowerks Profiler version of the
results, which can be used with the
MW Profiler application bundled
with CodeWarrior Pro.

IMPORTANT: The MW Profiler is
only available on Macintosh
computers.
62 Palm OS Programming Development Tools Guide

Using Palm OS® Emulator
Error Handling Concepts
Detecting an Error Condition
When Palm OS Emulator detects an error condition, it generates
error message text and displays the error dialog box. If you click
Debug in the error dialog box, the Emulator attempts to send the
text to an external debugger such as Palm Debugger or MWDebug;
if successful, the Emulator then stops emulating opcodes until the
external debugger sends a command specifying that it can resume
emulation.

If the Emulator cannot send the text to a debugger, it presents the
error text to the user in a dialog box like the one shown in Figure
1.20.

Figure 1.20 Palm OS Emulator Error Dialog Box

You can click one of the three buttons in the dialog box:

Error Condition Types
Palm OS Emulator detects condition types:

• A processor exception involves the CPU pushing the current
program counter and processor state onto the stack, and then
branching through a low-memory vector.

Button Description

Continue Continues emulation, if possible.

Debug Enters the external debugger, if one is running.

Reset Performs a soft reset on the emulated device ROM.
Palm OS Programming Development Tools Guide 63

Using Palm OS® Emulator
Error Handling Concepts
• A memory access exception involves access to a memory
location that the application is not supposed to access.

• An application error message is a message displayed when
software running on the handheld device calls a system
function such as ErrDisplayFileLineMsg or
SysFatalAlert.

Palm OS Emulator uses four levels of accessibility when checking
memory accesses:

• Applications have the least access to memory. An application
is any software running in RAM on the handheld device.

• The system has more access to memory than do applications.
The system is any software running in ROM on the handheld
device.

• The memory manager has the most access to memory. The
memory manager is any function operating within the
context of a memory manager call, which means any function
that runs while a memory manager function is still active.

• Some sections of memory cannot be accessed by any
software.

Error Messages
Table 1.10 shows Palm OS Emulator error messages. Note that you
can prevent some of these messages by disabling the relevant
debugging option, as described in Debug Options.
64 Palm OS Programming Development Tools Guide

Using Palm OS® Emulator
Error Handling Concepts
Table 1.10 Palm OS Emulator error messages

Error type Description Message example

Hardware
register access

The application or system
software has accessed a
processor hardware register.

"Mytest" 1.0 has just read
directly from the hardware
registers.

Low-memory
access

The application or system
software has accessed low
memory (the first 256 bytes),
which contains the exception
vectors.

"Mytest" 1.0 has just read
directly from low memory.

or

"Mytest" 1.0 has just read
directly from NULL (memory
location zero)

System variable
access

The application or system
software has accessed a
system variable, which
resides in a memory location
between low memory and the
the end of the system function
dispatch table.

"Mytest" 1.0 has just read
directly from Palm OS
global variables.

LCD screen
buffer access

The application or system
software has accessed the
screen buffer, which is
defined by the LCD-related
hardware registers.

"Mytest" 1.0 has just read
directly from screen
memory.

Memory
Manager data
structure access

The application or system
software has accessed a
memory manager data
structure, which includes
heap headers, master pointer
tables, chunk headers, and
chunk trailers.

"Mytest" 1.0 has just read
directly from memory
manager data structures.

Unlocked chunk
access

The application or system
software has accessed an
unlocked memory chunk.

"Mytest" 1.0 has just read
directly from an unlocked
memory chunk.
Palm OS Programming Development Tools Guide 65

Using Palm OS® Emulator
Error Handling Concepts
Low-stack
access

The application or system
software has accessed an area
of the stack below the stack
pointer.

The stack is defined by values
returned by the
SysGetAppInfo function
when it is called during
system startup.

If Palm OS Emulator cannot
determine the stack range, it
does not monitor low-stack
accesses.

"Mytest" 1.0 has just read
directly from an invalid
section of memory known as
the "stack" .

Uninitialized
stack access

The application or system
software has accessed
uninitialized memory, which
is memory that has not
previously been written.

"Mytest" 1.0 has just read
directly from an
uninitialized section of
memory known as the
"stack" .

Free chunk
access

The application or system
software has accessed an
unallocated memory chunk.

"Mytest" 1.0 has just read
directly from an
unallocated chunk of
memory.

Uninitialized
chunk access

The application or system
software has attempted read
access to uninitialized
memory.

"Mytest" 1.0 has just read
directly from an
uninitialized chunk of
memory.

Storage heap
access

The application has accessed
the storage heap.

"Mytest" 1.0 has just
tried to write to the
storage heap and that's
just plain not allowed!
Try using DmWrite.

Table 1.10 Palm OS Emulator error messages (continued)

Error type Description Message example
66 Palm OS Programming Development Tools Guide

Using Palm OS® Emulator
Error Handling Concepts
Stack overflow The application pushed more
information onto the stack
than is allocated for the stack.

"Mytest" 1.0 has just
overflowed its stack.

Stack almost
overflowed

The stack is close to
overflowing, which means
that the stack pointer is
within a small number of
bytes (typically 100) of the
end of the stack.

"Mytest" 1.0 is getting
close to overflowing the
stack.

Memory
Manager
semaphore
acquisition time

The application or system
software has acquired the
Memory Manager semaphore
for write access, and has held
it for more than 10
milliseconds.

"Mytest" 1.0 has held the
"Memory Manager semaphore"
for approximately 20
milliseconds. It is
recommended that
applications not hold the
semaphore longer than 10
milliseconds.

Table 1.10 Palm OS Emulator error messages (continued)

Error type Description Message example
Palm OS Programming Development Tools Guide 67

Using Palm OS® Emulator
Error Handling Concepts
Invalid heap Heap corruption detected
during a regular heap check.
Palm OS Emulator regularly
checks the heap.

During a regular checkup,
the Emulator determined
that the dynamic heap got
corrupted.

(corruption type) is one
of the following message
fragments: · The chunk was
not within the heap it was
supposed to be · The size
of the chunk (chunk_size)
was larger than the
currently accepted maximum
(chunk_max) · Some unused
flags were set to "1" ·
The "hOffset" field of the
chunk header did not
reference a memory
location within a master
pointer block · The master
pointer referenced by the
"hOffset" field in the
chunk

Invalid program
counter

The program counter has
been set to an invalid
memory location, which is a
location outside of a 'CODE'
resource.

"Mytest" 1.0 has just set
the Program Counter (PC)
to an invalid memory
location.

Table 1.10 Palm OS Emulator error messages (continued)

Error type Description Message example
68 Palm OS Programming Development Tools Guide

Using Palm OS® Emulator
Error Handling Concepts
Unimplemented
trap.

The application or system
software has attempted to
invoke an unimplemented
system function.

An unimplemented system
function is one with a trap
number outside of the
numbers in the system
function dispatch table, or
one whose table entry
matches that of the
SysUnimplemented
function.

"Mytest" 1.0 tried to call
Palm OS routine trapNum
(trapName). This routine
does not exist in this
version of the Palm OS.

SysFatalAlert The application or system
software has called the
SysFatalAlert function.

Palm OS Emulator patches
the SysFatalAlert
function and present the
message in its own dialog
box, to allow the user to
choose how to respond to the
error.

"Mytest" 1.0 has failed,
reporting "attempted
divide by 0". If this is
the latest version of
"Mytest", please report
this to the application
author.

Unhandled
exception

The application or system
software has caused an
exception that Palm OS
Emulator cannot handle itself.

"Mytest" 1.0 has just
performed an illegal
operation. It performed a
"exception". If this is
the latest version of
"Mytest" 1.0, please
report this to the
application author.

Table 1.10 Palm OS Emulator error messages (continued)

Error type Description Message example
Palm OS Programming Development Tools Guide 69

Using Palm OS® Emulator
Advanced Topics
Advanced Topics

Creating Demonstration Versions of Palm OS
Emulator
If you are running Palm OS Emulator on Windows NT, you can
create an executable that binds the Emulator program with a ROM
image and optionally a RAM image. The bound program can then
be used for demonstrations, training, and kiosk systems.

To save a demonstration version of the Emulator session, you can
right-click on the Palm OS Emulator display (the Palm device
image) and select Save Bound Emulator...

Sending Commands to Palm OS Emulator
You can use RPC packets to send commands to Palm OS Emulator.
You can invoke any function in the Palm OS dispatch table,
including the Host Control functions, which are described in
Chapter 2, “Host Control API Reference.”

The RPC packets use the same format as do packets that are sent to
the debugger interface, which is described in Chapter 3, “Debugger
Protocol Reference.”

You use the socket defined by the RPCSocketPort preference to
make RPC calls to Palm OS Emulator. When you send a packet to
the emulator, you must set the dest field of the packet header to the
value defined here:

#define slkSocketRPC (slkSocketFirstDynamic+10)

NOTE: You can disable the RPC command facility by setting the
value of the RPCSocketPort preference to 0.

You can send four kinds of command packets to the emulator:

• ReadMem

• WriteMem

• RPC

• RPC2
70 Palm OS Programming Development Tools Guide

Using Palm OS® Emulator
Advanced Topics
The first three packet types are described in Chapter 3, “Debugger
Protocol Reference.” The fourth packet type, RPC2, is an extension
of the RPC packet format that allows support for a wider range of
operations.

The RPC2 Packet Format

#define sysPktRPC2Cmd 0x20
#define sysPktRPC2Rsp 0xA0

struct SysPktRPCParamInfo
{
UInt8 byRef;
UInt8 size;
UInt16 data[1];

};

struct SysPktRPC2Type
{
_sysPktBodyCommon;
UInt16 trapWord;
UInt32 resultD0;
UInt32 resultA0;
UInt16 resultException;
UInt8 DRegMask;
UInt8 ARegMask;
UInt32 Regs[1];
UInt16 numParams;
SysPktRPCParamTypeparam[1];

};

Almost all of the RPC2 packet format is the same as the RPC format
that is described in Chapter 3, “Debugger Protocol Reference.” The
RPC2 packet includes the following additional fields:

resultException
Stores the exception ID if a function call failed
due to a hardware exception. Otherwise, the
value of this field is 0.

DRegMask A bitmask indicating which D registers need to
be set to make this call.
Palm OS Programming Development Tools Guide 71

Using Palm OS® Emulator
User Interface Summary
ARegMask A bitmask indicating which A registers need to
be set to make this call.

Regs[1] A variable-length array containing the values
to be stored in the registers that need to be set.

Only the registers that are being changed need
to be supplied. Most of the time, DRegMask
and ARegMask are set to zero and this field is
not included in the packet.

If more than one register needs to be set, then
the register values should appear in the
following order: D0, D1, ..., D6, D7, A0, A1, ...,
A6, A7. Again, only values for the registers
specified in DRegMask and ARegMask need to
be provided.

User Interface Summary
This section provides a description of the user interface for Palm OS
Emulator, including descriptions of the menus and keyboard usage.

Palm OS Emulator Display
The Palm OS Emulator display looks very much like a real Palm
Powered handheld device. You can use your mouse to perform
actions that you perform with the stylus on handheld devices, and
you can use the menus to access Palm OS Emulator functionality.

Using the Menus
You can also access features that are specific to Palm OS Emulator
by choosing menu items:

• If you are using Windows, right-click on the Palm OS
Emulator screen display to access the menu items, or press
the F10 key. The Palm OS Emulator menu displays, as shown
in Figure 1.21.
72 Palm OS Programming Development Tools Guide

Using Palm OS® Emulator
User Interface Summary
Figure 1.21 The Windows Version of the Palm OS Emulator
Menu

• If you are using a Macintosh, select menu items from the
menu bar. The Macintosh menu presents the same items in
four different menus, as described in Table 1.11. The
Macintosh version is only slightly different:

– The Macintosh version of Palm OS Emulator uses
Preferences instead of Properties to access the option-
setting dialog box.

– The Macintosh version of the Emulator features Undo,
Cut, Copy, Paste, and Clear, which are not available in
the Windows version.

– The Macintosh version of the Emulator uses Quit instead
of Exit.

– The Macintosh version does not feature Breakpoints.
Palm OS Programming Development Tools Guide 73

Using Palm OS® Emulator
User Interface Summary
Table 1.11 Palm OS Emulator Macintosh Menus

Menu Commands

File New
Open
Close

Save
Save As
Save Bound Emulator
Save Screen

Install Application/Database
HotSync
Reset
Transfer ROM

Quit

Edit Undo

Cut
Copy
Paste
Clear

Preferences
Logging Options
Debug Options
Skins

Gremlins New

Step
Resume

Stop

Profile Start
Stop
Dump
74 Palm OS Programming Development Tools Guide

Using Palm OS® Emulator
User Interface Summary
If you are using Unix, Palm OS Emulator provides the same items as
are included with the Windows version, except that Breakpoints is
not available. The Unix version of the menu pops up like the
Windows version, and uses a different hierarchy, but presents the
same items.

Table 1.12 provides a brief description of the Palm OS Emulator
menu items, listed in alphabetical order.

Table 1.12 The Palm OS Emulator Menu Items

Command Description

Close Closes and optionally saves the current emulator session.

Exit Exits Palm OS Emulator. If you have unsaved changes in
your session file, Palm OS Emulator optionally prompts
you to save the file before exiting.

Gremlin:New

Gremlin:Step

Gremlin:Resume

Gremlin:Stop

Gremlin: Resume from
control file

Create a new Gremlin and start running it.

Step a Gremlin, after stopping.

Resume running of the Gremlin. NOTE: this menu item is
only shown in Windows versions, and is not yet
implemented.

Stop running the Gremlin.

Resumes running of Gremlins from data that was
previously saved in a file.

For more information, see “Using Gremlins to Automate
Testing” on page 51.

HotSync Lets you synchronize the emulator session environment
with the desktop computer. See “Using the HotSync
Application With Palm OS Emulator” on page 39 for more
information about the cabling requirements and other
considerations for this menu item.
Palm OS Programming Development Tools Guide 75

Using Palm OS® Emulator
User Interface Summary
Install App/DB Lets you install an application into the emulator session, in
the same way that a user would install it on the handheld
with the Palm Install tool. For more information, see
“Installing Applications” on page 37.

Export Database... Exports a database to your desktop computer as a PDB or
PQA file, or exports an application to your desktop
computer as a PRC file.

New Displays the New Session dialog box. The New Session
dialog box lets you select the session’s ROM file, device,
skin, and RAM size.

Open Displays the open file dialog box for opening a saved
emulator session file.

Note that the Open menu is for opening saved session files
(PSF files), not for opening ROM files. To change the ROM
file for your emulator session, you need to use the New
menu.

Profiling:Start

Profiling:Stop

Profiling:Dump

Start profiling your application.

Stop profiling your application.

Save the profiling information to a file.

For more information, see “Profiling Your Code” on
page 61.

Reset Resets the current emulation session, as if the reset button
on the back of the handheld was pressed.

Save Saves the current emulator session to an emulator PSF file.

Save As Saves the current emulator session to an emulator PSF file.

Save Bound Emulator Saves the current emulator session as an executable, which
can be used for demonstration purposes.

Table 1.12 The Palm OS Emulator Menu Items (continued)

Command Description
76 Palm OS Programming Development Tools Guide

Using Palm OS® Emulator
User Interface Summary
Using the Hardware Buttons
Palm OS Emulator emulates each of the hardware buttons on Palm
Powered devices. You can click on a button to activate it, and you
can press and hold down a button just as you would on a handheld.
Palm OS Emulator also lets you activate the hardware buttons with
keyboard equivalents, as shown in Table 1.13.

Save Screen Saves the current screen image as a bitmap file.

TIP: Save Screen is a very convenient means of
capturing screen images for documentation of Palm OS®
applications.

Settings:
Properties

Settings:
Logging

Settings:
Debug

Settings:
Skins

Settings:
Card Options

Settings:
Breakpoints

Presents the properties dialog box, as described in “Palm
OS Emulator Properties” on page 36.

Presents the logging options dialog box, as described in
“Logging Options” on page 47.

Presents the debug options dialog box, as described in
“Debug Options” on page 44.

Presents the skins dialog box, as described in “Changing
the Emulator’s Appearance” on page 34.

Presents the card options dialog box, as described in
“Emulating Expansion Cards” on page 42.

Presents the breakpoints dialog box, as described in
“Setting Breakpoints” on page 56.

Transfer ROM Lets you download a ROM image and save it to disk. You
can then initiate a new session based on that ROM image.
For more information, see “Transferring a ROM Image
From a Handheld” on page 19.

Table 1.12 The Palm OS Emulator Menu Items (continued)

Command Description
Palm OS Programming Development Tools Guide 77

Using Palm OS® Emulator
User Interface Summary
Entering Data
Palm OS Emulator lets you use your desktop computer pointing
device to tap and to draw Graffiti characters, just as you do with the
stylus on the handheld.

Palm OS Emulator also lets you enter text from the desktop
computer keyboard. For example, you can type the text for a note by
tapping in the note text entry area and then using the keyboard.

Control Keys
Palm OS Emulator also supports a set of control keys that you can
use for input. These keys, which are shown in Table 1.14, are the
same control keys that you can use with the Palm OS Simulator
program.

Table 1.13 Keyboard equivalents for the hardware buttons

Button Keyboard equivalent

On/off ESC

Palm Date Book F1

Palm Address Book F2

Palm To Do List F3

Palm Memo Pad F4

Up PAGE UP

Down PAGE DOWN

Table 1.14 Palm OS Emulator Control Keys

Control key combination Description

CONTROL+A Displays the menu

CONTROL+B Low battery warning

CONTROL+C Command character

CONTROL+D Confirmation character
78 Palm OS Programming Development Tools Guide

Using Palm OS® Emulator
Getting Help With Palm OS Emulator
Getting Help With Palm OS Emulator
Palm OS Emulator is constantly evolving, and Palm is always
interested in hearing your comments and suggestions.

Palm provides a forum (emulator-forum@news.palmos.com) for
questions and comments about Palm OS Emulator. To subscribe to
the forum, see:

http://www.palmos.com/dev/tech/support/forums/

You can the latest information about Palm OS Emulator in the Palm
developer zone on the Internet:

http://www.palmos.com/dev/

Note: The source code for Palm OS Emulator is available at:

http://www.palmos.com/dev/tech/tools/emulator/

You can create your own emulator by modifying this source code.

For more information on the protocol used in Palm OS Emulator to
send requests to and receive responses from a debugging target, see
Chapter 3, “Debugger Protocol Reference.”

CONTROL+E Displays the application launcher

CONTROL+F Displays the onscreen keyboard

CONTROL+M Enters a linefeed character

CONTROL+N Jumps to the next field

CONTROL+P Jumps to the previous field

CONTROL+S Automatic off character

CONTROL+T Sets or unsets hard contrasts

CONTROL+U Turns backlighting on or off

Table 1.14 Palm OS Emulator Control Keys

Control key combination Description
Palm OS Programming Development Tools Guide 79

http://www.palmos.com/dev/
http://www.palmos.com/dev/tech/tools/emulator/
http://www.palmos.com/dev/tech/support/forums/

Using Palm OS® Emulator
Getting Help With Palm OS Emulator
80 Palm OS Programming Development Tools Guide

2
Host Control API
Reference
This chapter describes the host control API. The following topics are
covered in this chapter:

• “About the Host Control API” - Conceptual information
about the host control API

• “Constants” on page 82 - A list of the constants that can be
used with the host control functions

• “Data Types” on page 87 - A list of the data types that can be
used with the host control functions

• “Functions” on page 94 - A list of all host control functions,
sorted alphabetically

• “Reference Summary” on page 136 - A summary of all host
control functions, sorted by category

About the Host Control API
You can use the host control API to call emulator-defined functions
while your application is running under the Palm OS® Emulator.
For example, you can make function calls to start and stop profiling
in the emulator.

Host control functions are defined in the HostControl.h header
file. These functions are invoked by executing a trap/selector
combination that is defined for use by the emulator and other
foreign host environments. Palm OS Emulator catches the calls
intended for it that are made to this selector.
Palm OS Programming Development Tools Guide 81

Host Control API Reference
Constants
IMPORTANT: This chapter describes the version of the host
control API that shipped with Palm OS Emulator 3.0a8. If you are
using a different version, the features in your version might be
different than the features described here.

Constants
This section lists the constants that you use with the host control
API.

Host Error Constants
Several of the host control API functions return a HostErrType
value.

enum
{
hostErrNone = 0,
hostErrBase = hostErrorClass,
hostErrUnknownGestaltSelector,
hostErrDiskError,
hostErrOutOfMemory,
hostErrMemReadOutOfRange,
hostErrMemWriteOutOfRange,
hostErrMemInvalidPtr,
hostErrInvalidParameter,
hostErrTimeout,
hostErrInvalidDeviceType,
hostErrInvalidRAMSize,
hostErrFileNotFound,
hostErrRPCCall,
hostErrSessionRunning,
hostErrSessionNotRunning,
hostErrNoSignalWaiters,
hostErrSessionNotPaused,
hostErrPermissions,
hostErrFileNameTooLong,
hostErrNotADirectory,
82 Palm OS Programming Development Tools Guide

Host Control API Reference
Constants
hostErrTooManyFiles,
hostErrFileTooBig,
hostErrReadOnlyFS,
hostErrIsDirectory,
hostErrExists,
hostErrOpNotAvailable,
hostErrDirNotEmpty,
hostErrDiskFull,
hostErrUnknownError
};

hostErrNone No error.

hostErrBase A class error occurred.

hostErrUnknownGestaltSelector
The specified Gestalt selector value is not valid.

hostErrDiskError
A disk error occurred. The standard C library
error code EIO is mapped to this error constant.

hostErrOutOfMemory
There is not enough memory to complete the
request. The standard C library error code
ENOMEM is mapped to this error constant.

hostErrMemReadOutOfRange
An out of range error occurred during a
memory read.

hostErrMemWriteOutOfRange
An out of range error occurred during a
memory write.

hostErrMemInvalidPtr
The pointer is not valid.

hostErrInvalidParameter
A parameter to a function is not valid. The
standard C library error codes EBADF, EFAULT
and EINVAL are mapped to this error constant.

hostErrTimeout
A timeout occurred.
Palm OS Programming Development Tools Guide 83

Host Control API Reference
Constants
hostErrInvalidDeviceType
The specified device type is not valid.

hostErrInvalidRAMSize
The specified RAM size value is not valid.

hostErrFileNotFound
The specified file could not be found. The
standard C library error code ENOENT is
mapped to this error constant.

hostErrRPCCall
A function that must be called remotely was
called by an application. These functions
include: HostSessionCreate,
HostSessionOpen, HostSessionClose,
HostSessionQuit, HostSignalWait, and
HostSignalResume.

hostErrSessionRunning
A session is already running and one of the
following functions was called:
HostSessionCreate, HostSessionOpen,
or HostSessionQuit.

hostErrSessionNotRunning
No session is running and the
HostSessionClose function was called.

hostErrNoSignalWaiters
The HostSendSignal function was called,
but there are no external scripts waiting for a
signal.

hostErrSessionNotPaused
The HostSignalResume function was called,
but the session has not been paused by a call to
HostSendSignal.

hostErrPermissions
The standard C library error code EACCES and
EPERM are mapped to this error constant.
84 Palm OS Programming Development Tools Guide

Host Control API Reference
Constants
hostErrFileNameTooLong
The standard C library error code
ENAMETOOLONG is mapped to this error
constant.

hostErrNotADirectory
The standard C library error code ENOTDIR is
mapped to this error constant.

hostErrTooManyFiles
The standard C library error code EMFILE and
ENFILE are mapped to this error constant.

hostErrFileTooBig
The standard C library error code EFBIG is
mapped to this error constant.

hostErrReadOnlyFS
The standard C library error code EROFS is
mapped to this error constant.

hostErrIsDirectory
The standard C library error code EISDIR is
mapped to this error constant.

hostErrExists
The standard C library error code EEXIST is
mapped to this error constant.

hostErrOpNotAvailable
The standard C library error codes ENOSYS and
ENODEV are mapped to this error constant.

hostErrDirNotEmpty
The standard C library error code ENOTEMPTY
is mapped to this error constant.

hostErrDiskFull
The standard C library error code ENOSPC is
mapped to this error constant.

hostErrUnknownError
The standard C library error code values that
are not mapped to any of the above error
constants are mapped to this error constant.
Palm OS Programming Development Tools Guide 85

Host Control API Reference
Constants
Host Function Selector Constants
You can use the host function selector constants with the
HostIsSelectorImplemented function to determine if a certain
function is implemented on your debugging host. Each constant is
the name of a function, with the Host portion replaced by
HostSelector.

For a complete list of the constants available, see the
HostControl.h header file.

Host ID Constants
Some of the host control API functions use a Host ID value to
specify the debugging host type.

enum
{
hostIDPalmOS,
hostIDPalmOSEmulator,
hostIDPalmOSSimulator

};

hostIDPalmOS A Palm Powered hardware device.

hostIDPalmOSEmulator
The Palm OS Emulator application.

hostIDPalmOSSimulator
The Macintosh Simulator application.

Host Platform Constants
Several of the host control API functions use a HostPlatform
value to specify operating system hosting the emulation.

enum
{
hostPlatformPalmOS,
hostPlatformWindows,
hostPlatformMacintosh,
hostPlatformUnix

};
86 Palm OS Programming Development Tools Guide

Host Control API Reference
Data Types
hostPlatformPalmOS
The Palm OS platform.

hostPlatformWindows
The Windows operating system platform.

hostPlatformMacintosh
The Mac OS platform.

hostPlatformUnix
The Unix operating system platform.

Host Signal Constants
This section describes the host signal values, which you can use
with the HostSendSignal.

enum
{
hostSignalReserved,
hostSignalIdle,
hostSignalQuit

};

hostSignalReserved
System-defined signals start here.

hostSignalIdle
Palm OS Emulator is about to go into an idle
state.

hostSignalQuit
Palm OS Emulator is about to quit.

Data Types
This section describes the data types that you use with the host
control API.
Palm OS Programming Development Tools Guide 87

Host Control API Reference
Data Types
HostBoolType
The host control API defines HostBoolType for use as a Boolean
value.

typedef long HostBoolType;

New HostClockType
The host control API defines HostClockType as a platform-
independent representation of the standard C library clock_t
type.

typedef long HostClockType;

New HostDirEntType
The host control API defines HostDirEntType as a return value
for the HostReadDir function. The contents are platform-specific,
usually a simple null-terminated file name.

struct HostDirEntType
{
char d_name[HOST_NAME_MAX + 1];

};

typedef struct HostDirEntType HostDirEntType;

New HostDIRType
The host control API defines HostDIRType for use in directory-
related functions. It is returned by HostOpenDir and used by
HostReadDir and HostCloseDir. It represents an open directory
whose contents can be read.

struct HostDIRType
{
long _field;
88 Palm OS Programming Development Tools Guide

Host Control API Reference
Data Types
};
typedef struct HostDIRType HostDIRType;

HostFILEType
The host control API defines HostFILEType for the standard C
library functions that take FILE* parameters. It is returned by
HostFOpen and used by other host control functions. It represents
an open file whose contents can be manipulated.

typedef struct HostFILEType
{
long _field;

} HostFILEType;

HostGremlinInfoType
The host control API defines the HostGremlinInfoType structure
type to store information about a horde of gremlins.

typedef struct HostGremlinInfoType
{
long fFirstGremlin;
long fLastGremlin;
long fSaveFrequency;
long fSwitchDepth;
long fMaxDepth;
char fAppNames[200];

};

typedef struct HostGremlinInfoType
HostGremlinInfoType;

HostGremlinInfo Fields

fFirstGremlin The number of the first gremlin to run.

fLastGremlin The number of the last gremlin to run.

fSaveFrequency The gremlin snapshot frequency.

fSwitchDepth The number of gremlin events to generate
before switching to another gremlin.
Palm OS Programming Development Tools Guide 89

Host Control API Reference
Data Types
fMaxDepth The maximum number of gremlin events to
generate for each gremlin.

fAppNames A comma-separated string containing a list of
application names among which the gremlin
horde is allowed to switch.

If this string is empty, all applications are
available for use with the gremlins.

If this string begins with a dash ('-'), the
applications named in the string are excluded,
rather than included in the list of available
applications.

HostIDType
The host control API defines HostIDType for use as an identifier
value.

typedef long HostIDType;

HostPlatformType
The host control API defines HostPlatformType for use as a
platform identifier value.

typedef long HostPlatformType;

HostSignalType
The host control API defines HostSignalType for use in signal
functions.

typedef long HostSignalType;

New HostSizeType
The host control API defines HostSizeType as a platform-
independent version of the standard C library size_t type.

typedef long HostSizeType;
90 Palm OS Programming Development Tools Guide

Host Control API Reference
Data Types
New HostStatType
The host control API defines HostStatType for status information
about files.

struct HostStatType
{
 unsigned long st_dev_;
 unsigned long st_ino_;
 unsigned long st_mode_;
 unsigned long st_nlink_;
 unsigned long st_uid_;
 unsigned long st_gid_;
 unsigned long st_rdev_;
 HostTimeType st_atime_;
 HostTimeType st_mtime_;
 HostTimeType st_ctime_;
 unsigned long st_size_;
 unsigned long st_blksize_;
 unsigned long st_blocks_;
 unsigned long st_flags_;
};
typedef struct HostStatType HostStatType;

HostStatType Fields

st_dev_ Drive number of the disk containing the file
(the same as st_rdev_).

st_ino_ Number of the information node for the file
(Unix-specific information).

st_mode_ Bit mask for file-mode information. The
_S_IFDIR bit indicates if this is a directory; the
_S_IFREG bit indicates an ordinary file or
device. User read/write bits are set according
to the file’s permission mode; user execute bits
are set according to the filename extension.

st_nlink_ Always returns 1 on non-NTFS file systems.
Palm OS Programming Development Tools Guide 91

Host Control API Reference
Data Types
st_uid_ Numeric identifier of the user who owns the
file (Unix-specific information).

st_gid_ Numeric identifier of the group who owns the
file (Unix-specific information).

st_rdev_ Drive number of the disk containing the file
(the same as st_dev_).

st_atime_ Time of the last access of the file.

st_mtime_ Time of the last modification of the file.

st_ctime_ Time of the creation of the file.

st_size_ Size of the file in bytes.

st_blksize_ Block size for the file.

st_blocks_ Number of blocks.

st_flags_ File flags.

New HostTimeType
The host control API defines HostTimeType as a platform-
independent version of the standard C library time_t type.

typedef long HostTimeType;

New HostTmType
The host control API defines HostTmType for use in time functions.

struct HostTmType
{
long tm_sec_;
long tm_min_;
long tm_hour_;
long tm_mday_;
long tm_mon_;
long tm_year_;
long tm_wday_;
92 Palm OS Programming Development Tools Guide

Host Control API Reference
Data Types
long tm_yday_;
long tm_isdst_;

};
typedef struct HostTmType HostTmType;

HostTmType Fields

tm_sec_ Seconds after the minute: range from 0 to 59.

tm_min_ Minutes after the hour: range from 0 to 59.

tm_hour_ Hours since midnight: range from 0 to 23.

tm_mday_ Day of the month: range from 1 to 31.

tm_mon_ Months since January: range from 0 to 11.

tm_year_ Years since 1900.

tm_wday_ Days since Sunday: range from 0 to 6.

tm_yday_ Days since January 1: range from 0 to 365.

tm_isdst_ Daylight savings time flag.

New HostUTimeType
The host control API defines HostUTimeTypefor use in time
functions.

struct HostUTimeType
{
HostTimeType crtime_;
HostTimeType actime_;
HostTimeType modtime_;

};
typedef struct HostUTimeType HostUTimeType;

HostUTimeType Fields

crtime_ Creation time.

actime_ Access time.

modtime_ Modification time.
Palm OS Programming Development Tools Guide 93

Host Control API Reference
Functions
Functions
This section describes the host control API functions.

NOTE: For host control API functions that return pointers to
character strings (that is, functions that return type char *), the
returned value is valid only until the next call to a function that
returns a pointer to a character string. If you need ongoing access
to a character string, you should make a copy of the string before
making the subsequent host control function call.

New HostAscTime

Purpose Returns a character string representation of the time encoded in
time.

Prototype char* HostAscTime(const HostTmType* time);

Parameters time The time structure.

Result The time as a character string.

New HostClock

Purpose Returns an elapsed time.

Prototype HostClockType HostClock(void);

Parameters None.

Result The elapsed time in terms of the operating system’s clock function
(usually the number clock ticks that have elapsed since the start of
the process), or -1 if the function call was not successful.
94 Palm OS Programming Development Tools Guide

Host Control API Reference
Functions
New HostCloseDir

Purpose Closes a directory.

Prototype long HostCloseDir(HostDIRType* directory);

Parameters directory The directory to be closed.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

New HostCTime

Purpose Converts the calendar time in *timeofday to a text representation.

Prototype char* HostCTime(const HostTimeType* timeofday)

Parameters timeofday The calendar time.

Result The calendar time as a time string.

HostErrNo

Purpose Returns the value of errno, the standard C library variable that
reflects the result of many standard C library functions. You can call
this function after calling one of the Host Control functions that
wraps the standard C library.

IMPORTANT: The HostErrNo function is only applicable to
functions that wrap the standard C library. It is not applicable to all
Host Control functions.
Palm OS Programming Development Tools Guide 95

Host Control API Reference
Functions
Prototype long HostErrNo(void);

Parameters None.

Result The error number.

HostExportFile

Purpose Copies a database from the handheld device to the desktop
computer.

Prototype HostErr HostExportFile(const char* fileName,
long cardNum, const char* dbName);

Parameters fileName The file name to use on the desktop computer.

cardNum The number of the card on the handheld device
on which the database is contained.

dbName The name of the handheld database.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

HostFClose

Purpose Closes a file on the desktop computer.

Prototype long HostFClose(HostFILE* f);

Parameters f The file to close.

Result Returns 0 if the operation was successful, and a non-zero value if
not.
96 Palm OS Programming Development Tools Guide

Host Control API Reference
Functions
HostFEOF

Purpose Determines if the specified file is at its end.

Prototype long HostFEOF(HostFILE* f);

Parameters f The file to test.

Result Returns 0 if the specified file is at its end, and a non-zero value
otherwise.

HostFError

Purpose Retrieves the error code from the most recent operation on the
specified file.

Prototype long HostFError(HostFILE* f);

Parameters f The file.

Result The error code from the most recent operation on the specified file.
Returns 0 if no errors have occurred on the file.

HostFFlush

Purpose Flushes the buffer for the specified file.

Prototype long HostFFlush(HostFILE* f);

Parameters f The file to flush.

Result Returns 0 if the operation was successful, and a non-zero value if
not.
Palm OS Programming Development Tools Guide 97

Host Control API Reference
Functions
HostFGetC

Purpose Retrieves the character at the current position in the specified file.

Prototype long HostFGetC(HostFILE* f);

Parameters f The file.

Result The character, or EOF to indicate an error.

HostFGetPos

Purpose Retrieves the current position in the specified file.

Prototype long HostFGetPos(HostFILE* f, long* posn);

Parameters f The file.

posn Upon successful return, the current position in
the file.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

HostFGetS

Purpose Retrieves a character string from the selected file and returns a
pointer to that string.

Prototype char* HostFGetS(char* s, long n, HostFILE* f);

Parameters s A pointer to the string buffer to be filled with
characters from the file.

n The number of characters to retrieve.

f The file.

Result The character string, or NULL to indicate an error.
98 Palm OS Programming Development Tools Guide

Host Control API Reference
Functions
HostFOpen

Purpose Opens a file on the desktop computer.

Prototype HostFILE* HostFOpen(const char* name,
const char* mode);

Parameters name The name of the file to open.

mode The mode to use when opening the file.

Result The file stream pointer, or NULL to indicate an error.

HostFPrintF

Purpose Writes a formatted string to a file.

Prototype long HostFPrintF(HostFILE* f, const char* format,
...);

Parameters f The file to which the string is written.

format The format specification.

... String arguments.

Result The number of characters actually written.

HostFPutC

Purpose Writes a character to the specified file.

Prototype long HostFPutC(long c, HostFILE* f);

Parameters c The character to write.

f The file to which the character is written.

Result The number of characters written, or EOF to indicate an error.
Palm OS Programming Development Tools Guide 99

Host Control API Reference
Functions
HostFPutS

Purpose Writes a string to the specified file.

Prototype long HostFPutS(const char* s, HostFILE* f);

Parameters s The string to write.

f The file to which the character is written.

Result A non-negative value if the operation was successful, or a negative
value to indicate failure.

HostFRead

Purpose Reads a number of items from the file into a buffer.

Prototype long HostFRead(void* buffer, long size,
long count, HostFILE* f);

Parameters buffer The buffer into which data is read.

size The size of each item.

count The number of items to read.

f The file from which to read.

Result The number of items that were actually read.

HostFree

Purpose Frees memory on the desktop computer.

Prototype void HostFree(void* p);

Parameters p A pointer to the memory block to be freed.

Result None.
100 Palm OS Programming Development Tools Guide

Host Control API Reference
Functions
HostFReopen

Purpose Changes the file with which the stream f is associated.
HostFReopen first closes the file that was associated with the
stream, then opens the new file and associates it with the same
stream.

Prototype HostFILE* HostFReopen(const char* name,
const char* mode, HostFILE *f);

Parameters name The name of the file to open.

mode The mode to use when opening the file.

f The file from which to read.

Result The file stream pointer, or NULL to indicate an error.

HostFScanF

Purpose Reads formatted text from a file.

Prototype long HostFReopen(HostFILE* f, const char *fmt,
...);

Parameters f The file from which to read input.

fmt A format string, as used in standard C-library
calls such as scanf.

... The list of variables into which scanned input
are written.

Result The number of items that were read, or a negative value to indicate
an error.

Returns EOF if end of file was reached while scanning.
Palm OS Programming Development Tools Guide 101

Host Control API Reference
Functions
HostFSeek

Purpose Moves the file pointer to the specified position.

Prototype long HostFSeek(HostFILE* f, long offset,
long origin);

Parameters f The file.

offset The number of bytes to move from the initial
position, which is specified in the origin
parameter.

origin The initial position.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

HostFSetPos

Purpose Sets the position indicator of the file.

Prototype long HostFSetPos(HostFILE* f, long posn);

Parameters f The file.

posn The position value.

Result Returns 0 if the operation was successful, and a non-zero value if
not.
102 Palm OS Programming Development Tools Guide

Host Control API Reference
Functions
HostFTell

Purpose Retrieves the current position of the specified file.

Prototype long HostFTell(HostFILE* f);

Parameters f The file.

Result Returns -1 to indicate an error.

HostFWrite

Purpose Writes data to a file.

Prototype long HostFWrite(const void* buffer, long size,
long count, HostFILE* f);

Parameters buffer The buffer that contains the data to be written.

size The size of each item.

count The number of items to write.

f The file to which the data is written.

Result The number of items actually written.

HostGestalt

Purpose Currently does nothing except return an “invalid selector” error. In
the future, this function will be used for queries about the runtime
environment.

Prototype HostErr HostGestalt(long gestSel, long* response);

Parameters gestSel

response
Palm OS Programming Development Tools Guide 103

Host Control API Reference
Functions
New HostGetDirectory

Purpose Gets a directory, in support of the operating system file chooser
dialog box.

Prototype const char* HostGetDirectory(const char* prompt,
const char* defaultDir);

Parameters prompt

defaultDir The default directory to get.

Result Returns the directory as a character string.

HostGetEnv

Purpose Retrieves the value of an environment variable.

Prototype char* HostGetEnv(char* varName);

Parameters varName The name of the environment variable that you
want to retrieve.

Result The string value of the named variable, or NULL if the variable
cannot be retrieved.

New HostGetFile

Purpose Gets a file, in support of the operating system file chooser dialog
box.

Prototype const char* HostGetFile(const char* prompt,
const char* defaultFile)

Parameters prompt
104 Palm OS Programming Development Tools Guide

Host Control API Reference
Functions
defaultFile The default fileto get.

Result Returns the file as a character string.

New HostGetFileAttr

Purpose Get the attribute settings of a file or directory. This function can tell
you whether the file is read-only, hidden, or a system file.

Prototype long HostGetFileAttr(const char* fileOrPathName,
long* attrFlag)

Parameters fileOrPathName The file name or directory path for which you
want to get the file attribute setting.

attrFlag One of the following attribute flags:

- hostFileAttrReadOnly

- hostFileAttrHidden

- hostFileAttrSystem

The file attribute flags match the EmFileAttr flags:
enum
{

hostFileAttrReadOnly = 1,
hostFileAttrHidden = 2,
hostFileAttrSystem = 4

}

Result The file attribute.
Palm OS Programming Development Tools Guide 105

Host Control API Reference
Functions
HostGetHostID

Purpose Retrieves the ID of the debugging host. This is one of the constants
described in Host ID Constants. Palm OS Emulator always returns
the value hostIDPalmOSEmulator.

Prototype HostID HostGetHostID(void);

Parameters None.

Result The host ID.

HostGetHostPlatform

Purpose Retrieves the host platform ID, which is one of the values described
in Host Platform Constants.

Prototype HostPlatform HostGetHostPlatform(void);

Parameters None.

Result The platform ID.

HostGetHostVersion

Purpose Retrieves the version number of the debugging host.

Prototype long HostGetHostVersion(void);

Parameters None.

Result The version number.

Comments This function returns the version number in the same format that is
used by the Palm OS, which means that you can access the version
number components using the following macros from the
SystemMgr.h file:
106 Palm OS Programming Development Tools Guide

Host Control API Reference
Functions
sysGetROMVerMajor(dwROMVer)
sysGetROMVerMinor(dwROMVer)
sysGetROMVerFix(dwROMVer)
sysGetROMVerStage(dwROMVer)
sysGetROMVerBuild(dwROMVer)

HostGetPreference

Purpose Retrieves the specified preference value.

Prototype HostBool HostGetPreference(const char* prefName,
char* prefValue);

Parameters prefName The name of the preference whose value you
want to retrieve.

prefValue Upon successful return, the string value of the
specified preference.

Result A Boolean value that indicates whether the preference was
successfully retrieved.

Comments Each preference is identified by name. You can view the preference
names in the Palm OS Emulator preferences file for your platform,
as shown in Table 2.1.

See Also The HostSetPreference function.

Table 2.1 Palm OS Emulator preferences file names and
locations

Platform File name File location

Macintosh Palm OS Emulator Prefs In the Preferences
folder

Windows Palm OS Emulator.ini In the Windows System
directory

Unix .poserrc In your home directory
Palm OS Programming Development Tools Guide 107

Host Control API Reference
Functions
New HostGMTime

Purpose Returns time structure representation of the time, expressed as
Universal Time Coordinated, or UTC (UTC was formerly
Greenwich Mean Time, or GMT).

Prototype HostTmType* HostGMTime(const HostTimeType* time);

Parameters time

Result The time structure.

HostGremlinCounter

Purpose Returns the current event count of the currently running gremlin.

Prototype long HostGremlinCounter(void);

Parameters None.

Result The event count.

Comments This return value of this function is only valid if a gremlin is
currently running.

HostGremlinIsRunning

Purpose Determines if a gremlin is currently running.

Prototype HostBool HostGremlinIsRunning(void);

Parameters None.

Result A Boolean value indicating whether a gremlin is currently running.
108 Palm OS Programming Development Tools Guide

Host Control API Reference
Functions
HostGremlinLimit

Purpose Retrieves the limit value of the currently running gremlin.

Prototype long HostGremlinLimit(void);

Parameters None.

Result The limit value of the currently running gremlin.

Comments This return value of this function is only valid if a gremlin is
currently running.

HostGremlinNew

Purpose Creates a new gremlin.

Prototype HostErr HostGremlinNew(
const HostGremlinInfo* info);

Parameters info A HostGremlinInfo structure with
information about the new horde of gremlins

HostGremlinNumber

Purpose Retrieves the number of the currently running gremlin.

Prototype long HostGremlinNumber(void);

Parameters None.

Result The gremlin number of the currently running gremlin.

Comments This return value of this function is only valid if a gremlin is
currently running.
Palm OS Programming Development Tools Guide 109

Host Control API Reference
Functions
HostImportFile

Purpose Copies a database from the desktop computer to the handheld
device, and stores it on the specified card number. The database
name on the handheld device is the name stored in the file.

Prototype HostErr HostImportFile(const char* fileName,
long cardNum);

Parameters fileName The file on the desktop computer that contains
the database.

cardNum The card number on which the database is to be
installed. You almost always use 0 to specify
the built-in RAM.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

HostIsCallingTrap

Purpose Determines if Palm OS Emulator is currently calling a trap.

Prototype HostBool HostIsCallingTrap(void);

Parameters None.

Result TRUE if Palm OS Emulator is currently calling a trap, and FALSE if
not.
110 Palm OS Programming Development Tools Guide

Host Control API Reference
Functions
HostIsSelectorImplemented

Purpose Determines if the specified function selector is implemented on the
debugging host.

Prototype HostBool HostIsSelectorImplemented(long selector);

Parameters selector The function selector. This must be one of the
constants described in Host Function Selector
Constants.

Result TRUE if the specified function selector is implemented on the host,
and FALSE if not

New HostLocalTime

Purpose Returns time structure representation of the time, expressed as local
time.

Prototype HostTmType* HostLocalTime(const HostTimeType*
time);

Parameters time The time structure.

Result The time structure.
Palm OS Programming Development Tools Guide 111

Host Control API Reference
Functions
HostLogFile

Purpose Returns a reference to the file that the Emulator is using to log
information. You can use this to add your own information to the
same file.

Prototype HostFILE* HostLogFile(void);

Parameters None.

Result A pointer to the log file, or NULL if not successful.

HostMalloc

Purpose Allocates a memory block on the debugging host.

Prototype void* HostMalloc(long size);

Parameters size The number of bytes to allocate.

Result A pointer to the allocated memory block, or NULL if there is not
enough memory available.

New HostMkDir

Purpose Creates a directory.

Prototype long HostMkDir(const char* directory);

Parameters directory The directory to create.

Result Returns 0 if the operation was successful, and a non-zero value if
not.
112 Palm OS Programming Development Tools Guide

Host Control API Reference
Functions
New HostMkTime

Purpose Alters the parameter values to represent an equivalent encoded
local time, but with the values of all members within their normal
ranges.

Prototype HostTimeType HostMkTime(HostTmType* time)

Parameters time The time structure.

Result Returns the calendar time equivalent to the encoded time, or returns
a value of -1 if the calendar time cannot be represented

New HostOpenDir

Purpose Opens a directory.

Prototype HostDIRType* HostOpenDir(const char* directory);

Parameters directory The directory to open.

Result Returns a directory structure.

HostProfileCleanup

Purpose Releases the memory used for profiling and disables profiling.

Prototype HostErr HostProfileCleanup(void);

Parameters None.

Result Returns 0 if the operation was successful, and a non-zero value if
not.
Palm OS Programming Development Tools Guide 113

Host Control API Reference
Functions
Comments This function is available only in the profiling version of the
emulator.

HostProfileDetailFn

Purpose Profiles the function that contains the specified address.

Prototype HostErr HostProfileDetailFn(void* addr,
HostBool logDetails);

Parameters addr The address in which you are interested.

logDetails A Boolean value. If this is TRUE, profiling is
performed at a machine-language instruction
level, which means that each opcode is treated
as its own function.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Comments This function is available only in the profiling version of the
emulator.

HostProfileDump

Purpose Writes the current profiling information to the named file.

Prototype HostErr HostProfileDump(const char* filename);

Parameters filename The name of the file to which the profile
information gets written.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Comments This function is available only in the profiling version of the
emulator.
114 Palm OS Programming Development Tools Guide

Host Control API Reference
Functions
New HostProfileGetCycles

Purpose Returns the current running CPU cycle count.

Prototype long HostProfileGetCycles(void)

Parameters None.

Result Returns the current running CPU cycle count.

Comments This function is available only in the profiling version of the
emulator.

HostProfileInit

Purpose Initializes and enables profiling in the debugging host.

Prototype HostErr HostProfileInit(long maxCalls,
long maxDepth);

Parameters maxCalls The maximum number of calls to profile. This
parameter determines the size of the array used
to keep track of function calls. A typical value
for maxCalls is 65536.

maxDepth The maximum profiling depth. This parameter
determines the size of the array used to keep
track of function call depth. A typical value for
maxDepth is 200.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Comments This function is available only in the profiling version of the
emulator.
Palm OS Programming Development Tools Guide 115

Host Control API Reference
Functions
HostProfileStart

Purpose Turns profiling on.

Prototype HostErr HostProfileStart(void);

Parameters None.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Comments This function is available only in the profiling version of the
emulator.

HostProfileStop

Purpose Turns profiling off.

Prototype HostErr HostProfileStop(void);

Parameters None.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Comments This function is available only in the profiling version of the
emulator.
116 Palm OS Programming Development Tools Guide

Host Control API Reference
Functions
New HostPutFile

Purpose Writes a file, in support of the operating system “Save As” dialog
box.

Prototype const char* HostPutFile(const char* prompt, const
char* defaultDir, const char* defaultName);

Parameters prompt

defaultDir The default directory to use.

defaultName The default file name to use.

Result Returns the file name as a character string.

New HostReadDir

Purpose Reads a directory.

Prototype HostDirEntType* HostReadDir(HostDIRType*
directory);

Parameters directory The directory to read.

Result Returns a character array for the directory.

HostRealloc

Purpose Reallocates space for the specified memory block.

Prototype void* HostRealloc(void* ptr, long size);

Parameters ptr A pointer to a memory block that is being
resized.
Palm OS Programming Development Tools Guide 117

Host Control API Reference
Functions
size The new size for the memory block.

Result A pointer to the allocated memory block, or NULL if there is not
enough memory available.

HostRemove

Purpose Deletes a file.

Prototype long HostRemove(const char* name);

Parameters name The name of the file to be deleted.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

HostRename

Purpose Renames a file.

Prototype long HostRemove(const char* oldName,
const char* newName);

Parameters oldName The name of the file to be renamed.

newName The new name of the file.

Result Returns 0 if the operation was successful, and a non-zero value if
not.
118 Palm OS Programming Development Tools Guide

Host Control API Reference
Functions
New HostRmDir

Purpose Removes a directory.

Prototype long HostRmDir(const char* directory);

Parameters directory The directory to remove.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

New HostSaveScreen

Purpose Saves the LCD frame buffer to the given file name.

Prototype HostErrType HostSaveScreen(const char* fileName)

Parameters fileName The name of the file to which the current LCD
frame buffer is to be saved.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

HostSessionClose

Purpose Closes the current emulation session.

Prototype HostErr HostSessionClose(const char* psfFileName);

Parameters psfFileName The name of the file to which the current
session is to be saved.

Result Returns 0 if the operation was successful, and a non-zero value if
not.
Palm OS Programming Development Tools Guide 119

Host Control API Reference
Functions
Comments This function is defined for external RPC clients to call; the effect of
calling it for Palm OS applications running on the emulated device
is undefined.

HostSessionCreate

Purpose Creates a new emulation session.

Prototype HostErr HostSessionCreate(const char* device,
long ramSize, const char* romPath);

Parameters device The name of the handheld device to emulate in
the session.

ramSize The amount of emulated RAM in the new
session.

romPath The path to the ROM file for the new session.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Comments This function is defined for external RPC clients to call; the effect of
calling it for Palm OS applications running on the emulated device
is undefined.

IMPORTANT: This function is not implemented in the current
version of Palm OS Emulator; however, it will be implemented in
the near future.
120 Palm OS Programming Development Tools Guide

Host Control API Reference
Functions
HostSessionOpen

Purpose Opens a previously saved emulation session.

Prototype HostErr HostSessionOpen(const char* psfFileName);

Parameters psfFileName The name of the file containing the saved
session that you want to open.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Comments This function is defined for external RPC clients to call; the effect of
calling it for Palm OS applications running on the emulated device
is undefined.

IMPORTANT: This function is not implemented in the current
version of Palm OS Emulator; however, it will be implemented in
the near future.

HostSessionQuit

Purpose Asks Palm OS Emulator to quit. Returns an error if a session is
already running.

Prototype HostErr HostSessionQuit(void);

Parameters None.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Comments This function is defined for external RPC clients to call; the effect of
calling it for Palm OS applications running on the emulated device
is undefined.
Palm OS Programming Development Tools Guide 121

Host Control API Reference
Functions
IMPORTANT: This function is defined for external RPC clients
to call, and returns an error if you call it from within a Palm
application.

New HostSetFileAttr

Purpose Set the attribute settings of a file or directory. This function can set
the read-only, hidden, or system-file attribute for the file or
directory.

Prototype long HostSetFileAttr(const char* fileOrPathName,
long* attrFlag)

Parameters fileOrPathName The file name or directory path for which you
want to set the file attribute setting.

attrFlag One of the following attribute flags:

- hostFileAttrReadOnly

- hostFileAttrHidden

- hostFileAttrSystem

The file attribute flags match the EmFileAttr flags:
enum
{

hostFileAttrReadOnly = 1,
hostFileAttrHidden = 2,
hostFileAttrSystem = 4

}

Result The file attribute.
122 Palm OS Programming Development Tools Guide

Host Control API Reference
Functions
HostSetLogFileSize

Purpose Determines the size of the logging file that Palm OS Emulator is
using.

Prototype void HostSetLogFileSize(long size);

Parameters size The new size for the logging file, in bytes.

Result None.

Comments By default, Palm OS Emulator saves the last 1 megabyte of log data
to prevent logging files from becoming enormous. You can call this
function to change the log file size.

HostSetPreference

Purpose Sets the specified preference value.

Prototype void HostSetPreference(const char* prefName,
const char* prefValue);

Parameters prefName The name of the preference whose value you
are setting.

prefValue The new value of the preference.

Result None.

Comments Each preference is identified by name. You can view the preference
names in the Palm OS Emulator preferences file for your platform,
as shown in Table 2.1.

See Also The HostGetPreference function.
Palm OS Programming Development Tools Guide 123

Host Control API Reference
Functions
HostSignalResume

Purpose Restarts Palm OS Emulator after it has issued a signal.

Prototype HostErr HostSignalResume(void);

Parameters None.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Comments Palm OS Emulator waits to be restarted after issuing a signal to
allow external scripts to perform operations.

See Also The HostSignalSend and HostSignalWait functions.

IMPORTANT: This function is defined for external RPC clients
to call, and returns an error if you call it from within a Palm
application.

HostSignalSend

Purpose Sends a signal to any scripts that have HostSignalWait calls
pending.

Prototype HostErr HostSignalSend(HostSignal signalNumber);

Parameters signalNumber The signal for which you want to wait. This can
be a predefined signal or one that you have
defined.

Result Returns 0 if the operation was successful, and a non-zero value if
not.

Comments Palm OS Emulator halts and waits to be restarted after sending the
signal. This allows external scripts to perform operations. The
124 Palm OS Programming Development Tools Guide

Host Control API Reference
Functions
external script must call the HostSignalResume function to restart
Palm OS Emulator.

If there are not any scripts waiting for a signal, Palm OS Emulator
does not halt.

The predefined signals are:

• hostSignalIdle, which Palm OS Emulator issues when it
detects that it is going into an idle state.

• hostSignalQuit, which Palm OS Emulator issues when it
is about to quit.

See Also The HostSignalResume and HostSignalWait functions.

IMPORTANT: This function is defined for external RPC clients
to call, and returns an error if you call it from within a Palm
application.

HostSignalWait

Purpose Waits for a signal from Palm OS Emulator, and returns the signalled
value.

Prototype HostErr HostSignalWait(long timeout,
HostSignal* signalNumber);

Parameters timeout The number of milliseconds to wait for the
signal before timing out.

signalNumber The number of the signal that occurred.

Result Returns 0 if the operation was successful, and a non-zero value if
not. Returns the number of the signal that occurred in
signalNumber.

Comments Palm OS Emulator waits to be restarted after issuing a signal to
allow external scripts to perform operations.

The predefined signals are:
Palm OS Programming Development Tools Guide 125

• hostSignalIdle, which Palm OS Emulator issues when it
detects that it is going into an idle state.

• hostSignalQuit, which Palm OS Emulator issues when it
is about to quit.

See Also The HostSignalResume and HostSignalSend functions.

IMPORTANT: This function is defined for external RPC clients
to call, and returns an error if you call it from within a Palm
application.

New HostSlotHasCard

Purpose Ask whether Emulator is emulating a Virtual File System card for a
specific slot number.

Prototype HostBoolType HostSlotHasCard(long slotNo)

Parameters slotNo The slot number. This number can be in the
range from 1 up to and including the number
returned by function HostSlotMax.

Result A Boolean value that indicates whether Emulator is emulating a
Virtual File System card in the slot specified by slotNo. This
function is provided in support of Expansion Manager emulation.

Comments This function may return FALSE if the user has not selected to
emulate a Virtual File System card in the given slot, or if Emulator is
emulating a different kind of card in that slot.

Host Control API Reference
Functions
New HostSlotMax

Purpose Returns the number of Virtual File System cards that Emulator is
emulating.

Prototype long HostSlotMax(void)

Parameters None.

Result A long value indicating the number of Virtual File System cards
Emulator is emulating. This function is provided in support of
Expansion Manager emulation.

Comments The functions that accept card numbers, HostSlotHasCard and
HostSlotRoot, accept numbers from 1 up to and including the
number returned by HostSlotMax.

New HostSlotRoot

Purpose Returns a string representing the root directory of the emulated slot.

Prototype const char* HostSlotRoot(long slotNo)

Parameters slotNo The slot number. This number can be in the
range from 1 up to and including the number
returned by function HostSlotMax.

Result The character string representing the directory to be used as the root
for the given Virtual File System card. This function is provided in
support of Expansion Manager emulation.

Comments The string returned is in host path format. This function may return
NULL if there is no Virtual File System card mounted in the slot
specified by slotNo or if the user has not selected a root directory
for that slot.
Palm OS Programming Development Tools Guide 127

Host Control API Reference
Functions
New HostStat

Purpose Returns status information about a file.

Prototype long HostStat(const char* filename, HostStatType*
buffer);

Parameters filename The name of the file or directory for which you
want status information

buffer The structure that stores the status information

Result Returns 0 if the operation was successful, and a non-zero value if
not.

New HostStrFTime

Purpose Generates formatted text, under the control of the format parameter
and the values stored in the time structure parameter.

Prototype HostSizeType HostStrFTime(char* string,
HostSizeType size, const char* format, const
HostTmType* time)

Parameters string The formatted text

size The size of an array element in the formatted
text

format The format definition

time A time structure

Result Returns the number of characters generated, if the number is less
than the size parameter; otherwise, returns zero, and the values
stored in the array are indeterminate.
128 Palm OS Programming Development Tools Guide

Host Control API Reference
Functions
New HostTime

Purpose Returns the current calendar time.

Prototype HostTimeType HostTime(HostTimeType* time);

Parameters time The time structure.

Result Returns the current calendar time if the operation is successful, and
returns -1 if not.

HostTmpFile

Purpose Returns the temporary file used by the debugging host.

Prototype HostFILE* HostTmpFile(void);

Parameters None.

Result A pointer to the temporary file, or NULL if an error occurred.

HostTmpNam

Purpose Creates a unique temporary file name.

Prototype char* HostTmpNam(char* s);

Parameters s Either be a NULL pointer or a pointer to a
character array. The character array must be at
least L_tmpnam characters long.

If s is not NULL, the newly created temporary
file name is stored into s.

Result A pointer to an internal static object that the calling program can
modify.
Palm OS Programming Development Tools Guide 129

Host Control API Reference
Functions
HostTraceClose

Purpose Closes the connection to the external trace reporting tool.

Prototype void HostTraceClose(void);

Parameters None.

Result None.

HostTraceInit

Purpose Initiates a connection to the external trace reporting tool.

Prototype void HostTraceInit(void);

Parameters None.

NOTE: The tracing functions are used in conjunction with an
external trace reporting tool. You can call these functions to send
information to the external tool in real time.

Result None.
130 Palm OS Programming Development Tools Guide

Host Control API Reference
Functions
HostTraceOutputB

Purpose Outputs a buffer of data, in hex dump format, to the external trace
reporting tool.

Prototype void HostTraceOutputB(unsigned short moduleId,
const unsigned char* buffer,
unsigned long len/*size_t*/);

Parameters moduleId The ID of the Palm OS subsystem from which
this output originates. You can use this with the
external tracing tool to filter traces according to
their origin.

The ID must match one of the error classes
defined in the SystemMgr.h file.

buffer A pointer to a buffer of raw data.

len The number of bytes of data in the buffer.

Result None.

HostTraceOutputT

Purpose Outputs a text string to the external trace reporting tool.

Prototype void HostTraceOutputT(unsigned short moduleId,
const char* fmt, ...);

Parameters moduleId The ID of the Palm OS subsystem from which
this output originates. You can use this with the
external tracing tool to filter traces according to
their origin.

The ID must match one of the error classes
defined in the SystemMgr.h file.
Palm OS Programming Development Tools Guide 131

Host Control API Reference
Functions
fmt A format string, as used in standard C-library
calls such as printf. The format string has the
following form:

% flags width type

... The list of variables to be formatted for output.

Table 2.2 shows the flag types that you can use in the format
specification for the tracing output functions.

Table 2.3 shows the output types that you can use in the format
specification for the tracing output functions.

Table 2.2 Trace function format specification flags

Flag Description

- Left-justified output.

+ Always display the sign symbol.

space Display a space when the value is positive, rather than
a '+' symbol.

Alternate form specifier.

Table 2.3 Trace function format specification types

Flag Description

% Displays the '%' character.

s Displays a null-terminated string value.

c Displays a character value.

ld Displays an Int32 value.

lu Displays a UInt32 value.

lx or lX Displays a UInt32 value in hexadecimal.

hd Displays an Int16 value.

hu Displays a UInt16 value.

hx or hX Displays an Int16 or UInt16 value i hexadecimal.
132 Palm OS Programming Development Tools Guide

Host Control API Reference
Functions
Result None.

HostTraceOutputTL

Purpose Outputs a text string, followed by a newline, to the external trace
reporting tool. This function performs the same operation as the
HostTraceOutputT function, and adds the newline character.

Prototype voidHostTraceOutputTL(unsigned short moduleId,
const char* fmt, ...);

Parameters moduleId The ID of the Palm OS subsystem from which
this output originates. You can use this with the
external tracing tool to filter traces according to
their origin.

The ID must match one of the error classes
defined in the SystemMgr.h file.

fmt A format string, as used in standard C-library
calls such as printf. For more information
about the formatting specification, see the
description of the HostTraceOutputT function.

... The list of variables to be formatted for output.

Result None.
Palm OS Programming Development Tools Guide 133

Host Control API Reference
Functions
HostTraceOutputVT

Purpose Outputs a text string to the external trace reporting tool.

Prototype void HostTraceOutputVT(unsigned short moduleId,
const char* fmt, va_list vargs);

Parameters moduleId The ID of the Palm OS subsystem from which
this output originates. You can use this with the
external tracing tool to filter traces according to
their origin.

The ID must match one of the error classes
defined in the SystemMgr.h file.

fmt A format string, as used in standard C-library
calls such as printf. For more information
about the formatting specification, see the
description of the HostTraceOutputT function.

vargs A structure containing the variable argument
list. This is the same kind of variable argument
list used for standard C-library functions such
as vprintf.

Result None.
134 Palm OS Programming Development Tools Guide

Host Control API Reference
Functions
HostTraceOutputVTL

Purpose Outputs a text string, followed by a newline, to the external trace
reporting tool. This function performs the same operation as the
HostTraceOutputVT function, and adds the newline character.

Prototype void HostTraceOutputVTL(unsigned short moduleId,
const char* fmt, va_list vargs);

Parameters moduleId The ID of the Palm OS subsystem from which
this output originates. You can use this with the
external tracing tool to filter traces according to
their origin.

The ID must match one of the error classes
defined in the SystemMgr.h file.

fmt A format string, as used in standard C-library
calls such as printf. For more information
about the formatting specification, see the
description of the HostTraceOutputT function.

vargs A structure containing the variable argument
list. This is the same kind of variable argument
list used for standard C-library functions such
as vprintf.

Result None.

New HostTruncate

Purpose Extends or truncates the file associated with the file handle to the
length specified by the size.

Prototype long HostTruncate(const char* filename, long
filesize);

Parameters filename The name of the file.
Palm OS Programming Development Tools Guide 135

Host Control API Reference
Reference Summary
filesize The size of the file.

Result Returns the value 0 if the file is successfully changed, or returns -1 if
there was an error.

New HostUTime

Purpose Sets the modification time for a file.

Prototype long HostUTime (const char* filename,
HostUTimeType* buffer);

Parameters filename The filename of the file.

buffer The stored time values.

Result Returns 0 if the file-modification time was successfully changed, or
returns -1 if there was an error.

Reference Summary
The tables in this section summarize the host control API functions.

Host Control Database Functions
Table 2.4 Host Control Database Functions

Function Description

HostExportFile Copies a database from the handheld device to
the desktop computer.

HostImportFile Copies a database from the desktop computer to
the handheld device, and stores it on the
specified card number. The database name on
the handheld device is the name stored in the
file.

HostSaveScreen Saves the LCD frame buffer to a file.
136 Palm OS Programming Development Tools Guide

Host Control API Reference
Reference Summary
New Host Control Directory Handler
Functions

Host Control Environment Functions

Table 2.5 Host Control Directory Handler Functions

Function Description

HostCloseDir Closes a directory.

HostMkDir Makes a directory.

HostOpenDir Opens a directory.

HostReadDir Reads a directory.

HostRmDir Removes a directory.

Table 2.6 Host Control Environment Functions

Function Description

HostGestalt Currently does nothing except to return an
“invalid selector” error.

HostGetHostID Retrieves the ID of the debugging host. Palm OS
Emulator always returns the value
hostIDPalmOSEmulator.

HostGetHostPlatform Retrieves the host platform ID.

HostGetHostVersion Returns the version number of the debugging
host.

HostIsCallingTrap Returns a Boolean indicating whether the
specified function selector is implemented on
the debugging host.

HostIsSelectorImplemented Returns a Boolean indicating whether the
specified function selector is implemented on
the debugging host.
Palm OS Programming Development Tools Guide 137

Host Control API Reference
Reference Summary
New Host Control File Chooser Support
Functions

Host Control Gremlin Functions

Table 2.7 Host Control File Choose Support Functions

Function Description

HostGetDirectory Gets a directory, in support of the operating
system file chooser dialog box.

HostGetFile Gets a file, in support of the operating system
file chooser dialog box.

HostPutFile Writes a file, in support of the operating system
file chooser dialog box.

Table 2.8 Host Control Gremlin Functions

Function Description

HostGremlinCounter Returns the current count for the currently
running gremlin.

HostGremlinIsRunning Returns a Boolean value indicating whether a
gremlin is currently running.

HostGremlinLimit Returns the limit value of the currently running
gremlin.

HostGremlinNew Creates a new gremlin.

HostGremlinNumber Returns the gremlin number of the currently
running gremlin.
138 Palm OS Programming Development Tools Guide

Host Control API Reference
Reference Summary
Host Control Logging Functions

Host Control Preference Functions

Host Control Profiling Functions

Table 2.9 Host Control Logging Functions

Function Description

HostLogFile Returns a reference to the file that Palm OS
Emulator is using to log information.

HostSetLogFileSize Modifies the size of the logging file.

Table 2.10 Host Control Preference Functions

Function Description

HostGetPreference Retrieves the value of a preference.

HostSetPreference Sets a new value for a preference.

Table 2.11 Host Control Profiling Functions

Function Description

HostProfileCleanup Releases the memory used for profiling and
disables profiling.

HostProfileDetailFn Profiles the function that contains the specified
address.

HostProfileDump Writes the current profiling information to the
named file.

HostProfileGetCycles Returns the current running CPU cycle count.

HostProfileInit Initializes and enables profiling in the
debugging host.

HostProfileStart Turns profiling on.

HostProfileStop Turns profiling off.
Palm OS Programming Development Tools Guide 139

Host Control API Reference
Reference Summary
Host Control RPC Functions

Host Control Standard C Library Functions

Table 2.12 Host Control RPC Functions

Function Description

HostSessionClose Closes the current emulation session

HostSessionCreate Creates a new emulation session.

HostSessionOpen Opens a previously saved emulation session.

HostSessionQuit Asks Palm OS Emulator to quit.

HostSignalResume Resumes Palm OS Emulator after it has halted
to wait for external scripts to handle a signal.

HostSignalSend Sends a signal to external scripts.

HostSignalWait Waits for Palm OS Emulator to send a signal.

Table 2.13 Host Control Standard C Library Functions

Function Description

HostErrNo Returns the error number from the most recent
host control API operation.

HostFClose Closes a file on the desktop computer. Returns 0
if the operation was successful, and a non-zero
value if not.

HostFEOF Returns 0 if the specified file is at its end, and a
non-zero value otherwise.

HostFError Returns the error code from the most recent
operation on the specified file. Returns 0 if no
errors have occurred on the file.

HostFFlush Flushes the buffer for the specified file.

HostFGetC Returns the character at the current position in
the specified file. Returns EOF to indicate an
error.
140 Palm OS Programming Development Tools Guide

Host Control API Reference
Reference Summary
HostFGetPos Retrieves the current position in the specified
file. Returns 0 if the operation was successful,
and a non-zero value if not.

HostFGetS Retrieves a character string from the selected
file and returns a pointer to that string. Returns
NULL to indicate an error.

HostFOpen Opens a file on the desktop computer and
returns a HostFILE pointer for that file.
Returns NULL to indicate an error.

HostFPrintF Writes a formatted string to a file, and returns
the number of characters written.

HostFPutC Writes a character to the specified file, and
returns the character written. Returns EOF to
indicate an error.

HostFPutS Writes a string to the specified file, and returns
a non-negative value to indicate success.

HostFRead Reads a number of items from the file into a
buffer. Returns the number of items that were
actually read.

HostFree Frees memory on the desktop computer.

HostFReopen Associates a file stream with a different file.

HostFScanF Scans a file for formatted input.

HostFSeek Moves the file pointer to the specified position,
and returns 0 to indicate success.

HostFSetPos Sets the position indicator of the file, and
returns 0 to indicate success.

HostFTell Retrieves the current position of the specified
file. Returns -1 to indicate an error.

Table 2.13 Host Control Standard C Library Functions

Function Description
Palm OS Programming Development Tools Guide 141

Host Control API Reference
Reference Summary
New Host Control Time Functions

HostFWrite Writes data to a file, and returns the actual
number of items written.

HostGetEnv Retrieves the value of an environment variable.

HostMalloc Allocates a memory block on the debugging
host, and returns a pointer to the allocated
memory. Returns NULL if there is not enough
memory available.

HostRealloc Reallocates space for the specified memory
block.

HostRemove Deletes a file.

HostRename Renames a file.

HostTmpFile Returns the temporary file used by the
debugging host.

HostTmpNam Creates a unique temporary file name.

Table 2.14 Host Control Time Functions

Function Description

HostAscTime Returns a character string representation of the
time.

HostClock Returns an elapsed time.

HostCTime Converts calendar time to a text representation.

HostGMTime Returns time structure representation of the time
expressed as Universal Time Coordinated
(UTC). UTC was formerly Greenwich Mean
Time (GMT).

Table 2.13 Host Control Standard C Library Functions

Function Description
142 Palm OS Programming Development Tools Guide

Host Control API Reference
Reference Summary
Host Control Tracing Functions

HostLocalTime Returns time structure representation of the time
expressed as local time.

HostMkTime Alters the parameter values to represent an
equivalent encoded local time, but with the
values of all members within their normal
ranges.

HostStrFTime Generates formatted text, under the control of
the format parameter and the values stored in
the time structure parameter.

HostTime Returns the current calendar time.

HostUTime

Table 2.14 Host Control Time Functions

Function Description

Table 2.15 Host Control Tracing Functions

Function Description

HostTraceClose Must be called when done logging trace
information.

HostTraceInit Must be called before logging any trace
information.

HostTraceOutputT Outputs text to the trace log using printf-style
formatting.

HostTraceOutputTL Outputs text to the trace log using printf-style
formatting, and appends a newline character to
the text.

HostTraceOutputVT Outputs text to the trace log using vprintf-style
formatting.
Palm OS Programming Development Tools Guide 143

Host Control API Reference
Reference Summary
HostTraceOutputVTL Outputs text to the trace log using vprintf-style
formatting, and appends a newline character to
the text.

HostTraceOutputB Outputs a buffer of raw data to the trace log in
hex dump format.

Table 2.15 Host Control Tracing Functions (continued)

Function Description
144 Palm OS Programming Development Tools Guide

3
Debugger Protocol
Reference
This appendix describes the debugger protocol, which provides an
interface between a debugging target and a debugging host. For
example, the Palm Debugger and the Palm OS® Emulator use this
protocol to exchange commands and information.

IMPORTANT: This chapter describes the version of the Palm
Debugger protocol that shipped on the Metrowerks CodeWarrior
for the Palm Operating System, Version 6 CD-ROM. If you are
using a different version, the features in your version might be
different than the features described here.

This chapter covers the following topics:

• “About the Palm Debugger Protocol”

• “Constants” on page 148

• “Data Structures” on page 150

• “Debugger Protocol Commands” on page 152

• “Summary of Debugger Protocol Packets” on page 173

About the Palm Debugger Protocol
The Palm debugger protocol allows a debugging target, which is
usually a handheld device ROM or an emulator program such as
the Palm OS Emulator, to exchange information with a debugging
host, such as the Palm Debugger or the Metrowerks debugger.

The debugger protocol involves sending packets between the host
and the target. When the user of the host debugging program enters
a command, the host converts that command into one or more
command packets and sends each packet to the debugging target. In
Palm OS Programming Development Tools Guide 145

Debugger Protocol Reference
About the Palm Debugger Protocol
most cases, the target subsequently responds by sending a packet
back to the host.

Packets
There are three packet types used in the debugger protocol:

• The debugging host sends command request packets to the
debugging target.

• The debugging target sends command response packets back to
the host.

• Either the host or the target can send a message packet to the
other.

Although the typical flow of packets involves the host sending a
request and the target sending back a response, although there are a
some exceptions, as follows:

• The host can send some requests to the target that do not
result in a response packet being returned. For example,
when the host sends the Continue command packet to tell
the target to continue execution, the target does not send
back a response packet.

• The target can send response packets to the host without
receiving a request packet. For example, whenever the
debugging target encounters an exception, it sends a State
response packet to the host.

Packet Structure
Each packet consists of a packet header, a variable-length packet
body, and a packet footer, as shown in Figure 3.1.
146 Palm OS Programming Development Tools Guide

Debugger Protocol Reference
About the Palm Debugger Protocol
Figure 3.1 Packet Structure

The Packet Header

The packet header starts with the 24-bit key value $BEEFFD and
includes header information and a checksum of the header itself.

The Packet Body

The packet body contains the command byte, a filler byte, and
between 0 and 270 bytes of data. See “_SysPktBodyCommon” on
page 150 for a description of the structure used to represent the two
byte body header (the command and filler bytes), and see Table 3.1
for a list of the command constants.

The Packet Footer

The packet footer contains a 16-bit CRC of the header and body.
Note that the CRC computation does not include the footer.

$BE

$EF

$ED

destination ID

source ID

type

transaction ID

header checksum

body size

command ID

filler

command data
.
.
.
.

CRC

Header
(10 bytes)

Body
(2 to 272 bytes)

Footer
(2 bytes)

Debugger
Packet
Palm OS Programming Development Tools Guide 147

Debugger Protocol Reference
Constants
Packet Communications
The communications protocol between the host and target is very
simple: the host sends a request packet to the target and waits for a
time-out or for a response from the target.

If a response is not detected within the time-out period, the host
does not retry the request. When a response does not come back
before timing out, it usually indicates that one of two things is
happening:

• the debugging target is busy executing code and has not
encountered an exception

• the state of the debugging target has degenerated so badly
that it cannot respond

The host has the option of displaying a message to the user to
inform him or her that the debugging target is not responding.

Constants
This section describes the constants and structure types that are
used with the packets for various commands.

Packet Constants
#define sysPktMaxMemChunk256
#define sysPktMaxBodySize(sysPktMaxMemChunk+16)
#define sysPktMaxNameLen 32

sysPktMaxMemChunk
The maximum number of bytes that can be read
by the Read Memory command or written by
the Write Memory command.

sysPktMaxBodySize
The maximum number of bytes in a request or
response packet.

sysPktMaxNameLen
The maximum length of a function name.
148 Palm OS Programming Development Tools Guide

Debugger Protocol Reference
Constants
State Constants
#define sysPktStateRspInstWords 15

sysPktStateRespInstWords
The number of remote code words sent in the
response packet for the State command.

Breakpoint Constants
#define dbgNormalBreakpoints5
#define dbgTempBPIndex dbNormalBreakpoints
#define dbgTotalBreakpoints (dbgTempBPIndex+1)

dbgNormalBreakpoints
The number of normal breakpoints available in
the debugging target.

dbgTempBPIndex
The index in the breakpoints array of the
temporary breakpoint.

dbgTotalBreakpoints
The total number of breakpoints in the
breakpoints array, including the normal
breakpoints and the temporary breakpoint.

Command Constants
Each command is represented by a single byte constant. The upper
bit of each request command is clear, and the upper bit of each
response command is set. Table 3.1 shows the command constants.

Table 3.1 Debugger protocol command constants

Command Request constant Response constant

Continue sysPktContinueCmd N/A

Find sysPktFindCmd sysPktFindRsp

Get Breakpoints sysPktGetBreakpointsCmd sysPktGetBreakpointsRsp

Get Routine
Name

sysPktGetRtnNameCmd sysPktGetRtnNameRsp
Palm OS Programming Development Tools Guide 149

Debugger Protocol Reference
Data Structures
Data Structures
This section describes the data structures used with the request and
response packets for the debugger protocol commands.

_SysPktBodyCommon
The _SysPktBodyCommon macro defines the fields common to
every request and response packet.

#define _sysPktBodyCommon \
Byte command; \
Byte _filler;

Get Trap Breaks sysPktGetTrapBreaksCmd sysPktGetTrapBreaksRsp

Get Trap
Conditionals

sysPktGetTrapConditionalsCm
d

sysPktGetTrapConditionalsRsp

Message sysPktRemoteMsgCmd N/A

Read Memory sysPktReadMemCmd sysPktReadMemRsp

Read Registers sysPktReadRegsCmd sysPktReadRegsRsp

RPC sysPktRPCCmd sysPktRPCRsp

Set Breakpoints sysPktSetBreakpointsCmd sysPktSetBreakpointsRsp

Set Trap Breaks sysPktSetTrapBreaksCmd sysPktSetTrapBreaksRsp

Set Trap
Conditionals

sysPktSetTrapConditionalsCm
d

sysPktSetTrapConditionalsRsp

State sysPktStateCmd sysPktStateRsp

Toggle
Debugger Breaks

sysPktDbgBreakToggleCmd sysPktDbgBreakToggleRsp

Write Memory sysPktWriteMemCmd sysPktWriteMemRsp

Write Registers sysPktWriteRegsCmd sysPktWriteRegsRsp

Table 3.1 Debugger protocol command constants (continued)

Command Request constant Response constant
150 Palm OS Programming Development Tools Guide

Debugger Protocol Reference
Data Structures
Fields

command The 1-byte command value for the packet.

_filler Included for alignment only. Not used.

SysPktBodyType
The SysPktBodyType represents a command packet that is sent to
or received from the debugging target.

typedef struct SysPktBodyType
{

_SysPktBodyCommon;
Byte data[sysPktMaxBodySize-2];

} SysPktBodyType;

Fields

_SysPktBodyCommon
The command header for the packet.

data The packet data.

SysPktRPCParamType
The SysPktRPCParamType is used to send a parameter in a remote
procedure call. See the RPC command for more information.

typedef struct SysPktRPCParamInfo
{

Byte byRef;
Byte size;
Word data[?];

} SysPktRPCParamType;

Fields

byRef Set to 1 if the parameter is passed by reference.

size The number of bytes in the data array. This
must be an even number.

data The parameter data.
Palm OS Programming Development Tools Guide 151

Debugger Protocol Reference
Debugger Protocol Commands
BreakpointType
The BreakpointType structure is used to represent the status of a
single breakpoint on the debugging target.

typedef struct BreakpointType
{

Ptr addr;
Boolean enabled;
Boolean installed;

} BreakpointType;

Fields

addr The address of the breakpoint. If this is set to 0,
the breakpoint is not in use.

enabled A Boolean value. This is TRUE if the breakpoint
is currently enabled, and FALSE if not.

installed Included for correct alignment only. Not used.

Debugger Protocol Commands
This section describes each command that you can send to the
debugging target, including a description of the response packet
that the target sends back.

Continue

Purpose Tells the debugging target to continue execution.

Comments This command usually gets sent when the user specifies the Go
command. Once the debugging target continues execution, the
debugger is not reentered until a breakpoint or other exception is
encountered.

NOTE: The debugging target does not send a response to this
command.

Commands The Continue request command is defined as follows:
152 Palm OS Programming Development Tools Guide

Debugger Protocol Reference
Debugger Protocol Commands
#define sysPktContinueCmd0x07

Request Packet typedef struct SysPktContinueCmdType
{

_sysPktBodyCommon;
M68KresgType regs;
Boolean stepSpy;
DWord ssAddr;
DWord ssCount;
DWord ssCheckSum;

}SysPktContinueCmdType;

Fields

<-- _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

--> regs The new values for the debugging target
processor registers. The new register values are
stored in sequential order: D0 to D7, followed
by A0 to A6.

--> stepSpy A Boolean value. If this is TRUE, the debugging
target continues execution until the value that
starts at the specified step-spy address changes.
If this is FALSE, the debugging target continue
execution until a breakpoint or other exception
is encountered.

--> ssAddr The step-spy starting address. An exception is
generated when the value starting at this
address, for ssCount bytes, changes on the
debugging target.

--> ssCount The number of bytes in the “spy” value.

--> ssCheckSum A checksum for the “spy” value.
Palm OS Programming Development Tools Guide 153

Debugger Protocol Reference
Debugger Protocol Commands
Find

Purpose Searches for data in memory on the debugging target.

Comments .

Commands The Find request and response commands are defined as follows:

#define sysPktFindCmd0x13
#define sysPktFindRsp0x93

Request Packet typedef struct SysPktFindCmdType
{

_sysPktBodyCommon;
DWord firstAddr;
DWord lastAddr;
Word numBytes
Boolean caseInsensitive;
Byte searchData[?];

}SysPktFindCmdType;

Fields

--> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

--> firstAddr The starting address of the memory range on
the debugging target to search for the data.

--> lastAddr The ending address of the memory range on
the debugging target to search for the data.

--> numBytes The number of bytes of data in the search
string.

--> searchData The search string. The length of this array is
defined by the value of the numBytes field.

Response
Packet

typedef struct SysPktFindRspType
{

_sysPktBodyCommon;
154 Palm OS Programming Development Tools Guide

Debugger Protocol Reference
Debugger Protocol Commands
DWord addr;
Boolean found;

}SysPktFindRspType

Fields

<-- _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

<-- addr The address of the data string in memory on
the debugging target.

<-- found A Boolean value. If this is TRUE, the search
string was found on the debugging target, and
the value of addr is valid. If this is FALSE, the
search string was not found, and the value of
addr is not valid.

Get Breakpoints

Purpose Retrieves the current breakpoint settings from the debugging target.

Comments The body of the response packet contains an array with
dbgTotalBreakpoints values in it, one for each possible
breakpoint.

If a breakpoint is currently disabled on the debugging target, the
enabled field for that breakpoint is set to 0.

If a breakpoint address is set to 0, the breakpoint is not currently in
use.

The dbgTotalBreakpoints constant is described in “Breakpoint
Constants” on page 149.

Commands The Get Breakpoints command request and response
commands are defined as follows:

#define sysPktGetBreakpointsCmd0x0B
#define sysPktGetBreakpointsRsp0x8B
Palm OS Programming Development Tools Guide 155

Debugger Protocol Reference
Debugger Protocol Commands
Request Packet typedef struct SysPktGetBreakpointsCmdType
{
_sysPktBodyCommon;

}SysPktGetBreakpointsCmdType

Fields

--> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Response
Packet

typedef struct SysPktGetBreakpointsRspType
{
_sysPktBodyCommon;
BreakpointType db[dbgTotalBreakpoints];

}SysPktGetBreakpointsRspType

Fields

<-- _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

<-- bp An array with an entry for each of the possible
breakpoints. Each entry is of the type
BreakpointType.

Get Routine Name

Purpose Determines the name, starting address, and ending address of the
function that contains the specified address.

Comments The name of each function is imbedded into the code when it gets
compiled. The debugging target can scan forward and backward in
the code to determine the start and end addresses for each function.

Commands The Get Routine Name command request and response
commands are defined as follows:
156 Palm OS Programming Development Tools Guide

Debugger Protocol Reference
Debugger Protocol Commands
#define sysPktGetRtnNameCmd0x04
#define sysPktGetRtnNameRsp0x84

Request Packet typedef struct SysPktRtnNameCmdType
{

_sysPktBodyCommon;
void* address

}SysPktRtnNameCmdType;

Fields

--> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

--> address The code address whose function name you
want to discover.

Response
Packet

typedef struct SysPktRtnNameRspType
{

_sysPktBodyCommon;
void* address;
void* startAddr;
void* endAddr;
char name[sysPktMaxNameLen];

}SysPktRtnNameRspType;

Fields

<-- _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

<-- address The code address whose function name was
determined. This is the same address that was
specified in the request packet.

<-- startAddr The starting address in target memory of the
function that includes the address.
Palm OS Programming Development Tools Guide 157

Debugger Protocol Reference
Debugger Protocol Commands
<-- endAddr The ending address in target memory of the
function that includes the address. If a function
name could not be found, this is the last
address that was scanned.

<-- name The name of the function that includes the
address. This is a null-terminated string. If a
function name could not be found, this is the
null string.

Get Trap Breaks

Purpose Retrieves the settings for the trap breaks on the debugging target.

Comments Trap breaks are used to force the debugging target to enter the
debugger when a particular system trap is called.

The body of the response packet contains an array with
dbgTotalBreakpoints values in it, one for each possible trap
break.

Each trap break is a single word value that contains the system trap
number.

Commands The Get Trap Breaks request and response commands are
defined as follows:

#define sysPktGetTrapBreaksCmd0x10
#define sysPktGetTrapBreaksRsp0x90

Request Packet typedef struct SysPktGetTrapBreaksCmdType
{

_sysPktBodyCommon;
}SysPktGetTrapBreaksCmdType;

Fields

--> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.
158 Palm OS Programming Development Tools Guide

Debugger Protocol Reference
Debugger Protocol Commands
Response
Packet

typedef struct SysPktGetTrapBreaksRspType
{

_sysPktBodyCommon;
Word trapBP[dbgTotalTrapBreaks];

}SysPktGetTrapBreaksRspType;

Fields

<-- _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

<-- trapBP An array with an entry for each of the possible
trap breaks. A value of 0 indicates that the trap
break is not used.

Get Trap Conditionals

Purpose Retrieves the trap conditionals values from the debugging target.

Comments Trap conditionals are used when setting A-Traps for library calls.
You can set a separate conditional value for each A-Trap.

The body of the response packet contains an array with
dbgTotalBreakpoints values in it, one for each possible trap
break.

Each trap conditional is a value; if the value of the first word on the
stack matches the conditional value when the trap is called, the
debugger breaks.

Commands The Get Trap Conditionals request and response commands
are defined as follows:

#define sysPktGetTrapConditionsCmd0x14
#define sysPktGetTrapConditionsRsp0x94

Request Packet typedef struct SysPktGetTrapConditionsCmdType
{

Palm OS Programming Development Tools Guide 159

Debugger Protocol Reference
Debugger Protocol Commands
_sysPktBodyCommon;
}SysPktGetTrapConditionsCmdType

Fields

--> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Response
Packet

typedef struct SysPktGetTrapConditionsRspType
{

_sysPktBodyCommon;
Word trapParam[dbgTotalTrapBreaks];

}SysPktGetTrapConditionsRspType

Fields

<-- _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

<-- trapParam An array with an entry for each of the possible
trap breaks. A value of 0 indicates that the trap
conditional is not used .

Message

Purpose Sends a message to display on the debugging target.

Comments Application can compile debugger messages into their code by
calling the DbgMessage function.

The debugging target does not send back a response packet for this
command.

Commands The Message request command is defined as follows:

#define sysPktRemoteMsgCmd0x7F

Request Packet typedef struct SysPktRemoteMsgCmdType
160 Palm OS Programming Development Tools Guide

Debugger Protocol Reference
Debugger Protocol Commands
{
_sysPktBodyCommon;
Byte text[1];

}SysPktRemoteMsgCmdType;

Fields

--> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

--> text .

Read Memory

Purpose Reads memory values from the debugging target.

Comments This command can read up to sysPktMaxMemChunk bytes of
memory. The actual size of the response packet depends on the
number of bytes requested in the request packet.

Commands The Read Memory command request and response commands are
defined as follows:

#define sysPktReadMemCmd0x01
#define sysPktReadMemRsp0x81

Request Packet typedef struct SysPktReadMemCmdType
{

_sysPktBodyCommon;
void* address;
Word numBytes;

}SysPktReadMemCmdType;

Fields

--> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.
Palm OS Programming Development Tools Guide 161

Debugger Protocol Reference
Debugger Protocol Commands
--> address The address in target memory from which to
read values.

--> numBytes The number of bytes to read from target
memory.

Response
Packet

typedef struct SysPktReadMemRspType
{

_sysPktBodyCommon;
//Byte data[?];

}SysPktReadMemRspType;

Fields

<-- _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

<-- data The returned data. The number of bytes in this
field matches the numBytes value in the
request packet.

Read Registers

Purpose Retrieves the value of each of the target processor registers.

Comments The eight data registers are stored in the response packet body
sequentially, from D0 to D7. The seven address registers are stored
in the response packet body sequentially, from A0 to A6.

Commands The Read Registers command request and response commands
are defined as follows:

#define sysPktReadRegsCmd0x05
#define sysPktReadRegsRsp0x85

Request Packet typedef struct SysPktReadRegsCmdType
{

_sysPktBodyCommon;
162 Palm OS Programming Development Tools Guide

Debugger Protocol Reference
Debugger Protocol Commands
}SysPktReadRegsCmdType;

Fields

--> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Response
Packet

typedef struct SysPktReadRegsRspType
{

_sysPktBodyCommon;
M68KRegsType reg;

}SysPktReadRegsRspType;

Fields

<-- _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

<-- reg The register values in sequential order: D0 to
D7, followed by A0 to A6.

RPC

Purpose Sends a remote procedure call to the debugging target.

Comments .

Commands The RPC request and response commands are defined as follows:

#define sysPktRPCCmd0x0A
#define sysPktRPCRsp0x8A

Request Packet typedef struct SysPktRPCType
{

_sysPktBodyCommon;
Word trapWord;
DWord resultD0;
Palm OS Programming Development Tools Guide 163

Debugger Protocol Reference
Debugger Protocol Commands
DWord resultD0;
Word numParams;
SysPktRPCParamTypeparam[?];

}

Fields

--> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

--> trapWord The system trap to call.

--> resultD0 The result from the D0 register.

--> resultA0 The result from the A0 register.

--> numParams The number of RPC parameter structures in the
param array that follows.

--> param An array of RPC parameter structures, as
described in SysPktRPCParamType.

Set Breakpoints

Purpose Sets breakpoints on the debugging target.

Comments The body of the request packet contains an array with
dbgTotalBreakpoints values in it, one for each possible
breakpoint. If a breakpoint is currently disabled on the debugging
target, the enabled field for that breakpoint is set to 0.

The dbgTotalBreakpoints constant is described in Breakpoint
Constants.

Commands The Set Breakpoints command request and response
commands are defined as follows:

#define sysPktSetBreakpointsCmd0x0C
#define sysPktSetBreakpointsRsp0x8C

Request Packet typedef struct SysPktSetBreakpointsCmdType
{

164 Palm OS Programming Development Tools Guide

Debugger Protocol Reference
Debugger Protocol Commands
_sysPktBodyCommon;
BreakpointType db[dbgTotalBreakpoints];

}SysPktSetBreakpointsCmdType

Fields

--> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

--> bp An array with an entry for each of the possible
breakpoints. Each entry is of the type
BreakpointType.

Response
Packet

typedef struct SysPktSetBreakpointsRspType
{
_sysPktBodyCommon;

}SysPktSetBreakpointsRspType

Fields

<-- _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Set Trap Breaks

Purpose Sets breakpoints on the debugging target.

Comments The body of the request packet contains an array with
dbgTotalBreakpoints values in it, one for each possible trap
break. If a trap break is currently disabled on the debugging target,
the value of that break is set to 0.

The dbgTotalBreakpoints constant is described in Breakpoint
Constants.

Commands The Set Breakpoints command request and response
commands are defined as follows:
Palm OS Programming Development Tools Guide 165

Debugger Protocol Reference
Debugger Protocol Commands
#define sysPktSetTrapBreaksCmd0x0C
#define sysPktSetTrapBreaksRsp0x8C

Request Packet typedef struct SysPktSetTrapBreakssCmdType
{
_sysPktBodyCommon;
Word trapBP[dbgTotalBreakpoints];

}SysPktSetTrapBreaksCmdType

Fields

--> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

--> trapBP An array with an entry for each of the possible
trap breaks. If the value of an entry is 0, the
break is not currently in use.

Response
Packet

typedef struct SysPktSetTrapBreaksRspType
{
_sysPktBodyCommon;

}SysPktSetTrapBreaksRspType

Fields

<-- _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Set Trap Conditionals

Purpose Sets the trap conditionals values for the debugging target.

Comments Trap conditionals are used when setting A-Traps for library calls.
You can set a separate conditional value for each A-Trap.
166 Palm OS Programming Development Tools Guide

Debugger Protocol Reference
Debugger Protocol Commands
The body of the request packet contains an array with
dbgTotalBreakpoints values in it, one for each possible trap
break.

Each trap conditional is a value; if the value of the first word on the
stack matches the conditional value when the trap is called, the
debugger breaks.

Commands The Set Trap Conditionals request and response commands
are defined as follows:

#define sysPktSetTrapConditionsCmd0x15
#define sysPktSetTrapConditionsRsp0x95

Request Packet typedef struct SysPktSetTrapConditionsCmdType
{

_sysPktBodyCommon;
Word trapParam[dbgTotalTrapBreaks];

}SysPktSetTrapConditionsCmdType

Fields

--> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

--> trapParam An array with an entry for each of the possible
trap breaks. A value of 0 indicates that the trap
conditional is not used .

Response
Packet

typedef struct SysPktSetTrapConditionsRspType
{

_sysPktBodyCommon;
}SysPktSetTrapConditionsRspType

Fields

<-- _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.
Palm OS Programming Development Tools Guide 167

Debugger Protocol Reference
Debugger Protocol Commands
State

Purpose Sent by the host program to query the current state of the debugging
target, and sent by the target whenever it encounters an exception
and enters the debugger.

Comments The debugging target sends the State response packet whenever it
enters the debugger for any reason, including a breakpoint, a bus
error, a single step, or any other reason.

Commands The State request and response commands are defined as follows:

#define sysPktStateCmd0x00
#define sysPktStateRsp0x80

Request Packet typedef struct SysPktStateCmdType
{

_sysPktBodyCommon;
} SysPktStateCmdType

Fields

--> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Response
Packet

typedef struct SysPktStateRspType
{

_sysPktBodyCommon;
Boolean resetted;
Word exceptionId;
M68KregsType reg;
Word inst[sysPktStateRspInstWords];
BreakpointTypebp[dbgTotalBreakpoints];
void* startAddr;
void* endAddr;
char name[sysPktMaxNameLen];
Byte trapTableRev;

} SysPktStateRspType;
168 Palm OS Programming Development Tools Guide

Debugger Protocol Reference
Debugger Protocol Commands
Fields

<-- _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

<-- resetted A Boolean value. This is TRUE if the debugging
target has just been reset.

<-- exceptionId The ID of the exception that caused the
debugger to be entered.

<-- reg The register values in sequential order: D0 to
D7, followed by A0 to A6.

<-- inst A buffer of the instructions starting at the
current program counter on the debugging
target.

<-- bp An array with an entry for each of the possible
breakpoints. Each entry is of the type
BreakpointType.

<-- startAddr The starting address of the function that
generated the exception.

<-- endAddr The ending address of the function that
generated the exception.

<-- name The name of the function that generated the
exception. This is a null-terminated string. If no
name can be found, this is the null string.

<-- trapTableRev The revision number of the trap table on the
debugging target. You can use this to determine
when the trap table cache on the host computer
is invalid.
Palm OS Programming Development Tools Guide 169

Debugger Protocol Reference
Debugger Protocol Commands
Toggle Debugger Breaks

Purpose Enables or disables breakpoints that have been compiled into the
code.

Comments A breakpoint that has been compiled into the code is a special TRAP
instruction that is generated when source code includes calls to the
DbgBreak and DbgSrcBreak functions.

Sending this command toggles the debugging target between
enabling and disabling these breakpoints.

Commands The Toggle Debugger Breaks request and response commands
are defined as follows:

#define sysPktDbgBreakToggleCmd0x0D
#define sysPktDbgBreakToggleRsp0x8D

Request Packet typedef struct SysPktDbgBreakToggleCmdType
{

_sysPktBodyCommon;
}SysPktDbgBreakToggleCmdType;

Fields

--> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Response
Packet

typedef struct SysPktDbgBreakToggleRspType
{

_sysPktBodyCommon;
Boolean newState

}SysPktDbgBreakToggleRspType;

Fields

<-- _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.
170 Palm OS Programming Development Tools Guide

Debugger Protocol Reference
Debugger Protocol Commands
<-- newState A Boolean value. If this is set to TRUE, the new
state has been set to enable breakpoints that
were compiled into the code. If this is set to
FALSE, the new state has been set to disable
breakpoints that were compiled into the code.

Write Memory

Purpose Writes memory values to the debugging target.

Comments This command can write up to sysPktMaxMemChunk bytes of
memory. The actual size of the request packet depends on the
number of bytes that you want to write.

Commands The Write Memory command request and response commands are
defined as follows:

#define sysPktWriteMemCmd0x02
#define sysPktWriteMemRsp0x82

Request Packet typedef struct SysPktWriteMemCmdType
{

_sysPktBodyCommon;
void* address;
Word numBytes;
//Byte data[?]

}SysPktWriteMemCmdType;

Fields

--> _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

--> address The address in target memory to which the
values are written.

--> numBytes The number of bytes to write.

--> data The bytes to write into target memory. The size
of this field is defined by the numBytes
parameter.
Palm OS Programming Development Tools Guide 171

Debugger Protocol Reference
Debugger Protocol Commands
Response
Packet

typedef struct SysPktWriteMemRspType
{

_sysPktBodyCommon;
}SysPktWriteMemRspType;

Fields

<-- _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Write Registers

Purpose Sets the value of each of the target processor registers.

Comments The eight data registers are stored in the request packet body
sequentially, from D0 to D7. The seven address registers are stored
in the request packet body sequentially, from A0 to A6.

Commands The Write Registers command request and response
commands are defined as follows:

#define sysPktWriteRegsCmd0x06
#define sysPktWriteRegsRsp0x86

Request Packet typedef struct SysPktWriteRegsCmdType
{

_sysPktBodyCommon;
M68KRegsType reg;

}SysPktWriteRegsCmdType;

Fields

-->_sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.
172 Palm OS Programming Development Tools Guide

Debugger Protocol Reference
Summary of Debugger Protocol Packets
--> reg The new register values in sequential order: D0
to D7, followed by A0 to A6.

Response
Packet

typedef struct SysPktWriteRegsRspType
{

_sysPktBodyCommon;
}SysPktWriteRegsRspType;

Fields

<-- _sysPktBodyCommon
The common packet header, as described in
_SysPktBodyCommon.

Summary of Debugger Protocol Packets
Table 3.2 summarizes the command packets that you can use with
the debugger protocol.

Table 3.2 Debugger protocol command packets

Command Description

Continue Tells the debugging target to continue execution.

Find Searches for data in memory on the debugging
target.

Get Breakpoints Retrieves the current breakpoint settings from the
debugging target.

Get Routine Name Determines the name, starting address, and ending
address of the function that contains the specified
address.

Get Trap Breaks Retrieves the settings for the trap breaks on the
debugging target.

Get Trap Conditionals Retrieves the trap conditionals values from the
debugging target.
Palm OS Programming Development Tools Guide 173

Debugger Protocol Reference
Summary of Debugger Protocol Packets
Message Sends a message to display on the debugging target.

Read Memory Reads memory values from the debugging target.

Read Registers Retrieves the value of each of the target processor
registers.

RPC Sends a remote procedure call to the debugging
target.

Set Breakpoints Sets breakpoints on the debugging target.

Set Trap Breaks Sets breakpoints on the debugging target.

Set Trap Conditionals Sets the trap conditionals values for the debugging
target.

State Sent by the host program to query the current state of
the debugging target, and sent by the target
whenever it encounters an exception and enters the
debugger.

Toggle Debugger Breaks Enables or disables breakpoints that have been
compiled into the code.

Write Memory Writes memory values to the debugging target.

Write Registers Sets the value of each of the target processor
registers.

Table 3.2 Debugger protocol command packets (continued)

Command Description
174 Palm OS Programming Development Tools Guide

Index
Symbols
.psf file 29

A
application error

definition 64

B
bound emulator 70
breakpoint constants 149
breakpoint dialog box 57
BreakpointType structure 152

C
C library functions 140
card options dialog box 43
command constants 149
command line options

for Palm OS Emulator 24
command packets

Continue 152
Find 154
Get Breakpoints 155
Get Routine Name 156
Get Trap Breaks 158
Get Trap Conditionals 159
Message 160
Read Memory 161
Read Registers 162
RPC 163
Set Breakpoints 164
Set Trap Breaks 165
Set Trap Conditionals 166
State 168
Toggle Debugger Breaks 170
Write Memory 171
Write Registers 172

command request packets 146
command response packets 146
commands

debugger protocol 152
constants

breakpoint 149
debugger protocol command 149

host control API 82
host control error 82
host control ID 86
host control platform 86
host function selector 86
host signal platform 87
packet 148
state 149

Continue 152
creating Palm demos 70

D
data types

host control API 87
database functions 136
debug options 44
debug options dialog box 44
debugger

connecting with Palm OS Emulator 59
debugger protocol

breakpoint constants 149
command constants 149
command request packets 146
command response packets 146
commands 152
Continue command 152
Find command 154
Get Breakpoints command 155
Get Routine Name command 156
Get Trap Breaks command 158
Get Trap Conditionals command 159
host and target 145
Message command 160
message packets 146
packet communications 146, 148
packet constants 148
packet structure 146
packet summary 173
packet types 146
Read Memory command 161
Read Registers command 162
RPC command 163
Set Breakpoints command 164
Set Trap Breaks command 165
Set Trap Conditional command 166
State command 168
Palm OS Programming Development Tools Guide 175

Index
state constants 149
Toggle Debugger Breaks command 170
Write Memory command 171
Write Registers command 172

debugger protocol API 145
debugging

with Palm OS Emulator 13
debugging host 145
debugging target 145
debugging with Palm OS Emulator 43
developer forum 79
developer zone 16
directory handler functions 137
double scale option 35
downloading emulator 16
downloading ROM images 19
downloading skins 35

E
emulation sessions 31
emulator 11

about 12
and HotSync application 39
and RPC 70
and serial communications 38
bound program 70
breakpoints dialog box 57
card options dialog box 43
changing appearance 35
command line options 24
connecting with external debugger 60
connecting with gdb debugger 59
connecting with Palm Debugger 59
control keys 78
debug options 44
debug options dialog box 44
debugging 43
debugging features 14
debugging with 13
demo version 70
device options 32
display 72
downloading 16
downloading ROM images 19
entering data in 78

error conditions 63
error dialog box 63
error handling 62
error messages 64
expansion card 42
extended features 14
gremlin horde dialog box 54
gremlin logging options 56
gremlin status dialog box 55
gremlins and logging 56
hardware button use 77
installing applications 37
latest information 79
list of files included 16
loading a ROM file on Macintosh 20
loading a ROM file on Unix 21
loading a ROM file on Windows 19
loading ROM images 18
logging options 47
logging options dialog box 48
memory checking 64
menu commands 74
menus 72
Netlib calls 37
new configuration dialog box 21
new session dialog box 23, 31
preference dialog box 36
preference file 37
preference file location 107
profiling 61
profiling with 18
properties dialog box 36
RAM selection 32
running 24
runtime requirements 15
saving and restoring sessions 34
saving session 37
saving the screen 34
serial port 37
session configuration 31
session configuration dialog box 30
session features 31
session file 29
setting breakpoints 56
skin selection 32
skins dialog box 35
snapshots 55
176 Palm OS Programming Development Tools Guide

Index
sounds 37
source level debugging 58
speeding up synchronization operations 42
standard device features 14
starting execution 28
startup dialog box 20, 29
testing 43
testing applications 43
transferring ROM images 19
user interface 72
user name 37
using gremlins 51
using ROM images 15, 22
version 11
version numbers 17
web site 79

environment functions 137
error handling

in Palm OS Emulator 62
error messages

in Palm OS Emulator 64
expansion card emulation 42
Expansion Manager 42
external debugger

connecting with Palm OS Emulator 60

F
file chooser support functions 138
Find 154
forum, developers 79
functions

host control 94
HostAscTime 94
HostClock 94
HostCloseDir 95
HostCTime 95
HostErrNo 95
HostExportFile 96
HostFClose 96
HostFEOF 97
HostFError 97
HostFFlush 97
HostFGetC 98
HostFGetPos 98
HostFGetS 98
HostFOpen 99

HostFPrintF 99
HostFPutC 99
HostFPutS 100
HostFRead 100
HostFree 100
HostFReopen 101
HostFScanf 101
HostFSeek 102
HostFSetPos 102
HostFTell 103
HostFWrite 103
HostGestalt 103
HostGetDirectory 104
HostGetEnv 104
HostGetFile 104
HostGetFileAttr 105
HostGetHostID 106
HostGetHostPlatform 106
HostGetHostVersion 106
HostGetPreference 107
HostGMTime 108
HostGremlinCounter 108
HostGremlinIsRunning 108
HostGremlinLimit 109
HostGremlinNew 109
HostGremlinNumber 109
HostImportFile 110
HostIsCallingTrap 110
HostIsSelectorImplemented 111
HostLocalTime 111
HostLogFile 112
HostMalloc 112
HostMkDir 112
HostMkTime 113
HostOpenDir 113
HostProfileCleanup 113
HostProfileDetailFn 114
HostProfileDump 114
HostProfileGetCycles 115
HostProfileInit 115
HostProfileStart 116
HostProfileStop 116
HostPutFile 117
HostReadDir 117
HostRealloc 117
HostRemove 118
HostRmDir 119
Palm OS Programming Development Tools Guide 177

Index
HostSaveScreen 119
HostSessionClose 119
HostSessionCreate 120
HostSessionOpen 121
HostSessionQuit 121
HostSetFileAttr 122
HostSetLogFileSize 123
HostSetPreference 123
HostSignalResume 124
HostSignalWait 125
HostSlotHasCard 126
HostSlotMax 127
HostSlotRoot 127
HostStat 128
HostStrFTime 128
HostTime 129
HostTmpFile 129
HostTmpNam 129
HostTraceClose 130
HostTraceInit 130
HostTraceOutputB 131
HostTraceOutputT 131
HostTraceOutputTL 133
HostTraceOutputVT 134
HostTraceOutputVTL 135
HostTruncate 135
HostUtime 136

G
gdb debugger

connecting with Palm OS Emulator 59
generic skin 35
Get Breakpoints 155
Get Routine Name 156
Get Trap Breaks 158
Get Trap Conditionals 159
gremlin functions 138
gremlin horde dialog box 54
gremlin status dialog box 55
gremlins 51

and logging 56
snapshots 55

H
hardware buttons

in Palm OS Emulator 77
host control

constants 82
data types 87
database functions 136
directory handler functions 137
environment functions 137
file chooser support functions 138
function summary 136
functions 94
gremlin functions 138
host error constants 82
host function selector constants 86
host ID constants 86
host platform constants 86
host signal constants 87
HostAscTime function 94
HostBool data type 88
HostClock data type 88
HostClock function 94
HostCloseDir function 95
HostCTime function 95
HostDIR data type 88
HostDirEnt data type 88
HostErrNo function 95
HostExportFile function 96
HostFClose function 96
HostFEOF function 97
HostFError function 97
HostFFlush function 97
HostFGetC function 98
HostFGetPos function 98
HostFGetS function 98
HostFILE data type 89
HostFOpen function 99
HostFPrintf function 99
HostFPutS function 100
HostFRead function 100
HostFree function 100
HostFReopen function 101
HostFScanF function 101
HostFSeek function 102
HostFSetPos function 102
HostFTell function 103
HostFWrite function 103
HostGestalt function 103
HostGetDirectory function 104
178 Palm OS Programming Development Tools Guide

Index
HostGetEnv function 104
HostGetFile function 104
HostGetFileAttr function 105
HostGetHostID function 106
HostGetHostPlatform function 106
HostGetHostVersion function 106
HostGetPreference function 107
HostGMTime function 108
HostGremlinCounter function 108
HostGremlinInfo data type 89
HostGremlinIsRunning function 108
HostGremlinLimit function 109
HostGremlinNew function 109
HostGremlinNumber function 109
HostID data type 90
HostImportFile function 110
HostIsCallingTrap function 110
HostIsSelectorImplemented function 111
HostLocalTime function 111
HostLogFile function 112
HostMalloc function 112
HostMkDir function 112
HostMkTime function 113
HostOpenDir function 113
HostPlatform data type 90
HostProfileCleanup function 113
HostProfileDetailFn function 114
HostProfileDump function 114
HostProfileGetCycles function 115
HostProfileInit function 115
HostProfileStart function 116
HostProfileStop function 116
HostPutC function 99
HostPutFile function 117
HostReadDir function 117
HostRealloc function 117
HostRemove function 118
HostRmDir function 119
HostSaveScreen function 119
HostSessionClose function 119
HostSessionCreate function 120
HostSessionOpen function 121
HostSessionQuit function 121
HostSetFileAttr function 122
HostSetLogFileSize function 123
HostSetPreference function 123
HostSignal data type 90

HostSignalResume function 124
HostSignalWait function 125
HostSize data type 90
HostSlotHasCard function 126
HostSlotMax function 127
HostSlotRoot function 127
HostStat data type 91
HostStat function 128
HostStrFTime function 128
HostTime data type 92
HostTime function 129
HostTm data type 92
HostTmpFile function 129
HostTmpNam function 129
HostTraceClose function 130
HostTraceInit function 130
HostTraceOutputB function 131
HostTraceOutputT function 131
HostTraceOutputTL function 133
HostTraceOutputVT function 134
HostTraceOutputVTL function 135
HostTruncate function 135
HostUTime data type 93
HostUTime function 136
logging functions 139
preference functions 139
profiling functions 139
reference summary 136
RPC functions 140
standard C library functions 140
time functions 142
tracing functions 143

host control API 81
host error constants 82
host function selector constants 86
host ID constants 86
host platform constants 86
host signal constants 87
HostAscTime 94
HostBool data type 88
HostClock 94
HostClock data type 88
HostCloseDir 95
HostCTime 95
HostDIR data type 88
HostDirEnt data type 88
Palm OS Programming Development Tools Guide 179

Index
HostErrNo 95
HostExportFile 96
HostFClose 96
HostFEOF 97
HostFError 97
HostFFlush 97
HostFGetC 98
HostFGetPos 98
HostFGetS 98
HostFILE data type 89
HostFOpen 99
HostFPrintF 99
HostFPutC 99
HostFPutS 100
HostFRead 100
HostFree 100
HostFReopen 101
HostFScanF 101
HostFSeek 102
HostFSetPos 102
HostFTell 103
HostFWrite 103
HostGestalt 103
HostGetDirectory 104
HostGetEnv 104
HostGetFile 104
HostGetFileAttr 105
HostGetHostID 106
HostGetHostPlatform 106
HostGetHostVersion 106
HostGetPreference 107
HostGMTime 108
HostGremlinCounter 108
HostGremlinInfo data type 89
HostGremlinIsRunning 108
HostGremlinLimit 109
HostGremlinNew 109
HostGremlinNumber 109
HostID data type 90
HostImportFile 110
HostIsCallingTrap 110
HostIsSelectorImplemented 111
HostLocalTime 111

HostLogFile 112
HostMalloc 112
HostMkDir 112
HostMkTime 113
HostOpenDir 113
HostPlatform data type 90
HostProfileCleanup 113
HostProfileDetailFn 114
HostProfileDUmp 114
HostProfileGetCycles 115
HostProfileInit 115
HostProfileStart 116
HostProfileStop 116
HostPutFile 117
HostReadDir 117
HostRealloc 117
HostRemove 118
HostRmDir 119
HostSaveScreen 119
HostSessionClose 119
HostSessionCreate 120
HostSessionOpen 121
HostSessionQuit 121
HostSetFileAttr 122
HostSetLogFileSize 123
HostSetPreference 123
HostSignal data type 90
HostSignalResume 124
HostSignalWait 125
HostSize data type 90
HostSlotHasCard 126
HostSlotMax 127
HostSlotRoot 127
HostStat 128
HostStat data type 91
HostStrFTime 128
HostTime 129
HostTime data type 92
HostTm data type 92
HostTmpFile 129
HostTmpNam 129
HostTraceClose 130
HostTraceInit 130
180 Palm OS Programming Development Tools Guide

Index
HostTraceOutputB 131
HostTraceOutputT 131
HostTraceOutputTL 133
HostTraceOutputVT 134
HostTraceOutputVTL 135
HostTruncate 135
HostUTime 136
HostUTime data type 93
HotSync application

and Palm OS Emulator 39
emulating on Windows 39
emulating with null modem cable 41

I
installing applications

in Palm OS Emulator 37

L
loading ROM images 18
logging functions 139
logging options 47
logging options dialog box 48, 56
logging while running gremlins 56

M
memory access exception

definition 64
Message 160
message packets 146

N
Network HotSync 40

P
packet communications 148
packet constants 148
packet types 146
Palm OS Emulator 11
POSE

see emulator 11
Pose

see emulator 11
Preference dialog box 36

preference file names 107
preference functions 139
processor exception

definition 63
profiling

with Palm OS Emulator 18
profiling code 61
profiling functions 139
Properties dialog box 36
PSF file

see emulator session file 29

R
Read Memory 161
Read Registers 162
reference summary

host control functions 136
Resource Pavilion web site 19
ROM images 15

downloading 19
loading into the emulator 19
transferring 19
using 22

RPC 163
RPC calls 70
RPC functions 140
RPC packets 70
running emulator 24

S
saving and restoring sessions 34
saving the screen 34
screen shots 34
serial communications

and Palm OS Emulator 38
session features 31
Set Breakpoints 164
Set Trap Breaks 165
Set Trap Conditionals 166
setting debug breakpoints 56
skins

double scale option 35
downloading 35
emulator dialog box 35
Palm OS Programming Development Tools Guide 181

Index
generic 35
white background option 36

skins dialog box
other options 35

snapshots 55
source level debugging 58
standard C library functions 140
State 168
state constants 149
synchronizing

with Palm OS Emulator 42
SysPktBodyCommon structure 150
SysPktBodyType structure 151
SysPktRPCParamType structure 151

T
testing with Palm OS Emulator 43
time data type 92
time functions 142
Toggle Debugger Breaks 170
tracing functions 143
transferring ROM images 19

U
user interface

of Palm OS Emulator 72
using ROM images 22

V
versions

of Palm OS Emulator 17
Virtual File System Manager 42

W
web page

Network HotSync 40
web site

developer forum 79
developer zone 16
emulator 35, 79
Resource Pavilion 19

white background option 36
Write Memory 171
Write Registers 172
182 Palm OS Programming Development Tools Guide

	Palm OS® Emulator Excerpt from Palm OS Programming Development Tools Guide
	Table of Contents
	Using Palm OS® Emulator
	About Palm OS Emulator
	Feature Overview
	Standard Device Features
	Extended Emulation Features
	Debugging Features

	Prerequisites
	Palm OS Emulator Runtime Requirements
	Using ROM Images

	Downloading Palm OS Emulator
	Versions of Palm OS Emulator

	Loading ROM Images
	Downloading a ROM Image Obtained From Palm
	Transferring a ROM Image From a Handheld
	Transferring a ROM File in Windows
	Transferring a ROM File On a Macintosh
	Transferring a ROM File On a Unix System
	Using a ROM Image in Palm OS Emulator

	Running Palm OS Emulator
	Command Line Options
	Starting Palm OS Emulator

	Using Emulation Sessions
	Configuring a New Session
	The Difference Between the New Menu Item and the Open Menu Item
	Dragging and Dropping Files
	Saving and Restoring Session State
	Changing the Emulator’s Appearance

	Modifying the Runtime Environment
	Palm OS Emulator Properties
	Installing Applications
	Serial Communications and Palm OS Emulator
	Using the HotSync Application With Palm OS Emulator
	Emulating Expansion Cards

	Testing Your Application
	Testing Software
	Debug Options
	Logging Options
	Using Gremlins to Automate Testing
	Setting Breakpoints
	Source Level Debugging
	Connecting Emulator with Palm Debugger
	Connecting Emulator with the GDB Debugger
	Connecting the Emulator With External Debuggers
	Profiling Your Code

	Error Handling Concepts
	Detecting an Error Condition
	Error Condition Types
	Error Messages

	Advanced Topics
	Creating Demonstration Versions of Palm OS Emulator
	Sending Commands to Palm OS Emulator

	User Interface Summary
	Palm OS Emulator Display
	Using the Menus
	Using the Hardware Buttons
	Control Keys

	Getting Help With Palm OS Emulator

	Host Control API Reference
	About the Host Control API
	Constants
	Host Error Constants
	Host Function Selector Constants
	Host ID Constants
	Host Platform Constants
	Host Signal Constants

	Data Types
	HostBoolType
	New HostClockType
	New HostDirEntType
	New HostDIRType
	HostFILEType
	HostGremlinInfoType
	HostIDType
	HostPlatformType
	HostSignalType
	New HostSizeType
	New HostStatType
	New HostTimeType
	New HostTmType
	New HostUTimeType

	Functions
	HostErrNo
	HostExportFile
	HostFClose
	HostFEOF
	HostFError
	HostFFlush
	HostFGetC
	HostFGetPos
	HostFGetS
	HostFOpen
	HostFPrintF
	HostFPutC
	HostFPutS
	HostFRead
	HostFree
	HostFReopen
	HostFScanF
	HostFSeek
	HostFSetPos
	HostFTell
	HostFWrite
	HostGestalt
	HostGetEnv
	HostGetHostID
	HostGetHostPlatform
	HostGetHostVersion
	HostGetPreference
	HostGremlinCounter
	HostGremlinIsRunning
	HostGremlinLimit
	HostGremlinNew
	HostGremlinNumber
	HostImportFile
	HostIsCallingTrap
	HostIsSelectorImplemented
	HostLogFile
	HostMalloc
	HostProfileCleanup
	HostProfileDetailFn
	HostProfileDump
	HostProfileInit
	HostProfileStart
	HostProfileStop
	HostRealloc
	HostRemove
	HostRename
	HostSessionClose
	HostSessionCreate
	HostSessionOpen
	HostSessionQuit
	HostSetLogFileSize
	HostSetPreference
	HostSignalResume
	HostSignalSend
	HostSignalWait
	HostTmpFile
	HostTmpNam
	HostTraceClose
	HostTraceInit
	HostTraceOutputB
	HostTraceOutputT
	HostTraceOutputTL
	HostTraceOutputVT
	HostTraceOutputVTL

	Reference Summary
	Host Control Database Functions
	New Host Control Directory Handler Functions
	Host Control Environment Functions
	New Host Control File Chooser Support Functions
	Host Control Gremlin Functions
	Host Control Logging Functions
	Host Control Preference Functions
	Host Control Profiling Functions
	Host Control RPC Functions
	Host Control Standard C Library Functions
	New Host Control Time Functions
	Host Control Tracing Functions

	Debugger Protocol Reference
	About the Palm Debugger Protocol
	Packets
	Packet Structure
	Packet Communications

	Constants
	Packet Constants
	State Constants
	Breakpoint Constants
	Command Constants

	Data Structures
	_SysPktBodyCommon
	SysPktBodyType
	SysPktRPCParamType
	BreakpointType

	Debugger Protocol Commands
	Continue
	Find
	Get Breakpoints
	Get Routine Name
	Get Trap Breaks
	Get Trap Conditionals
	Message
	Read Memory
	Read Registers
	RPC
	Set Breakpoints
	Set Trap Breaks
	Set Trap Conditionals
	State
	Toggle Debugger Breaks
	Write Memory
	Write Registers

	Summary of Debugger Protocol Packets

	Index

